
Efficient Multiplication in �� ���� for Elliptic Curve Cryptography

J.-C. Bajard, L. Imbert, C. Nègre and T. Plantard
Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier

LIRMM, 161 rue Ada, 34392 Montpellier cedex 5 – France
{bajard, imbert, negre, plantard}@lirmm.fr

Abstract

We present a new multiplication algorithm for the im-
plementation of elliptic curve cryptography (ECC) over the
finite extension fields �� ���� where � is a prime num-
ber greater than ��. In the context of ECC we can as-
sume that � is a �-to-��-bit number, and easily find val-
ues for � which satisfy: � � ��, and for security reasons
���

�
��� � � � �	�. All the computations are performed

within an alternate polynomial representation of the field
elements which is directly obtained from the inputs. No
conversion step is needed. We describe our algorithm in
terms of matrix operations and point out some properties of
the matrices that can be used to improve the design. The
proposed algorithm is highly parallelizable and seems well
adapted to hardware implementation of elliptic curve cryp-
tosystems.

1. Introduction

Cryptographic applications such as elliptic or hyperel-
liptic curves cryptosystems (ECC, HECC) [11, 12, 13] re-
quire arithmetic operations to be performed in finite fields.
This is the case, for example, for the Diffie-Hellman key
exchange algorithm [6] which bases its security on the dis-
crete logarithm problem. Efficient arithmetic in these fields
is then a major issue for lots of modern cryptographic ap-
plications [14]. Many studies have been proposed for the
finite field �� ���, where � is a prime number [23] or the
Galois field �� ���� [4, 7, 16]. In [1], D. Bailey and C.
Paar use optimal extension fields �� ���� and they pro-
pose an efficient arithmetic solution in those fields when �
is a Mersenne or pseudo-Mersenne prime [2]. Although it
could result in a wider choice of cryptosystems, arithmetic
over the more general finite extension fields �� ����, with
� � �, has not been extensively investigated yet. Moreover
it has been proved that elliptic curves defined over �� ����
– where the curves verify the usual conditions of security –
provide at least the same level of security as the curves usu-

ally defined over�� ���� or�� ���. For ECC, a good level
of security can be achieved with � and � prime and about
�	�-bit key-length. Table 1 gives some good candidates for
� and � and the corresponding key-size.

� � key-size form of �
67 29 175 	
 � �
67 31 188
 �������
73 23 142 	
 � � � �
73 29 179
 �������

127 19 132 ���� �
127 23 160
��
 �� � �
127 29 202
 �������
257 17 136 ��	 � �

257 19 152
 ��
 ��
�

� �
257 23 184
 ���������

Table 1. Good candidates for primes � and �

and the corresponding key-size in bits.

In this paper, we introduce a Montgomery like modular
multiplication algorithm in �� ���� for � � �� (this con-
dition comes from technical reasons that we shall explain
further). Given the polynomials���� and ���� of degree
less than �, and ���� of degree � (we will give more de-
tails on ���� in section 1.2), our algorithm computes

�������������� ��� 	���

where 	��� is a monic irreducible polynomial of degree
� ; and both the operands and the result are given in an
alternate representation introduced in the next section.

In the classical polynomial representation, we can con-
sider the elements of�� ���� as polynomials of degree less
than � in �� ����� � and we represent the field with re-
spect to an irreducible polynomial 	��� of degree � over
�� ���. Any element � of �� ���� is then represented us-
ing a polynomial���� of degree � � � or less with coeffi-
cients in�� ���, i.e.,����
 �������� � �������

���,
where �� � ��
 � � �
 � � ��. Here, we consider an al-

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

ternate solution which consists of representing the poly-
nomials with their values at � distinct points instead of
their � coefficients. As a result, if we choose � points
���� ��� � � � � ���, we represent the polynomial� with the se-
quence ������� ������ � � � � ������. Within this representa-
tion, addition, subtraction and multiplication are performed
over completely independent channels which has great ad-
vantage from a chip design viewpoint.

1.1. Montgomery Multiplication in �� ����

Montgomery’s technique for modular multiplication of
large integers [15] has recently been adapted to modular
multiplication in �� ���� by Koç and Acar [4]. The pro-
posed solution is a direct translation of the original Mont-
gomery algorithm in the field �� ����, with �� play-
ing the role of the Montgomery factor ; i.e. it computes
����������� ��� 	���, where 	 is a �-order irre-
ducible polynomial with coefficients in �� ���.

In turn this method easily extends to �� �
��, with

 � �. As in [4], we represent the field �� �
�� with
respect to a monic irreducible polynomial 	��� and we
consider the field elements as polynomials of degree less
than � in �� �
��� � ; i.e. we consider the elements of
�� �
��� ��	���. Thus, if we take � and � in �� �
��,
we successively compute

��� � ���������	����� ��� ��

���� � ��������� 	
���	���� ���

to get the result ����������� ��� 	���. In terms of
elementary operations over �� �
�, the complexity of this
method is �� 	 �� �
�� multiplications (modulo
) and
�� �
�� 	 �� � ��� 	 � additions (modulo
).

1.2. Alternate polynomial representation

The general idea of our approach is the change of repre-
sentation. When dealing with polynomials the idea which
first comes in mind is to use a coefficient representation.
However, the valued representation – where a polynomial is
represented by its values at sufficiently many points – can
be of use. Thanks to Lagrange’s theorem we can actually
represent any polynomial of degree less than � with its val-
ues at various distinct points ���� ��� � � � � ���. A very good
discussion on polynomial evaluation and interpolation can
be found in [21].

In the following of the paper, we represent a polyno-
mial of degree at most � �
, say �, by the sequence
������� ������ � � � � ������. In the following we consider
the notation �� � �����. At this point, it is very impor-
tant to understand that the ��s do not represent the coeffi-
cients of �, and that there is nothing to do to obtain such
a representation. We directly consider the polynomial in

this form. As an example, the input
��

�
�
�
 which
would usually represent the polynomial ��� 	

� 	 � in
the coefficient representation, is considered here as the se-
quence ���

� ��. This sequence corresponds to the unique
polynomial � of degree � which has values � ���� � �,
� ���� �

 and � ���� � �. We can easily compute its
coefficients by means of interpolation but as we shall see
further, there is no need to do so. We will use this represen-
tation during all the computational steps.

2. New algorithm

As mentioned previously, Koç and Acar used the poly-
nomial �� in their adaptation of Montgomery multiplica-
tion to the field �� ����, and we have briefly shown in sec-
tion 1.1 that their solution easily extends to �� �
��. In our
new approach we rather consider the �-order polynomial

���� � �� � ����� � ��� � � � �� � ���� (1)

where �� � ���
� � � � �
 �
�. A first remark is that
this clearly implies
 � �. As we shall see further, ��
distinct points are actually needed. Thus given the three
polynomials � � ���� ��� � � � � ���, � � ���� ��� � � � � ���
and 	 � ���� ��� � � � � ��� in �� �
�� ; and under the
condition
 � ��, our algorithm computes the product
�������������� ��� 	��� in two stages.

Stage 1: We define the polynomial
 of degree less than �
such that:

��� �
�
���������	�����

�
��� �����

in other words, we compute in parallel and in �� �
�

�� �
�
��� ��	

������
�
� �� �
 � � � ��

Stage 2: Since ��������� 	
���	���� is a multiple
of ����, we compute���� of degree less than � such that

���� �
�
�������� 	
���	���

�
������

In this algorithm it is important to note that it is not
possible to evaluate ���� directly as mentioned in step 2.
Since ��������� 	
���	���� is a multiple of ����
its representation at the points ���� ��� � � � � ��� is merely
composed of �. The same clearly applies for ���� ���

����� � ���. As a direct consequence the division
by ����, which actually reduces to the multiplication by
������, has neither effect nor sense. We address this prob-
lem by using � extra values ���

�
� ��

�
� � � � � ��

�� where ��

� �� ��
for all �� �, and by computing ��������� 	
���	����
for those � extra values. In algorithm 1, the operations in
step 3 are then performed for � � ���

�
� ��

�
� � � � � ��

��.
Steps 1 and 3 are fully parallel operations in �� �
�. The

complexity of algorithm 1 thus mainly depends on the two
polynomial interpolations (steps 2, 4).

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

Algorithm 1 New Multiplication in �� ����

Step 1: For � � ���� � � � � ���, compute in parallel

���� � �����	���
�����

Step 2: Extend � in ���

�
� � � � � ��

�� using Lagrange interpo-
lation

Step 3: For � � ���

�
� � � � � ��

��, compute in parallel

���� �
�
����	��� �����
���

�
������

Step 4: Extend � back in ���� � � � � ��� using Lagrange in-
terpolation.

2.1. Implementation

In step 1 we compute in �� ��� and in parallel for all �
in ��� � � � �
�

�� � ���� � �� � ���� ��� �� (2)

where the ���s are precomputed constants ���� �
�������.
Then in step 2, the extension is performed via Lagrange in-
terpolation:

���� �

��
���

��

�
�

��
����� ���

� � ��

�� � ��

�
� � (3)

If we denote

���� �

��
����� ���

��� � ��

�� � ��
� (4)

the extension of ���� in ���
�
� ��

�
� � � � � ���� becomes

�
����

��
�

��
�

...
�����

���

�
			��

�
��

���� ��� ������ ����
���� ��� ������ ����

...
������ ��� �������� ������
���� ��� ������ ����

�
	�

�
��

��
��

...
����

��

�
	�� (5)

Operations in step 3 are performed in parallel for � �
��� � � � �
�. We compute

��� � ���� � ��� � ��� � ���� �� ��� �� (6)

where the �� s are also precomputed values.

�� � ������
�� ��� � �

�

��
���

���� � ���

�

��

��� ��

It is easy to remark that ������ �� 	��� � ��� � � � �
�. Thus
the modular inverse, ������

�� ��� �, always exists.

At the end of step 3, the polynomial � of degree less
than
 is defined by its values at ���

�
� ��

�
� � � � � ����, namely

���
�
� ��
�
� � � � � ����. If we want to reuse the obtained result as

the input of other multiplications (which is frequently the
case in exponentiation algorithms), we must also know the
values of � at ���� ��� � � � � ���. This is done in step 4 again
by mean of Lagrange interpolation. As in step 2, we define

����� �

��
����� ���

�� � ���

��� � ���
� (7)

and we compute

�
��

��
��

...
����

��

�
	��

�
����

��
��� ��� ��

�����
��
���

��
��� ��� ��

�����
��
���

...
������� ��� ���������

�������

����� ��� �������
�����

�
			�

�
����

��
�

��
�

...
�����

�
�

�

�
			�� (8)

Another implementation option would be to insert some
of the multiplications by constants into the matrix opera-
tions of steps 2 and 4. We can introduce the ���s of (2) and
the ���s of (6) in the matrix of equation (5) to gain one prod-
uct in each step 1 and 3. We do not give much details about
this solution because we will see further that the original
matrices have some very attractive properties for the hard-
ware implementation.

2.2. Example

In this example, we consider the finite field �� ��
��
defined according to the monic irreducible polynomial

��� � �������. (� � �
 and
 � � satisfy � �

.)
The two sets of points used for Lagrange representation are
� � �
� �� �� �� �	� and �� � ��� ��
� �� ���. For all �� in
� and ��� in �

�, we have
������ � ��� ��� �� ��� �� (for
use in step 1) and
����� � ��� �� �� ��� �� (for use in step
3). Also used in step 3 is the vector � � ��� �� ��� ��� �
� .
The two interpolation matrices needed in steps 2 and 4 are:

� �

�
�����

 � �� �

 � �	 �� �
� �� �	 �

 � �� �

 �� � �	 �

�
				�

and

�� �

�
�����

� �	 � ��

 � �� �

 � �	 �� �
� �� �	 �

 � �� �

�
				�
�

In Lemma 1 we will observe some symmetry between the
elements of these two matrices.

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

Given ���� and ���� in �� �����, known by their
values at points of � and �

�, we compute ���� �
�������������� ��� ���� in the same representa-
tion. We have:

���� � ��� 	�
� 	� ��

����� � ����
� �� �
� ��

���� � ��� �� �
� �
�
�

����� � ��
� �� �� ��� ���

In step 1 of the algorithm we compute

���� � ��
� ��
� �
�
�

and we extend it in step 2 (eq. (5)) from � to ��

����� � �	� ��
� 	� ��

Now in step 3 (eq. (6)), we evaluate in parallel for each
value of ��

����� � ��
� �
� �� �� ��

and we interpolate it back (eq. (8)) to obtain the final result
in �

���� � ��
� 	� �� �� �
�	

We can easily check that this actually is the correct result.
If we consider the classical coefficient representation of �
and �, we have ���� �
�� �� � �, ���� � �� �
�� � � and ���� � ��� � ��� � ���� � �, which
evaluated at points of � gives ����.

3. Arithmetic over �� ���

From an hardware point of view, this method is of in-
terest if and only if we can take advantage of an efficient
arithmetic over �� �
�. In this section we give the idea
of some algorithms for the addition and the multiplication
modulo a prime
. Different solutions have been proposed
but most of them only focus on large primes which are use-
ful if one wants to implement elliptic curve cryptography
over �� �
� [23]. Here we only need arithmetic operations
modulo small primes, say � to �
 bits.

3.1. Addition

When we aim at computing the modular sum �� � ���

, a classical approach consists in evaluating in parallel the
quantities � � � and � � � �
. The correct result is se-
lected according to the sign of � � � �
. For a single
operation, this solution gives a result less than
. How-
ever, when several additions have to be computed, we do
not need to reduce the sum modulo
 after each addition.

If
��� �
 �
�, another solution is to keep the inter-
mediate results less than
� by only performing a reduction
modulo
 when the partial sum becomes greater than
�.
In other words, we perform the sum � � � and we subtract

 only if a carry has occurred. In [19], a redundant repre-
sentation is used so that the modular addition is performed
without carry propagation. The redundant addition is then
used within a radix-
 and radix-� modular multiplication
algorithms.

3.2. Multiplication

Multiplication modulo special numbers have been exten-
sively studied. For instance a multiplication modulo
� � �
is presented in [17] and modulus of the form
���, are used
in [22] in the context of DSP applications. Other works ex-
ists for Fermat numbers �� �
�

�

�� and Mersenne primes
�� �
� � �, with
 prime.

In the general case, the product �� � ���
 can be im-
plemented by means of index calculus with two lookup ta-
bles and one addition. We simply use the fact that any ele-
ment of the group �� �
� corresponds to a power of a gen-
erator � of the group. We retrieve in a first table the val-
ues � and � such that � � �� and � � �� , we evaluate
��� ���
� � and we read in the second table the result
� � � � ���
 � ��������� (see figure 1). This solution
has been proposed in [9] for the special case of the �th Fer-
mat prime
 �
��. The advantage here is that addition
modulo
� � reduces to a classical �-bit addition.

�� � ���

�

�� �

�

�� � ���
� �

� � ��

� � ��

���������

�

Figure 1. Index calculus modular multiplica-
tion.

An interesting suggestion for multiplication by means of
look-up tables can be found in [20] under the term quarter-
squarer multiplier. It is based of the following equation:

� � ��� � �

���� �

��
�

��� �

���
��� �� (9)

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

where both squares are given by a look-up table of ����

input bits. This is illustrated in figure 2. Optimizations of

�� � ��� �

������ ��� �

�
�

�

� � ��� ��� � ��� ��

������ ��� �

� �

Figure 2. Look-up based modular multiplica-
tion for small operands.

this general idea are possible. One can perform the division
by two (shifts) before the table look-up. This divides the
size of the table by a factor two, but when �� � is odd, the
correcting term � must be added (modulo �) at the end. The
size can be further reduced using the fact that �� � �����

���� ��. In this case, the address resolution problem must
be solved.

One can also consider a double-and-add method, some-
times called the Russian peasant method for multiplica-
tion [10], associated with a Booth recoding of one of the
operands. A table is used to store the double (modulo �) of
each value less than �. If we want to multiply two �-bit
numbers, this method requires at most ��� additions. For
example the evaluation of ��� � �	 ��� �
 only requires
� additions and 	 doublings which are just table lookups.
������	��� � ���������������	 ��� �
� ��� �
� ���
�
�� �	 ��� �
� ��� �
� ��� �
� � �	 ��� �

Modular multiplication by a constant is a lot easier. For
small operands, one can simply implement the modular
multiplication with some combinatorial logic implementing
the function.

4. Complexity

In table 2 we count the number of additions (A), multi-
plications by a constant (CM) and real multiplications (M)
over �� ��� of algorithm 1.

The time required for a sequential implantation corre-
sponds to the number of operations given in table 2. Since

A CM M
step 1 - 	 	
step 2 	�	 � �� 	� -
step 3 	 	 �	
step 4 	�	 � �� 	� -
total �	� � 	 �	� � �	 �	

Table 2. Number of additions (A), constant
multiplications (CM) and real multiplications
(M) over �� ��� for a sequential implementa-
tion of the algorithm.

the product in �� ���� can be totally parallelized into 	
streams, the time required is exactly ��	 times that for the
sequential version. If we define
� the time required for one
addition,
�� for one constant multiplication and
� for
one real multiplication respectively, we can precisely evalu-
ate the time complexity of our algorithm on a parallel archi-
tecture. Table 3 summarizes the four steps of the algorithm.

step 1
� �
��
step 2
�� �

����
��� ��
�
�� �
��

step 3 ��
�
� �
�� � �
� �
��
step 4
 ��
� �

����
��� ��
�
�� �
��

Table 3. Time complexity estimation on a
pipelined architecture.

5. Discussion

5.1. Simplified architecture

The major advantage of this method is that the matrices
in (5) and (8) do not depend on the inputs. Thus all the oper-
ations reduce to multiplications by constants which signif-
icantly simplify the hardware implementation. Moreover,
in the example presented in section 2.2 we have detected
symmetries between the elements of the two matrices that
can also contribute to a simplified architecture. We have the
following Lemma.

Lemma 1 As in the previous example, let us denote �� � ��
and ��

� � ����. According to equations (4) and (7) we have

���� �

��

����� ���

��� �� ��

�� � ��
(10)

and

��
��� �

��

����� ���

���� ���� ���

��� � �� ���� ���
� (11)

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

Then for every �� � � ��� � � � � �� we have

���� � ��

����������� � (12)

In other words equation (8) can be implemented with the
same matrix than eq. (5), by simply reversing the order of
the elements of the vectors � and ��:

�
��

��
����

...
��
��

�
���

�
��

���� ��� ������ ����
���� ��� ������ ����

...
������ ��� �������� ������
���� ��� ������ ����

�
��

�
����

���
�����

...
��
�

��
�

�
���� � (13)

Proof: We are going to rearrange each part of the equality
to make the identity appear. Let us first focus on the right-
hand part of the identity.

��

����������� �

�
� �������

��� � �� ��� ���� ��

��� � �� �� � �� ���� ��

�
�

��������

���� ��� � ����� �

��� � � � ��� � ����� �
�

So far we have just changed the position of � � � in each
term of the product. Next just by multiplying each fraction
by ��, and extracting all the �s in the denominators, we
get:

��
����������� �

����
�

� �������

��� ��� � ���� � �

� � �� � ����

� ����
�
� ���

��� �� ��

� ��
�

Here we have reordered the indices � � � � � ��. We
now do the same with the left-hand expression.

���� �
�
� ���

��� �� ��

�� � ��
�

We extract the �s in the denominators:

���� � ����
�
� ���

��� �� ��

� ��
�

and we conclude that the new expressions for ���� and
��
����������� are the same. �

This lemma points out symmetry properties of the matri-
ces that mainly depend on the choice made in the example
for the points of � and ��. They can be taken into account to
improve the hardware architecture. Other choices of points
could be more interesting and could result in very attractive
chip design solutions. This is currently work in progress in
our team.

5.2. Cryptographic context

In ECC, the main operation is the addition of two points
of an elliptic curve defined over a finite field. Hardware im-
plementation of elliptic curves cryptosystems thus requires
efficient operators for additions, multiplications and divi-
sions. Since division is usually a complex operation, we
use projective (or homogeneous) coordinates to bypass this
difficulty (only one division is needed at the very end of the
algorithm).

Thus the only operations are addition and multiplication
in	
 ���. Moreover it is worth noticing that we do not need
to reduce modulo � after each addition. We only subtract
� from the result of the last addition if it is greater than
���	
����� (we recall that � is odd). In other words we just
have to check one bit after each addition. The exact value is
only needed for the final result.

In ECC protocols, additions chains of points of an ellip-
tic curve are needed. In homogeneous coordinates, those
operations consist in additions and multiplications over
	
 ����. Only one division is needed at the end and it
can be performed in the Lagrange representation using the
Fermat-Euler theorem which states that for all non zero
value � in 	
 ����, then ��

��� � �. Hence we can com-
pute the inverse of � by computing ��

��� in 	
 ����.
It is also advantageous to use a polynomial equivalent

to the Montgomery notation during the computations. We
consider polynomials in the form

���� �
���	��� ��� ����

instead of
���. It is clear that adding two polynomials
given in this notation gives the result in the same notation,
and for the product, since

Mont�
����� �
�������	����� ��� �����

we have

Mont�
�� ��� �� �

���������	����� ��� ����

�
�������	��� ��� �����

6. Conclusion

Works from Bailey and Paar [1, 2], Smart [18] and Cran-
dall [5] have shown that it is possible to obtain more ef-
ficient software implementation over 	
 ���� than over
	
 ���� or 	
 ��� when � is carefully chosen (Mersenne,
pseudo-Mersenne, generalized Mersenne primes, etc). In
this article we have presented a new modular multiplica-
tion algorithm over the finite extension field 	
 ����, for
� � ��, which is highly parallelizable and well adapted to

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

hardware implementation. Our algorithm is particularly in-
teresting for ECC since it seems that there exists fewer non-
singular curves over �� ���� than over �� ����. Finding
"good" curves for elliptic curve cryptography would then be
easier. This could result in a wider choice of curves than in
the case � � �. This method can be extended to finite fields
of the form�� �����, where �� � ��. In this case � � ��

is no longer a prime number which forces us to choose the
values of � and �

� in �� �����. Fields of this form can
also be useful for the recent tripartite Diffie-Hellamn key
exchange algorithm [8] or the short signature scheme [3]
which require an efficient arithmetic over �� �����, where
� � � � �� and � is a prime number greater than 160.

Acknowledgements

The authors would like to thank the anonymous review-
ers for their very useful comments. This work has been sup-
ported by an ACI cryptologie 2002 grant from the French
ministry of education and research.

References

[1] D. Bailey and C. Paar. Optimal extension fields for fast
arithmetic in public-key algorithms. In H. Krawczyk, edi-
tor, Advances in Cryptography – CRYPTO’98, volume 1462
of Lecture Notes in Computer Science (LNCS), pages 472–
485. Springer-Verlag, 1998.

[2] D. Bailey and C. Paar. Efficient arithmetic in finite field
extensions with application in elliptic curve cryptography.
Journal of Cryptology, 14(3):153–176, 2001.

[3] D. Boneh, H. Shacham, and B. Lynn. Short signatures from
the Weil pairing. In proceedings of Asiacrypt’01, volume
2139 of Lecture Notes in Computer Science, pages 514–532.
Springer-Verlag, 2001.

[4] Ç. K. Koç and T. Acar. Montgomery multiplication in
GF����. Designs, Codes and Cryptography, 14(1):57–69,
April 1998.

[5] R. Crandall. Method and apparatus for public key exchange
in a cryptographic system. U.S. Patent number 5159632,
1992.

[6] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, IT-
22(6):644–654, November 1976.

[7] A. Halbutoǧullari and Ç. K. Koç. Parallel multiplication
in GF���� using polynomial residue arithmetic. Designs,
Codes and Cryptography, 20(2):155–173, June 2000.

[8] A. Joux. A one round protocol for tripartite Diffie-Hellman.
In 4th International Algorithmic Number Theory Symposium
(ANTS-IV, volume 1838 of Lecture Notes in Computer Sci-
ence, pages 385–393. Springer-Verlag, July 2000.

[9] G. A. Jullien, W. Luo, and N. Wigley. High Throughput
VLSI DSP Using Replicated Finite Rings. Journal of VLSI
Signal Processing, 14(2):207–220, November 1996.

[10] D. E. Knuth. The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms. Addison-Wesley, Reading, MA,
third edition, 1997.

[11] N. Koblitz. Elliptic curve cryptosystems. Mathematics of
Computation, 48(177):203–209, January 1987.

[12] N. Koblitz. A Course in Number Theory and Cryptography,
volume 114 of Graduate texts in mathematics. Springer-Ver-
lag, second edition, 1994.

[13] N. Koblitz. Algebraic aspects of cryptography, volume 3 of
Algorithms and computation in mathematics. Springer-Ver-
lag, 1998.

[14] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone.
Handbook of applied cryptography. CRC Press, 2000 N.W.
Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997.

[15] P. L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44(170):519–521, April
1985.

[16] C. Paar, P. Fleischmann, and P. Roelse. Efficient multiplier
architectures for galois fields GF�����. IEEE Transactions
on Computers, 47(2):162–170, February 1998.

[17] A. Skavantzos and P. B. Rao. New multipliers modulo
�� � �. IEEE Transactions on Computers, 41(8):957–961,
August 1992.

[18] N. P. Smart. A comparison of different finite fields for use
in elliptic curve cryptosystems. Research report CSTR-00-
007, University of Bristol, June 2000.

[19] N. Takagi and S. Yajima. Modular multiplication hardware
algorithms with a redundant representation and their appli-
cation to RSA cryptosystem. IEEE Transactions on Com-
puters, 41(7):887–891, July 1992.

[20] F. J. Taylor. Large moduli multipliers for signal processing.
IEEE Transactions on Circuits and Systems, C-28:731–736,
Jul 1981.

[21] J. Von Zur Gathen and J. Gerhard. Modern Computer Alge-
bra. Cambridge University Press, 1999.

[22] Z. Wang, G. A. Jullien, and W. C. Miller. An Efficient Tree
Architecture for Modulo �� � � Multiplication. Journal of
VLSI Signal Processing, 14(3):241–248, December 1996.

[23] T. Yanik, E. Savaş, and Ç. K. Koç. Incomplete reduction
in modular arithmetic. IEE Proceedings: Computers and
Digital Technique, 149(2):46–52, March 2002.

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

