
Parallel Montgomery Multiplication in GF (2k) using

Trinomial Residue Arithmetic

Jean-Claude Bajard1, Laurent Imbert1,2, and Graham A. Jullien2

1 LIRMM, CNRS UMR 5506

161 rue Ada, 34392 Montpellier cedex 5, France

2 ATIPS, CISaC, University of Calgary

2500 University drive NW, Calgary, AB, T2N 1N4, Canada

Abstract

We propose the first general multiplication algorithm in GF (2k) with a subquadratic

area complexity of O(k8/5) = O(k1.6). We represent the elements of GF (2k) according

to 2n pairwise prime trinomials, T1, . . . , T2n, of degree d, such that nd ≥ k. Our

algorithm is based on Montgomery’s multiplication applied to the ring formed by the

direct product of the n first trinomials.

1 Introduction

Finite fields [1], and especially the extensions of GF (2), are fundamental in coding theory [2,

3], and cryptography [4, 5]. Developing efficient arithmetic operators in GF (2k) is a real issue

for elliptic curve cryptosystems [6, 7], where the degree, k, of the extension is very large.

Among the many solutions proposed in the literature, we find two classes of algorithms:

generic algorithms work for any extension fields, and for any reduction polynomials. The

most known general methods are an adaptation of Montgomery’s multiplication [8] to binary

1



fields [9], and the approach described by E. Mastrovito [10], where the multiplication is

expressed as a matrix-vector product. However, the most efficient implementations use

features of the extension fields, such as the type of the base [11, 12, 13, 14], or the form of

the irreducible polynomial which define the field. In his Ph.D. thesis [10], E. Mastrovito,

proved that some kind of trinomials lead to very efficient implementations; this work was

further extended to all trinomials [15]. In [16], F. Rodriguez-Henriquez and Ç. K. Koç

propose parallel multipliers based on special irreducible pentanomials.

A common characteristic of all those methods is their quadratic area-complexity; the

number of gates is in O(k2). Implementations using lookup-tables have been proposed in

order to reduce the number of gates. In [17], A. Halbutogullari and Ç. K. Koç, present an

original method using a polynomial residue arithmetic with lookup-tables. More recently,

B. Sunar [18] proposed a general subquadratic algorithm, which best asymptotic bound,

O(klog2 3), is reached when k is a power of 2, 3, or 5, and when the reduction polynomial

has a low Hamming weight, such as a trinomial or a pentanomial. This approach is based

on the Chinese Remainder Theorem (CRT) for polynomials, and Winograd’s convolution

algorithm.

In this paper, we consider a polynomial residue representation, with n, degree-d trino-

mials, such that nd ≥ k. Our approach is based on Montgomery’s algorithm, where all

computations are performed on the residues, and where large lookup tables are not needed.

We prove that, for any degree k, and for any reduction polynomial, the asymptotic area-

complexity is O(k8/5) = O(k1.6). Experimental results are presented, which confirm the

efficiency of our algorithm for values, k, of cryptographic interest.

We consider the finite field, GF (2k), defined by an irreducible polynomial P . We also de-

fine a set of 2n, relatively prime trinomials, (T1, . . . , T2n), with deg Tj = d, for j = 1, . . . , 2n,

and such that nd ≥ k. We note tj the degree of the intermediate term of each trinomial

Tj, such that Tj(X) = Xd +X tj + 1. We easily remark that for i, j = 1, . . . , 2n, i 6= j, we

have gcd(Ti, Tj) = 1. Thus, an element A ∈ GF (2k) can represented by its residues modulo

2



(T1, . . . , T2n). We shall denote (A1, . . . , A2n), the residue representation of A.

2 Montgomery Multiplication in Polynomial Residue

Arithmetic

2.1 Montgomery Multiplication for Integers and Polynomials

Let us start with Montgomery’s multiplication over integers. Instead of computing a b mod n,

Montgomery’s algorithm returns a b r−1 mod n, where r is such that gcd(r, n) = 1. (In

practice n is often a prime number, and r can be chosen as a power of 2). In this paper, we

shall refer to r as the Montgomery factor. The computation is accomplished in two steps:

we first define q = −a b n−1 mod r, such that a b + q n is a multiple of r; a division by r,

which reduces to right shifts, then gives the result.

The same idea applies for elements (considered as polynomials here) of any finite ex-

tension field. See, e.g. [17] in the case of GF (2k), and [19] for GF (pk), with p > 2. The

polynomial, R(X) = Xk, is commonly chosen as the Montgomery factor, because the reduc-

tion modulo Xk, and the division by Xk, consist in ignoring the terms of order larger than

k for the remainder operation, and shifting the polynomial to the right by k places for the

division. In order to compute ABR−1 mod P , we first define Q = −AB P−1 mod R, and

compute (AB+QP )/R using k right-shifts. The only difference with the integer algorithm

is that the final subtraction is not required at the end.

2.2 Montgomery over Polynomial Residues

We apply the same scheme when the polynomials A,B, and P are given in their residue

representation, i.e., by their remainders modulo a set of pairwise prime polynomials. In this

paper, we consider a set of n trinomials (T1, . . . , Tn). We define the Montgomery constant

3



as

Γ =
n∏
i=1

Ti. (1)

We shall thus compute AB Γ−1 mod P . However, unlike the integer and polynomial cases

mentioned above, it is important to note, that, in the residue representation, it is not possible

to evaluate (AB + QP )/Γ directly, because the inverse of Γ does not exist modulo Γ. We

address this problem by using k extra trinomials (Tn+1, . . . , T2n), where gcd(Ti, Tj) = 1

for 1 ≤ i, j ≤ 2n, i 6= j; and by computing (AB + QP ) over those k extra trinomials.

Algorithm 1, bellow, returns R = AB Γ−1 mod P in a residue representation over the set

(T1, . . . , Tn, Tn+1, . . . , T2n).

Algorithm 1 [MMTR: Montgomery Multiplication over Trinomial Residues]

Precomputed: 3n constant matrices d× d for the multiplications by P−1
i mod Ti (in step

2), by Pn+i mod Tn+i (step 4), and by Γ−1
n+i mod Tn+i (step 5), for i = 1, . . . , n; (Note

that with Mastrovito’s algorithm for trinomials [15], we only need to store 2d coefficients

per matrix.)

Input: 6n polynomials of degree at most d− 1: Ai, Bi, Pi, for i = 1, . . . , 2n

Output: 2n polynomials of degree at most d− 1: Ri = AiBi Γ
−1 mod Pi, for i = 1, . . . , 2n

1: (C1, . . . , C2n)← (A1, . . . , A2n)× (B1, . . . , B2n)

2: (Q1, . . . , Qn)← (C1, . . . , Cn)× (P−1
1 , . . . , P−1

n )

3: Newton’s interpolation: (Q1, . . . , Qn) (Qn+1, . . . , Q2n)

4: (Rn+1, . . . , R2n)← (Cn+1, . . . , C2n) + (Qn+1, . . . , Q2n)× (Pn+1, . . . , P2n)

5: (Rn+1, . . . , R2n)← (Rn+1, . . . , R2n)× (Γ−1
n+1, . . . ,Γ

−1
2n )

6: Newton’s interpolation: (Rn+1, . . . , R2n) (R1, . . . , Rn)

As in the polynomial case, the final subtraction is not necessary. This can be proved by

showing that the polynomial R is fully reduced, i.e., its degree is always less than k − 1.

We note that computing over the set of trinomials, (T1, . . . , Tn), is equivalent as computing

modulo Γ, with deg Γ = nd. Given A,B ∈ GF (2k), we have degC ≤ 2k − 2, and degQ ≤

4



nd− 1; and since 2k− 2 ≤ nd− 1 + k, we get R = (C +QP )Γ−1 of degree at most k− 1. In

steps 3 and 6, we also remark that two base extensions are required. Most of the complexity

of Algorithm 1 depends on those two steps. We give details in the next section.

3 Base Extensions using Trinomial Residue Arithmetic

In this section, we focus on the residue extensions in steps 3 and 6 of Algorithm 1. We

shall only consider the extension of Q, from its residues representation (Q1, . . . , Qn) over the

set (T1, . . . , Tn), to its representation (Qn+1, . . . , Q2n), over (Tn+1, . . . , T2n).
1 Note that this

operation is nothing more than an interpolation. We begin this section with a brief recall of

an algorithm based on the Chinese Remainder Theorem (CRT), previously used in [18, 17].

Then we focus on the complexity of Newton’s interpolation method with trinomials, which,

as we shall see further, has a lower complexity.

For the CRT-based interpolation algorithm, we define, ρi,j =
(

Γ
Tj

)
mod Tn+i, and νi =(

Γ
Ti

)−1

mod Ti, for i, j = 1, . . . , n, with Γ defined in (1). Given (Q1, . . . , Qn), we obtain

(Qn+1, . . . , Q2n) using the Chinese Remainder Theorem for polynomials. We compute αi =

Qi νi mod Ti, for i = 1, . . . , n, and we evaluate

Qn+j =
n∑
j=i

αi ρi,j mod Tn+j, ∀j = 1, . . . , n. (2)

The evaluation of the αis is equivalent to n polynomial multiplications modulo Ti. The

terms, αi ρi,j, in (2) can be expressed as a matrix-vector product, Q = Zα, where Z is a

precomputed n × n matrix. Thus, the CRT-based interpolation requires (n2 + n) modular

multiplications modulo a trinomial of degree d, and the precomputation of (n2 +n) matrices

d× d. When we do not have any clue about the coefficients of the matrices, an upper-bound

for the cost of one polynomial modular multiplication in GF (2k), is d2 AND, and d(d − 1)

XOR, with a latency of TA + dlog2(d)e TX , where TA, and TX , represent the delay for one

AND gate, and one XOR gate respectively.

1The same analysis applies for the reverse operation in step 6.

5



A second method, that we shall discuss more deeply here, uses Newton’s interpolation

algorithm. In this approach we first construct an intermediate vector, (ζ1, . . . , ζn) – equivalent

to the mixed radix representation for integers – where the ζis are polynomials of degree less

than d. The vector (ζ1, . . . , ζn) is obtained by the following computations:

ζ1 = Q1

ζ2 = (Q2 + ζ1) T
−1
1 mod T2

ζ3 =
(
(Q3 + ζ1) T

−1
1 − ζ2

)
T−1

2 mod T3

...

ζn =
(
. . .

(
(Qn + ζ1) T

−1
1 + ζ2

)
T−1

2 + · · ·+ ζn−1

)
T−1
n−1 mod Tn.

(3)

We then evaluate the polynomials Qn+i, for i = 1, . . . , n, with Horner’s rule, as

Qn+i = (. . . ((ζn Tn−1 + ζn−1) Tn−2 + · · ·+ ζ3) T2 + ζ2) T1 + ζ1 mod Tn+i. (4)

Algorithm 2, bellow, summarizes the computations.

Algorithm 2 [Newton Interpolation]

Input: (Q1, . . . , Qn)

Output: (Qn+1, . . . , Q2n)

1: ζ1 ← Q1

2: for i = 2, . . . , n, in parallel, do

3: ζi ← Qi

4: for j = 1 to i− 1 do

5: ζi ←
(
(ζi + ζj)× T−1

j

)
mod Ti

6: for i = 1, . . . , n, in parallel, do

7: Qn+i ← ζn mod Tn+i

8: for j = n− 1 to 1 do

9: Qn+i ← (Qn+i × Tj + ζj) mod Tn+i

6



3.1 Computation of the ζis

We remark that the main operation involved in the first part of Algorithm 2 (steps 2 to 5),

consists in a modular multiplication of a polynomial of the form F = (ζi + ζj) by the inverse

of a trinomial Tj, modulo another trinomial Ti. Since (Ti, Tj) = 1, we can use Montgomery

multiplication, with Tj playing the role of the Montgomery factor (cf. Section 2.1), to

compute

ψ = F × T−1
j mod Ti. (5)

Let us define Bj,i = Tj mod Ti, such that Bj,i(X) = X ti + X tj . (Note that Bj,i = Bi,j).

Clearly, we have T−1
j ≡ B−1

j,i (mod Ti). Thus, (5) is equivalent to

ψ = F ×B−1
j,i mod Ti. (6)

We evaluate (6) as follows: We first compute φ = F × T−1
i mod Bj,i, such that F + φ × Ti

is a multiple of Bj,i. Thus, ψ = (F + φTi)/Bj,i, is obtained with a division by Bj,i.

By looking more closely at the polynomials involved in the computations, we remark that

Bj,i(X) = X tj(X ti−tj + 1), if tj < ti. (If ti < tj, we shall consider Bj,i(X) = X ti(X tj−ti +

1)). In order to evaluate (6), we thus have to compute an expression of the form F ×(
Xa

(
Xb + 1

))−1
mod Ti, which can be decomposed into

ψ =
(
F × (Xa)−1 mod Ti

)
×

(
Xb + 1

)−1
mod Ti. (7)

Again, using Montgomery’s reduction, with Xa playing the role of the Montgomery

factor,2 we evaluate F × (Xa)−1 mod Ti in two steps:

φ = F × T−1
i mod Xa (8)

ψ = (F + φ× Ti) /Xa (9)

Since a is equal to the smallest value between ti and tj, we have a ≤ ti, and thus

Ti mod Xa = T−1
i mod Xa = 1. Hence, (8) rewrites φ = F mod Xa, which reduces to the

2It is easy to see that gcd(Xa, Ti) = 1 always.

7



truncation of the coefficients of F of order greater than a − 1. For (9), we first deduce

φTi = φXd + φX ti + φ. Since deg φ < a ≤ ti <
d
2
, there is no recovering between the three

parts of φTi, and thus, no operation is required, as shown in Figure 1, where the grey areas

represent the a coefficients of φ, whereas the white ones represents zeros.

a = tj

a = ti
φφXti

tid

φφXd φXti

ti

tj

d

φXd

Figure 1: The structure of φTi in both cases a = ti, and a = tj, with the a coefficients to

add with F in dark grey

Since the a coefficients of (F +φTi), of order less than a, are thrown away in the division

by Xa, we only need to perform the addition with F for the a coefficients which correspond

to φX ti (in dark grey in Figure 1). Thus, the operation F + φ × Ti reduces to at most a

XOR, with a latency TX of one XOR. The final division by Xa is a truncation, performed

at no cost.

Let us now consider the second half of equation (7), i.e., the evaluation of an expression

of the form F × (Xb + 1)−1 mod Ti. (We can notice that F is equal to the value ψ in (9),

just computed, and that it has degree at most d− 1.) Let us consider four steps:

F = F mod (Xb + 1) (10)

φ = F × T−1
i mod (Xb + 1) (11)

ρ = F + φ× Ti (12)

ψ = ρ/(Xb + 1) (13)

For (10), we consider the representation of F in radix Xb; i.e., F =

b d−1
b c∑
i=0

Fi (X
b)
i
. Thus,

8



using the congruence Xb ≡ 1 (mod Xb + 1), we compute

F mod (Xb + 1) =

b d−1
b c∑
i=0

Fi,

with (d− b) XOR and a latency of dlog2((d− 1)/b)eTX .3

The second step, in (11), is a multiplication of two polynomials of degree b− 1, modulo

Xb + 1. We first perform the polynomial product F × T−1
i , where T−1

i is precomputed, and

we reduce the result using the congruence Xb ≡ 1 mod (Xb + 1). The cost is thus b2 AND,

and (b − 1)2 XOR for the polynomial product, plus b − 1 XOR for the reduction modulo

(Xb + 1); a total of b(b− 1) XOR. 4 The latency is equal to TA + dlog2(b)eTX .

For (12), we recall that b is equal to the positive difference between the ti and tj. Thus,

we do not know whether b ≤ ti or b > ti. In the first case, there is no recovering between

the parts of φTi = φXd + φX ti + φ; and φXd is deduced without operation (cf. Figure 2).

Thus, ρ = F + φTi, only requires 2b XOR. If b > ti, however, φ and φX ti have b − ti

coefficients in common, as shown in Figure 2. The expression ρ = F +φTi is thus computed

with ti + 2(b − ti) + (b + ti − b) = 2b XOR. Thus, in both cases, (12) is evaluated with 2b

XOR, and with a latency of at most 2TX . (TX only, if b ≤ ti.)

b > ti

b ≤ ti

φXd

b tib + ti

φφXd φXti

φ

d ti b

d φXti

Figure 2: The structure of φTi in both cases b ≤ ti, and b > ti, and the 2b coefficients to

add with F in dark grey

3For d− 1 > b, we have dlog2 d(d− 1)/bee = dlog2((d− 1)/b)e.
4The cost is equivalent as a matrix-vector product using Mastrovito’s algorithm, because the construction

of the folded matrix is free for Xb + 1.

9



For the last step, the evaluation of ψ in (13), is an exact division; ρ, which is a multiple of

Xb+1, has to be divided by Xb+1. This is equivalent to defining ψ such that ρ = ψXb+ψ.

As previously, we express ρ and ψ in radix Xb. We have

ρ =

b d−1
b c+1∑
i=0

ρi (X
b)
i
, ψ =

b d−1
b c∑
i=0

ψi (X
b)
i
.

We remark that defining the coefficients of ψ, of order less than b, and greater or equal to(⌊
d−1
b

⌋)
b , shown in grey in Figure 3, is accomplished without operation. We have ψ0 = ρ0,

and ψb d−1
b c = ρb d−1

b c+1. For the middle coefficients, (i.e., for i from 1 to
⌊
d−1
b

⌋
− 1), we use

the recurrence ψi = ρi + ψi−1.

“j
d−1

b

k
+ 1

”
b

ψ

ψXb

ρρ0

ψ0ψ1

ψ0

ρ1ρ2

ψ1

ψ2

2b b

. . .

ψ2

. . .. . .

. . .

“j
d−1

b

k”
b

Figure 3: The representations of ρ and ψ in radix Xb

Evaluating (13) thus required (d−2b) XOR, and a latency of d(d− 1)/2beTX , taking into

account that we start the recurrence, ψi = ρi +ψi−1, from the two extrema simultaneously.

In Table 1, we recapitulate the computation of ψ = F × T−1
j mod Ti in (5), and its

complexity in both the number of binary operations, and time. The total time complexity

is equal to

T = TA + (4 + dlog2((d− 1)/b)e+ dlog2(b)e+ d(d− 1)/2be)TX . (14)

So far, the quantities given in Table 1, depend on a and b. In order to evaluate the global

complexity for the evaluation of all the ζis, me must make assumptions on the tjs, to define

more precisely the parameters a, b. In Section 4, we shall give the total cost of (3) when the

tjs are equally spaced, consecutive integers.

10



Equation #AND #XOR Time

(8) - - -

(9) - a TX

(10) - d− b dlog2((d− 1)/b)eTX
(11) b2 b2 − b+ 1 TA + dlog2(b)eTX
(12) - 2b 2TX

(13) - d− 2b d(d− 1)/2beTX
Total b2 a+ 2d+ (b− 1)2 cf. (14)

Table 1: Number of binary operations, and time complexity for ψ = F × T−1
j mod Ti

3.2 Computation of the Qn+is using Horner’s rule

When the evaluation of (ζ1, . . . , ζn) is completed, we compute the Qn+is with the Horner’s

rule. For i = 1, . . . , n, we have

Qn+i = (. . . ((ζn Tn−1 + ζn−1) Tn−2 + · · ·+ ζ3) T2 + ζ2) T1 + ζ1 mod Tn+i. (15)

In (15), we remark that the main operation is a multiplication of the form F × Tj mod

Tn+i, where F is of degree d − 1, and both Tj, and Tn+i are trinomials of degree d. This

operation can be expressed as a matrix-vector product, MF , where M is a (2d+1)× (d+1)

matrix composed of the coefficients of Tj. A multiplier architecture was proposed by E.

Mastrovito [20], which reduces this matrix M to a d × d matrix, Z, using the congruences

Xd+α ≡ X tn+i+α + Xα, for α = 0, . . . , d + 1. The resulting matrix, Z, is usually called the

folded matrix, because the d+ 1 last rows of M fall back on the d first ones.

According to our notation, we have, Tj mod Tn+i = X tj + X tn+i = Bj,n+i, for all i, j.

Thus, we have to fold a matrix composed of only two non-null coefficients per column, as

shown in Figure 4. We remark that the folded matrix, Z, (on the right in Figure 4), is very

sparse. By looking more closely, the congruences

Xd+tj−1 ≡ X tn+i+tj−1 +X tj−1 (mod Tn+i),

Xd+tn+i−1 ≡ X2tn+i−1 +X tn+i−1 (mod Tn+i),

11



tn+i − 1

2tn+1 − 1

d

tn+i + tj − 1

tj

tn+i

d + tj − 1

d + tn+i − 1

tj − 1

Figure 4: The structures of the unfolded and folded multiplication matrices, for Bj,n+i mod

Tn+i

tell us that, choosing ti < d/2, for i = 1, . . . , 2n, yields tj + tn+i − 1 < d, and 2tn+i − 1 < d;

and thus every coefficients only need to be reduced once. Moreover, we also notice that the

matrix, Z, has two non-null coefficients from column 0 to column d − tn+i − 1; three from

column d − tn+i to column d − tj − 1; and four from column d − tj to d − 1. Thus, it has

exactly 2d + tj + tn+i non-null coefficients. Since tj, tn+i < d/2, we can consider that the

number of non-zero coefficients is less than 3d. We study the global complexity of (15), in

Section 4.

4 Analysis of the Algorithms

In order to evaluate precisely the cost of Algorithm 1, we consider equally spaced, consecutive

tis, with ti+1 − ti = r. Hence, if j < i (as in steps 2 to 5 of Algorithm 1), then tj < ti, and

we have

a = t1 + (j − 1)r, b = (i− j)r. (16)

12



4.1 Complexity analysis for the computation of the ζis

For the first part of the algorithm, i.e., the evaluation of the ζis, we remark (cf. Algorithm 2)

that, for all i, j, we perform one addition, (ζi + ζj) with polynomials of degree < d, followed

by one multiplication by T−1
j modulo Ti, which complexity is given in Table 1. Using (16),

the following formulas hold:

#AND :
n∑
i=2

i−1∑
j=1

((i− j) r)2 ,

#XOR :
n∑
i=2

i−1∑
j=1

(
d+ (t1 + (j − 1)r) + 2d+ ((i− j)r − 1)2) ,

which, after simplifications, gives

#AND :
r2n2(n− 1)(n+ 1)

12
, (17)

#XOR :
n(n− 1)(r2n2 + r2n− 2rn− 8r + 18d+ 6t1 + 6)

12
. (18)

For the latency, we remark that the polynomials ζis, can be computed in parallel, for

i = 1, . . . , n, but, that the sum for j = 1, . . . , n−1 (evaluated in steps 4 and 5 of Algorithm 2),

is sequential. We also notice that, for a given i, the evaluation of ζi can not be completed

before we know the previous polynomial ζi−1. The delay is thus equal to the time required

for the addition of ζi−1, plus the time for the computation of F × T−1
i−1 mod Ti, i.e., when

b = r. (Remember that r is the difference between two consecutive tis.) We conclude that

the total time complexity for (3) is equal to

(n− 1)TA + (n− 1)
(
5 + dlog2((d− 1)/r))e+ dlog2(r)e+ d(d− 1)/2re

)
TX . (19)

For the second Newton’s interpolation (step 6 of Algorithm 1), we observe that defining

tn+i = tn+1 + (i− 1)r, yields the same complexities. E.g., we can choose t1 = 1, r = 2, and

tn+1 = 2. 5

5It is also possible to choose t1 = 0. In this case, T1 is a binomial and we obtain a slightly lower complexity.

Also, the condition 2n < d/2 becomes 2n− 1 < d/2.

13



In terms of memory requirements, we have to store polynomials of the form T−1
j (X) mod

(Xb + 1), used to compute (11). How many of them do we need? For a given i, the evaluation

of ζi, involves i− 1 polynomials T−1
j (X) mod (Xb + 1), of degree at most b− 1, i.e., with b

coefficients each. Since b goes from r to (i − 1)r, we have exactly one polynomial of each

degree, ranging from (r− 1) to (i− 1)r− 1. The total memory cost, for i = 2, . . . , n, is equal

to
∑n

i=2

∑i−1
j=1 j r =

1

6
rn(n2 − 1) bits.

4.2 Complexity Analysis for the Computation of the Qn+1s using

Horner’s rule

Let us first count the exact number of non-zero coefficients in the folded matrices, Z, given

in Section 3.2. With tj = t1 + (j − 1)r, and tn+i = tn+1 + (i − 1)r, defined as above, we

get 2d + ti + tn+j = 2d + t1 + tn+1(i + j − 2)r non-zero values for each matrix. Thus, the

matrix-vector product used to compute the expressions of the form F ×Tj mod Tn+i requires

2d+ t1 + tn+1(i+j−2)r AND, and d+ t1 + tn+1 +(i+j−2)r XOR.6 Because all the products

are performed in parallel, and because each inner-product involves at most 4 values, the

latency is equal to TA + 2TX .

The computation of Qn+i in (15) is sequential. Each iteration performs one matrix-vector

product, followed by one addition with a polynomial, ζj, (cf. step 9 of Algorithm 2) of degree

at most d− 1. We thus get

#AND :
n∑
j=1

n−1∑
i=1

(2d+ t1 + tn + (i+ j − 2)r) ,

#XOR :
n∑
j=1

n−1∑
i=1

(d+ t1 + tn + (i+ j − 2)r + d) ,

or equivalently (noticing that the two sums, above, are equal),

#AND, #XOR :
1

2
n(n− 1)(4d+ 2rn− 3r + 2t1 + 2tn+1). (20)

The total delay for (15) is thus: (n− 1)(TA + 3TX).

6We have (d− tn+i) + 2(tn+i − tj) + 3(tj) = d + tj + tn+i; hence the result.

14



4.3 Complexity Analysis for Newton’s Interpolation

The total complexity for Newton’s interpolation is the sum of the complexities obtained for

the computation of the ζis in Section 4.1, and for evaluation of the Qn+is with Horner’s rule

in Section 4.2. We have

#AND =
1

12
n(n− 1)(r2n2 + 12rn+ r2n+ 12t1 − 18r + 24d+ 12tn+1), (21)

#XOR =
1

12
n(n− 1)(r2n2 + 10rn+ r2n+ 18t1 − 26r + 42d+ 12tn+1 + 6), (22)

with a latency of

2(n− 1)TA + (n− 1)
(
8 + dlog2((d− 1)/r)e+ dlog2(r)e+ d(d− 1)/2re

)
TX , (23)

or equivalently

2(n− 1)TA +O(n+
nd

r
)TX .

4.4 Complexity Analysis of MMTR

In Algorithm 1, we note that steps 1, 2, 4, and 5 are accomplished in parallel. In step 1, we

perform 2n multiplications of the form, Ai × Bi mod Ti. Using Mastrovito’s algorithm for

trinomials [15], it requires d2 AND, and d2 − 1 XOR; thus the cost of step 1 is 2nd2 AND,

and 2n(d2−1) XOR. In steps 2, 4, and 5, we perform 3n constant multiplications, expressed

as 3n matrix-vector products of the form ZF , where Z is a d× d precomputed matrix7; the

complexity is 3nd2 AND, and 3nd(d − 1) XOR. Not forgetting to consider the n additions

in step 4, the complexity for steps 1, 2, 4, and 5 is: 5nd2 AND, and 5nd2 − 2nd− 2n XOR,

with a latency of 4TA + (1 + 4 dlog2(d)e)TX .

We obtain the total complexity of Algorithm 1 by adding the complexity formulas for

steps 1, 2, 4, and 5, plus the cost of two Newton’s interpolation. The number of gates is:

#AND :
1

6
n
(
r2n3 + 12rn2 + 12 (t1 + tn+1 + 2d) (n− 1)

− 30rn− r2n+ 30d2 + 18r
)
,

(24)

7We only need to store 2d values.

15



#XOR :
1

6
n
(
r2n3 + 10rn2 + 6n+ 6 (2tn+1 + 3t1) (n− 1)

+ 42dn− 36rn− r2n+ 30d2 − 54d− 18 + 26r
)
;

(25)

and the delay is equal to

4nTA+

(
(n−1)

(
8+dlog2(d− 1)/r)e+dlog2(r)e+d(d− 1)/2re

)
+4 dlog2(d)e+1

)
TX , (26)

that we express, for simplicity, as

4nTA +O
(
n+

nd

r

)
TX . (27)

5 Discussions and Comparisons

The parameters n, d, and t that appear in the complexity formulas above, make the com-

parison of our algorithm with previous implementations a difficult task. To make it easier,

let us assume that n = kx, and d = k1−x. Clearly, we have nd = k. Since we need 2n

trinomials of degree less than d, having their intermediate coefficient of order less then d/2

(see Section 3.2), the parameters k, x must satisfy k1−2x > 4, which is equivalent to x < 1
2
.8

Thus, in the next AND and XOR counts, we only take into account the terms in k2−x, k1+x,

and k4x, and we also consider t1 = 0, tn+1 = n, and r = 1, which seems to be optimal. For

the latency, we remark from Table 1, that the time complexity is mostly influenced by the

term in (d− 1)/2b.

Hence, the total complexity for Montgomery multiplication over residues (MMTR) is:

#AND : 5k2−x + 4k1+x +
r2

6
k4x +O(k3x), (28)

and

#XOR : 5k2−x + 7k1+x +
r2

6
k4x +O(k3x), (29)

for a latency of

4kx TA +O (k)TX . (30)

8We have x < (1− logk(4)) /2, and lim
k→+∞

= lim
k→0

logk(4) = 0.

16



In the literature, the area complexity is given according to the number of XOR gates.

Most of the studies are dedicated to specific cases, where the irreducible polynomials used to

define the field, are trinomials [15], or special pentanomials [16], of the form Xk+X t+1+X t+

X t−1 + 1. In table 2, we compare our algorithm with Montgomery’s multiplication [9], the

trinomial, and pentanomial approaches. We give the number of XOR gates, for extensions of

degrees, k = nd, ranging from 163 to 2068 bits. For each example, we also consider the costs

for the largest prime, p, less than k = nd. We note that, k = 196 = 7 × 28, is the smallest

integer for which our algorithm has the fewer number of XOR gates. It is important to note

that algorithm MMTR is mainly to be compared with Montgomery, since they are both

general algorithms, that do not require a special form for the irreducible polynomial which

defines the finite field. However, we remark that for four of the primes numbers recommended

by the NIST for elliptic curve cryptography over GF (2k), i.e., p = 233, p = 283, p = 409,

p = 571, our solution is cheaper than the trinomial and pentanomial algorithms.9

Whereas, the three other methods have an area cost in O(k2), the asymptotic complexity

of our algorithm, reached for x = 2/5, is in O(k1.6). For completeness, we give the exact

complexity formula:

31

6
k8/5 + 7k7/5 +

11

3
k6/5 − 9k − 43

6
k4/5 +

4

3
k2/5. (31)

6 Conclusions

We proposed a modular multiplication algorithm over finite extension fields, GF (2k), with

an area complexity of O(k1.6). Our experimental results confirm its efficiency for extensions

of large degree, of great interest for elliptic curve cryptography. For such applications, a

major advantage of our solution, is that it allows the use of extension fields for which an

irreducible trinomial or special pentanomial, such as in [16], does not exist.

9The reduction polynomials recommended by the NIST are all trinomials or pentanomials.

17



Parameters Montgomery [9] Pentanomials [16] Trinomials [15] MMTR

k = 165 (5, 33) 54, 615 27, 552 27, 224 31, 955

p = 163 53, 301 26, 892 26, 568 31, 955

k = 196 (7, 28) 77, 028 38, 805 38, 415 36, 743

p = 193 74, 691 37, 632 37, 248 36, 743

k = 238 (7, 34) 113, 526 57, 117 56, 643 51, 443

p = 233 108, 811 54, 752 54, 288 51, 443

k = 288 (8, 36) 166, 176 83, 517 82, 943 67, 712

p = 283 160, 461 80, 652 80, 088 67, 712

k = 414 (9, 46) 343, 206 172, 221 171, 395 121, 098

p = 409 334, 971 168, 096 167, 280 121, 098

k = 572 (11, 52) 654, 940 328, 325 327, 183 194, 689

p = 571 652, 653 327, 180 326, 040 194, 689

k = 1024 (16, 64) 2, 098, 176 1, 050, 621 1, 048, 575 459, 200

p = 1021 2, 085, 903 1, 044, 480 1, 042, 440 459, 200

k = 2068 (22, 94) 8, 555, 316 4, 280, 757 4, 276, 623 1, 351, 548

p = 2063 8, 514, 001 4, 260, 092 4, 255, 968 1, 351, 548

Table 2: XOR counts for our Montgomery multiplication over trinomial residue arithmetic

(MMTR), compared to other best known methods

References

[1] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cam-

bridge University Press, Cambridge, England, revised edition, 1994.

[2] R. W. Hamming. Coding and information theory. Prentice-Hall, Englewood Cliffs, N.J.,

1980.

[3] M. Sudan. Coding theory: Tutorial and survey. In Proceedings of the 42th Annual Sym-

posium on Fundations of Computer Science – FOCS 2001, pages 36–53. IEEE Computer

Society, 2001.

18



[4] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied cryptog-

raphy. CRC Press, 1997.

[5] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.

Springer-Verlag, 2004.

[6] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–

209, January 1987.

[7] V. S. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor, Advances

in Cryptology – CRYPTO ’85, volume 218, pages 417–428. Springer-Verlag, 1986.

[8] P. L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44(170):519–521, April 1985.

[9] Ç. K. Koç and T. Acar. Montgomery multiplication in GF (2k). Designs, Codes and

Cryptography, 14(1):57–69, April 1998.

[10] E. D. Mastrovito. VLSI Architectures for Computations in Galois Fields. PhD thesis,

Linköping University, Linköping, Sweden, 1991.

[11] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson. Optimal normal

bases in GF (pn). Discrete Applied Mathematics, 22(2):149–161, 1988–1989.

[12] S. T. J. Fenn, M. Benaissa, and D. Taylor. GF (2m) multiplication and division over

dual basis. 45(3):319–327, March 1996.

[13] H. Wu, M. A. Hasan, and I. F. Blake. New low-complexity bit-parallel finite field

multipliers using weakly dual bases. 47(11):1223–1234, November 1998.

[14] M. A. Hasan, M. Z. Wang, and V. K. Bhargava. A modified Massey-Omura parallel

multiplier for a class of finite field. 42(10):1278–1280, October 1993.

19



[15] B. Sunar and Ç. K. Koç. Mastrovito multiplier for all trinomials. 48(5):522–527, May

1999.

[16] F. Rodriguez-Henriquez and Ç. K. Koç. Parallel multipliers based on special irreducible

pentanomials. 52(12):1535–1542, December 2003.

[17] A. Halbutoǧullari and Ç. K. Koç. Parallel multiplication in GF (2k) using polynomial

residue arithmetic. Designs, Codes and Cryptography, 20(2):155–173, June 2000.

[18] B. Sunar. A generalized method for constructing subquadratic complexity GF (2k)

multipliers. 53(9):1097–1105, September 2004.

[19] J.-C. Bajard, L. Imbert, C. Nègre, and T. Plantard. Multiplication in GF (pk) for elliptic

curve cryptography. In Proceedings 16th IEEE symposium on Computer Arithmetic –

ARITH 16, pages 181–187, 2003.

[20] E. D. Mastrovito. VLSI designs for multiplication over finite fields GF (2m). In T. Mora,

editor, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes – AAECC-6,

volume 357, pages 297–309. Springer-Verlag, 1989.

20


