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Abstract

We propose a new number representation and arithmetic

for the elements of the ring of integers modulo p. The so-

called Polynomial Modular Number System (PMNS) allows

for fast polynomial arithmetic and easy parallelization. The

most important contribution of this paper is the fundamen-

tal theorem of a Modular Number System, which provides

a bound for the coefficients of the polynomials used to rep-

resent the set Zp. However, we also propose a complete

set of algorithms to perform the arithmetic operations over

a PMNS, which make this system of practical interest for

people concerned about efficient implementation of modu-

lar arithmetic.

Keywords: Number system, Modular arithmetic, Lat-

tice theory, Table-based methods

1. Introduction

Efficient implementation of modular arithmetic is an

important prerequisite in today’s public-key cryptogra-

phy [10]. The celebrated RSA algorithm [13], and the cryp-

tosystems based on the discrete logarithm problem, such as

Diffie-Hellman key exchange [6], need fast arithmetic mod-

ulo integers of size 1024 to roughly 15000 bits. For the

same level of security, elliptic curves defined over prime

fields, require operations modulo prime numbers whose size

range approximately from 160 to 500 bits [8].

Classic implementations use multiprecision arithmetic,

where long integers are represented in a predefined high-

radix (usually a power of two depending on the word size

of the targeted architecture). Arithmetic operations, namely

modular reduction and multiplication, are performed using

efficient algorithms, such as as Montgomery [12], or Bar-

rett [3]. (For more details, see [10], chapter 14.) These

general algorithms do not require the divisor, also called

modulus, to be of special form. When this is the case, how-

ever, modular multiplication and reduction can be acceler-

ated considerably. Mersenne numbers, of the form 2m − 1,

are the most common examples. Pseudo-Mersenne num-

bers [5], generalized Mersenne numbers [14], and their ex-

tension [4] are other examples of numbers allowing fast

modular arithmetic.

In a recent paper [2], we have defined the so-called Mod-

ular Number Systems (MNS) and Adapted Modular Num-

ber Systems (AMNS) to speed up the arithmetic operations

for moduli which do not belong to any of the previous

classes. In this paper, we propose a new representation, and

the corresponding arithmetic operations for the elements of

Zp, the ring of integers modulo p. (The integer p does not

have to be a prime, although it is very likely to be prime for

practical cryptographic applications.) We define the Poly-

nomial Modular Number System (PMNS), over which inte-

gers are represented as polynomials. Compared to the clas-

sical (binary) representation, polynomial arithmetic offers

the advantages of no carry propagation and easiest paral-

lelization. The main contribution of this paper is the fun-

damental theorem of a MNS, which provides a bound for

the coefficients of the polynomials used to represent the el-

ements of Zp. This theorem is presented in Section 3. It

uses results from lattice reduction theory [9, 11]. The sec-

ond half of the paper focuses on the arithmetic operations;

in Section 4, we propose algorithms for the basic operations

– addition, multiplication, conversions – which all require a

final step, called coefficient reduction, that we present in

details in Section 5. A numerical example is provided in

Section 6.
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2. Modular number systems

In classic positional number systems, every non-negative

integer, x, is uniquely represented in radix r as

x =
n−1∑
i=0

xi ri, where xi ∈ {0, . . . , r − 1}. (1)

If xn−1 �= 0, x is said to be a n-digit radix-r number.

In most public-key cryptographic applications, compu-

tations have to be done over finite rings or fields. In prime

fields GF (p), we deal with representatives of equivalence

classes modulo p (for simplicity we generally use the set of

positive integers {0, 1, . . . , p−1}), and the arithmetic oper-

ations – addition and multiplication – are performed mod-

ulo p. In order to represent the set of integers modulo p, we

define a Modular number system, by extending the Defini-

tion (1) of positional number systems.

Definition 1 (MNS) A Modular Number System, B, is a

quadruple (p, n, γ, ρ), such that every positive integers,

0 ≤ x < p, satisfy

x =
n−1∑
i=0

xi γi mod p, with γ > 1 and |xi| < ρ. (2)

The vector (x0, . . . , xn−1)B denotes a representation of x
in B = MNS(p, n, γ, ρ).

In the rest of the paper, we shall omit the subscript (.)B
when it is clear from the context. We shall represent the in-

teger, a, either as the vector, a, or the polynomial, A, with-

out distinction. We shall use ai to represent both for the ith
element of a, and the ith coefficient of A. (Note that we use

a left-to-right notation; i.e., a0, the left-most coefficient of

A, is the constant term.) Hence, depending on the context,

we shall use ‖a‖ = ‖A‖, to refer to the norm of the vector,

or the corresponding polynomial. We shall also use the no-

tation ai to refer to the ith vector within a set of vectors or

a matrix.

Example 1 Let us consider a MNS defined with p =
17, n = 3, γ = 7, ρ = 2. Over this system, we represent

the elements of Z17 as polynomials in γ, of degree at most

2, with coefficients in {−1, 0, 1} (cf. table 1).

1 2 3 4
1 −γ2 1 − γ2 −1 + γ + γ2

5 6 7 8
γ + γ2 −1 + γ γ 1 + γ

9 10 11 12
−1 − γ −γ 1 − γ −γ − γ2

13 14 15 16
1 − γ − γ2 −1 + γ2 γ2 1 + γ2

Table 1. The elements of Z
∗
17 in the MNS de-

fined as B = MNS(17, 3, 7, 2)

In example 1, we remark that the number of polynomials of

degree 2, with coefficients in {−1, 0, 1} is equal to 33 = 27.

Since we only have to represent 17 values, the system is

clearly redundant. For example, we have 6 = 1 + γ + γ2 =
−1+γ, or 9 = 1−γ+γ2 = −1−γ. The level of redundancy

depends on the parameters of the MNS. Note yet that, in

this paper, we shall take advantage of the redundancy only

by considering different representations of zero.

In a MNS, every integer, 0 ≤ x < p, is thus represented

as a polynomial in γ. But; what do we know about the

coefficients of those polynomials? Are they bounded by

some value which depends on the parameters of the MNS?

In other words, given the integers p and n, are we able we

determine ρ and construct a MNS? We answer these ques-

tions in the next section. We prove the fundamental theorem

of a MNS, using results from lattice reduction theory, and

we introduce the concept of Polynomial Modular Number

System (PMNS).

3. Polynomial Modular Number Systems

In this section, we consider special cases of modular

number systems, where γ is a root (modulo p) of a given

polynomial E. In the following fundamental theorem of a

MNS, we prove that if ρ is greater than a certain bound,

then it is always possible to define a valid MNS. Roughly

speaking, Theorem 1 says that there exists a MNS, B =
MNS(p, n, γ, ρ), where one can represent every integer

less than p, as a polynomial of degree at most n − 1, with

coefficients all less than C × p1/n, where C is a small con-

stant.

Theorem 1 (Fundamental theorem of a MNS) Let us de-

fine p, n > 1, and a polynomial E(X) = Xn + αX + β,

with α, β ∈ Z, such that E(γ) ≡ 0 (mod p), and E irre-

ducible in Z[X]. If

ρ ≥ (|α| + |β|) p1/n, (3)
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then, the parameters (p, n, γ, ρ) define a modular number

system, B = MNS(p, n, γ, ρ).

Sketch of proof: (A complete, detailed, proof can be found

in [1].)

The proof is based on the theory of lattice reduction [9,

11]. A lattice L is a discrete sub-group of R
n, or equiv-

alently the set of all the integral combinations of d ≤ n
linearly independent vectors over R:

L = L(A) = Z a1 + · · · + Z ad

= {λ1a1 + · · · + λnad ; λi ∈ Z}.

The matrix A = (a1, . . . ,ad) is called a basis of L. It is

known that, every vector over R can be reduced, modulo the

lattice, within the fundamental domain of L, given by

H = {x ∈ R
n ; x =

d∑
i=1

xi ai, 0 ≤ xi < 1}.

In order to prove Theorem 1, we first define the lattice,

L = L(A), over Z
n, of all the multiples of p in B; or equiv-

alently, the set of vector of Z
n defined by

L = L(A) =
{
(x0, . . . , xn−1) ;

x0 + x1γ + · · · + xn−1γ
n−1 ≡ 0 (mod p)

}
. (4)

From Minkowski’s theorem [9, 7], and because we have

|det A| = p, we prove that there exists a vector v ∈ L,

such that ‖v‖∞ ≤ p1/n. We then define a second lattice,

L′ = L′(B) ⊆ L, of dimension n, with B = (b1, . . . , bn),
such that

‖bi‖∞ ≤ (|α| + |β|) p1/n. (5)

To conclude the proof, we simply remark that every

integer, a ∈ N, can be first associated with the vector

a = (a, 0, . . . , 0), and reduced modulo L′ to a vector a
′,

which belongs to the fundamental domain H′ of L′. Since

H′ can be overlapped by spheres of radius (|α| + |β|) p1/n,

and centers the vertices of H′, and because all the points

of a lattice are equivalent, we conclude that ‖a′‖∞ ≤
(|α| + |β|) p1/n. �

Definition 2 (PMNS) A modular number system B =
MNS(p, n, γ, ρ) which satisfies the conditions of Theo-

rem 1 is called a Polynomial Modular Number System

(PMNS). We shall denote B = PMNS(p, n, γ, ρ, E).

In practice, we shall define the polynomial E with α and β
as small as possible.

Example 2 We define the PMNS with p = 23, n = 3, ρ =
2, E(X) = X3 −X + 1 (α = −1, β = 1). We easily check

that γ = 13 is a root of E in Z23, and E is irreducible in

Z[X]. We represent the elements of Z23 as polynomials of

degree at most 2, with coefficients in {−1, 0, 1}.

4. PMNS arithmetic

In this section, we propose algorithms for the classical

operations in GF (p), namely addition and multiplication

modulo p, when the operands are represented in a PMNS.

We give solutions for the conversion from a classical num-

ber system (binary) to PMNS, and back. For simplicity, we

assume that ρ = 2k and all the operands are represented in

B = PMNS(p, n, γ, 2k, E), with E = Xn + αX + β.

At this point, it is very important to understand that

the value(s) k we must consider, depend on the way we

implement the coefficient reduction(s) presented in Sec-

tion 5. From Theorem 1, we know that every integer

a < p can be represented in a PMNS with coefficients

|ai| ≤ (|α| + |β|) p1/n, i.e., of size at most⌈
log2 (|α| + |β|) +

1

n
log2(p)

⌉
bits. (6)

Algorithms designed for common problems in the lattice’s

world, such as CV P∞, can be used to reach this bound

(see [11] for details). However, they are unpractical from

an arithmetic point of view. In Section 5, we propose al-

gorithms which can be seen as approximation algorithms in

the case of our specific lattices. For each proposed solution,

we determine, k, the number of bits required in order to rep-

resent the coefficients of the polynomials in the definition of

a PMNS.

4.1. Addition, subtraction

Let a, b be two integers less than p, given in their PMNS

representation. We want to compute the sum s = a +
b mod p. Because of the polynomial nature of the PMNS

representation, additions can be carried out independently,

in parallel, on each coefficients. Let A,B ∈ Z[X] be the

polynomial representations of a and b respectively. We have

A(γ) ≡ a (mod p), and B(γ) ≡ b (mod p), and we com-

pute C = A + B, such that

C(γ) ≡ A(γ) + B(γ) (mod p), (7)

or equivalently c ≡ a + b (mod p).
Yet, the result of (7) is a polynomial of degree less than

n, but whose coefficients ci can be larger than ρ = 2k. It

is clear however that ‖C‖∞ < 2k+1. In order to obtain c
in a valid PMNS form, we thus need to reduce its coeffi-

cients. We propose different approaches to this problem in

Section 5.

4.2. Multiplication

As for the addition, we use the polynomial forms of a
and b to compute the product r = ab mod p. The details

are presented in Algorithm 1.
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Algorithm 1 [PMNS Modular Multiplication]

Input: A = (a0, . . . , an−1)B, B = (b0, . . . , bn−1)B, with

|ai|, |bi| < 2k

Output: R = (r0, ..., rn−1)B such that R(γ) ≡ ab mod p,

with |ri| < 2k

1: Polynomial multiplication in Z[X]: C ← A × B
2: Polynomial reduction: C ′ ← C mod E
3: Coefficient reduction: R ← CTCR(C ′)

Given A,B ∈ Z[X], with A(γ) ≡ a (mod p), and

B(γ) ≡ b (mod p), we first evaluate the product C = A B.

Clearly, we have

C(γ) ≡ A(γ) B(γ) (mod p). (8)

Since deg A, deg B ≤ n − 1, their polynomial product, C,

satisfies deg C ≤ 2n− 2. Step 2 of Algorithm 1 consists in

the reduction modulo E, which reduces C to a polynomial

of degree less than n. Since E(γ) ≡ 0 (mod p), the poly-

nomial C ′ = C mod E corresponds to the same value than

C in B. In other words, there exists K ∈ Z[X] such that

C ′(γ) = C(γ) − K(γ) E(γ) ≡ C(γ) (mod p),

with deg C ′ < deg E = n. Note that the special form

of E(X) = Xn + αX + β nicely simplifies the reduction

modulo E. As shown in Fig. 1, we first compute the product

C = (c0, . . . , c2n−2)B (see Fig. 1(a)), and we reduce the

terms of order ≥ n using the congruence Xn ≡ −αX − β
(mod E) (see Fig. 1(b)).

If A,B have coefficients such that |ai|, |bi| < 2k, then,

we can see in Fig. 1(b) that the coefficients of the polyno-

mial C ′ reduced modulo E, satisfy

|c′i| < n (|α| + |β|) 22k, ∀i = 0, . . . , n − 1, (9)

To be a little more precise, we can remark that |c′i| <
((n − 1)|α| + (n − 2)|β| + 2) 22k; this upper bound being

given by c′1. As for the addition, the final step in the mul-

tiplication algorithm consists in a coefficient reduction, de-

tailed in Section 5.

4.3. Conversions

We briefly propose methods for the conversions from bi-

nary to PMNS, and from PMNS to binary, that can be easily

implemented at low memory cost.

4.3.1 Binary to PMNS

Given the integer, 0 ≤ a < p, we want to define a

polynomial A with coefficients less than 2k, which satisfy

c2n−2c2c1c0

(a) The polynomial C = AB

< (|α| + |β|)22k

c′
0

c′
1

c′n−1

a)

b)

c)

d)

< 22k

< |β|22k

< (1 + |α|)22k

(b) The polynomial C′ = C mod E

Figure 1. Reduction modulo E(X) = Xn +
αX + β

A(γ) ≡ a (mod p). We first represent a in radix 2k as

a =
n−1∑
i=0

di (2k)
i
, with 0 ≤ di < 2k. (10)

Our approach requires the precomputation of n values

Ti, corresponding to the polynomial representations of 2ki

for i = 0, . . . , n − 1. We have

Ti(γ) ≡ 2ki (mod p), for i = 0, . . . , n − 1.

We store those polynomials in a reduced form; i.e., with

coefficients less than (|α| + |β|)2k. Thus, (10) rewrites

A =
n−1∑
i=0

di Ti, with 0 ≤ di < 2k.

The polynomial A satisfies ‖A‖∞ < n(|α| + |β|)22k, and

can be reduced using one of the coefficient reduction algo-

rithms presented in Section 5.

4.3.2 PMNS to binary

Given the polynomial A, we want to recover the corre-

sponding integer a = A(γ) (mod p). In the PMNS rep-

resentation, we have

A(γ) =
n−1∑
i=0

ai γi.
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We use n precomputed integers gi, corresponding to powers

of γ:

gi = γi mod p, for i = 0, . . . , n − 1.

Hence, a can be computed by

a =
n−1∑
i=0

ai gi mod p.

5. Coefficient reduction

In this section, we propose solutions for the coefficient

reduction, based on lookup-tables. As explained in the pre-

vious sections, we must be able to reduce the coefficients

resulting from the different arithmetic operations presented

in Section 4, particularly the polynomial multiplication in

Section 4.2.

Let C ∈ Z[X] be a polynomial of degree less than n,

with coefficients |ci| < 2k+l, where l is the number of bits

to reduce. We want to define a polynomial R, such that

R(γ) ≡ C(γ) (mod p), and ‖R‖∞ < 2k. We decompose

C into two polynomials, L, and H , such that

C = L + 2k−1H, with |li| < 2k−1 and |hi| < 2l+1,
(11)

as shown in Figure 2.

. . .

L

H

k − 1

l + 1

c0 cn−1cn−2c1

Figure 2. The decomposition of C into its

lower part L, and higher part H

A polynomial H ′, such that ‖H ′‖∞ < 2k−1, is de-

duced from one or more lookup tables plus, if necessary,

a few number of additions, such that R = L + H ′ satis-

fies ‖R‖∞ ≤ 2k. In Algorithm 2 below, Step 2 (H ′ ←
TREAD[H]), must be seen as a virtual instruction, allowing

many degrees of freedom in the implementation, as we shall

see in the next sections.

Algorithm 2 [TCR: Table-based Coefficient Reduction]

Input: C = (c0, . . . , cn−1)B, with |ci| < 2k+l

Output: C ′ = (c′0, ..., c
′
n−1)B such that c′ ≡ c (mod p),

and |c′i| < 2k for i = 0, . . . , n − 1

1: C = L + 2k−1H
2: H ′ ← TREAD[H]
3: C ′ ← L + H ′

The main idea of all the possible variants we shall sug-

gest, is that the precomputed polynomials stored in lookup

table(s) have their coefficients as small as possible, i.e.,

reaching the bound given in Theorem 1. For simplicity in

the notations, we define

τ =

⌈
log2 (|α| + |β|) +

1

n
log2(p)

⌉
, (12)

as the number of bits required per coefficient of the precom-

puted polynomials.

If we perform the reduction with a single table lookup,

we have ‖H ′‖∞ ≤ 2τ , and since we want ‖L+H ′‖∞ ≤ 2k,

choosing k ≥ 1 + τ , gives the expected result. However,

for large values of l (the number of bits to reduce), this

solution becomes unpractical in terms of memory require-

ments. Actually, it would require a table of 2(l+2)n input

bits (one extra bit is necessary for the sign of each coeffi-

cient), with values on τn bits. As an example, the coeffi-

cients of the result of a polynomial multiplication are less

than n (|α| + |β|) 22k (see Section 4.2). It corresponds to

l = k + log2(n) + log2 (|α| + |β|), which is purely impos-

sible with a single table!

A first, straightforward solution is to reduce a smaller

number of bits at once using table(s), and to perform several

iterations until we get a complete reduction. Algorithm 3

is used to reduce the coefficients of a polynomial C, with

‖C‖∞ < 2k+t, to a polynomial R such that ‖R‖∞ < 2k.

It performs several iterations of Algorithm TCR (cf. Algo-

rithm 2), which reduce the coefficients from k + l to k bits

using lookup table(s).

Algorithm 3 [CTCR: Complete Table-based Coefficient

Reduction]

Input: C = (c0, . . . , cn−1)B, with |ci| < 2k+t

Output: R = (r0, ..., rn−1)B such that r ≡ c (mod p),
and |ri| < 2k for i = 0, . . . , n − 1

1: R ← C
2: for i = t − l down to 0 by l do

3: R = R+2iR with ‖R‖∞ < 2i and ‖R‖∞ < 2k+l

4: R ← R + 2i TCR(R)
5: end for

Yet, the size of the lookup table, even for small values of
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l, can be unpractical. For example, with n = 6, k = 32,

with Algorithm TCR reducing a single bit, i.e., with l = 1,

we need about 6MB of memory! In order to reduce the

amount of required memory, we propose different variants

which decompose the table into several, smaller tables, at

the cost of a few additions for the reconstruction of the

lookup value.

5.1. Horizontal Splitting

We decompose H into s, horizontal slices, of height h,

such that

H = H0 + 2hH1 + · · · + 2(s−1)hHs−1, (13)

where h = 
(l + 1)/s�, (as shown in Figure 3 in the case

s = 3).

c2

H0

H1

c3 c4 c5

h
h
h

τ

l + 1

k − 1

c0 c1

log2(s)

H2

Figure 3. An horizontal decomposition of H,
with n = 6, and s = 3

Using this decomposition, we implement step 2 of Algo-

rithm 2, i.e. the instruction H ′ ← TREAD[H], as

H ′ ← TAB0[H0] + · · · + TABs−1[Hs−1], (14)

where TABi[Hi] returns a reduced polynomial (with coeffi-

cients on τ bits) equivalent to 2k−1+ihHi. Since H ′ is ob-

tained from the addition of s polynomials, we need log2(s)
extra bits to compensate the carry generation due to the

sum (14); and because we want ‖H ′‖∞ < 2k−1, we must

take k ≥ 
τ + log2(s) + 1�.

In terms of memory requirements, we remark that, since

Hi is a polynomial with coefficients on h+1 bits (one extra

bit is necessary for the sign of each coefficient), i.e., repre-

senting values in {−2h+1, . . . , 2h−1}, we need s tables, of

(2h+1−1)n−1 input bits each (there is no need to store the

null polynomial), with polynomials stored on n(τ + 1) bits

(one extra bit is necessary for the sign of each coefficient).

Thus, the total cost of the horizontal approach is

s[(2h+1 − 1)n − 1] × n(τ + 1) bits.

For example, with k = 32, n = 6, and s = l + 1 = 2
(h = 1), we have τ = 30, and the total memory cost is

33KB.

5.2. Vertical Splitting

In order to further reduce the size of the tables, we can

consider a decomposition of H into r vertical blocs, of

width w, such that

H = H0 + H1 Xw + · · · + Hr−1 X(r−1)w, (15)

where w = 
n/r�, (as shown in Figure 4 in the case r = 3).

log2(r) H1

H2

c2 c3 c4 c5

w ww

τ

l + 1

k − 1

c0 c1

H0

Figure 4. A vertical decomposition of H, with

n = 6, r = 3, and w = 2

Thus, step 2 of Algorithm 2, i.e., the virtual instruction,

H ′ ← TREAD[H], thus rewrites

H ′ ← TAB0[H0] + · · · + TABr−1[Hr−1], (16)

where TABi[Hi] = 2k−1Hi Xid. Since H ′ is obtained by

the addition of r polynomials with coefficients on τ bits, we

need log2(r) extra bits to compensate the carry generation

due to the sum (16); and because we need ‖H ′‖∞ < 2k−1,

we must take k ≥ 
τ + log2(r) + 1�.

In terms of size, this approach requires r tables, of

2w(l+2) input bits (one extra bit is necessary for the sign

of each coefficient), with polynomials stored on n(τ + 1)
bits each; a total cost of

r 2w(l+2) × n(τ + 1) bits.

For example, with k = 32, n = 6, r = 3, w = 2, and

l = 1, we have τ = 30, and the total memory cost is less

than 4.4KB.

If further reduction is required, we remark that we can

express (16) with only one table, TAB, plus some low-cost

operations, as

H ′ ← TAB[H0] + (TAB[H1] X
w mod E) + . . .

+ (TAB[Hr−1] X
w(r−1) mod E). (17)

The computation of the terms (TAB[Hi] X
wi mod E), is

performed at very low cost, with right shifts for the prod-

uct, followed by a reduction modulo E. In this case, we

still have r polynomials to add up, in order to get H ′, but
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their coefficients have log2 (|α| + |β|) extra bits, because

of the reduction modulo E (see Figure 1). Thus, we must

take k ≥ 
τ + log2 (|α| + |β|) + log2(r) + 1�. The mem-

ory cost is divided by r, which, using the same set of pa-

rameters as above, gives 1.45KB.

5.3. Combined Vertical-Horizontal Splitting

An ultimate optimization is to consider a combination of

the horizontal and vertical splittings. We decompose H in

r vertical blocs, such that

H = H0 + H1 Xw + · · · + Hr−1 X(r−1)w, (18)

where w = 
n/r�, and we split each bloc Hi, into s hori-

zontal slices, yielding

Hi = Hi,0 + 2hHi,1 + · · · + 2(s−1)hHi,s−1, (19)

where h = 
(l + 1)/s�. In this case, the virtual instruction,

H ′ ← TREAD[H], rewrites

H ′ ←
r−1∑
i=0

s−1∑
j=0

TABi,j[Hi,j ]. (20)

Since we add up rs reduced polynomials, we must take

k ≥ 
τ + log2(rs) + 1�. We have rs small tables, with

2hw+1 input bits each (one extra bit is required for the sign

of each coefficient), with values on n(τ + 1) bits. Using

the parameters (k = 32, n = 6, r = 3, w = 2, s =
2, h = 1), we have τ = 29, and a total memory size of

about 1KB. Further reduction is possible if we consider

the vertical optimization (see (17)). We divide the size by r,

but, again, the number of extra bits per coefficient increases

by log2 (|α| + |β|).

6. Example

In this section, we propose an example to illustrate some

of the algorithms proposed in the previous sections. Given

a prime number p, an integer, n > 4, and a polynomial,

E, we first define a Polynomial Modular Number System,

B = PMNS(p, n, γ, ρ, E), where ρ = 2k is deduced from

the bound given for the horizontal splitting approach. Then,

we convert two integers a, b into B, and we perform the mul-

tiplication a b mod p, using the PMNS modular multiplica-

tion presented in Algorithm 1. For the coefficient reduction,

we use Algorithm CTCR (cf. Algorithm 3), with l = 1, and

with TCR implemented using the horizontal splitting vari-

ant, presented in Section 5.1, with parameters s = 2, and

h = 1 (two slices of height 1 bit).

Definition of the PMNS: Let us define p =
123456789120001. We have |p| = 
log2(p)� = 47 bits.

We also define E(X) = X4 + 1 (n = 4, α = 0, β = 1).

E is irreducible in Z, and γ = 46988594033438 is a root

of E modulo p. Since we shall use the horizontal splitting,

with s = 2, we define

k =

⌈
log2 (|α| + |β|) +

1

n
log2(p) + 2

⌉
= 14.

Binary to PMNS: Let a = 111111111111111, b =
22222222222222. The polynomials A,B, below, are given

by Algorithm 3 with inputs (a, 0, 0, 0) and (b, 0, 0, 0) re-

spectively. We have

A = 4466 + 6362X − 6906 X2 − 2934 X3

B = −2835 − 1844 X − 2252 X2 − 7482 X3

It is easy to check that a = A(γ) mod p, and b =
B(γ) mod p.

Modular multiplication: We use Algorithm 1 for the

multiplication modulo E, and Algorithm 3, with the hor-

izontal splitting variant, for the coefficient reduction. We

have

C(X) = A(X) B(X) = −12661110 − 26271574 X

− 2210450 X2 − 26689282 X3 − 26637876 X4

+ 58278060X5 + 21952188X6,

and

C ′(X) = C(X) mod E(X) = 13976766−84549634 X

− 24162638 X2 − 26689282 X3.

The iterations of Algorithm 3 are given in Table 2. We

remark that the coefficients of R = R0 satisfy |ri| < 2k =
214 = 16384.

PMNS to binary: Finally, we can convert R in binary.

We obtain r = 76459417066083, and we easily check that

this is the correct result r = a b mod p.

7. Conclusions

In this paper, we have proposed a new representation for

the elements of Zp, the ring of integers modulo p, called

Polynomial Modular Number Systems. In this system, inte-

gers are represented as polynomials in γ, of degree less than

n, with coefficients bounded by (|α|+ |β|)p1/n, where α, β
are very small integers. Since p1/n is a minimum value,
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Ri ri,0 ri,1 ri,2 ri,3

R13 13976766 −84549634 −24162638 −26689282

R12 14488766 −24305666 −20345166 −32534274

R11 13759678 −9254914 −620878 −17989378

R10 4661438 −2222082 1705650 −1809154

R9 1237182 −2060802 1175730 −1774850

R8 1237182 −2060802 1175730 −1774850

R7 323390 −895874 −54222 −975362

R6 247870 −310274 −70670 −395842

R5 210110 −17474 −78894 −106082

R4 103102 −12434 −95454 −105010

R3 46214 −4626 −24166 −55938

R2 7958 −6282 −26850 −22402

R1 7130 −7624 −10082 −3274

R0 6095 −7557 −3394 −3589

Table 2. The iterations performed by the CTCR
Algorithm 3

only a few extra bits are required for each coefficient. Com-

pared to the classic multiprecision representation, the poly-

nomial nature of PMNS allows for no-carry propagation,

and efficient polynomials arithmetic. The algorithms pre-

sented in this paper for the arithmetic operations must be

seen as a first step in doing the arithmetic over this new rep-

resentation. Many improvements are still to come...
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