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Abstract—Residue Number Systems (RNS) have been a topic of
interest for years. Many previous works show that RNS is a good
candidate for fast computations in asymmetric cryptography
by using its intrinsic parallelization features. A recent result
demonstrates that redundant RNS and modular reduction can fit
together efficiently, providing an efficient RNS modular reduction
algorithm owning a single-fault detection capability. In this paper,
we propose to generalize this approach by protecting the classical
Cox-Rower architecture against multi-fault attacks. We prove
that faults occuring at different places and at different times can
be detected with a linear cost for the architecture and a constant
time for the execution.

Index Terms—Public-Key Cryptography, Residue Number Sys-
tems, Side-Channel Attacks, Multi-Fault, FPGA

I. INTRODUCTION

Residue Number Systems (RNS) have been proven to be a
good candidate for achieving fast computation in finite fields
[5], [6], [9], [15], [18], which is a critical issue for limiting
latency of public key cryptography. In practice, most of the
competitive hardware implementations rely on the so-called
Cox-Rower architecture, introduced by Kawamura et al. [15],
which is designed to fit with natural properties of RNS.

When critical applications, e.g. related to banks and credit
cards, are implemented in an embedded system, they must be
supplied with protections against side-channel attacks, such as
timing attacks [12], or simple/differential analysis [7], [13].
For this purpose, prior works showed that RNS naturally
provides a Leak Resistant Arithmetic [4]. Besides, fault attacks
can remain a real threat despite protections against leaks. Thus,
fault detection is an important security features which should
be integrated into a crypto-chip. Again, RNS owns a natural
detection solution through the use of redundancy [17]. But,
due to the particular structure of RNS modular reduction, this
kind of approach seemed not compliant with finite field RNS
arithmetic. Recently [2], this issue has been settled thanks to a
new redundant RNS modular multiplication algorithm which
includes a single-fault detection ability. Nevertheless, it does
not guarantee detection of multiple faults in time and/or space
inside the Cox-Rower architecture, making such multi-fault
attack potentially invisible and successful.

This work has been supported in part by the European Unions H2020
Programme under grant agreement number ICT-644209 and ANR ARRAND
15-CE39-0002-01.

In this work, we propose a solution for detecting a multi-
fault attack in space and in time on a cryptographic device. By
using a stronger fault model, we show how to accomplish the
matching between redundant RNS and finite field arithmetic.
The multi-fault model offers the possibility to model as well
precise targeted attacks as hardware failures which could
impact several RNS channels. In order to provide a very
practical fault resistant modular reduction algorithm, the fault
model is adapted to hardware constraints.

The paper is organised as follows. Section II gives back-
ground on standard/redundant RNS, required in the rest of
the paper. Section III is the core part where Thm. III.3 and
Thm. III.4 are the main novelties. It deals with the use of
redundant RNS to detect multiple faults. In section IV, prac-
tical considerations about the integration of the solution in a
hardware implementation relying on a Cox-Rower architecture
are suggested. In particular, the area overhead is analysed.
Finaly, some conclusions are drawn.

II. BACKGROUND OVERVIEW

A. Residue Number Systems
Residue number systems [8] are non positional numeral

systems, based on the Chinese Remainder Theorem (CRT).
The CRT states the existence of a ring isomorphism ϕB :
ZM

„Ñ Zm1 ˆ. . .ˆZmn (where M “ śn
i“1 mi) as soon as the

“base” B “ tm1, . . . ,mnu is composed of pairwise coprime
moduli. Consequently, the arithmetic in the interval r0,Mq
can be replaced by independant computations in the channels
Zmi . In practice, these concurrent channels are implemented
in parallel arithmetic unit called Rowers. Given an integer x,
we will denote xi or |x|mi

its residue in Zmi .
The inverse ϕ´1

B pxBq “ x can be computed as follows:

ϕ´1
B pxBq “ | řn

i“1

ˇ̌
xiM

´1
i

ˇ̌
mi

Mi|M “ řn
i“1 ξi,xMi ´κBpxBqM.

(1)
Mi is M

mi
,

ˇ̌
M´1

i

ˇ̌
mi

denotes its inverse modulo mi, and ξi,x
refers to

ˇ̌
xiM

´1
i

ˇ̌
mi

. It is direct to notice that the integer
κBpxBq belongs r0, n ´ 1s and is equal to

κBpxBq “ řn
i“1

ξi,x
mi

´ x
M “ t

řn
i“1

ξi,x
mi

u. (2)

In the following, we may represent an integer through a vector
of residues. Such vectors may be merged with integers inside
a same formula to point out more easily certain properties.
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B. Base conversions

While the Rowers are physical units implementing the
basic concurrent RNS arithmetic, the Cox unit is dedicated
to the compution of κBpxBq during a base conversion. To
switch between two bases, two main approaches are used in
practice: by using (1) (similar to Lagrange’s interpolation), or
through a positional mixed radix system (similar to Newton’s
interpolation). However, the latter is a real bottleneck because
it is intrinsically sequential. In practice, the Cox-Rower archi-
tecture is designed to efficiently compute the first variant.

In CRT based conversion, an approximation of the factor
κBpxBq is computed by the Cox unit [11]. To be precise,
when 2r´1 ă mi ă 2r, the Cox unit computes:

κ̃B pxBq “ t
řn

i“1

trunchpξi,xq
2h

u (3)

where the function trunch returns the h most significant bits.
h is a parameter of approximation. If h matches well with
parameters r and n, one may obtain either κ̃BpxBq “ κBpxBq
or κ̃BpxBq “ κBpxBq ´ 1. The conversion BexpB, xq de-
rived from this approach returns an almost reduced value:
BexpB, xq “ x or x ` M .

The error of approximation can be bounded by a real
number 0 ď ∆ ă 1 (cf. [11] for more details). For any x
in r0,Mq, such ∆ satisfies the following:

´∆ ď
nÿ

i“1

p trunchpξi,xq
2h

´ ξi,x
mi

q ď 0. (4)

This error can be corrected by adding an offset α P r∆, 1q to
the sum (3) (inside the flooring) computed by the Cox. In the
next discussions, this corrected conversion is denoted Bexα.
Bex0 is the previous uncorrected variant Bex. Moreover, it
will be useful to notice that, for Bex and any x ă M , 0 ď
BexpB, xq ă p1 ` ∆qM .

C. RNS arithmetic in Fp within a Cox-Rower architecture

RNS modular reduction relies on Montgomery’s approach
[14]. Different variants are possible, depending on the base
conversion methods which are used [1], [11], [16]. All these
techniques involve two coprime RNS bases B and B1. When
using conversions described in previous part, the principle
of computation of a modular reduction within a Cox-Rower
architecture is briefly summarised in Alg. 1 (cf. Fig. 2 and
3 in [11] for detailed algorithms run in the Cox-Rower). The

Algorithm 1 RNSMRpx, p,B,B1q
Require: B, B1 with gcd pM,M 1pq “ 1, 4p ă p1 ´ ∆qM ,

2p ď p1 ´ αqM 1 ăM ; residues xBYB1 of x ă 4p2.
Ensure: residues psB, sB1 q of s ă 2p, s ” xM´1 mod p.

1: qB Ð
ˇ̌
´xp´1

ˇ̌
M

Ź in concurrent Rowers for B
2: pqB1 Ð BexpB,B1, qBq Ź Fig. 2 in [11] with α “ 0
3: tB1 Ð |x ` pqp|M 1 Ź in concurrent Rowers for B1

4: sB1 Ð
ˇ̌
tM´1

ˇ̌
M 1 Ź in concurrent Rowers for B1

5: sB Ð BexαpB1,B, sB1 q Ź Fig. 2 in [11]
6: return sBYB1 Ź s ”

ˇ̌
xM´1

ˇ̌
p
, 0 ď s ă 2p

conversion Bex is used from B to B1, because one does not
need a complete conversion at this step. However, the second
one has to be complete, so as to keep consistency between
residues in the two bases. It is possible to do so as soon as
sB1 ă p1´αqM 1. This justifies the condition 2p ď p1´αqM 1,
because the result verifies s ă 2p.

D. Redundant RNS and fault detection capability
Within a context of fault attack, the crucial point is the

independance of Rowers. A fault remains inside a same Rower
as long as no base conversion occurs.

Definition II.1. Given B “ tm1, . . . ,mnu and t P r1, ns, a
t-fault on xB is a set It Ď r1, ns and t residues ei P r1,mis
for any i P It. If xB is supposed to be faulty, it is denoted
xB. Moreover, MIt denotes

ś
jPr1,nszIt

mj .

A redundant RNS with a k-fault detection capability is
composed by a main base B “ tm1, . . . ,mnu and a coprime
redundant base BR “ tmR,1, . . . ,mR,ku with k ď n. The
principle of fault detection in redundant RNS is based on a
“consistency check” [17]. Some residues pxB,xBRq are said
to be consistent if they pass the following test:

xBR ““ ϕBR ˝ ϕ´1
B pxBq . (5)

The function ϕBR ˝ϕ´1
B represents a complete conversion from

B to BR. The dynamic range (i.e. used to represent the values
modulo p) of this redundant RNS is by definition the one of
B, i.e. r0,Mq. Hence, residues of any x in this range always
passes the consistency check test.

In practice, adding a k-fault detection in a Cox-Rower
architecture is simply achieved by adding k Rowers concur-
rently to the “regular” ones. The way to handle them along
computations in Fp is the purpose of next section.

III. MULTI-FAULT RESISTANT RNS MODULAR REDUCTION

Without loss of generality, B and B1 both own n moduli.

A. Preliminary remarks
Alg. 1 involves operations in B and B1, a first conversion

Bex possibly incomplete, and a second complete one Bexα.
So, attacks may occur in different parts of the process, affect
different Rowers, and modify residues in both B and B1 (the
consequences of faults on the Cox are discussed in Section
III-C). However, because of independancy of Rowers, an
infected unit does not propagate a fault between conversions.
In Fig. 1, we consider such types of fault: types 1 and 3 in B,
type 2 in B1.

Fig. 2 illustrates the way a faulty Rower can propagate its
error to other units during a conversion. We can notice that an
error of type 1 will affect all the residue of the second base.
The columns of the second base represent the evaluation of
the summation in (1).

The goal is to find an easy way to detect if some faults
occur during the reduction process. We notice that the 2nd
conversion Bexα is complete, and can be used as is to perform
a consistency check, as described in Thm. III.1.
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type 1

type 3 type 2

Fig. 1. Types of faults during the modular reduction

spacetim
e fault type 2

fault type 1

Fig. 2. Types of faults inside the conversion box

Theorem III.1. Let B and BR “ tmR,1, . . . ,mR,ku (k ď
n) be a redundant RNS. For any d P r1, ks, any x P
r0, p1 ´ αqMq and any d-fault affecting pxB,xBRq, the con-
sistency check xBR ““ Bexα pB,BR,xBq always fails if for
all mR,z P BR, mR,z ą maxmPB m.

Thus, if we consider Alg. 1, multiple faults in B1 (i.e. type 2)
can be detected by using the second conversion for checking,
because Bexα is a complete reduction.

Thwarting type 3 faults: In the next section, we show
how to deal with type 1 faults, possibly associated to type 2
faults and to faults occuring during a conversion. We won’t
mention faults in B after the second base conversion, i.e. type
3 faults. Either they can be reduced to type 1 (and then will
be detected) when the output of the reduction is re-used as an
input (e.g. as in a modular exponentiation), or residues in B1

(whose integrity is checked by the detection process described
afterwards) are sufficient to reconstruct the output of reduction
in binary representation.

B. Multi-fault injected during a modular reduction
In this part and as a first step, we consider “theoretical”

faults, which affect values modulo some mi’s. In other words,
we do not consider yet faults at the binary representation level.
For example, if xi is an r-bit word, a faulty residue sxi is
assumed to belong to r0,miq. The other case (sxi P rmi, 2rq) is
tackled in next section. To simplify the study in the context of
a Cox-Rower architecture, faults on the Cox are not considered
for the moment. This issue will be considered later.

The detection capability k determines the size of BR. The k-
fault resistant modular reduction is described by Alg. 2. Steps
1 to 5 are the same than for Alg. 1 but they additionally take
into account BR. Next, steps 6 to 9 implement the consistency
check. A multi-fault during a base conversion can be modeled
by a multi-fault infecting pre- and/or post-conversion residues.
Thus, we can restrain to the faults affecting qB due to

consistency
check test

Fig. 3. Scheme of the consistency test.

perturbations at steps 1 and 2, and those affecting sB1 and
sBR after faults at steps 2, 3, 4 and 5.

The structure of a multi-fault injected during the execution
of Alg. 2 is formally described in the following definition.

Definition III.2. Let d ď k. A d-fault appearing during a
redundant RNS modular reduction is described by d “ u `
v ` w index numbers Iu,Jv Ă r1, ns and Zw Ă r1, ks with
|Iu| “ u, |Jv| “ v, |Zw| “ w, and d integers: ei P Z{miZ for
all i P Iu, e1

j P Z{m1
jZ for all j P Jv , and eR,z P Z{mR,zZ

for all z P Zw. This fault modifies the residues of qB, sB1

and sBR computed during the execution of Alg. 2 as follows:
@pi, j, zq P Iu ˆ Jv ˆ Zw,

qi “ |qi ` ei|mi
, s1

j “
ˇ̌
s1
j ` e1

j

ˇ̌
m1

j
, sR,z “ |sR,z ` eR,z|mR,z

.

(6)

Algorithm 2 R_RNSMRpx, p,B,B1,BRq
Require: Same hyp. than Alg. 1, BR “ tmR,1, . . . ,mR,ku,

gcd pMR, pMM 1q “ 1; residues xBYB1YBR of x ă 4p2.
Ensure: res. psB, sB1 , sBRq of s ă 2p, s ” xM´1 mod p.

1: qB Ð
ˇ̌
´xp´1

ˇ̌
M

Ź // in B
2: ppqB1 , pqBRq Ð BexpB,B1 Y BR, qBq
3: ptB1 , tBRq Ð px ` pqpq mod M 1,MR Ź // in B1 Y BR

4: psB1 , sBRq Ð ptM´1q mod M 1,MR Ź // in B1 Y BR

5: psB, psBRq Ð BexαpB1,B Y BR, sB1 q
6: if sBR ““ psBR then Ź Consistency check.
7: return psB, sB1 , sBRq
8: else
9: return ‘‘Corrupted data’’

10: end if

Fig. 3 depicts the principle of an architecture implementing
Alg. 2. The next theorem ensures the correctness of Alg. 2.

Theorem III.3. Let’s consider Alg. 2. If mR ą m for all
pmR,mq P BR ˆ pB YB1q, then any d-fault as in Def. III.2 is
detected by the consistency check at steps 6-9.

Proof: Let’s consider a pu ` v ` wq-fault as defined by
(6). The w faults in redundant Rowers do not play any role.
Indeed, the detection capability k ensures that at least u ` v
redundant channels are not corrupted between two consistency
checks. Then, if u “ v “ 0, the faults only affect redundant
residues, and the context of single-fault in [2] is enough to
ensure the detection (just consider the system with only one
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faulty redundant channel). From now on we denote MR,Zw

the product of k ´ w safe redundant channels. The proof is
mainly based on the fact that it suffices to study effect of the
pu ` vq faults on the integer t “ x ` pqp at line 3.

First, type 1 faults modify q at line 1. We then denote it
q P r0,Mq. After the first conversion, we denote t̃p1q def“
x ` pqp the corresponding corrupted t (pq denotes the output
of Bexpqq). In particular, t̃p1q is known in each uncorrupted
redundant channel, i.e. modulo MR,Zw .

Second, type 2 faults modify t̃p1q in B1 before the second
conversion. We denote psB1

def“ BexαpsB1 q the value sent by
the conversion to B to recover the ouput in the full base, and to
BR for the consistency check. So the associated “t” is defined
by t̃p2q “ MpsB1 .

At this point, we know that, in particular, the consistency
check will detect the multi-fault if pt̃p1qM´1 ´ psB1 q ı 0 mod
MR,Zw . Due to coprimality of M and MR, this inequality
holds iff pt̃p1q ´ t̃p2qq ı 0 mod MR,Zw . Thus, we will show
that this inequality holds.

Basically, the strategy is to prove that |t̃p1q ´ t̃p2q| is an
integer fully representable in B Y B1 (i.e. it is ă MM 1), and
has non zero residues in, and only in, channels of B affected by
the u type 1 faults (and index-numbered by Iu), and channels
of B1 affected by the v type 2 faults (and index-numbered by
Jv). In other words, this means that we need to prove that
|t̃p2q ´ t̃p1q| “ etMIuM

1
Jv

, with 0 ă et ă
ś

iPIu,jPJv
mim1

j .
Hence, the hypothesis that MR,Zw ą

ś
iPIu,jPJv

mim1
j will

ensure et ‰ 0 mod MR,Zw .
A first step is to establish that:

(i) t̃p1q P r0, p1 ´ αqMM 1q.
Point (i) is due to the fact that, despite the type 1 faults on
q, giving q P r0,Mq, the first conversion still ensures that
pq P r0, p1 ` ∆qMq. Indeed, from hyp. on M and M 1 in Alg.
2, it comes x`pqp ă 4p2`p1`∆qMp ă 2Mp ď p1´αqMM 1.

Now, we highlight crucial properties about sB1 and psB1 :
(ii) |sB1 ´ |t̃p1qM´1|M 1 | “ esM 1

Jv
, 0 ă es ă

ś
jPJv

m1
j ;

(iii) psB1 P tsB1 , sB1 ´ M 1u, so psB1 P r´αM 1,M 1q.
The point (ii) is just a consequence of definition of sB1

which is |t̃p1qM´1|M 1 modified by the type 2 faults. Moreover,
because of the faults, sB1 may not belong to r0, p1 ´ αqM 1q
anymore. This implies that Bexα may provide the incomplete
reduced integer sB1 ´M 1. However, it can only happen when
sB1 P rp1 ´ αqM 1,M 1q. This justifies point (iii).

We continue with following properties about t̃p2q “ MpsB1 :
(iv) 0 ă |t̃p2q ´ t̃p1q| ăMM 1;
(v) |t̃p2q ´ t̃p1q| “ etMIuM

1
Jv

, 0 ă et ă
ś

iPIu,jPJv
mim1

j .
Point (iv) is directly deduced from (i) and (iii). To prove (v),
we first notice that, viewed in BYB1, the two integers t̃p1q and
M |t̃p1qM´1|M 1 only differ in channels of B index-numbered
by Iu. So, because of the definition of t̃p2q “ MpsB1 “ M ˆ
Bexαp|t̃p1qM´1|M 1 q and of (ii), we deduce that t̃p1q and t̃p2q

only differ by a non zero multiple of MIuM
1
Jv

. And because
of (iv), this multiple verifies (v).

To end the proof, it just remains to notice that, by hypothesis
on the number of faults and on the size of redundant moduli,

we have MR,Zw ą
ś

iPIu,jPJv
mim1

j . So, this and (v) imply
that |et|MR,Zw

‰ 0, or in other words that pt̃p1q ´ t̃p2qq ı
0 mod MR,Zw : the consistency check detects the multi-fault,
at least in all the uncorrupted channels of BR.

C. Treating faults on the Cox
A fault on a Rower corresponds to a type 1 or 2 in Fig. 1.

We have to address the effects of the faults made on the Cox
part (not described in Fig. 1). The Cox evaluates the value
κBpxBq in (1). If the Cox is common to all the Rowers then
it will affect all the output by the same way. In other words,
that means that the reduction could be not complete. For the
first conversion in Alg. 1 if we are under the conditions given
in [1] then the faults will not affect the result modulo p. Here
we assume that, among the k possible faults injected during a
Montgomery reduction, τ of them can affect the Cox. In the
proof of Thm III.3, a key point is that t̃p1q remains in r0, p1´
αqMM 1q. Thus, to counteract possible negative multiples of
M due to faults on the Cox, one should automatically add
pk´1qM to the value pq obtained in B1YBR. Consequenlty, one
should also increase the size of M 1 to keep t̃p1q ` pk ` 1qp ă
p1 ´ αqMM 1.

For the second base conversion, it may seem more com-
plex because we expect a complete reduction modulo M 1 to
ensure the validity of the checking. In fact, as we check the
consistency between the result in B1 and BR, if multiples of
M 1 appear because of consecutive faults on the Cox (one fault
would at most add a single multiple of M 1), it would affect
the result, and could avoid a multiple fault to be detected.
Actually, in such a case, the check would verify if a quantity
of the form eIu,JvMIuM

1
Jv

` τMM 1 is zero, or not, modulo
MR (τM 1 coming from the faulty Cox, with τ lower than the
number consecutive faults affecting the Cox, and M coming
from the multiplication by M in the final reasoning in the
proof of Thm III.3). But by hypothesis on the detection
capability, there are at least u ` v ` τ safe redundant moduli.
Thus, to detect such sets of faults, it suffices to have the
product MR,u`v`τ greater than pτ ` 1q ś

iPIu
mi

ś
jPJv

m1
j .

For instance, if the size of redundant moduli is constrained
by some architecure considerations, one could simply add an
extra redundant modulus verifying mR,k`1 ą k ą τ .

Finally, such kind of faults on a single Cox shared between
all Rowers can easily be defeated, basically by adding a small
extra modulus to BR for instance.

However, due to small area cost of a Cox, it may be more
interesting to integrate a Cox inside each Rower. In the next
parts, we select this variant.

D. Integrating binary representation within the fault model
The previous fault model takes into account the appearance

of multiple faults in time and space in a Cox-Rower architec-
ture, but it does not fit with the way that data are represented
into hardware. A residue was always considered like an integer
in r0,mq. But such value needs to be handled through a binary
representation. During a conversion, each rower computes and
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stores the ξi,q or ξ1
j,s in r-bit registers before sending them

towards other rowers. In practice, the size of moduli is chosen
such that 2r´1 ă m ă 2r. For further discussion, we consider
that any modulus verifies 2r ´ m ă 2c.

Thereafter, we analyse the consequences of this more pre-
cise model, as it is done in [2]. Without loss of generality, a
fault on a residue qi (or similarly s1

j) can be modeled by a
fault modifying the corresponding ξi,q (or ξ1

j,s). As an r-bit
value, the faulty residue ξi,q can be anywhere in r0, 2rq.

Obviously, new circumstances appear when some ξi,q’s
verify mi ď ξi,q ă 2r. In this case, we write ξi,q “ mi ` ξ̃i,q
with ξ̃i,q P r0,miq. ξ̃i,q may represent another fault, but the
point is that the affected underlying residue qi is still the same.
Such overflows have two consequences in the subsequent base
conversion. First, a positive multiple of M can come from the
sum

řn
i“1 ξi,qMi. Second, a negative multiple of M can be

due to the sum
řn

i“1
trunchpξi,qq

2h when computing κ̃BpqqB.
The following theorem provides sufficient conditions which

ensure that positive and negative multiples of M for the first
base conversion (and M 1 for the second one) almost cancel
each other out. This is essentially what is proven in the proof
of Thm. III.4.

The main consequence of the theorem is that the redundant
moduli are not required to be greater than 2r to ensure the
detection of these specific overflowing multi-faults.

Theorem III.4. Assume that any modulus m P BYB1 satisfies
2r´1 ă m ă 2r. Let ε “ mintt P Z | @m P B YB1, 2r ´m ă
2tu. Let’s consider Alg. 3 with following hypothesis:

(i) h ď r ´ ε
(ii) α “ n`k

2h´1 and α ` k
2h ă 1

(iii) M ą 9p
1´α

(iv) M 1 ą 3p
1´α´ k

2h
pą 3p

1´α q.

If mR ą m for all pmR,mq P BR ˆ pB Y B1q, then any
hardware d-multifault is detected for any d P r1, ks.

Algorithm 3 R_RNSMR_HWpx, p,B,B1,BRq (adapted to hard-
ware multi-fault model)
Require: Hyp. of Thm III.4 for B, B1 and BR with

gcd pMR, pMM 1q “ 1; xBYB1YBR with x ă 9p2.
Ensure: psB, sB1 , sBRq, s ă 3p, s ” xM´1 mod p.

1: qB Ð
ˇ̌
´xp´1

ˇ̌
M

Ź // in B
2: ppqB1 , pqBRq Ð BexpB,B1 Y BR, qBq
3: ptB1 , tBRq Ð px ` ppq ` Mqpq mod M 1,MR in B1 Y BR

4: psB1 , sBRq Ð ptM´1q mod M 1,MR Ź in B1 Y BR

5: psB, psBRq Ð BexαpB1,B Y BR, sB1 q
6: if sBR ““ psBR then Ź Consistency check.
7: return psB, sB1 , sBRq
8: else
9: return ‘‘Corrupted data’’

10: end if

Preliminary remarks: First, the offset α (ii) which corrects
the value output by the Cox during the second conversion fits

in the h-bit register of the Cox unit. Moreover, we claim that
∆ “ n

2h´1 is an upper bound of the error appearing in the sum
(4) computed by the Cox, when the ξi,q (or ξ1

i,s) are in r0,miq.
Indeed, because trunchpξq “ ξ´|ξ|2r´h

2r´h and mi “ 2r ´ci with
ci ă 2ε, then we have:

ξi
mi

´ trunchpξiq
2h ď 2rξi´miξi`mi|ξi|2r´h

2rmi
ă 2ε

2r ` 2r´h

2r .

Since h ď r ´ ε (i), it comes n
2r´ε ` n

2h ď n
2h´1 “ ∆. So ∆

is greater than the full error for both Bex and Bexα. And the
value of α (ii) enables to correct this error (i.e. α ě ∆).

The following discussion aims to show that, under condi-
tions of Thm. III.4, the new context is actually identical to the
one about “theoretical” faults. To do so, we show that the key
points in proof of Thm. III.3 are still relevant. Precisely, we
prove that |t̃p1q ´ t̃p2q| ăMM 1 and it owns non zero residues
only in u channels of B and v of B1. We also prove that the
new conditions still imply a complete second base conversion
when no fault occurs.

a) About first conversion: In the following, q may denote
as well a correct q as q affected by u type 1 faults. The
first conversion is not required to provide a full reduction
modulo M . The crucial point is to guarantee that t̃p1q P
r0, p1 ´ αqMM 1q. So, we need the converted value pq to be
positive, and M 1 to be such that t̃p1q “ x`pqp ă p1´αqMM 1.

On the one side, the sum
řn

i“1 ξi,qMi can contain an extra
term ℓM with ℓ ď k. ℓ is the exactly the number of erroneous
ξi,q which are overflowing their respective mi. We denote by
pξ̃i,qqiPr1,ns the set of all the ξi,q , but where ξ̃i,q “ ξi,q ´ mi

for each ξi,q overflowing mi. In particular, the new coeffi-
cients ξ̃i,q are those of q affected by a theoretical multi-fault,
and represent an integer denoted q in r0,Mq. Consequently,řn

i“1 ξi,qMi “ řn
i“1 ξ̃i,qMi`ℓM . So, the conversion outputs

q plus a multiple of M . On the other side, we check if
the value (3) computed by the Cox can cancel ℓM . This
computation involves the terms trunchpξi,qq. In particular,
we have ℓ such following quantities (where δi P t0, 1u):
trunchpmi ` ξ̃i,qq “ trunchpmiq ` trunchpξ̃i,qq ` δi.

Under conditions of Thm. III.4, the ℓ terms trunchpmiq`δi
cancel at least pℓ ´ 1qM . Indeed, we can write (for brievity’s
sakeness, details are omitted), with ∆ “ n

2h´1 :
$
&

%

řn
i“1

trunchpξi,qq
2h ď κBpqBq ` q

M ` ℓ ` ℓ
2h

řn
i“1

trunchpξi,qq
2h ě κBpqBq ` q

M ` ℓ ´ ∆ ´ ℓ
2r´ε ´ ℓ

2h
(7)

Moreover, we notice that (i) implies ∆ ` ℓ
2r´ε ` ℓ

2h ď ∆ `
k

2h´1 “ α. Since α ă 1 (ii), the Cox outputs:

t
řn

i“1
trunchpξi,qq

2h u “ κBpqBq ` ℓ ` β, with β P t´1, 0, 1u.
Finally, the 1st conversion outputs pq “ q´βM . As previously
explained, although an incomplete reduction is allowed, pq has
to be non negative. To prevent the case β “ 1, the value
returned by the Cox must be decreased by 1. This justifies the
term pq ` M at line 3 of Alg. 3, and the new definition of
t̃p1q def“ x` ppq `Mqp. Consequently, pq `M P tq, q `M, q `
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2Mu, and we can deduce from (7) that pq “ q ` 2M only if
q ă p1 ` ∆ ` ℓ

2r´ε ` ℓ
2h qM ď p1 ` αqM . Hence,

0 ď pq ` M ă p2 ` αqM. (8)

Besides, cond. (iii) about M states that x ă 9p2 ă p1´αqMp.
This, together with (8) and condition (iv) about M 1, implies:

0 ď t̃p1q “ x` ppq `Mqp ă 3Mp ă p1´α´ k
2h qMM 1. (9)

b) About second conversion: The analysis is similar for
conversion of sB1 . We yet consider ℓ overflows. Then, the
offset α (ii) enables to correct the error ∆ ` ℓ

2r´ε ` ℓ
2h ď

n`k
2h´1 “ α. Hence, the version of second inequality in (7) for
this case is greater than κBpsB1 q`ℓ. Since s denotes an integer
in r0,M 1q, and since, by hypothesis, α` k

2h ă 1 (ii), the first
upper bound in (7) becomes, in this case:

κBpsB1 q ` s
M 1 ` ℓ ` α ` ℓ

2h ď κBpsB1 q ` s
M 1 ` ℓ ` α ` k

2h

ă κBpsB1 q ` ℓ ` 2.
(10)

Finally, the Cox outputs either κBpsB1 q`ℓ or κBpsB1 q`ℓ`1.
In particular, the conversion outputs sB1 ´δM 1 with δ P t0, 1u.
And, from (10), we deduce that δ “ 1 only if sB1 ě p1´α´
k
2h qM 1. Consequently, we obtain the following bounds:

´pα ` k
2h qMM 1 ď BexαpsB1 q ˆ M ăMM 1. (11)

By gathering (9) and (11), and the definition t̃p2q “
BexαpsB1 qM , we obtain the key point

ˇ̌
t̃p1q ´ t̃p2q ˇ̌

ă MM 1.
The second key point in proof of Thm III.3, i.e. |t̃p1q ´ t̃p2q|
owning u non zero residues in B and v in B1, is obviously
verified. Indeed, the only difference with Thm III.3 is due
to a possible presence of multiples of MM 1. Thus, due to
faulty residues index numbered by I on q in B and J on
s in B1, we have yet that

ˇ̌
t̃p1q ´ t̃p2q ˇ̌

“ etMIM 1
J with

0 ă et ă
ś

iPI,jPJ mim1
j . This guarantees the detection.

To end the proof, when no faults in B and B1 occur (except
maybe overflows ξi,q “ mi ` ξi,q and ξ

1
j,s “ m1

j ` ξ1
j,s), then

s “ t
M ă 3p ă p1 ´ α ´ k

2h qM 1 ă p1 ´ αqM 1. It means that
the offset α guarantees an exact conversion: BexαpsB1 q “ s.
And the output in BYB1 YBR is nothing but s P r0, 3pq with
s ” xyM´1 mod p.

E. Example of parameters

To show that the conditions of Thm. III.4 are realistically
reachable despite their apparent restrictiveness, we consider
the parameters calibrated for 521-bit ECC with n “ 31 and
r “ 17. For instance, we set the detection capability to k “ 6.

The set r217 ´ 29, 217s contains 68 prime numbers (i.e.
enough for B, B1 and BR), so ε “ 9. Consequently, h ď 8
and it has to be set such that α ` k

2h “ 2n`3k
2h ă 1 is true.

Setting h “ 7 is then sufficient. These parameters are such
that conditions (iii) and (iv) about M and M 1 are satisfied
(we remind log2ppq “ 521). Indeed, we have in this case
that log2pMq, log2pM 1q ą log2

`
p217 ´ 29qn

˘
„ 526.8 and

log2p 9p
1´α q „ 525.4, log2p 3p

1´α´ k
2h

q „ 524.

Fig. 4. Cox-Rower Architecture, with detection capability

IV. MULTI-FAULT RESILIENT HARDWARE
IMPLEMENTATION

In this section, we provide some practical guidelines to
re-use the redundant Rowers and about hardening parts of
Cox-Rower architecture which could not be covered by the
detection approach. In III-C, we discussed about the advantage
of using one Cox per Rower. This is the choice we make.

A. Cox-Rower architecture

The Cox-Rower architecture has been intensively used for
implementing RNS cryptoprocessors [3], [6], [9], [15]. It is
composed of a Sequencer unit, a Cox unit and n Rower units.
It is illustrated by the black parts in Fig. 4.

The Cox unit implements the trunch function so as to
return the κ̃ coefficient (3). Each Rower unit is dedicated
to computations like přn

i“1 aibiq mod m, where m is a
modulus of B or B1. This architecture shows a good trade-
off between area and performance, and can take advantage of
DSP blocks available in FPGA [3].

The n registers below rowers are in charge of sending ξi’s
coefficients (cf. (1)) from each rower to all others during a base
conversion. To avoid burdensome architecture, the sending can
be done through shiftings between these registers.

In the previous section, redundant residues were used to
detect multi-fault attacks during Montgomery reduction com-
putations and did not play any role during the Montgomery
reduction. The modifications set to the Cox-Rower architecture
to include the detection capability are shown in red in Fig. 4.

B. Redundant Rower unit

Although the architecture of a redundant Rower unit is quite
identical to a regular one, the depth of the memories containing
the precomputed values for the reduction level is divided by
two. The extra features is that it implements the consistency
check. This can be achieved at the accumulator/reduction level
by comparing the result with zero.

Because redundant residues are not involved as part of
pre-conversion base during a modular reduction, they are not
subject to Cox-Rower conditions. In order to keep available
the range of moduli under Cox-Rower conditions for the
two bases B and B1, we could choose to use mR ě 2r

for all mR P BR. However, we have shown (Thm. III.4)
that such condition is not necessary for detecting specific
hardware overflowing faults. Thus redundant rowers could
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Fig. 5. Redundant Rower with detection capability.

contain strictly identical arithmetic and logic units (i.e. over r
bits). Those modifications are highlighten in red in Fig. 5.

In previous works [9], [15], several RNS to binary radix
conversions have been introduced so as to achieve a final
conversion from RNS to binary radix. The principle is to
recover coefficients of the result s in base 2r, from the least
significant digit to the most significant one, by using formula
t s
2r u “ s´|s|2r

2r . Consequently, we propose here to share the
functionality of one redundant Rower using moduli m “ 2r

in order to detect one single fault and to compute RNS to
binary radix conversion. Furthermore, this redundant Rower
is obviously smaller than other ones because computing
mod 2r is just truncating binary representations.

On FPGA, this solution is quite easy to implement as DSP
blocks embed multiply and accumulate features and also a test
value features dedicated to zero value detection and which can
be used for consistency checks.

Last, because one standard rower is usually dedicated to
two moduli, one of B and one of B1, it is worth noticing
that multi-fault model enables preventing hardware failures,
which then could affect residues two by two. In this case, k
is advantageously chosen being even.

C. Hardening Cox unit and registers
In III, it is shown that multi-fault attack can be detected

when it affects computations done inside Rower units. Faults
affecting Cox unit or Registers used during base conversions
are not covered in the hypothesis of Alg. 3 and Thm. III.4.
In order to prevent and to detect a fault in Cox unit, we
suggest to harden it by using lockstep fault-tolerant method-
ology. Indeed, Cox is only composed by an h ` rlog2pnqs-bit
adder/accumulator together with an h` rlog2pnqs-bit register.
Thus it is quite small compared to the Rower units. In previous
example III-E, the size of the Cox unit implemented in FPGA
would be only 13 LUTs and registers.

In the case of Register units dedicated to distribution of
ξi’s coefficients during a base conversion, the problem is that

a permanent fault could corrupt much more than k of these
coefficients because of shifting. Thus the fault-model would
not fit anymore. For instance a fault which would permanently
affect the 1st register could modify the set of whole ξi’s
passing through this register, and may be responsible for
appearance of more than k faults.

To prevent this phenomenon, each ξi can be memorised in
its associated rower before it is sent into output shift registers.
When ξi is distributed to all rowers, the ith rower can perform
a comparison with respect to previously memorised value so
as to check that the distribution step has been fair. The extra
cost is then nr registers. The modified rower unit is presented
in Fig. 6 using red color for modifications.

Fig. 6. Modified Rower.

D. Extra cost of detection capability
The detection procedure has the advantage to not increase

execution time of modular reduction as soon as enough extra
surface can be used to implement the whole detection process.
Indeed, redundant residues are never involved in the emitting
side during a base conversion. Furthermore, any computation
concerning consistency check or protection of output registers
can be done independently from main computation flow.

Thus, the only cost is in terms of area and power consump-
tion. Theorem III.4 proves that redundant moduli just have to
be greater than standard ones. Thus, a redundant rower owns
the same structure than a classical one, plus a negligible area
overhead due to the consistency check. For instance, Table I
provides area of a Rower design from [3], which is useable for
implementing a 521-bit ECC (as considered in [3]). Moreover,
section IV-C has also emphasized that protecting Cox through
lockstep fault-tolerant methodology remains reasonably cheap
because of the simple and small structure of this unit.

To resume, a relevant estimation of area overhead is
k ˆ (Rower Area), with k the detection capability. Because
rowers represent main part of architecture, a first estimation
is given by „ ` k

n% of initial area, where n is the number
of standard rowers. Table II highlights orders of magnitude
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Rower type Slices Logic LUTs FFs BRAM18 DSP48E
Non-modified 67 170 182 2 4

Modified 75 197 214 2 4
Redundant 56 86 180 2 4

TABLE I
ROWER AREA FOR KINTEX-7 WITH r “ 17.

of area overhead in the case of n “ 31 standard rowers
for implementing a 521-bit ECC [3]. Those values are also
compared with P&R results for area overhead (given in slices)
as well as power overhead @200MHz which are less than the
first estimation. The reason for this gap is mainly due to the
fact that a redundant rower is smaller than a modified rower.

To finish, we also notice that the total number of slices in
Tab. II for k “ 0 is a bit greater than in [3] (2565 slices for the
same parameters). This is because we use a deeper pipeline
within the present modified rowers.

Detection cap. k 0 2 4 6 8
Estimated 0% `6.5% `12.9% `19.3% `25.8%

overhead ` k
n%

Slices 2864 2985 3120 3196 3204
overhead 0% `4.2% `8.9% `11.5% `11.9%

Power 691 730 779 801 847
overhead (in mW 0% `5.6% `12.7% `15.9 `22.6%

@200MHz)

TABLE II
AREA OVERHEAD DUE TO REDUNDANT ROWERS (FOR COX-ROWER

ARCHITECTURE OWNING n “ 31 STANDARD ROWERS).

a) Validation of the methodology of fault detection: We
have validated our fault detection design by using hardware
simulator tool. To inject fault into our design, we forced
erroneous values (type 1 and 2 as described above) during
the computation in the simulator. Transient faults as well as
permanent faults were simulated in our modified rowers. The
fault detection mechanism was always triggered when multi-
fault simulation was running. We also compared the faulted
design with its golden model (simulation without fault) to
observe the differences in the results.

V. CONCLUSION

In [2], an RNS modular reduction algorithm defeating
single-fault attacks was proposed. Since fault attacks can be
devastating, it really matters to know if this approach is effi-
ciently scalable so as to defeat multiple attacks, which could
cause several RNS units being corrupted. Moreover, a multi-
fault model also allows to model hardware failures. Indeed,
in a Cox-Rower architecture, a single Rower is generally
dedicated to, at least, one channel of B and one of B1.

For that purpose, an RNS modular reduction algorithm sup-
plied with multi-fault detection capability has been presented.
It has been shown that the approach in [2] is extendable to
any degree of detection as proven by Thm III.3 and Thm III.4.
Beyond pure theoretical analysis, a hardware multi-fault model
adapted to Cox-Rower architecture has also been considered.
Despite some specific constraints due to binary representation
of RNS data, it has been proven that the redundant moduli

do not have to own any extra specific features in hardware
context comparing to theoretical model. So, the detection
process is flexible, since any rower can be dedicated either
to a standard RNS channel, or to a redundant one without
significant changes.

As for the single-fault detection, defeating multiple-attacks
can be done without any time overhead. Furthermore, area
overhead is mainly limited to the one of redundant rowers,
and is roughly estimated to be ` k

n% of initial area, with k
being the detection capability, and n the size of both bases
B and B1. As a consequence, for a given k, the smaller the
regular moduli, the smaller the area overhead.
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