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Abstract—Recent studies have demonstrated the importance
of protecting the hardware implementations of cryptographic
functions against side channel and fault attacks. In last
years, very efficient implementations of modular arithmetc
have been done in RNS (RSA, ECC, pairings) as well on
FPGA as on GPU. Thus the protection of RNS Montgomery
modular multiplication is a crucial issue. For that purpose,

some techniques have been proposed to protect this RNS

operation against side channel analysis. Nevertheless, ette
are still no effective and generic approaches for the deteicn
of fault injection, which would be additionnally compatible
with a leak resistant arithmetic. This paper proposes a new
RNS Montgomery multiplication algorithm with fault detect ion
capability. A mathematical analysis demonstrates the vatiity
of the proposed approach. Moreover, an architecture that im
plements the proposed algorithm is presented. A comparata/
analysis shows that the introduction of the proposed fault
detection technique requires only a limited increase in ara.

Keywords-Residue Number System; Fault Detection; Mont-
gomery Reduction; Base Conversions

|. INTRODUCTION

Residue Number Systems (RNS) [1], [2] enable to mak
computations on large numbers through an arithmetic base
on additions, subtractions and multiplications run on $mal

units (i.e. the elements of a chosen RNS base) in

modular multiplications/exponentiations on large intage

which is of special interest for cryptographic applicagpn

(5]
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which are a well-known way to extract informations of cryp-
tosystems. It was initially used by Boneh et al. [11] to break
RSA-CRT. Because data are scattered across the units, RNS
supplies a natural robustness against faults. Indeedfitssf
to add a redundant unit to detect any error affecting a single
small value. However, standard redundant RNS techniques
for fault detection [12]-[15] are feasible as long as no base
extension operations and/or overflow appear. In first case, a
fault could be propagated to all units of the new base. In
second case, the redundant value is not redundancy of RNS
data anymore. In the end, the protection of RNS modular
multiplication against fault injection appears necessaras
to consolidate interest of RNS arithmetic in cryptography.
However, RNSMM algorithms [3], [16] contain two con-
secutive base conversions which ar@riori not compliant
with standard redundant detection techniques. The goal of
the paper is to adapt such standard countermeasures using
redundancy to RNS modular multiplication.

In this paper a new algorithm, inserting redundancy into
RNS Montgomery multiplication in order to provide efficient
d cheap protection against fault attacks in the context
modular exponentiation/elliptic curve point additiand
compliant with a leak resistant arithmetic, is presented an

Analyzed. A formal analysis proves the detection of any sin-
parallel and carry-free way. However, because they ar y ySIS p y

non-positional numeral systems, comparison, division an
modular reduction are more difficult to perform. For in-
stance, Bajard et al. [3] propose an algorithm for modula
multiplication in RNS (RNSMM) adaptating the classical
Montgomery reduction [4]. By combining this algorithm
with efficient base conversion [5], [6] fast execution of

le fault. Beyond theoretical purposes, an architectusiste
ant to single fault attacks and compliant with previous-pro
tections for RNS against side channel attacks is suggested.

The architectural design is based on the work presented

in [17] by Nozaki et al. An analysis based on equivalent
gates shows that the area increase required for single fault
detection is lower than 3%, and that the total computational
time increases by abouf (2 log,(exponent)) of the normal
delay if the output of RNSMM is required by an RNS

become possible in RNS. For that matter Guillermin et al.
[71-[9] show the real effectiveness of RNS for hardware
implementation of cryptosystems as RSA, ECC and pairingsh

In cryptographic context, RNS also allows to use a Ieakd
resistant arithmetic providing a natural protection agiin

implementation that cannot execute the fault detection.

The paper is organized as follows. In section Il residue
umber systems, base extensions and redundancy for error
etection are introduced. Section Il presents and analyze
an algorithm providing detection of single faults injected
gfuring the execution of a RNSMM. Section IV proposes an
Brchitecture implementing the present method. A compari-
son to the only other technique (as far as the authors know)
aiming to detect same kind of faults and proposed in [8] is
discussed. Finally, section V draws conclusions.

netic attacks [10] through randomization of bases betwee
operations. Another kind of dangerous threat is fault &ac
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II. ABOUT RNSAND FAULT DETECTION through the residues ovét, x4, must remain pure redun-
A. Residue Number Systems - Notations dancy, i.e. the true dynamic range is sfill, M.
Kawamura et al's method (KWu, KWCc) [6]Penoting

A RNS baseB is constituted byn moduli my,...,m, & = |xiM.*1 the crt-sum is rewrittereats (z) —
S 7 1

and its dynamic range i§0,M[:= [0,M) n Z with " "
M = ﬁmi. For i € [1,n], M; denotes%, and for ;&Mi' Then, k, = l; ni_J Kawamura et al. use this

: y léquality to compute anlapproximation of the correction term
k.. They underapproximate the quantitié’s by %
wheretrunc function keeps only; most sigﬁificant bits and
set the others to zero, andis s.t.2"~! < m; < 2". This
approximation ofk, is computed by a simple unit called

|mi

any intégtar:c, T; = |x|mi = x mod m;. The Chinese
Remainder Theorem [18] applied to ba#k states that
there exists a ring isomorphisgg : (Z/ (M), +, x) >
(Z)(m1) x ... X Z/(myp) , +prod, Xproa) if, and only if,

the m;’s are pairwise coprime. So the moduli of a RNS : X - )
base will be implicitly chosen pairwise coprime. Two main Cox while computations on moduli are performed in cells

consequences of this theorem may be emphasized for oG@!I€d Rowers. The problem of approximation is that Cox
purpose. Firstly, for anyz e Z there is a one-to-one can return as welt, ask, —1. In the last case, the extension

correspondance between|,, and (|z|,, ....,|z[,, ). returns|z + M|, for a new residue. More precisely, theo-
z can denote as well tﬁ\é n-tuple 8? residue;ngoﬁ;n rem 2 of [6] proves that this case will occur only for some
B asx or |z|,,. More generally, tuples of residues and ¥ < &kwlM, WhereAy, € [0.1] is an upper-bound of all

integers will be later merged in some expressions, in ordepossible errors, i.6) < > (i_ — %) < Apyw. Thus
. . . . i=1 o
to emphasize some properties. However, in this case then, control is ensured on the size of the input of extension,

_residues will _be seen as the unique integer they fegreseﬂ’ie result can be not exact. That unexact extension will be
in the dynamic range. Secondly, for evey, y) € [0, M[*  genoted KWu. However, theorem 1 of [6] states that if the

o5 (lr Tyla) = (|22 7Yl - 120 TUnly,, ) s With T € input is guaranteed smaller than any quantity— o, ) M
(= And i@ A M= ged(p M) = 18N or any gy, € [Ay,, 1[, then by addinga, in Cox to
¥B (|€U7 |M) = (|~”51 |m1 AR |x5 mn) g correct the computed crt-correction coefficient the extems

. . is exact. This corrected version is denoted KWec.
B. Base conversions/extensions

Given residueg: of z € [0, M|, a base extension aims to C. Redundant RNS and fault detection

compute residues of for new moduli. There are two main  The way to use redundancy to detect faults in RNS has
types of extension which are summarily described hereaftepaen studied by several authors (e.g. [12]-[15], [19]) for

1) Mixed-Radix Conversion (MRC) [2}: is_ transformed many years. By adding a redundant modulug to B, the
frqm RNS_ base3 to another one .by passing through_ the giate space is extended o, Mmg[, and if mp is large
mixed-radix system (MRS) associated B> MRS coeffi-  anough any value: affected by a single fault belongs to

cients ofz are also an element &/ (m1) x ...Z/ (my). [M, Mmg[. Then, receivingzs, z,m,,) . the usual
2) Chinese Remainder Theorem (CRT) [1&:classical ot : e Buime) :
: : [1e) ! detection procedure is the computation [afs|,, = via a
way to computer from xz = (z1,...,2n)5 IS base extension, and its comparisonstg,,. This is called a
n . consistency checlf Bex denotes the base extension method
= El |xi]\/[i |mi M; v used for the check (e.g. MRC, SK or KW), then one has

to verify if [Bex(Zs) — Tmyl,,, is null or not, wherezg
|xiMi_1|m, M, is called the "crt-sum” of may contain one faulty residue. Thereafter possible vaifies
' err(z) := |Bex(zg) — x| are given to supply necessary and
xp, and k, = [LEW| its "crt-correction coefficient”.  sufficient conditions onny for detecting any single fault.
Thusz = extp () — k., M. Practically,k, is not recovered 1) MRC: The case where the check is based on MRC
through modular reduction of macro quantities likes (). extension has been extensively studied. Trivially, theoget
Two methods are now described to get all possible values ofrr(z) is exactly |0, M[n (M;Z).
~ Shenoy and Kumaresan's method (SK) [$ey con- 2) CRT: Here, since all residues contribute to the com-
sider the fact thak, € [0,n[ to propose to use an extra pytationk,, a fault could modify it. So the faulty extended
redundant modulus;, > n coprime toM. Consequently, yajye could not be in the original range, M[.
if 2, := |,,,, is known, one has: a) SK: SK (£5,(m.,}) € [0, msxM[. More precisely
ko = [kel., = |(ext3 (z) — o1) M71|m - 1) two cases can appear (for brevnys anq complete.ness _sake,
constructive examples are given but without details). dtith
In this method, the base is nd8w {mx}. Thus, RNS oper- the fault affects the redundant residugy. In this case,
ations handle values in a larger dynamic raf@en.. M[.  err(z) = |SK(Zgy(m.,}) — | can reach any value in
However, to keep an exact extension of the integer expressd, m . M [~ (MZ). Indeed, from eq. (1), by taking = 0

s

Il
—

extg (x) :=
2



and a faulte,, = |[—vM]|,, with v any value in]0, mg], gé’fl' 7,:‘/'375 Hsk Heuw

/ i cri-sumextp KWu
thenerr(xz) = vM. Or the fault is on a residue;. Here, Bex MRC SK KWc
err(z) reaches any value in the &t m . M [N (mgx M;Z). bases | MM’ Ap=1 | mgMM o L] MM np=1

H H H Mgy, €
For instance, to obtairerr(z) = ~ymgM; with v any mp > | max (mi,m!) | max (mogmi,m}) | max (mg,m})
value in J0,m;[, if ||—7msk|m | # 0 one can take oy < Mp Mp 4p?
= |-ymgM;|,, andz = 0. Else, there exist§ < M > 2p ((n+1);:n 4117//((1_Akw))
my _7' M > M n+1)p 2p/ (1 — Qg
v < o St [=ymikl,, = Vmskl, and one can take | U " oo AR Yo
i = |—vma M|, - anda: = |—el | . . ] ]
b) Kwe: Here it is assumed that < (1 — akw)M and Figure 1: Hypothesis for Algorithm 1

i:=¢g' () =z +eM; € [0, M[ wheree €] —m;, m;].

It follows that KW (&) = a-+eM;—uM wherep € {0, 1}. Algorithm 1: RedundanRNS modular multiplication

Input: coprime base# andB’, m r coprime to3 and3’, integers

Moreovery = 1 only if (1 —ak,) M <2 < M, i.e. only p, z andy (expressed i3 u B'U{mr}) and base extensions
if e > 0. Thenerr(xz) = |KWc (£5) — x| reaches at most Bex; and Bex verifying hypothesist,rc, Hsr OF Hiw
any value of]0, M[n (M;Z). Output: s expressed iBB u B U{mnr} s.t.s = zyM ™" (mod p)

: : : 1 g (=T Xrns Y) Xrms P L in B

3) Required redundancy to detect single faulkdere is 2: 3(_ |(3ex1 e eyx)tensiorl']) froms to 5L {imn)
given a sufficient (and necessary) condition on sizengf L % Xoms Y Hrme @ Xoms p iN B'U{m)
to detect any single fault through a consistency check based; st Xpms M~ in B'U{mnr} '
on a MRC, SK or KWc extension. The MRC case has beens: 5 « Bex, (s): extension fromB' to Bu{mp}
treated in [12]-[15] for instance. Condition for SK case is, 6: if [5],,, # 5], then
as far as the authors know, supplied for the first time. 7. Error detected

Theorem 2.1:Let Bu {mpr} be a redundant RNS, where
a modulusm,, is included inB if SK is used for the O Hiw [6] in Fig.1 (wherep is supposed given) reflect
consistency check. A necessary and sufficient (resp. suffthree versions of RNSMM using different types of base
cient) condition to detect any single fault injected on anyextension for Bex and Bex. Hypothesis onM and M’
tuple of residue$zs, ,,,,) expressed iBu {mp} through ~ guarantee that := zy + gp, which is a multiple of}/

a Consistency check based on MRC or SK (resp_ KWCﬁnd the Iargest value in the algo., stays in the full dynamic
extension is¥m € B, mg > m x (mR A M) range [0, M M'[. For instance for KW version, theorem
Proof: Previously it has been shown that for MRC, 2 of [6] states thaty < (1 + Agy) M. Given Hy,, t <
SK and KWc extensions, the faults to be detected havél — Aw) M + (1 + Agy) M = 2Mp < (1 — agy) MM,

the form g2 where |g| is in J0,m[. So if such a fault SOs = 7 < (1 — axw)M" and KWc is used for Bex

is not detected, it means that there exists an integer A. Adequation of single fault model for RNSMM algo.

verifying g2 = ~ymg. Then Euclide’s lemma implies o o _
that —"2 divides g, and somp < m x (mg A M, The purpose of this discussion is the pertinence of the
! m

This p?oves the sufficiency for all cases. The necessity I§|ngle fault model in the presence of base extensions, as it
Is the case in RNSMM algo. If the fault is injected during

proved by contraposition for MRC case, by exhibiting an
an extension on a quantity computed in a quotient ring

undetectable error. The sketch of the proof is similar for .
the SK extension, by using given constructive examplesZ/( m) wherem is a modulus of one of the bases concerned
If mr < m; x (mg A M,) for any m; in B, the error by the extension, then the effect is strictly equivalent to a
1 - . single fault injected either before or after the extensidrs
€= ‘mRAM MiM;: ‘ x M; injected onz = O willnotbe . ieration is reall tinentb inallb id
ma y pertinent because in all base sidan
detected. Indeed; = - M; = mp I‘A where the techniques previously seen, computations are ran only in
first equality uses the hypothemR <m; x (mg A M;).  such rings (except for Cox; but cf. part I1I-B4). So a fault
B injected during a base extension will be considered as a
Rem. 1:Due to the approximations in KWc extension, single fault appearing either before or after the extension
mpg could be chosen smaller than somgs. However, only Rem. 2: From hardware point of view, this analysis re-
the sufficiency is useful for the purpose of section IV. ally depends on chosen architecture and capacities of the
attacker, because for instance an attack could be launched
during the distribution of thé;’s coefficient in new residues.
Thus some of them could receive the correct value, and some
Efficient RNS modular multiplication [3], [16] adapts others a faulty value. Such possibilities must be prevented
Montgomery reduction to RNS. Because of division by . )
M in classical Montgomery reduction, an auxiliary baseB: Introduction of redundancy - Fault location
B’ coprime to the main bas# is used. Algorithm 1 Rem. 3:(guideline) As consistency checks require a base
summarizes the technique. Hypothe&ls, . [3], Hsx. [16] extension which is a costly operation, the detection tech-

IIl. FAULT DETECTION IN RNSMODULAR
MULTIPLICATION



nigue should only use the own extensions of RNSMM algo.

Given part IlI-A about faults during base extension, onl
five types of error are to be considered in context «
RNSMM algo: on a residue in badg before Bex called
category 1; on a residue in the second b#&Secalled
category 2; on a residue in baBefter Bex called category
3; and category 4 for faults on extra material for extensiol
such asmg; channel or Cox. Category 5 concerns fault
on redundant residues. Moreover, a fundamental hypothe
is that, givenmpg, the redundant residues af, y, and
p are part of input of RNSMM algo. This requires tha
redundant version of the algo. must outpuéexpressed
B u B v {mpr}. Due to independency between resi

Figure 2: Categories of fault in RNSMM

mg, cat.b

during parallel RNS operations, as in lines 1, 3 and 4 ...

algo.1, cat.1 is reduced to faults injected pbefore Bex
and cat.2 to faults om before Bex. Cat.3 is obviously the
set of single faults injected ofi= Bex; (s).

1) Cat.1: A priori a fault ong must be detected with
a consistency check using Bexotherwise the fault would
infect all residues ofj and the single fault model would

Fig.2 illustrates the redundant version of algo.1 and the
categories of fault. By keeping redundancy structure of
algo.1 and Fig.2, theorem 3.1 states that faults of category
1 are also detected via a consistency check based on Bex

Theorem 3.1:Given any version of redundant RNSMM
defined by a set of hypothesis in Fig.1, it is assumed

become unsuitable. The problem is that, by construction that at most one Sing|e fault of category 1, 2, 4 or 5 is

q = |-xyp™'|,, it is impossible to computéy]|,, = from
x, y andp by using only parallel operations. Thus Beis
only used to compute on B’ U {mpg}.

2) Cat.2: The aim is to obtairis|,, . which is equal to
\[tM=,, o, Dy definition of s. From |g],,. given by
Bexi, one now easily ha¢|, = |ry+4qp|,, .. Thent
is expressed over the extended bd#se B’ v {mpr} and
t < MM'. But by constructiont is also a multiple of

M, ie. t = (0s,tg)z p- SO sM = |tM—1| oM =
(08, ts)p g, and|sl,,, = [[tM7Y,, | =M .
So by theorem 2.1, a consistency check usingngﬁl

detect faults of category 2.

3) Cat.3: The fault becomes of category 1 as soon as th§t s not a multiple of M anymore. Indeedy5 (t)
q07---107eipi701---

output is reused as input of algo.1. Otherwise it is possibl

injected during the execution of algorithm 1. Then the fault
is injected if, and only if, the consistency check based on
Bex, and applied ta(sg/, simy) g o,y fails.

Proof: Detection of faults of cat.2 is ensured by the-
orem 2.1. It just remains to prove the result for faults of
category 1. The consistency check verifies the nullity of
[Smp — §|mR, wheres,,, ,, is the redundancy of before Bex
and s := Bex; (spr). BecauseM is coprime tompg, it is
the same to verify if{M (s, —3)|,,, # 0 when a fault
is injected. Consideringo, ...,0,¢;,0,...,0), affectingg,
one hasj := ¢z (q1,....¢i—1, ¢ + e my o Qit1s - - -7qn)B-
Then even ift = zy + ffp stays an element dfo, M M'[

,0)5. It follows that

to use only one more base extension to verify integrity of

s, because its redundancy is known (cf. 111-C).
4) Cat.4: For KWec, a fault injected directly in the Cox
unit is not envisaged, because the essential interest of K

extensions is more practical than theoretical. In pragctice

either the hardware Cox unit is protected thanks to a standa

hardware redundancy (cf. [8]), or one can bind one Cox pe

Rower (cf. [17]). In the last case, a fault on a Cox unit is

just a fault on the residue computed by the Rower linked
to the faulty Cox. However, it is possible to keep only one

Cox. In this case, a fault on Cox could add\/ for Bex;
or =M’ for Bex; to the extended value. It would require to

use larger bases to avoid overflow, and to deliberately add
M to Bex (q) so as to counteract the possible appearance

of Bexy (¢) = ¢ — M, which is a problem for detection
of faults of category 1 (cf. proof of th. 3.1). About SK
extension, a fault in extra-channel,, is easily detected
by the consistency check (cf. th. 2.1).

5) Cat.5: Trivially detected.

r

Smp = |((0,...,0,€:,0,...,0)5,t5) 5 5 M‘1|mR.

ut Bex only extends sg LMY,
Os,tn )z i /M. Depending on the chosen set of
hypothesis in Fig.1, Bexcan be MRC, SK, or KWc. In

all cases;s = sy + uM’, where possible values of are
Hetailed thereafter. Then
51,0, = (0B, ts) g M ™' + ;LM’|mR

Finally: [M (smp = 3)l,,

= |(tBatB')BUB’ - (OB’tB')BuB’ - 'LLMMI|mR

= |(t8,0p)5 — MM’ _M]\/[J\/[,LnR = |aiMiMl|mR
where a; = |eipiMi71M’_1|mv — om; — pm,; and
0 € {0,1} is such that(ts,tg )z 5 = (tB,08)s 5 +
(0B,tz')g z — OMM'. Becausempr A M;M' = 1, one

just has to verify thad < |a;| < mg, i.e.|a;|,, . # 0.

1) MRC: Bex, exact sou = 0 and0 < |a;| < m; < mg.



2) SK: the context is different of the one of theorem 2.1.A. Description of the attacker
Indeed, all residues ofgr are affected by the fault ovey,
so SK reconstruction could retusnt+ p M’ with 1 any value
in | —msk, msk[. Then, withmpg > max (mgm;), one has

The general context of the attack is not the purpose of the
paper. The strategy adopted when a fault is detected is at the
discretion of the user of the proposed architecture, which
0 < lai| <mgm; <mp. o simply aims at detecting the fault. A stop of the process

3) KWe: pe {~1,0}. Actually 6 = 0 impliesn = 0 and i grder to avoid any leakage of information is typically
$00 < [a;| < m;. Indeedd = 0 means(ts,0s')5.5 +  a possible choice. The attacker is assumed able to inject
(05,ts)s 5 = (ts,ts)s 5 = 1. Moreover, hypHiw  one fault. Such type of attack is realistically achieved by
still ensure thatt = zy + gp < (1 —apw) MM'. Then 4 jaser shot, that can change a value stored in a register,
s = (08,tp)g g /M < (1 = agy) M', sOp = 0. B or temporary change the value of some transistors and lines

Rem. 4:Since randomizations of bases in Leak Resistantjyring a sampling for instance. So the attacker has theiyabili
Arithmetic technique [10] only use RNSMM to switch g pjt a specific area in any single cell. Furthermore he could
between different Montgomery representations of data it i he aple to control the moment of the injection.
compliant with the present detection method. This paper proposes an architecture resistant against one
fault. When an attacker injects several faults, there ae tw
possible scenarios. In first case, they are injected seiqllgnt

This case may appear if the integrity ®expressed i3 in different Montgomery multiplications, i.e. at most one
must be ensured and if it will not be used again as input ofault is injected between two consecutive consistencykhec
algo.1. By hypothesis there is at most one fault on itsso Then the first fault corresponds to a normal single fault, so
can bes +e;M; < M. Moreover|s|, is given by the last this attack is prevented by the proposed approach. In second

C. Handling faults of category 3

consistency check. case, some of them are injected simultaneously between two
1) H,.... a standard consistency check applied toconsecutive consistency checks. The proposed protection
(5.8)50(mpy IS POSSIDle. approach can be extended in order to protect against this

2) Mgk inthe same manner, becausg, is also known, attack, by increasing the number of redundant moduli.
a SK extension can be used to verify integrity of data, where
a redundancynp > max (m;) suffices. B. Hardware fault model

3) Hrw: one easily shows thalifa—”kw < 17‘2”% if, and Contrary to theoretical faults, hardware faults are defined
only if, ax, < 5%=. In practice, it is highly feasible by size of registersr( bits since2" ™t < my,m; < 27)
to haveay, = % Indeed, by picking up notations of part Which outputé; or &; in each rower. The model in [8] for a
5.1 in [6], for given parameters andr then, if thetrunc  fault on¢; is & = & +e; € [0,27[. The only problematic
function keeps at leasf most significant bits wherg >  case ism; < & < 2" (§ < m; is theoretical model).
L +log, (n)—log, (2%—1 — n) thenAy, < % For instance, Proposition 4.1:If outputs of rowers are over bits, then
a 4096 bits level of security requires = 65 andr = 64  mgr = 2", 4p < M and4p < (1 — ax,) M’ allow to detect
(rn > 4096). Thus,q = 8 is sufficient. Hence, in practice single hardware faults.

one can always have conditiap < (1 — axyw) M, and a Proof: It suffices to consider faults of cat. 1 and 2.
KWoc can be used for a consistency check. Cat.l & +e; = m; + fi, fi € [0,27 —m;[c [0, m;].
Denoting ¢ = sogl (@155 fis---yqn), the crt-sum with

IV. ARCHITECTURE & is crt-sum of plus m;M; = M. Becausecval (f;) <

The goal of this section is to present an architecture im<v@! (&) < eval (f;) + 1, Cox of Bex can computek; + 9,

plementing RNSMM and compliant both with the fault de- 9 € {—1,0,1}. 6 € {~1,0} is usual in KWu case) = 1 is
tection approach proposed here, and with the Leak ResistaRPt @ Problem as it just corrects the extrawhich appears
Arithmetic (LRA) based on the randomization of the RNS N cri-sum. Finally,q can contain one extra/. It can be
bases [10]. A previous RNS architecture for MontgomerySNOWN that ifAy, < 3, this extraM is always corrected
multiplication with Kawamura et al. base extension was' h€ inequalityq < Ay, M holds (which is a necessary
proposed in [17]. This architecture is composed by a set ofondition to havej = g + A/ when there is no fault). Thus,
n identical arithmetic cells (rowers) that work in paralleca  ON€ has at least < 21/ in allgcases, and it suffices to have
include a modular adder and multiplier unit, a cox unit (that"€W conditionstp < M and—="— < M’ to avoid overflow.
corrects the base extension) and some memory. An in-depfRtherwise2M < ¢ < 3M could happen. In this case, it is
analysis of the arithmetic cells has been presented in [20gufficient to have—2— < M. Finally, if f; € {0,¢;} the
where some other cell architectures have been proposetult is corrected, else the theoretical model is suitable.
In this section, the modifications required to introduce the Cat.2 The considered;’s are those ofg. If & = & +
fault attack protection in the state-of-the-art architees are e} with e, € [m] — &/,2" — £/[, eval (§)) < eval() <
analyzed and evaluated. eval(&)) + 1 and Cox in Bex could computeks + § with




Figure 3: General architecture Figure 4: Modular adder and multiplier unit in a standard
(a) and redundant (b) cell
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6 € {0,1}. Finally, Bex, (3) = >, &M; +ejM] — ksM' —
SM' = s+ e/ M! — §M". ButjeT— sm! € [-€,2" — €[ The redundant cell has two main_ differences with respect
[ —mt, 27 [c] — 27, 2. If ¢/ = m} andé = 1, the fault is to _the standard cells. The first one is the presence of a FDU.
It is used for the consistency check of theorem 3.1. The

second one is that the modular adder and multiplier subunit
C. Description of the architecture does not work with generic modules, but with a power of

The general architecture is presented in Fig.3. The Kawa2. Fig.4a and 4b show the modular adder and multiplier
mura et al.’s architecture requires two modifications to beunits used by the standard (a) and redundant (b) cell. The
applied with the proposed fault detection procedure. Firststandard modular adder and multiplier is compliant with the
an extra redundant cell is required to detect the fault agell proposed in [17], since the accumulation is performed
explained in the previous sections. The cells treat dat®y the same unit that executes additions and multiplication
expressed over bits. Hence, by prop.4.1 the chosen redun-However, according to another architectural strategy pre-
dancy is2”. Secondly, a new fault detection unit (FDU) (cf. sented in [20], the accumulation could be executed inside
Fig.5) is required to check that when a value is propagatethe modular reduction unit. The main difference of the adder
to all the cells they indeed receive the same value (cfand multiplier used in the redundant cell is that the modular
rem.2). Such propagation is executed during base extenisiofeduction subunit is not required. Although the multiplier
However, it could be avoided by using a round propagatiorand adder subunit could be identical to the same subunit
system [17], where at each step each cell takes the inpwsed in the other cells, a smaller subunit can be used since
of the previous cell, and gives its previous input to theone additive input for the accumulation is shorter and the
subsequent. In this case, a similar check would be requiregomputation of the bits larger thai can be avoided.
at the end of the rotation, in order to control that each cell
receives again the first input, and so that no fault was iagect
during the rotation. Each FDU compares the input of two In the previous sections, the mathematical detection of one
cells, son — 1 units are required. Furthermore, a FDU is in fault has been described. In order to design an architecture
the redundant cell to apply the consistency check. secure against this attack, it is required that the injactib

LRA [10] (cf. [8] for FPGA implementation) requires the fault do not have effects not considered in the analysis.
an additional unit, the base randomizer, which randomly A faultinjected in a cell can only modify its output values.
matches the arithmetic cells with base elements, and didf a fault changes a value during its computation or while it
tributes data required to calculate the constants matched stored, the effects correspond to the single fault irgect
to the current two random bases. Moreover, the techniquanalyzed previously. Since there is a Cox per cell, even a
requires some small changes in the cells: they will have-a diffault injected in a Cox unit corresponds to a single fault.
ferent control unit, able to manage the additional openatio  During the base extension all the cells receive an input
for the precomputation of the constants (calculated aftefrom each cell. The distribution of these values is executed
each randomization), and a different access to the memorgs follows: the first cell gives its result to all the cells,iah
since some data sent by the randomizer unit to the arithuse it as an input; all the other cells give their result to the
metical cells must be directly stored (e.g. the remainder oprevious cell, which stores it for one cycle. Thus the firsk ce
2" mod m;), while other values must be processed throughwill distribute them, one per cycle. If a fault affects only a
additions and multiplications, and then stored. part of the propagation line of the output of the first celg(e.

corrected, else it is detected.

D. Fault detection



Table I: Basic logic library in CMOS technology [21]  requires a base extension, so its delay is less than half of

a RNSMM. For example, in a RSA implementation, with a

i | . ..
| |n€:rttir | Area (trgnS'StorS” belay &Inverter) | N-bit key and a Montgomery ladder for exponentiation, the

NAND 4 1.4 increase is less thag'y with respect to the total delay.

NOR 4 1.4 . . .. .
XNOR 12 3.2 The fault detection requires additional components, which
NAND3 8 18 increase the total area. The area of the standard and the new
NAND4 10 2.2 . . . .

REGISTER 15 4.8 units is shown in Tab.lll. The largest new unit is thé

redundant cell. However, also considering that this cedkus

it is injected on a buffer), some arithmetic cells could freee a normal multiplier (without avoiding the column over the
the wrong input. In this case, the fault does not correspond tr-th bit), it is significantly smaller than a standard onegsin
a single fault. However, it can be easily detected through thit does not need a modular reduction unit. Even the total area
FDUs, which check that each cell receives the same inpubf all the additional components is lower than one standard
If during the base extension a fault is injected in a valuecell. Therefore, the total area increase is lower tlg]@nof
that must be distributed while it is stored by a cell différen the total area, considering that the number of parallekcell
from the first, it corresponds to a normal single fault ingett is 33. More generally, if the architecture containscells,
before the base extension. Since the same cell works at leagte area increase is abogtof the total area.
for 2 moduli (one per base), the injection of one fault could
generate differences on various moduli. In order to avoid™ Comparison to Guillermin’s technique [8]
this threat, the data of different moduli must be stored in Guillermin proposes a method to detect the same kind
different memories, so the local condition of the fault will of faults considered in this paper. However, its approach
avoid the possibility of multiple fault. is valid only in the context of Cox-Rower architecture,

A fault injected in a FDU or in the redundant cell is while the proposed technique is not limited to a specific
detected. A fault in any part of the redundant cell, but notarchitecture. Moreover, when associated to a leak resistan
in its fault detection subunit, is simply a fault of categéry arithmetic, the detection of cat.1 faults is not guaranteed
and so is detected by the consistency check. If the fault in [8], the detection is achieved by a modified Cox which
injected in a detection unit, the unit detects the fault. computes a more precise approximation éﬁf For an
input 2y bounded byvp?, required condmons on size of
bases arevp < M and 3p27t2 < M’'. Comparing to
— for the present architecture,
study based on equivalent gates has been conducted Thee Gunlermms approach requires to increase bBSdy
adopted model is shown in Tab.l. To reach a fair evaluationat least one extra standard modulus. Thus extra hardware
the same parameters used in [17] have been considered: 88eded is one standard Rower and a modified Cox for [8],
cells, 32 bits per cell, 2 moduli per cell (one per base),against one redundant Rower only dedicatedtanodulus
2" — 2" < m; < 2", Vi andh = 11; the architecture of and detection units. So, considering Tab. lIl, the present
standard arithmetic cells is the one of [17]. technique needs less extra hardware than [8]. Moreover, to

A detailed analysis based on equivalent gates on the RN&dd a standard Rower directly impacts computation time of
arithmetic cell proposed in [17] has been presented in [22]RNSMM. For a 1024 bit RSA-CRT, Guillermin measured
Tab.ll shows the delay of the standard and the new unitshat the extra time cost due to his technique is about
The time required by one cycle is determined by the slowesb%, for two consecutive 512 bit exponentiations based on
pipeline stage. The modular reduction subunit is the slbwesMiontgomery ladder. So this is two times 1024 executions of
in the standard cell, but it is divided in 2 pipeline stages, s RNSMM algorithm. In present technique, the extra delay is
the multiplier and adder subunit has the longest delay. Théess than2X1024 ~0.1%. Finally, the present technique can
FDUs have a short delay, so they can execute the check ine generalized for detection of several faults by addingemor
parallel to the normal work flow, after the cycle in which redundant moduli. The additional delay remains the same.
the data have been computed. Therefore, they neither e2quir
additional cycles nor increase the delay. The redundaht cel
executes the same operations of the standard cells with a A simple and cheap way to detect single faults injected
shorter delay and with less cycles. Hence, it can works irduring a RNS modular multiplication has been presented.
parallel to the standard cell. Therefore, the fault detecti The new method has the advantage that no condition is im-
technique proposed in this paper do not affect the delay of aposed on the choice of bases and base extension techniques,
exponentiation. However, as explained previously, if adval and so is compliant with any RNS Montgomery modular
result is requested on both the RNS bases, an additionatultiplication algorithm. During a base extension, the re-
check is required to detect final faults of cat.3. This finaldundant modulus works in parallel to the cells of the output
check, if it is not executed during the subsequent operation base. Thus redundant computations and consistency checks

E. Evaluation

V. CONCLUSION



Table 1I: Delay of Considered Units with= 32,k =33, h = 11

Unit Delay (gates)

Delay (inverters)
86.6

Standard multiplier
Standard modular reducto|
2" multiplier

Fault detection unit

15XNOR+4NAND4+15NAND+4NOT+register
13XNOR+4NAND4+11NAND+7NOT+register
15XNOR+4NAND4+9NAND+4NOT+register

XNOR+2NAND4+NAND

77.6
78.2
6.6

Table IIl: Area Cost for the Considered Units with= 32,n = 33,h =11

Cell Multiplier adder unit Modular reduction unit Cox Detection Units Tot.(kilo transistors)
Standard | 992FA+32HA+140XNOR+69NAND4| 562FA+51HA+214XNOR+102NAND4| 9FA+9registef O 100
+92NAND3+1623NAND+70NOR +136NAND3+1357NAND+107NOR
+1784NOT+70register +1390NOT+108register
2" 992FA+32HA+128XNOR+60NAND4| 0 9FA+9registef 32XNOR+ 63 79
+80NAND3+1444NAND+64NOR 10NAND4+NAND
+1704NOT+64register
Detection | O 0 0 32 x (32XNOR+ 16
10NAND4+NAND)

do not increase the computation time of a RNS modulaf11] D. Boneh, R. A.

exponentiation/elliptic curve point addition. Moreovénge
integration in an architecture like Cox-Rower’s one imglie
a limited increase of area and a possible extra delay smaller

than

(1]

(2]

(3]

(4]

| .
TxTog; (exponent) times normal delay. [
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