
Fault Detection in RNS Montgomery Modular Multiplication

Jean-Claude Bajard, Julien Eynard�

LIP6 CNRS - Univ. Pierre et Marie Curie
Paris, France

{jean-claude.bajard,julien.eynard}@lip6.fr

Filippo Gandino
Politecnico di Torino

Torino, Italy
filippo.gandino@polito.it

Abstract—Recent studies have demonstrated the importance
of protecting the hardware implementations of cryptographic
functions against side channel and fault attacks. In last
years, very efficient implementations of modular arithmetic
have been done in RNS (RSA, ECC, pairings) as well on
FPGA as on GPU. Thus the protection of RNS Montgomery
modular multiplication is a crucial issue. For that purpose,
some techniques have been proposed to protect this RNS
operation against side channel analysis. Nevertheless, there
are still no effective and generic approaches for the detection
of fault injection, which would be additionnally compatible
with a leak resistant arithmetic. This paper proposes a new
RNS Montgomery multiplication algorithm with fault detect ion
capability. A mathematical analysis demonstrates the validity
of the proposed approach. Moreover, an architecture that im-
plements the proposed algorithm is presented. A comparative
analysis shows that the introduction of the proposed fault
detection technique requires only a limited increase in area.

Keywords-Residue Number System; Fault Detection; Mont-
gomery Reduction; Base Conversions

I. I NTRODUCTION

Residue Number Systems (RNS) [1], [2] enable to make
computations on large numbers through an arithmetic based
on additions, subtractions and multiplications run on small
units (i.e. the elements of a chosen RNS base) in a
parallel and carry-free way. However, because they are
non-positional numeral systems, comparison, division and
modular reduction are more difficult to perform. For in-
stance, Bajard et al. [3] propose an algorithm for modular
multiplication in RNS (RNSMM) adaptating the classical
Montgomery reduction [4]. By combining this algorithm
with efficient base conversion [5], [6] fast execution of
modular multiplications/exponentiations on large integers,
which is of special interest for cryptographic applications,
become possible in RNS. For that matter Guillermin et al.
[7]–[9] show the real effectiveness of RNS for hardware
implementation of cryptosystems as RSA, ECC and pairings.

In cryptographic context, RNS also allows to use a leak
resistant arithmetic providing a natural protection against
side channel analysis such as timing, power and electromag-
netic attacks [10] through randomization of bases between
operations. Another kind of dangerous threat is fault attacks,

�supported by Direction Générale de l’Armement (DGA - French
Ministry of Defence)

which are a well-known way to extract informations of cryp-
tosystems. It was initially used by Boneh et al. [11] to break
RSA-CRT. Because data are scattered across the units, RNS
supplies a natural robustness against faults. Indeed it suffices
to add a redundant unit to detect any error affecting a single
small value. However, standard redundant RNS techniques
for fault detection [12]–[15] are feasible as long as no base
extension operations and/or overflow appear. In first case, a
fault could be propagated to all units of the new base. In
second case, the redundant value is not redundancy of RNS
data anymore. In the end, the protection of RNS modular
multiplication against fault injection appears necessaryso as
to consolidate interest of RNS arithmetic in cryptography.
However, RNSMM algorithms [3], [16] contain two con-
secutive base conversions which area priori not compliant
with standard redundant detection techniques. The goal of
the paper is to adapt such standard countermeasures using
redundancy to RNS modular multiplication.

In this paper a new algorithm, inserting redundancy into
RNS Montgomery multiplication in order to provide efficient
and cheap protection against fault attacks in the context
of modular exponentiation/elliptic curve point addition,and
compliant with a leak resistant arithmetic, is presented and
analyzed. A formal analysis proves the detection of any sin-
gle fault. Beyond theoretical purposes, an architecture resis-
tant to single fault attacks and compliant with previous pro-
tections for RNS against side channel attacks is suggested.
The architectural design is based on the work presented
in [17] by Nozaki et al. An analysis based on equivalent
gates shows that the area increase required for single fault
detection is lower than 3%, and that the total computational
time increases by about1{p2 log2pexponentqq of the normal
delay if the output of RNSMM is required by an RNS
implementation that cannot execute the fault detection.

The paper is organized as follows. In section II residue
number systems, base extensions and redundancy for error
detection are introduced. Section III presents and analyzes
an algorithm providing detection of single faults injected
during the execution of a RNSMM. Section IV proposes an
architecture implementing the present method. A compari-
son to the only other technique (as far as the authors know)
aiming to detect same kind of faults and proposed in [8] is
discussed. Finally, section V draws conclusions.

II. A BOUT RNS AND FAULT DETECTION

A. Residue Number Systems - Notations

A RNS baseB is constituted byn moduli m1, . . . ,mn

and its dynamic range isv0,Mv:� r0,Mq X Z with

M :�
n
±

i�1

mi. For i P v1, nw, Mi denotes M
mi

, and for

any integerx, xi � |x|mi
� x mod mi. The Chinese

Remainder Theorem [18] applied to baseB states that
there exists a ring isomorphismϕB : pZ{ pMq ,�,�q

�

Ñ

pZ{ pm1q � . . .� Z{ pmnq ,�prod,�prodq if, and only if,
the mi’s are pairwise coprime. So the moduli of a RNS
base will be implicitly chosen pairwise coprime. Two main
consequences of this theorem may be emphasized for our
purpose. Firstly, for anyx P Z there is a one-to-one
correspondance between|x|M and

�

|x|m1
, . . . , |x|mn

�

B
.

xB can denote as well the n-tuple of residues ofx in
B as x or |x|M . More generally, tuples of residues and
integers will be later merged in some expressions, in order
to emphasize some properties. However, in this case the
residues will be seen as the unique integer they represent
in the dynamic range. Secondly, for everypx, yq P v0,Mv

2,
ϕB p|x ⊺ y|M q �

�

|x1 ⊺ y1|m1
, . . . , |xn ⊺ yn|mn

�

B
with ⊺ P

t�,�,�u. And if x ^ M :� gcdpx,Mq � 1 then

ϕB

�

�

�x�1
�

�

M

�

�

�

�

�x�1
1

�

�

m1

, . . . ,
�

�x�1
n

�

�

mn

	

B

.

B. Base conversions/extensions

Given residuesxB of x P v0,Mv, a base extension aims to
compute residues ofx for new moduli. There are two main
types of extension which are summarily described hereafter.

1) Mixed-Radix Conversion (MRC) [2]:x is transformed
from RNS baseB to another one by passing through the
mixed-radix system (MRS) associated toB. MRS coeffi-
cients ofx are also an element ofZ{ pm1q � . . .Z{ pmnq.

2) Chinese Remainder Theorem (CRT) [18]:A classical
way to computex from xB � px1, . . . , xnqB is

x �

�

�

�

�

n
°

i�1

�

�xiM
�1
i

�

�

mi

Mi

�

�

�

�

M

.

extB pxq :�
n
°

i�1

�

�xiM
�1
i

�

�

mi

Mi is called the ”crt-sum” of

xB, and kx :� t

extBpxq

M
u its ”crt-correction coefficient”.

Thusx � extB pxq � kxM . Practically,kx is not recovered
through modular reduction of macro quantities likeextB pxq.
Two methods are now described to getkx.

Shenoy and Kumaresan’s method (SK) [5]:they con-
sider the fact thatkx P v0, nv to propose to use an extra
redundant modulusmsk ¥ n coprime toM . Consequently,
if xsk :� |x|msk

is known, one has:

kx � |kx|msk
�

�

�

pextB pxq � xskqM
�1
�

�

msk

. (1)

In this method, the base is nowBYtmsku. Thus, RNS oper-
ations handle values in a larger dynamic rangev0,mskMv.
However, to keep an exact extension of the integer expressed

through the residues overB, xsk must remain pure redun-
dancy, i.e. the true dynamic range is stillv0,Mv.

Kawamura et al.’s method (KWu, KWc) [6]:Denoting
ξi �

�

�xiM
�1
i

�

�

mi

, the crt-sum is rewrittenextB pxq �

n
°

i�1

ξiMi. Then,kx � t

n
°

i�1

ξi
mi

u. Kawamura et al. use this

equality to compute an approximation of the correction term
kx. They underapproximate the quantitiesξi

mi
by truncpξiq

2r
,

wheretrunc function keeps onlyq most significant bits and
set the others to zero, andr is s.t. 2r�1

 mi 2r. This
approximation ofkx is computed by a simple unit called
Cox while computations on moduli are performed in cells
called Rowers. The problem of approximation is that Cox
can return as wellkx askx�1. In the last case, the extension
returns|x�M |m for a new residue. More precisely, theo-
rem 2 of [6] proves that this case will occur only for some
x ∆kwM , where∆kw P v0, 1v is an upper-bound of all

possible errors, i.e.0 ¤
n
°

i�1

�

ξi
mi

�

truncpξiq

2r

	

 ∆kw . Thus

if no control is ensured on the size of the input of extension,
the result can be not exact. That unexact extension will be
denoted KWu. However, theorem 1 of [6] states that if the
input is guaranteed smaller than any quantityp1� αkwqM

for any αkw P v∆kw , 1v, then by addingαkw in Cox to
correct the computed crt-correction coefficient the extension
is exact. This corrected version is denoted KWc.

C. Redundant RNS and fault detection

The way to use redundancy to detect faults in RNS has
been studied by several authors (e.g. [12]–[15], [19]) for
many years. By adding a redundant modulusmR to B, the
state space is extended tov0,MmRv, and if mR is large
enough any valuex affected by a single fault belongs to
vM,MmRv. Then, receivingpxB, xmR

q

BYtmRu
, the usual

detection procedure is the computation of|xB|mR
via a

base extension, and its comparison toxmR
. This is called a

consistency check. If Bex denotes the base extension method
used for the check (e.g. MRC, SK or KW), then one has
to verify if |Bexpx̃Bq � xmR

|mR
is null or not, wherex̃B

may contain one faulty residue. Thereafter possible valuesof
errpxq :� |Bexpx̃Bq � x| are given to supply necessary and
sufficient conditions onmR for detecting any single fault.

1) MRC: The case where the check is based on MRC
extension has been extensively studied. Trivially, the setof
all possible values oferrpxq is exactlyw0,MvX pMiZq.

2) CRT: Here, since all residues contribute to the com-
putationkx, a fault could modify it. So the faulty extended
value could not be in the original rangev0,Mv.

a) SK: SK
�

x̃BYYYtmsku

�

P v0,mskMv. More precisely
two cases can appear (for brevity’s and completeness’ sake,
constructive examples are given but without details). Either
the fault affects the redundant residuexsk. In this case,
errpxq �

�

�SK
�

x̃BYYYtmsku

�

� x
�

� can reach any value in
w0,mskMvX pMZq. Indeed, from eq. (1), by takingx � 0

and a faultesk � |�γM |sk with γ any value inw0,mskv,
then errpxq � γM . Or the fault is on a residuexi. Here,
errpxq reaches any value in the setw0,mskMvX pmskMiZq.
For instance, to obtainerrpxq � γmskMi with γ any
value in w0,miv, if

�

�

|�γmsk|mi

�

�

msk

� 0 one can take
ei � |�γmskMi|mi

and x � 0. Else, there exists0

ν

mi

msk

s.t. |�γmsk|mi
� νmsk, and one can take

ei � |�νmskMi|mi
andx �

�

�

�eiM
�1
i

�

�

mi

Mi.
b) KWc: Here it is assumed thatx p1� αkwqM and

x̃ :� ϕ�1
B
px̃Bq � x� eMi P v0,Mv wheree Pw�mi,miv.

It follows that KWcpx̃Bq � x�eMi�µM whereµ P t0, 1u.
Moreoverµ � 1 only if p1� αkwqM ¤ x̃ M , i.e. only
if e ¡ 0. Thenerrpxq � |KWc px̃Bq � x| reaches at most
any value ofw0,MvX pMiZq.

3) Required redundancy to detect single faults:Here is
given a sufficient (and necessary) condition on size ofmR

to detect any single fault through a consistency check based
on a MRC, SK or KWc extension. The MRC case has been
treated in [12]–[15] for instance. Condition for SK case is,
as far as the authors know, supplied for the first time.

Theorem 2.1:Let BYtmRu be a redundant RNS, where
a modulusmsk is included in B if SK is used for the
consistency check. A necessary and sufficient (resp. suffi-
cient) condition to detect any single fault injected on any
tuple of residuespx̃B, xmR

q expressed inBYtmRu through
a consistency check based on MRC or SK (resp. KWc)
extension is:�m P B, mR ¥ m�

�

mR ^
M
m

�

.
Proof: Previously it has been shown that for MRC,

SK and KWc extensions, the faults to be detected have
the form gM

m
where |g| is in w0,mv. So if such a fault

is not detected, it means that there exists an integerγ

verifying gM
m

� γmR. Then Euclide’s lemma implies
that mR

mR^
M

m

divides g, and somR m �

�

mR ^
M
m

�

.
This proves the sufficiency for all cases. The necessity is
proved by contraposition for MRC case, by exhibiting an
undetectable error. The sketch of the proof is similar for
the SK extension, by using given constructive examples.
If mR mi � pmR ^Miq for any mi in B, the error

e �
�

�

�

mR

mR^Mi
MiM

�1
i

�

�

�

mi

�Mi injected onx � 0 will not be

detected. Indeed,e � mR

mR^Mi
Mi � mR

Mi

mR^Mi
where the

first equality uses the hypothesismR mi � pmR ^Miq.

Rem. 1:Due to the approximations in KWc extension,
mR could be chosen smaller than somemi’s. However, only
the sufficiency is useful for the purpose of section IV.

III. FAULT DETECTION IN RNS MODULAR

MULTIPLICATION

Efficient RNS modular multiplication [3], [16] adapts
Montgomery reduction to RNS. Because of division by
M in classical Montgomery reduction, an auxiliary base
B1 coprime to the main baseB is used. Algorithm 1
summarizes the technique. HypothesisHmrc [3], Hsk [16]

hyp. Hmrc Hsk Hkw

Bex1 MRC crt-sumextB KWu
Bex2 MRC SK KWc
bases MM 1

^ p � 1 mskMM 1

^ p � 1 MM 1

^ p � 1

msk P B1

mR ¡ max
�

mi, m
1

i

�

max
�

mskmi,m
1

i

�

max
�

mi,m
1

i

�

xy Mp Mp 4p2

M ¡ 2p pn� 1q
2 p 4p{ p1�∆kwq

M 1

¡ M pn� 1q p 2p{ p1� αkwq

output s 2p s pn� 1q p s 2p

Figure 1: Hypothesis for Algorithm 1

Algorithm 1: RedundantRNS modular multiplication
Input: coprime basesB andB1, mR coprime toB andB1, integers

p, x andy (expressed inB YB
1

YtmRu) and base extensions
Bex1 and Bex2 verifying hypothesisHmrc, Hsk or Hkw

Output: s expressed inBYB
1

YtmRu s.t. s � xyM�1
pmod pq

1: q � p�x�rns yq �rns p
�1 in B

2: pq � Bex1 pqq: extension fromB to B
1

YtmRu

3: t� x�rns y �rns pq �rns p in B
1

YtmRu

4: s� t�rns M
�1 in B

1

YtmRu

5: ps� Bex2 psq: extension fromB1 to BYtmRu

6: if |ps|
mR

� |s|
mR

then
7: Error detected

or Hkw [6] in Fig.1 (wherep is supposed given) reflect
three versions of RNSMM using different types of base
extension for Bex1 and Bex2. Hypothesis onM and M 1

guarantee thatt :� xy � pqp, which is a multiple ofM
and the largest value in the algo., stays in the full dynamic
range v0,MM 1

v. For instance for KW version, theorem
2 of [6] states thatpq p1�∆kwqM . Given Hkw, t

p1�∆kwqM � p1�∆kwqM � 2Mp p1� αkwqM
1M .

So s � t
M
 p1� αkwqM

1 and KWc is used for Bex2.

A. Adequation of single fault model for RNSMM algo.

The purpose of this discussion is the pertinence of the
single fault model in the presence of base extensions, as it
is the case in RNSMM algo. If the fault is injected during
an extension on a quantity computed in a quotient ring
Z{ pmq wherem is a modulus of one of the bases concerned
by the extension, then the effect is strictly equivalent to a
single fault injected either before or after the extension.This
consideration is really pertinent because in all base extension
techniques previously seen, computations are ran only in
such rings (except for Cox; but cf. part III-B4). So a fault
injected during a base extension will be considered as a
single fault appearing either before or after the extension.

Rem. 2:From hardware point of view, this analysis re-
ally depends on chosen architecture and capacities of the
attacker, because for instance an attack could be launched
during the distribution of theξi’s coefficient in new residues.
Thus some of them could receive the correct value, and some
others a faulty value. Such possibilities must be prevented.

B. Introduction of redundancy - Fault location

Rem. 3: (guideline) As consistency checks require a base
extension which is a costly operation, the detection tech-

nique should only use the own extensions of RNSMM algo.
Given part III-A about faults during base extension, only

five types of error are to be considered in context of
RNSMM algo: on a residue in baseB before Bex1 called
category 1; on a residue in the second baseB1 called
category 2; on a residue in baseB after Bex2 called category
3; and category 4 for faults on extra material for extensions
such asmsk channel or Cox. Category 5 concerns faults
on redundant residues. Moreover, a fundamental hypothesis
is that, givenmR, the redundant residues ofx, y, and
p are part of input of RNSMM algo. This requires that
redundant version of the algo. must outputs expressed in
B Y B1 Y tmRu. Due to independency between residues
during parallel RNS operations, as in lines 1, 3 and 4 in
algo.1, cat.1 is reduced to faults injected onq before Bex1
and cat.2 to faults ons before Bex2. Cat.3 is obviously the
set of single faults injected onps � Bex2 psq.

1) Cat.1: A priori a fault on q must be detected with
a consistency check using Bex1, otherwise the fault would
infect all residues ofpq and the single fault model would
become unsuitable. The problem is that, by construction of
q �

�

�

�xyp�1
�

�

M
, it is impossible to compute|q|mR

from
x, y andp by using only parallel operations. Thus Bex1 is
only used to computeq on B1 Y tmRu.

2) Cat.2: The aim is to obtain|s|mR
which is equal to

�

�

�

�tM�1
�

�

M 1

�

�

mR

by definition of s. From |pq|mR
given by

Bex1, one now easily has|t|mR
� |xy � pqp|mR

. Then t

is expressed over the extended baseB Y B1 Y tmRu and
t MM 1. But by constructiont is also a multiple of
M , i.e. t � p0B, tB1

1
1

q

BYB1

. So sM �

�

�tM�1
�

�

M 1

M �

p0B, tB1
1
1

q

BYB1

, and |s|mR
�

�

�

�

�tM�1
�

�

M 1

�

�

mR

�

�

�tM�1
�

�

mR

.
So by theorem 2.1, a consistency check using Bex2 will
detect faults of category 2.

3) Cat.3: The fault becomes of category 1 as soon as the
output is reused as input of algo.1. Otherwise it is possible
to use only one more base extension to verify integrity of
ps, because its redundancy is known (cf. III-C).

4) Cat.4: For KWc, a fault injected directly in the Cox
unit is not envisaged, because the essential interest of KW
extensions is more practical than theoretical. In practice,
either the hardware Cox unit is protected thanks to a standard
hardware redundancy (cf. [8]), or one can bind one Cox per
Rower (cf. [17]). In the last case, a fault on a Cox unit is
just a fault on the residue computed by the Rower linked
to the faulty Cox. However, it is possible to keep only one
Cox. In this case, a fault on Cox could add�M for Bex1
or �M 1 for Bex2 to the extended value. It would require to
use larger bases to avoid overflow, and to deliberately add
M to Bex1 pqq so as to counteract the possible appearance
of Bex1 pqq � q � M , which is a problem for detection
of faults of category 1 (cf. proof of th. 3.1). About SK
extension, a fault in extra-channelmsk is easily detected
by the consistency check (cf. th. 2.1).

5) Cat.5: Trivially detected.

Figure 2: Categories of fault in RNSMM

|q|m1

|q|m2

|q|m3

|s|
m

′

1

|s|
m

′

2

|s|
m

′

3

|s|m′

n

cat.1

|ŝ|mR

|ŝ|m1

|ŝ|m2

|ŝ|m3

|ŝ|mn

|s|mR

|s|msk

|q̂|mR

|q̂|
m

′

1

|q̂|
m

′

2

|q̂|
m

′

3

Check

mR, cat.5

|q̂|m′

n

c

o

x

c

o

x

cat.2

cat.4

cat.1 or 3

Bex1

Bex2

|q|mn

|q̂|msk

B

B
′

Fig.2 illustrates the redundant version of algo.1 and the
categories of fault. By keeping redundancy structure of
algo.1 and Fig.2, theorem 3.1 states that faults of category
1 are also detected via a consistency check based on Bex2.

Theorem 3.1:Given any version of redundant RNSMM
defined by a set of hypothesis in Fig.1, it is assumed
that at most one single fault of category 1, 2, 4 or 5 is
injected during the execution of algorithm 1. Then the fault
is injected if, and only if, the consistency check based on
Bex2 and applied topsB1

1
1 , smR

q

B1

YtmRu
fails.

Proof: Detection of faults of cat.2 is ensured by the-
orem 2.1. It just remains to prove the result for faults of
category 1. The consistency check verifies the nullity of
|smR

� ps|mR
, wheresmR

is the redundancy ofs before Bex2
and ps :� Bex2 psB1

1
1

q. BecauseM is coprime tomR, it is
the same to verify if|M psmR

� psq|mR
� 0 when a fault

is injected. Consideringp0, . . . , 0, ei, 0, . . . , 0qB affectingq,
one has̃q :� ϕ�1

B

�

q1, . . . , qi�1, |qi � ei|mi
, qi�1, . . . , qn

�

B
.

Then even ift � xy � pq̃p stays an element ofv0,MM 1

v

it is not a multiple of M anymore. Indeed,ϕB ptq �

p0, . . . , 0, eipi, 0, . . . , 0qB. It follows that

smR
�

�

�

pp0, . . . , 0, eipi, 0, . . . , 0qB , tB1
1
1

q

BYB1

M�1
�

�

mR

.

But Bex2 only extends sB1
1
1

�

�

�tM�1
�

�

M 1

�

p0B, tB1
1
1

q

BYB1

{M . Depending on the chosen set of
hypothesis in Fig.1, Bex2 can be MRC, SK, or KWc. In
all cases,ps � sB1

1
1

� µM 1, where possible values ofµ are
detailed thereafter. Then

|ps|mR
�

�

�

p0B, tB1
1
1

q

BYB1

M�1
� µM 1

�

�

mR

.

Finally: |M psmR
� psq|mR

�

�

�

ptB, tB1
1
1

q

BYB1

� p0B, tB1
1
1

q

BYB1

� µMM 1

�

�

mR

�

�

�

ptB,0B1
1
1

q

B
� δMM 1

� µMM 1

�

�

mR

�

�

�aiMiM
1

�

�

mR

where ai �

�

�eipiM
�1
i M 1�1

�

�

mi

� δmi � µmi and
δ P t0, 1u is such thatptB, tB1

1
1

q

BYB1

� ptB,0B1
1
1

q

BYB1

�

p0B, tB1
1
1

q

BYB1

� δMM 1. BecausemR ^ MiM
1

� 1, one
just has to verify that0 |ai| mR, i.e. |ai|mR

� 0.
1) MRC: Bex2 exact soµ � 0 and0 |ai| mi mR.

2) SK: the context is different of the one of theorem 2.1.
Indeed, all residues ofsB1

1
1 are affected by the fault overq,

so SK reconstruction could returns�µM 1 with µ any value
in w�msk,mskv. Then, withmR ¡ max pmskmiq, one has
0 |ai| mskmi mR.

3) KWc: µ P t�1, 0u. Actually δ � 0 impliesµ � 0 and
so 0 |ai| mi. Indeedδ � 0 meansptB,0B1

1
1

q

BYB1

�

p0B, tB1
1
1

q

BYB1

� ptB, tB1
1
1

q

BYB1

� t. Moreover, hyp.Hkw

still ensure thatt � xy � pq̃p p1� αkwqMM 1. Then
sB1

1
1

� p0B, tB1
1
1

q

BYB1

{M p1� αkwqM
1, soµ � 0.

Rem. 4:Since randomizations of bases in Leak Resistant
Arithmetic technique [10] only use RNSMM to switch
between different Montgomery representations of data, it is
compliant with the present detection method.

C. Handling faults of category 3

This case may appear if the integrity ofps expressed inB
must be ensured and if it will not be used again as input of
algo.1. By hypothesis there is at most one fault on it, sops

can bes� eiMi M . Moreover|s|mR
is given by the last

consistency check.
1) Hmrc: a standard consistency check applied to

pps, sq
BYtmRu

is possible.
2) Hsk: in the same manner, because|s|sk is also known,

a SK extension can be used to verify integrity of data, where
a redundancymR ¡ max pmiq suffices.

3) Hkw: one easily shows that 2p
1�αkw

¤

4p
1�∆kw

if, and
only if, αkw ¤

1�∆kw

2
. In practice, it is highly feasible

to haveαkw �

1
2
. Indeed, by picking up notations of part

5.1 in [6], for given parametersn andr then, if thetrunc
function keeps at leastq most significant bits whereq ¥

r
2
�log2 pnq�log2

�

2
r

2
�1
� n

�

, then∆kw ¤

1
2
. For instance,

a 4096 bits level of security requiresn � 65 and r � 64

(rn ¡ 4096). Thus,q � 8 is sufficient. Hence, in practice
one can always have condition2p ¤ p1� αkwqM , and a
KWc can be used for a consistency check.

IV. A RCHITECTURE

The goal of this section is to present an architecture im-
plementing RNSMM and compliant both with the fault de-
tection approach proposed here, and with the Leak Resistant
Arithmetic (LRA) based on the randomization of the RNS
bases [10]. A previous RNS architecture for Montgomery
multiplication with Kawamura et al. base extension was
proposed in [17]. This architecture is composed by a set of
n identical arithmetic cells (rowers) that work in parallel and
include a modular adder and multiplier unit, a cox unit (that
corrects the base extension) and some memory. An in-depth
analysis of the arithmetic cells has been presented in [20],
where some other cell architectures have been proposed.
In this section, the modifications required to introduce the
fault attack protection in the state-of-the-art architectures are
analyzed and evaluated.

A. Description of the attacker

The general context of the attack is not the purpose of the
paper. The strategy adopted when a fault is detected is at the
discretion of the user of the proposed architecture, which
simply aims at detecting the fault. A stop of the process
in order to avoid any leakage of information is typically
a possible choice. The attacker is assumed able to inject
one fault. Such type of attack is realistically achieved by
a laser shot, that can change a value stored in a register,
or temporary change the value of some transistors and lines
during a sampling for instance. So the attacker has the ability
to hit a specific area in any single cell. Furthermore he could
be able to control the moment of the injection.

This paper proposes an architecture resistant against one
fault. When an attacker injects several faults, there are two
possible scenarios. In first case, they are injected sequentially
in different Montgomery multiplications, i.e. at most one
fault is injected between two consecutive consistency checks.
Then the first fault corresponds to a normal single fault, so
this attack is prevented by the proposed approach. In second
case, some of them are injected simultaneously between two
consecutive consistency checks. The proposed protection
approach can be extended in order to protect against this
attack, by increasing the number of redundant moduli.

B. Hardware fault model

Contrary to theoretical faults, hardware faults are defined
by size of registers (r bits since2r�1

 mj,m
1

j 2r)
which outputξi or ξ1i in each rower. The model in [8] for a
fault on ξi is ξ̃i � ξi � ei P v0, 2

r
v. The only problematic

case ismi ¤ ξ̃i 2r (ξ̃i mi is theoretical model).
Proposition 4.1: If outputs of rowers are overr bits, then

mR � 2r, 4p ¤M and4p ¤ p1� αkwqM
1 allow to detect

single hardware faults.
Proof: It suffices to consider faults of cat. 1 and 2.

Cat.1: ξi � ei � mi � fi, fi P v0, 2r � miv� v0,miv.
Denoting q̃ � ϕ�1

B
pq1, . . . , fi, . . . , qnq, the crt-sum with

ξ̃i is crt-sum of q̃ plus miMi � M . Becauseeval pfiq ¤
evalpξ̃iq eval pfiq � 1, Cox of Bex1 can computekq̃ � δ,
δ P t�1, 0, 1u. δ P t�1, 0u is usual in KWu case.δ � 1 is
not a problem as it just corrects the extraM which appears
in crt-sum. Finally,pq̃ can contain one extraM . It can be
shown that if∆kw ¤

1
2
, this extraM is always corrected

if the inequality q̃ ∆kwM holds (which is a necessary
condition to havepq̃ � q̃�M when there is no fault). Thus,
one has at leastpq̃ 2M in all cases, and it suffices to have
new conditions4p ¤M and 3p

1�αkw

¤M 1 to avoid overflow.

Otherwise2M ¤

pq̃ 3M could happen. In this case, it is
sufficient to have 4p

1�αkw

¤ M 1. Finally, if fi P t0, ξiu the
fault is corrected, else the theoretical model is suitable.

Cat.2: The consideredξ1j ’s are those ofsB1
1
1 . If ξ̃1i � ξ1i �

e1i with e1i P vm1

i � ξ1i, 2
r
� ξ1iv, eval pξ1iq ¤ evalpξ̃1iq

evalpξ1iq � 1 and Cox in Bex2 could computeks � δ with

Figure 3: General architecture

Base
Randomizer

2
r

 Modular
Multiplier-adder

Ctrl Memory

1st Arithmetic
Cell

Modular
Multiplier-adder

Cox

Unit

Ctrl Memory

2nd Arithmetic
Cell

Modular
Multiplier-adder

Cox

Unit

Ctrl Memory

n-th Arithmetic
Cell

Modular
Multiplier-adder

Cox

Unit

Ctrl Memory

Redundant Cell

Cox

Unit

Ctrl Memory

Input

Detection

Unit

Fault

Detector

Fault

Detector

FaultOutput

Detection

Unit

Detection

Unit

Detection

Unit

δ P t0, 1u. Finally, Bex2 ps̃q �
n
°

j�1

ξ1jM
1

j � e1iM
1

i � ksM
1

�

δM 1

� s � e1iM
1

i � δM 1. But e1i � δm1

i P v�ξ
1

i, 2
r
� ξ1iv�

w �m1

i, 2
r
v�w � 2r, 2rv. If e1i � m1

i andδ � 1, the fault is
corrected, else it is detected.

C. Description of the architecture

The general architecture is presented in Fig.3. The Kawa-
mura et al.’s architecture requires two modifications to be
applied with the proposed fault detection procedure. First,
an extra redundant cell is required to detect the fault as
explained in the previous sections. The cells treat data
expressed overr bits. Hence, by prop.4.1 the chosen redun-
dancy is2r. Secondly, a new fault detection unit (FDU) (cf.
Fig.5) is required to check that when a value is propagated
to all the cells they indeed receive the same value (cf.
rem.2). Such propagation is executed during base extensions.
However, it could be avoided by using a round propagation
system [17], where at each step each cell takes the input
of the previous cell, and gives its previous input to the
subsequent. In this case, a similar check would be required
at the end of the rotation, in order to control that each cell
receives again the first input, and so that no fault was injected
during the rotation. Each FDU compares the input of two
cells, son� 1 units are required. Furthermore, a FDU is in
the redundant cell to apply the consistency check.

LRA [10] (cf. [8] for FPGA implementation) requires
an additional unit, the base randomizer, which randomly
matches the arithmetic cells with base elements, and dis-
tributes data required to calculate the constants matched
to the current two random bases. Moreover, the technique
requires some small changes in the cells: they will have a dif-
ferent control unit, able to manage the additional operations
for the precomputation of the constants (calculated after
each randomization), and a different access to the memory,
since some data sent by the randomizer unit to the arith-
metical cells must be directly stored (e.g. the remainder of
2r mod mi), while other values must be processed through
additions and multiplications, and then stored.

Figure 4: Modular adder and multiplier unit in a standard
(a) and redundant (b) cell

(a)

r

r

r

r

2
r+

lo
g
(k
)

Multiplier

Adder

Modular

Reductor

(b)

r

r

r

Multiplier

Adder r

Figure 5: Fault detection unit (FDU) withr=32

The redundant cell has two main differences with respect
to the standard cells. The first one is the presence of a FDU.
It is used for the consistency check of theorem 3.1. The
second one is that the modular adder and multiplier subunit
does not work with generic modules, but with a power of
2. Fig.4a and 4b show the modular adder and multiplier
units used by the standard (a) and redundant (b) cell. The
standard modular adder and multiplier is compliant with the
cell proposed in [17], since the accumulation is performed
by the same unit that executes additions and multiplications.
However, according to another architectural strategy pre-
sented in [20], the accumulation could be executed inside
the modular reduction unit. The main difference of the adder
and multiplier used in the redundant cell is that the modular
reduction subunit is not required. Although the multiplier
and adder subunit could be identical to the same subunit
used in the other cells, a smaller subunit can be used since
one additive input for the accumulation is shorter and the
computation of the bits larger than2r can be avoided.

D. Fault detection

In the previous sections, the mathematical detection of one
fault has been described. In order to design an architecture
secure against this attack, it is required that the injection of
the fault do not have effects not considered in the analysis.

A fault injected in a cell can only modify its output values.
If a fault changes a value during its computation or while it
is stored, the effects correspond to the single fault injection
analyzed previously. Since there is a Cox per cell, even a
fault injected in a Cox unit corresponds to a single fault.

During the base extension all the cells receive an input
from each cell. The distribution of these values is executed
as follows: the first cell gives its result to all the cells, which
use it as an input; all the other cells give their result to the
previous cell, which stores it for one cycle. Thus the first cell
will distribute them, one per cycle. If a fault affects only a
part of the propagation line of the output of the first cell (e.g.,

Table I: Basic logic library in CMOS technology [21]

Gate Area (transistors) Delay (Inverter)
Inverter 2 1
NAND 4 1.4
NOR 4 1.4

XNOR 12 3.2
NAND3 8 1.8
NAND4 10 2.2

REGISTER 15 4.8

it is injected on a buffer), some arithmetic cells could receive
the wrong input. In this case, the fault does not correspond to
a single fault. However, it can be easily detected through the
FDUs, which check that each cell receives the same input.
If during the base extension a fault is injected in a value
that must be distributed while it is stored by a cell different
from the first, it corresponds to a normal single fault injected
before the base extension. Since the same cell works at least
for 2 moduli (one per base), the injection of one fault could
generate differences on various moduli. In order to avoid
this threat, the data of different moduli must be stored in
different memories, so the local condition of the fault will
avoid the possibility of multiple fault.

A fault injected in a FDU or in the redundant cell is
detected. A fault in any part of the redundant cell, but not
in its fault detection subunit, is simply a fault of category5
and so is detected by the consistency check. If the fault is
injected in a detection unit, the unit detects the fault.

E. Evaluation

To evaluate the impact of the fault detection, an analytical
study based on equivalent gates has been conducted. The
adopted model is shown in Tab.I. To reach a fair evaluation,
the same parameters used in [17] have been considered: 33
cells, 32 bits per cell, 2 moduli per cell (one per base),
2r � 2h mi 2r, �i and h � 11; the architecture of
standard arithmetic cells is the one of [17].

A detailed analysis based on equivalent gates on the RNS
arithmetic cell proposed in [17] has been presented in [22].
Tab.II shows the delay of the standard and the new units.
The time required by one cycle is determined by the slowest
pipeline stage. The modular reduction subunit is the slowest
in the standard cell, but it is divided in 2 pipeline stages, so
the multiplier and adder subunit has the longest delay. The
FDUs have a short delay, so they can execute the check in
parallel to the normal work flow, after the cycle in which
the data have been computed. Therefore, they neither require
additional cycles nor increase the delay. The redundant cell
executes the same operations of the standard cells with a
shorter delay and with less cycles. Hence, it can works in
parallel to the standard cell. Therefore, the fault detection
technique proposed in this paper do not affect the delay of an
exponentiation. However, as explained previously, if a valid
result is requested on both the RNS bases, an additional
check is required to detect final faults of cat.3. This final
check, if it is not executed during the subsequent operations,

requires a base extension, so its delay is less than half of
a RNSMM. For example, in a RSA implementation, with a
N-bit key and a Montgomery ladder for exponentiation, the
increase is less than1

2�N
with respect to the total delay.

The fault detection requires additional components, which
increase the total area. The area of the standard and the new
units is shown in Tab.III. The largest new unit is the2r

redundant cell. However, also considering that this cell uses
a normal multiplier (without avoiding the column over the
r-th bit), it is significantly smaller than a standard one, since
it does not need a modular reduction unit. Even the total area
of all the additional components is lower than one standard
cell. Therefore, the total area increase is lower than1

33
of

the total area, considering that the number of parallel cells
is 33. More generally, if the architecture containsn cells,
the area increase is about1

n
of the total area.

F. Comparison to Guillermin’s technique [8]

Guillermin proposes a method to detect the same kind
of faults considered in this paper. However, its approach
is valid only in the context of Cox-Rower architecture,
while the proposed technique is not limited to a specific
architecture. Moreover, when associated to a leak resistant
arithmetic, the detection of cat.1 faults is not guaranteed.
In [8], the detection is achieved by a modified Cox which
computes a more precise approximation ofξi

mi
. For an

input xy bounded byνp2, required conditions on size of
bases are:νp ¤ M and 3p2r�2

¤ M 1. Comparing to
νp ¤ M and 4p

1�αkw

¤ M 1 for the present architecture,
the Guillermin’s approach requires to increase baseB1 by
at least one extra standard modulus. Thus extra hardware
needed is one standard Rower and a modified Cox for [8],
against one redundant Rower only dedicated to2r modulus
and detection units. So, considering Tab. III, the present
technique needs less extra hardware than [8]. Moreover, to
add a standard Rower directly impacts computation time of
RNSMM. For a 1024 bit RSA-CRT, Guillermin measured
that the extra time cost due to his technique is about
5%, for two consecutive 512 bit exponentiations based on
Montgomery ladder. So this is two times 1024 executions of
RNSMM algorithm. In present technique, the extra delay is
less than 2

2�1024
�0.1%. Finally, the present technique can

be generalized for detection of several faults by adding more
redundant moduli. The additional delay remains the same.

V. CONCLUSION

A simple and cheap way to detect single faults injected
during a RNS modular multiplication has been presented.
The new method has the advantage that no condition is im-
posed on the choice of bases and base extension techniques,
and so is compliant with any RNS Montgomery modular
multiplication algorithm. During a base extension, the re-
dundant modulus works in parallel to the cells of the output
base. Thus redundant computations and consistency checks

Table II: Delay of Considered Units withr � 32, k � 33, h � 11

Unit Delay (gates) Delay (inverters)
Standard multiplier 15XNOR+4NAND4+15NAND+4NOT+register 86.6
Standard modular reductor 13XNOR+4NAND4+11NAND+7NOT+register 77.6

2r multiplier 15XNOR+4NAND4+9NAND+4NOT+register 78.2

Fault detection unit XNOR+2NAND4+NAND 6.6

Table III: Area Cost for the Considered Units withr � 32, n � 33, h � 11

Cell Multiplier adder unit Modular reduction unit Cox Detection Units Tot.(kilo transistors)
Standard 992FA+32HA+140XNOR+69NAND4

+92NAND3+1623NAND+70NOR
+1784NOT+70register

562FA+51HA+214XNOR+102NAND4
+136NAND3+1357NAND+107NOR
+1390NOT+108register

9FA+9register 0 100

2r 992FA+32HA+128XNOR+60NAND4
+80NAND3+1444NAND+64NOR
+1704NOT+64register

0 9FA+9register 32XNOR+
10NAND4+NAND

63 79

Detection 0 0 0 32�(32XNOR+
10NAND4+NAND)

16

do not increase the computation time of a RNS modular
exponentiation/elliptic curve point addition. Moreover,the
integration in an architecture like Cox-Rower’s one implies
a limited increase of area and a possible extra delay smaller
than 1

2�log
2
pexponentq

times normal delay.

REFERENCES

[1] H. L. Garner, “The residue number system,” inPapers pre-
sented at the the March 3-5, 1959, western joint computer
conference, ser. IRE-AIEE-ACM ’59 (Western). New York,
NY, USA: ACM, 1959, pp. 146–153.

[2] N. S. Szabo and R. I. Tanaka,Residue Arithmetic and its
application to Computer Technology. McGraw-Hill, 1967.

[3] J.-C. Bajard, L.-S. Didier, and P. Kornerup, “An RNS Mont-
gomery modular multiplication algorithm,”IEEE Trans. Com-
put., vol. 47, no. 7, pp. 766 –776, jul 1998.

[4] P. L. Montgomery, “Modular multiplication without trial
division,” Mathematics of Computation, no. 170, 1985.

[5] A. Shenoy and R. Kumaresan, “Fast base extension using a
redundant modulus in RNS,”IEEE Trans. Comput., vol. 38,
no. 2, pp. 292 –297, feb. 1989.

[6] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-rower
architecture for fast parallel Montgomery multiplication.”
in EUROCRYPT, ser. Lecture Notes in Computer Science,
B. Preneel, Ed., vol. 1807. Springer, 2000, pp. 523–538.

[7] N. Guillermin, “A high speed coprocessor for elliptic curve
scalar multiplications over Fp,” inProc. of the 12th intern.
conf. on Cryptographic hardware and embedded systems, ser.
CHES’10. Springer, 2010.

[8] ——, “A coprocessor for secure and high speed modular
arithmetic,” Cryptology ePrint Archive, 2011.

[9] S. Duquesne and N. Guillermin, “A FPGA pairing implemen-
tation using the residue number system,” Cryptology ePrint
Archive, 2011.

[10] J. C. Bajard, L. Imbert, P. Y. Liardet, and Y. Teglia, “Leak
resistant arithmetic.” inCHES, ser. Lecture Notes in Com-
puter Science, M. Joye and J.-J. Quisquater, Eds., vol. 3156.
Springer, 2004, pp. 62–75.

[11] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the im-
portance of checking cryptographic protocols for faults,”in
Proc. 16th annual intern. conf. on Theory and appli. of crypto.
techniques, ser. EUROCRYPT’97. Springer, 1997.

[12] R. Watson and C. Hastings, “Self-checked computation using
residue arithmetic,”Proc. of the IEEE, vol. 54, no. 12, 1966.

[13] D. Mandelbaum, “Error correction in residue arithmetic,”
IEEE Trans. Comput., vol. 21, no. 6, pp. 538–545, Jun. 1972.

[14] F. Barsi and P. Maestrini, “Error correcting properties of
redundant residue number systems,”IEEE Trans. Comput.,
vol. C-22, no. 3, pp. 307–315, mar 1973.

[15] S. S. S. Yau and Y. C. Liu, “Error correction in redundant
residue number systems,”IEEE Trans. Comput., vol. C-22,
no. 1, pp. 5–11, jan 1973.

[16] J. C. Bajard, L. S. Didier, and P. Kornerup, “Modular multi-
plication and base extensions in residue number systems,” in
Proc. IEEE 15TH Symp. on Comp. Arithmetic. IEEE, 2001.

[17] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura,
“Implementation of RSA algorithm based on RNS Mont-
gomery multiplication,” inProc. of the Third Intern. Work-
shop on Cryptographic Hardware and Embedded Systems,
ser. CHES ’01. Springer, 2001.

[18] M. Pohst and H. Zassenhaus,Algorithmic algebraic number
theory. Cambridge University Press, 1989.

[19] M. H. Etzel and W. K. Jenkins, “Residue number system
arithmetic: modern applications in digital signal processing.”
IEEE Press, 1986.

[20] F. Gandino, F. Lamberti, G. Paravati, J. C. Bajard, and
P. Montuschi, “An algorithmic and architectural study on
Montgomery exponentiation in RNS,”IEEE Trans. Comput.,
vol. 61, no. 8, pp. 1071 –1083, aug. 2012.

[21] D. Gajski,Principles of Digital Design. Prentice-Hall, 1997.

[22] F. Gandino, F. Lamberti, P. Montuschi, and J. C. Bajard,“A
general approach for improving RNS Montgomery exponen-
tiation using pre-processing,” inProc. IEEE 20th Symposium
on Computer Arithmetic, july 2011, pp. 195 –204.

