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Abstract—Acceleration of cryptographic applications on
Graphical Processing Units (GPUs) platforms is a research
topic with practical interest, because these platforms provide
huge computational power for this type of applications. In
this paper, we propose a parallel algorithm for Elliptic Curve
(EC) point multiplication in order to compute EC cryptography
on GPUs. The proposed approach relies in using the Residue
Number System (RNS) to extract parallelism on high precision
integer arithmetic. Results suggest a maximum throughput of
9990 EC multiplications per second and minimum latency of
24.3 ms for a 224-bit underlying field, for an Nvidia 285 GTX
GPU. We present performances up to an order of magnitude
better in latency and 122 % in throughput regarding other
approaches reported in the related art.

Keywords-Elliptic Curve; Graphical Processing Units;
Residue Number System;

I. INTRODUCTION

Recently, Graphical Processing Units (GPUs) have been
increasingly used in several applications as a powerful ac-
celerator for high computational demanding applications [1].
The huge computational power of a single GPU allied with
its low cost regarding other dedicated accelerator solutions,
mainly because of mass production for the gaming market,
is the main reason of the interest for using GPUs for General
Purpose applications (GPGPU) [1].

Applications that take advantage of the GPU computing
power can be found in different fields, namely physics,
biology and cryptography [2], etc... These different appli-
cations may have different properties that turn them more
or less suitable for implementations on GPUs. The following
summarizes these properties.

• Low data dependencies, allowing for easier paralleliza-
tion of the algorithm, by computing parallel instances
over independent data sets.

• Regular description, allowing for the identification of
different single computation flows among the algo-
rithm, enhancing the parallelization and scalability for
data sets with different sizes.

• Low memory accesses, taking advantage of the huge
GPU processing power reducing stalling effects waiting
for data from memory.

• High computation over small input/output data, reduc-
ing the impact of the communication delays in the
overall performance.

Considering the above properties, despite the different ap-
plication fields, implementations supported on GPUs have

similar challenges that consist in designing/redesigning al-
gorithms to use extensive parallel processing control flows
on independent and small data sets.

In this paper we get through the GPU implementation
of asymmetric cryptography supported on Elliptic Curve
(EC). EC cryptography arose as a promising competitor to
the widely used Rivest-Shamir-Adleman (RSA), due to the
reduced key size required to provide the same security. The
algorithms used in EC cryptography do not meet all the
requirements for a direct and efficient implementation on
GPUs. In particular, the EC point multiplication with a scalar
(private key), which is the most demanding operation in
EC cryptography, is constructed on several successive steps
where the scalar is browsed, and there are data dependencies
between all the successive steps. On the other hand, EC
point multiplication represents a demanding computation
supported on small input data sets (private and public key
are usually represented with up to three 521-bit integers),
which is an interesting property for the EC computation.

In order to overcome the inefficiency due to the data
dependencies, we propose in this paper to use the Residue
Number System (RNS) approach [3]. RNS is an alternative
representation that splits the traditional integer into several
smaller residues for a established basis. With the operands
sharing a common RNS representation, the computation
can be performed in parallel on the correspondent residues.
Hence, RNS representation is an attractive approach to
enhance the parallelization of algorithms. We combine the
RNS representation with the Montgomery ladder algorithm
for EC point multiplication in order to obtain a high perfor-
mance accelerator for EC cryptography supported on GPUs.
For the best of our knowledge, the presented work is the
first presenting a solution supported on GPUs and RNS to
accelerate EC cryptography.

II. EC AND RNS BACKGROUND

This section provides the background on EC and RNS
arithmetic.

A. EC cryptography over GF (p)
An EC E(a, b, p) over GF (p), with p a prime, is a

set composed by a point at infinity O and the points
Pi = (xi, yi) ∈ GF (p) × GF (p) that comply the following
equation:

y2
i = x3

i + axi + b, a, b ∈ GF (p). (1)
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Algorithm 1 Montgomery Ladder Algorithm
Require: EC point G ∈ E(a, b, p), k-bit scalar s.
Ensure: P = sG ∈ E(a, b, p).

1: P = G, Q = 2G;
2: for i = k − 2 down to 0 do
3: if si = 1 then
4: P = P + Q, Q = 2Q;
5: else
6: Q = P + Q, P = 2P ;
7: end if
8: end for

In order to obey smoothness conditions the parameters a
and b obey −

(
4a3 + 27b2

)
%= 0 mod p. By establishing the

addition and doubling operation over the EC points, and by
applying it recursively, it is possible to obtain the multiplica-
tion of a point P by a scalar s as Q = P +P +. . .+P = sP
(Elliptic Curve Discrete Logarithm Problem).

The EC point addition and doubling are performed with
operations over the underlying field GF (p) applied to the
points’ coordinates. It is known that it is possible to obtain
the xR coordinate of a point addition R = P + Q knowing
the x coordinates of P , Q, and P − Q. This observation
motivated the proposal of a double and add algorithm that
does not require the y coordinate, known as the Montgomery
Ladder for EC [4]. The Algorithm 1 details the Montgomery
Ladder algorithm behavior for obtaining P = sG, where s is
a scalar with size k (the most significant bit of s, sk−1 = 1).

The operations over the coordinates, used to obtain the
EC point operations, require modular inversions, which is a
computationally demanding operation over a finite field. In
order to avoid a large number of inversions, the traditional
(affine) representation of the coordinates is replaced by
a projective representation. The projective representation
introduces an extra coordinate Z. To commute between
standard projective (X) and affine representation (x) of a
coordinate, the following correspondence holds: x ⇔ X/Z.
The projective versions of point addition and doubling to
support Algorithm 1 are the following (for si = 0) [4]:

XP+Q = −4bZP ZQ(XP ZQ + XQZP ) (2)

+ (XP XQ − aZP ZQ)2,
ZP+Q = xG(XP ZQ − XQZP )2;

X2P = (X2
P − aZ2

P )2 − 8bXP Z3
P ,

Z2P = 4ZP (X3
P + aXP Z2

P + bZ3
P ).

For si = 1, the formula used to double P , is used to
double Q instead. As it can be concluded from Algorithm 1,
each iteration of the cycle has data dependencies from the
previous iteration, which is an extra difficulty towards the
design of a parallel algorithm. Moreover, the sizes of the
prime p for standardized EC are 192, 224, 256, 384, and

521 bits [5]. Thus, the operations over the coordinates would
require a datapath of the same size. In order to adapt
the coordinates size to the GPU processing datapath, we
propose use an RNS representation of the field elements.
This representation allows to parallelize the field operations
on the GPU, providing the required degree of parallelization
towards an efficient implementation.

B. RNS Overview

The RNS has its fundamentals in the Chinese Remainder
Theorem (CRT), which states that for a given basis Bn

consisting of n coprime integers (m1,m2, ...,mn) there is
a unique representation for the integer X < M in the form

xj = X mod mj , with 1 < j < n and M =
n∏

i=1
mi the

dynamic range of the basis Bn. Having two integers X and
Y in RNS representation, an operation Z = X ⊗Y mod M
is equivalent to zj = xj ⊗ yj mod mj , where ⊗ represents
addition, subtraction, or multiplication. In general, choosing
a basis Bn such that X ⊗ Y < M , allows the RNS
representation to be used in order to perform any of the
aforementioned operations in the traditional representation
system. As suggested above, the advantage of using the
RNS representation is the possibility of split the computation
in n parallel flows (now onwards called channels), each
one operating modulo a different mi. The conversion from
binary to the RNS representation of an integer X can
be accomplished by computing the residues xj directly
and in parallel. For the opposite conversion, there are two
equivalent methods that can be used: CRT and Mixed Radix
System (MRS).

Due to the recursive nature of MRS based conversion,
it is not suitable for efficient GPU implementations [2].
The alternative method relies on the CRT definition for
computing the binary representation:

X =
n∑

i=1

ξiMi − αM, α < n, ξi =
∣∣∣∣
xi

Mi

∣∣∣∣
mi

, (3)

where Mi = M/mi and |·|mi
denotes an operation modulo

mi. In (3) the subtraction of a multiple of M dependent of α
allows to accomplish the required reduction modulo M . Two
main methods have been used to compute the constant α. An
extra moduli me can be established and all the operations
performed not only on the basis Bn, but also on this extra
moduli (Shenoy et. al. [6]). Hence, the RNS representation of
the integer X is (x1, x2, . . . , xn, xe). Applying the reduction
modulo me to (3), it is obtained:

xe =

∣∣∣∣∣

n∑

i=1

ξiMi

∣∣∣∣∣
me

− |αM |me
. (4)

Rewriting (4), α can be obtained as:

|α|me
=

∣∣∣∣∣

n∑

i=1

ξiMi − xe

∣∣∣∣∣
me

∣∣M−1
∣∣
me

. (5)
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Since α < n, choosing me ≥ n results in α = |α|me
.

Other possible method to compute α involves a successive
fixed point approximation approach (Kawamura et. al. [7]).
This method observes that knowing X < M then X

M < 1,
thus (3) is rewritten as:

n∑

i=1

ξi
mi

= α+
X

M
⇔ α =

⌊
n∑

i=1

ξi
mi

⌋
. (6)

Since (6) requires costly divisions by mi, an approximation
(α̂) to this expression is suggested:

α̂ =

⌊
n∑

i=1

trunc(ξi)
2r

+ β

⌋
, (7)

where r is such that 2r−1 < mi ≤ 2r, and trunc(ξi)
sets the q − r least significant bits of ξi to zero, with
q < r. The parameter β is a corrective term that should
be carefully chosen such that α = α̂. The authors state
a set of inequalities that allow to choose good values for
β, supported on the maximum initial approximation errors,
respectively:

ε = maxi

(
2r − mi

2r

)
, δ = maxi

(
ξi − trunc(ξi)

mi

)
. (8)

If a value of β is chosen such that 0 ≤ n(ε + δ) ≤ β < 1
and 0 ≤ X < (1 − β)M , then α = α̂.

III. RNS MONTGOMERY MULTIPLICATION

In order to perform EC arithmetic with RNS, we should
not only provide a method for add and multiply, but also
to reduce. The Montgomery Modular Multiplication is an
efficient method that allows replacing the reduction modulo
an integer N (usually a prime) by a reduction modulo
R = 2k, which can be very easily accomplished operating
on the binary representation of an integer [8]. This method
employs a different domain for a field element X , as
X̄ = XR mod N and computes Z̄ = X̄Ȳ R−1 mod N .

The rational of the Montgomery modular multiplication
algorithm can also be applied to an RNS version, but using
the RNS representation it is no longer easy to reduce modulo
a power of two. Instead, defining a basis Bn with dynamic
range M such that M > N and gcd(M,N) = 1, it is easy to
reduce an element represented with the basis Bn modulo the
dynamic range M . It only requires to reduce modulo mi in
each one of the RNS channels. Hence, the RNS Montgomery
Multiplication version computes Z̄ = X̄Ȳ M−1 mod N .
One of the drawbacks of the RNS version is that it is not
possible to represent M−1 in Bn. Thus it required to set
another basis B̃n with dynamic range M̃ such that M̃ > M
and gcd(M̃,M) = 1.

With the modified Montgomery modular multiplication
algorithm we need to compute U = (T + QN)M−1, where
T = X̄Ȳ . It is easy to see that if we guarantee T + QN ≡

0 mod M then U ≡ X̄Ȳ M−1 mod N . To ensure this, we
need to compute in the RNS channel i for the basis Bn:

0 = ti + qini mod mi ⇔ qi = −ti(ni)−1
mi

mod mi. (9)

After computing the value of Q we can use one of the
methods referred in Section II-B to convert the value of Q
to the basis B̃n. In this basis, for each RNS channel i we
compute:

ũi = (t̃i + q̃iñi)(M)−1
m̃i

mod m̃i. (10)

Afterwards, we convert the result U from basis B̃n to basis
Bn (note that U < 2N , since T < MN , QN < MN , and
N < M ). However, when computing the algorithms based
on the Montgomery multiplication, the intermediary results
have to be bounded but not exactly reduced. Thus, consider-
ing Z = U and applying Z as input in further multiplications
we will always have U < 2N and the multiplication result
will be correct modulo N , since M > 4N .

In the RNS version of the Montgomery multiplication
algorithm, the most costly steps are the conversion between
bases, base extension, since all the other steps correspond
to independent operations in each RNS channel. Addressing
this problem, an offset during the conversion of Q from Bn

to B̃n can be allowed [3]. As (3) suggests, the conversion
from an RNS basis implies the computation of a constant α
that multiplied by the dynamic range M correct an offset
in the conversion to maintain the result bounded by M .
In [3] it is suggested to use the CRT conversion without the
correction term introduced by α during the first conversion
(Bn to B̃n). With this approach, after the conversion we
obtain a value of Q̂ = Q + αM that contains an offset.
With this offset, the value of U is given by:

Û = (T + Q̂N)M−1 = (T + QN)M−1 + αN. (11)

Since α < n, Û < (n + 2)N . In order to feed this result
in subsequent multiplications we must chose M such that
M > (n + 2)2N , since this condition complemented with
the condition X̄Ȳ = T < NM ensures Û < (n + 2)N .
In summary, with this method, we are able to avoid the
computation of α during one conversion while keeping the
multiplication result bounded by an acceptable value (note
that n << N ).

IV. EC PARALLEL ALGORITHM FOR GPU

The Algorithm 1 to multiply a point G by the scalar s,
can be split into two sections, the initialization section, and
the loop controlled by the scalar. The initialization computes
P = G and Q = 2G, and each iteration of the main loop
computes the operations in (2). The schedule in Table I
can be adopted to perform the EC point multiplication; this
schedule is only for si = 0. The loop schedule for si = 1
can be obtained by commutating P and Q in the loop section
of Table I. The scheduling is divided in multiplications
and additions sets. Each multiplication set is composed of
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Table I
OPERATIONS SCHEDULING (FOR si = 0).

Init.

mult. 1
A=x2

G

Loop

mult. 1

A=XP ZQ

mult. 2

D=DXQ

mult. 3

D=bD

B=bxG B=XQZP XQ=C2 ZQ=xZQ

add. C=A + 3 C=XP XQ ZQ=Z2
Q B=XP B

mult. 2
C=C2 D=ZP ZQ A=A2 ZP =ZP E

A=xGA E=X2
P B=FH

add. 2

XQ=C − 8B F=Z2
P E=EXP

ZQ=4(A − 3xG + b) H=bZP F=XP F

add. 1

ZQ=A − B

add. 2

E=E + B − 3F

add. 3

XQ=XQ − 4D

XQ=A + B XP =A − 8B

C=C + 3D ZP =4ZP

A=E + 3F

several independent field multiplication operations, and each
addition set is composed by field additions/subtractions and
multiplications with small constants.

A. General Purpose Processing on GPUs

Tesla is a typical architecture of a GPU which consists
of several general purpose scalar processors grouped in
multiprocessor cores that allows for general purpose pro-
cessing [9]. Furthermore, NVIDIA Compute Unified Device
Architecture (CUDA) allows programmers to easily program
NVIDIA GPUs for general purpose processing.

In order to exploit the parallel computation capabilities of
GPUs, CUDA provides different units of parallelism. The
smallest unit is the thread, each multiprocessor core is able
to run up to 32 simultaneous threads, which have their own
register file. A group of threads that run simultaneously
in a multiprocessor core is called warp, and the way the
threads in a warp are executed obeys a SIMD flow. The
threads are organized in a higher level parallelism abstraction
unit called block. Different blocks are independent and
can run in parallel by using the several multiprocessor
cores. A group of blocks that is executed in parallel in
the existent multiprocessor cores is called a grid. The way
a sequential algorithm can be parallelized in threads and
blocks depends on the multiprocessor local resources (shared
memory, cache, registers availability) and on the processing
dependencies.

In each multiprocessor there is a 16 Kbytes shared mem-
ory, and a 8 Kbytes symbols cache that can be used for read
only data (constants). Despite possible conflicts between
different threads, the memory inside a multiprocessor can
be accessed in the same amount of time a register can.
There is also a global memory, where the initialization data
is written by the GPU host. The global memory has a higher
accessing latency (40 to 60 times higher than the shared
memory latency [10]), thus its utilization and accessing
patterns should be judiciously set to avoid long stall periods
by a multiprocessor.

Each scalar processor has pipelined floating point adders
and multipliers, which can be used for integer arithmetic.
With CUDA a 24-bit multiplication is performed in the same

time than other 32-bit integer operations, such as addition.
A 32-bit integer multiplication is 4 times slower. Moreover,
it is not possible to obtain the 16 most significant bits of
a 24-bit multiplication, only the 32 least significant bits are
available.

B. Parallel Algorithm

Let us assume that the GPU inputs and outputs are in RNS
format, and that input data is already in the Montgomery
domain. These assumptions are supported on the fact that
the computational demanding core of the algorithm is in the
loop for computing the resulting x coordinate. A general EC
standardized by NIST is considered for a prime number p
with 224 bits, where a = −3 [5].

Regarding the proposed schedule, for each EC point
multiplication 11 variables are required to store intermediate
data. To perform modular operations among the RNS chan-
nels, the complete precision of a multiplication has to be
available in order to perform reduction. Hence, since we
can only obtain a 32-bit result from a multiplication we
must use input operands of 16-bits. Thus, each RNS channel
can compute 16-bit arithmetic modulo a basis element of
the form 2k − c, with k = 16 and c ≥ 0. The required
number of RNS channels depends on the range to represent
a field element. The number of EC point multiplications
performed in parallel in each multiprocessor depends on the
available memory required to efficiently store intermediate
data and constants. Several variables have to be loaded and
stored in each EC point multiplication steps for each RNS
channel. Thus, with these extensive memory transactions,
global memory should only be used to store the input data
and the final results. Hence, the number of multiplications
handled by each multiprocessor is constrained by the size
of the shared memory.

The proposed algorithm is supported on the RNS Mont-
gomery Multiplication introduced in section III. In this
algorithm, we store the projective coordinates of the input
point in global memory, and consider the scalar a constant
stored in constant memory.

The dynamic range considered in this algorithm only
supports the computation of a set of multiplications and a set
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Algorithm 2 Alternative reduction algorithm
Require: z′ = z′H216 + z′L , m, c.
Ensure: z = z′ mod m.

1: while z′ > 2m − 1 do
2: z′ = cz′H + z′L;
3: end while
4: z = min(z′, z′ − m);
5: return z

of additions in Table I, prior to a reduction or, in other words
prior to a base extension. Considering a higher dynamic
range M to support, e.g., a complete iteration of the loop,
would result in a high M/p ratio, thus reduced performance
in the base extension method. We allow an offset in the
base extension from Bn to B̃n [3]. Considering the results
in [2] that compare the Shenoy et. al. and Kawamura et. al.
methods on a GPU to perform the base extension from B̃n

to Bn, we follow the former one (based on (5)) on our first
approach because it achieves better performance.

Since the multiplications in the set are independent
they can be computed simultaneously, and the result µ ={

Mi mod m̃i, M̃i mod mi, Mi mod me, M̃i mod me

}

is computed only once and shared by the different running
multiplications threads. The result µ can be computed every
time it is needed, or a look-up table can be used.

Let us find the required dynamic range to compute any set
of multiplications followed by a set of additions in Table I.
As explained in section III, the maximum value of an output,
in the base extension method, is smaller than u = (n+2)N ,
where n is the number of channels and N = p, with p the
prime that defines the underlying field GF (p). We also know
that the EC parameter b < N , and xG < N . Performing
an analysis on Table I, the required dynamic range has its
lower bounds in ZQ (initialization step, add. 2), bounded by
4(u+4N), or in XP (loop step, add. 4) bounded by 9u. By
using u = (n+2)N , we get that 9u > 4(u+4N) for n > 1.
Since a minimum n = 14 is required to represent N in 16-
bit channels, the precision is bounded by 9u. Considering
that the multiplication inputs are bounded by 9u, setting
M > (9(n + 2))2N will bound the multiplication output
(addition input) to u = (n + 2)N , which is the bound from
where we depart. The condition M > (9(n + 2))2N results
in n = 15.

The reduction operation over the RNS channels using the
C ’%’ operation is known to be very demanding in the GPU
platforms. Since a basis element has the form m = 216 − c,
when we compute an operation we get a result z′ = z′H216+
z′L, and we want to obtain z = z′ mod m. This operation
can be accomplished recurring to Algorithm 2. Note that the
step 4 of Algorithm 2 returns the correct result since we are
considering unsigned arithmetic. The maximum number of
iterations in the loop is constrained by the maximum value
of c. In the adopted basis, for computing (m − 1)2 only

Algorithm 3 EC point mult., loop k computation (n = 15).

Threads involved Computation for thread i

1 to n zi = −xiyiri mod mi

Synchronization

1 to n ξ̃zi =

(∣∣∣∣
n∑

j=1

zjMj

∣∣∣∣
m̃i

si + ξ̃xi ξ̃yi

)
ti

1 ze =

(∣∣∣∣
n∑

j=1

zjMj

∣∣∣∣
me

ne + xeye

)
|M |−1

me

1 αz =

(∣∣∣∣
n∑

j=1

ξ̃zj M̃j

∣∣∣∣
me

− ze

)
∣∣M̃

∣∣−1

me

1 Compute set add. k operations mod me

Synchronization

1 to n zi =

∣∣∣∣
n∑

j=1

ξ̃zj M̃j − αzM̃

∣∣∣∣
mi

1 to n Compute set add. k operations mod [mi/m̃i]

up to 2 iterations are required. This bounds the required
number of iterations to reduce after a multiplication, which
avoids the evaluation of loop conditions. Following the same
idea, for an addition z = (x + y) mod m we can compute
only z = min(x + y, x + y −m) and for a subtraction z =
(x−y) mod m we can compute z = min(x−y, x−y+m).
The computation of the minimum corresponds to only one
GPU instruction, and allows to avoid conditions that can
potentially create divergent sections of the program, thus
serialization of the computation.

In the RNS Montgomery Multiplication (section III), there
are several constants employed. These constants can be more
efficiently applied if merged into only one. These changes
allow to save memory and computation resources. The
following summarizes the constants merging and required
changes in the RNS Montgomery Multiplication:

• New constant ri = |niMi|−1
mi

;

• New constant si =
∣∣∣∣ñi

∣∣∣M̃i

∣∣∣
−2

m̃i

∣∣∣∣
m̃i

;

• New constant ti =
∣∣∣∣|M |−1

m̃i

∣∣∣M̃i

∣∣∣
m̃i

∣∣∣∣
m̃i

;

• Remove constants |ni|−1
mi

, |Mi|−1
mi

,
∣∣∣M̃i

∣∣∣
−1

m̃i

, and |M |−1
m̃i

;

• The operands x̃ in the basis B̃n are stored as ξ̃x =
x̃

∣∣∣M̃i

∣∣∣
−1

m̃i

. Note that the results of this basis are not

needed to retrieve the final results, thus the algorithm
output remains in the same format.

The proposed algorithm is presented in Algorithm 3, where
X and Y are any loop input of a multiplication set in Table I,
and Z is an output. Since we are also interested in low la-
tency, an EC point multiplication is accomplished in a single
block of threads, which runs in a single multiprocessor. The
block has associated n threads, and each thread has one
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correspondent element of Bn (mi) and B̃n (m̃i). There is
one thread that is associated with an element me = 2k, being
the thread responsible for computing (5) and the required
operations mod me. Each thread performs arithmetic mod
an element of the bases Bn and B̃n.

The Kawamura et. al method for computing α in (3) can
be used instead of the Shenoy et. al method by computing (7)
as explained in Section II-B. In this paper we have to choose
r = 16. We have to compute the lower bound for β from
the approximation error given by ∆ = n(ε+ δ), where n is
the number of channels and:

ε = max
(

2r − k

2r

)
, δ = max

(
2r−q − 1

k

)
. (12)

with k any element of Bn or B̃n, and q the number of bits
that we truncate in the approximation. Then we choose a
value β such that ∆ ≤ β < 1 and we must assure X <
(1 − β)M̃ , where X is the multiplication result bounded
by X < (n + 2)N , as previously pointed. In order to have
as small as possible dynamic ranges we are interested in
small β. Choosing q = 9, we get ∆ = 0.063, and we can
choose β = ∆. Since (1 − β) > 1/2 and we already set
M > (9(n+2))2N , the condition X < (1−β)M̃ hold. We
can define a constant Φ = +2rβ, and we can compute:

Γ =
n∑

i=1

trunc(ξi) + Φ, (13)

After computing Γ we can obtain α = Γ/2r, which corre-
spond to a 16-bit right shift. With this method we avoid the
computations over the basis me and α is obtained as:

αz =

(
n∑

i=1

ξ̃zi + Φ

)
/216. (14)

We get rid of the computation over the extra moduli me,
significantly reducing the size of the divergent computation
section.

V. EXPERIMENTAL EVALUATION

In this subsection we discuss the implementation and
summarize the results for the proposed algorithm. Relative
assessment is also presented by considering related art.

A. Implementation and Experimental Results

Table II presents a summary for the obtained latency
results. The proposed Algorithm 3 without look-up tables for
the result µ suggests a latency of 263.4 ms for the complete
point multiplication regardingless the data transfers. We also
exploited the effect of getting the required constants from
shared memory, copying them at a first moment, from the
constant memory, since shared memory allows up to 16
simultaneous accesses while constant memory only allows
1. However, the results of this modification did not show
fruitful, since the latency was 0.5% higher (264.8 ms) as
Table II suggests.

Table II
DIFFERENT VERSIONS’ LATENCY SUMMARY.

Description Latency[ms]

constant mem. 263.4
shared mem. 264.8

µ look-up computing (shared mem.) 97.7
µ look-up precomputing (const. mem.) 112.0
optimized reduction method (Version S) 24.3

uses Kawamura et. al. method (Version K) 28.4

A table look-up for the results µ is possible for Algo-
rithm 3, since for n = 15 we require 960 bytes (2n(n + 1)
look-up entries) to store the table, which fit both shared or
constant memory. We evaluated the look-up solution with
the look-up table stored in shared memory, computed at
the beginning, and a pre-computed table loaded in constant
memory. The obtained latency is 97.7 ms for the shared
memory look-up approach, and 112.0 ms (15% higher) for
the constant memory look-up as Table II suggests. These
results suggest that the look-up is a good option, and also
that the memory conflicts accessing constant memory begin
to have a significant impact while the latency is decreasing.

Introducing the optimized reduction method and merged
constants, the proposed Algorithm 3 provides a latency
of 24.3 ms as shown in Table II. The Kawamura et. al
method [7] (version K) did not result in the latency fig-
ure improvement, since one EC point multiplication takes
28.4 ms to perform, approximately 17% higher than the
version supported in the Shenoy et. al. method [6] (version
S) (see Table II). The fact that the insertion of the Kawamura
et. al. method do not result in lower latency is not an
expected result, since the computation in the divergent part
was substantially reduced without affecting the other parts.
This result should be related with conflicts assessing the
shared memory banks.

Another important metric for the EC point multiplication
is the throughput. For an EC point multiplication we are
using 15 threads corresponding to the 15 RNS channels.
The CUDA framework allows for up to 512 threads per
multiprocessor, thus we can perform more than one EC point
multiplication per block, as long as we have enough shared
memory. The different multiplications performed within the
block can share the same constants, including the look-up
tables. Regarding the shared memory constraint, we are able
to run up to 20 EC point multiplication within the same
block, which corresponds to 300 threads. Figure 1 depicts
the latency behavior while the number of multiplications per
block is increased. We compare the Version S (Shenoy et. al.
method) and Version K (Kawamura et. al. method) methods
since they present very close latency values for only one
EC point multiplication. As explained, we would expect
a better performance for version K, which did not occur
for only one EC point multiplication. However, as Figure 1
suggests, the version K performance is better for more than
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Figure 1. Latency for a different number of multiplications per block.
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Figure 2. Version S latency vs. the number of blocks.

7 simultaneous EC point multiplications. This result suggest
that, despite the version K is not able to provide lower
latency than version S, it can provide higher throughput.
The reason for the version K optimizations to pay off for
a number of EC point multiplications bigger than 7 can
be related with simultaneous computation of the divergent
section of the code by the different EC point multiplications.
Thus, for more multiplications, more advantage can be taken
from the shortened divergent section.

We can expand our throughput also by taking advantage
of the 30 existent multiprocessors in the employed GPU.
In other words, we can use more than 1 block. Figure 2
shows the version S latency while expanding the number
of blocks, for different number of EC point multiplications
per block. From Figure 2 we observe the development of a
gap at the 30 block reference while increasing the number of
threads per block. The number of multiprocessors is 30, thus
this gap is related with the ability of the compiler to assign
different blocks to be computed simultaneously in the same
multiprocessor. While the number of multiplications per

block increases, the multiprocessors start being loaded with a
larger amount of computation demands, hence the compiler
starts splitting different blocks in sets of 30, computed in
series by the 30 multiprocessors, and the gap increases.

Figure 3 shows the version K latency and the throughput
behavior for different combinations in the number of blocks
and multiplications per block. From Figure 3 we can confirm
the existence of the gap at the 30 blocks mark in version
K. Another result of Figure 3 is that it is not worthwhile
to use more than 30 blocks to achieve higher throughputs,
especially for a large number of multiplications per block.
The obtained results suggest a maximum throughput of 8730
op/s for the version S, and 9990 op/s for the version K.
Version K can compute 600 EC point multiplications in 60.3
ms.

All these results do not consider data transfers since the
data transfer latency is negligible in the overall latency
measurements. In our measurements the data transfer delay
is at most 0.19% of the computation latency.

B. Related Art Comparison

The comparison with the related art, namely the exper-
imental results, is not straightforward since different GPU
platforms are employed, each one with different architectural
and performance characteristics.

In [2] different approaches are proposed and compared
to compute asymmetric cryptography, namely RSA and EC
cryptography on a Nvidia 8800GTS GPU. For EC point
multiplication, the authors only present results for a method
based on schoolbook-type multiplication with reduction
modulo a Mersenne number. Due to the lack of inherent
parallelism in this method, an EC point multiplication is
performed in only one thread, and the number of threads per
block is limited to 36, due to shared memory restrictions.
The authors’ implementation suggest a latency of 305 ms
and a throughput of 1412.6 operations/s.

In [11] EC point multiplication is evaluated on a GPU
for integer factorization. In this work, the authors use Mont-
gomery representation for integers and set a multiprocessor
as an 8-way array capable of simultaneously computing 8
field operations. Authors extrapolated a throughput figure
that is about 2.14 times higher than the proposal in [2].
The authors do not present results for the latency of an EC
point multiplication.

In [10] is evaluated a C++ library (PACE) to support
modular arithmetic on an Nvidia 9800GX2 GPU. Using
this library, the authors present results for an EC point
multiplication. The Montgomery representation of integers
is used to perform multi-precision arithmetic using the
Finely Integrated Operand Scanning (FIOS) [8]. For 192-bit
precision, results suggest a throughput of 1972 operations/s.

Table III summarizes the related art performance figures
compared with the work herein proposed. We also present
results for our best implementation running on an NVIDIA
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Figure 3. Version K latency and throughput vs. different combinations of blocks and multiplications per block.

Table III
RELATED ART COMPARISON FOR 224-BIT EC POINT MULTIPLICATION.

Ref Platform Lat.[ms] T.put [op/s] Observations
[2] 8800 GTS 305 1412.6
[11] 8800 GTS - 3019 ECM results
[10] 9800 GX2 - 1972
Ours 8800 GTS 30.3 3138 12 mul./block
Ours 285 GTX 24.3 9990 20 mul./block

8800GTS GPU, in order to perform a fair comparison
with the other related art figures. Although, due to register
restrictions, we were not able to compute the optimized
implementation that run on the 285 GTX platform. For the
8800 GTS test we were only able to test an implementation
that run up to 12 multiplications per block. For this platform,
version K offers better performance both in latency and
throughput. In order to compare to the 9800 GX2 imple-
mentation, we have to bear in mind that this GPU has more
computational resources than the 8800 GTS one.

With our implementation, we were able to beat in an order
of magnitude the latency figures of the related art. We were
not able to achieve similar gains in the throughput metric.
However, we were able to provide 59% more throughput
than [10] with our 8800 GTS implementation. We provide
4% more throughput than the extrapolation described in [11]
and 122% more throughput than [2].

VI. CONCLUSIONS

In this paper we have proposed parallel algorithms for EC
point multiplication on a GPU device by adopting a new
RNS approach. This RNS approach achieves higher level of
parallelism, thus higher performance in the massive parallel
architecture of the GPU. We tested different implementation
versions, which tempt to exploit different properties of the
GPU platform.

Experimental results suggest a maximum throughput of
9990 EC point multiplication per second and minimum
latency of 24.3 ms, using an Nvidia 285 GTX GPU. We
run our implementation in a lower end GPU for related art
comparison, obtaining up to an order of magnitude reduction

in latency and up to 122% throughput improvement. The
gains of the proposed implementation result from the higher
utilization of the multiprocessor cores, by running up to
20 simultaneous EC point multiplications in each GPU
multiprocessor.
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