
1

A Residue Approach of the Finite Fields
Arithmetics

Jean Claude Bajard
LIRMM, CNRS UMR 5506, Univ. Montpellier 2

Abstract— Finite fields arithmetic is one of the chal-
lenges in current computer arithmetic. It occurs, in
particular, in cryptography where the needs increase
with the evolution of the technologies and also of
the attacks. Through our research, we have proposed
different systems based on residues representations.
Different kinds of finite fields are concerned with. For
each of them, some specificities of the representations
are exploited to ensure the efficiency, as well as for the
performances, than for the robustness to side channel
attacks. In this paper, we deal with three similar
approaches: the first one is dedicated to prime field
using residue number systems, a seconde one concerns
extension finite fields of characteristic two, the last
one discusses of medium characteristic finite fields.
The main interest of these systems is their inherent
modularity, well suited for circuit implementations.

I. INTRODUCTION TO RESIDUE SYSTEMS

The idea of residue representations comes from
the Chinese Remainder Theorem. A first approach
seems due to a chinese mathematician Sun Tsŭ
(around the fourth century). A generalization was
proposed by another chinese mathematician Shu
Shu Chiu Chang in 1247 [11]. Then, this notion was
introduced in computer science during the fifties
[13], [8], [14].

The main feature of these residue representations
is to define a number by its residues modulo a set
of relatively prime numbers. It is very similar to
the representation of a polynomial of degree n by
its values on n + 1 points. The translation from
a classical position representation (for example in
radix 2 or in radix 10) to a residue system is done
by the evaluation of the residues (equiv. to the

evaluation of the polynomial on each point). The
inverse translation is obtained by summations which
looks like the Lagrange interpolation formulas for
obtaining the coefficients of a polynomial. This
reconstruction from the residue can also be done,
using an intermediate representation called mixed
radix, which is, in this case, similar to the Newton
interpolation.

As number and polynomials are very close, a
common approach can be available for the different
kinds of finite fields (i.e. prime finite field, charac-
teristic two extensions, and medium characteristic
extensions). In this paper we present the adaptation
of the residues representations, focussing our study
on the finite field multiplication whose complexity
is critical in most applications, like in cryptography.
To end we give some examples where the properties
of residue representations are interesting.

II. FINITE FIELD ARITHMETICS

In this section, we introduce the notion of
Residue Systems for representing the elements of
a finite field. We consider two cases: prime fields
and finite extension fields.

A. Prime finite field

In a prime finite field GF (p), elements can be
considered as integer with an arithmetic modulo p.
We can deal with the classical Residue Number
Systems (RNS), which is an interesting way to
represent the integers.

A RNS is defined by a set of coprime num-
bers (m1,m2, . . . ,mn), called RNS base. Then,
a number X can be represented by its residues
(x1, x2, . . . , xn) with xi = |X|mi

= X mod mi.

2

We generally assume that 0 ≤ X < M =
∏n

i=1 mi.
In RNS, addition and multiplication are made mod-
ulo M independently on each residue, which means
that a full parallelism is possible. The elements of
the RNS base (m1, ...,mn) are chosen such that,
mi = 2s − ci where ci is very small, and s is
the number of bits of the basic cells. This property
ensures that the reduction part on each mi can be
neglected [6]. We consider two numbers A, and B
which are represented in a such system by:

Ars = (a1, . . . , an) and Brs = (b1, . . . , bn)

We note ⊗ the operation which could be an addition
or a multiplication, then R = A ⊗ B mod M can
be directly evaluated in the Residue System:

Rrs = (|a1 ⊗ b1|m1
, . . . , |an ⊗ bn|mn

) (1)

We can remark that, if A ⊗ B < M then Rrs

represents the exact result.
Now, if we consider the arithmetic in a finite field

GF (p) with p a prime number, then the Residue
System must satisfy p < M for representing the el-
ements of GF (p) and we must be able to perform a
multiplication: |A⊗B|p, which requires a modular
reduction introducing some other constraints. This
operation is presented in section III.

B. Finite extension field

An extension of a finite field is a field of the form
GF (pk) with p a prime and k an integer called
the degree. A such a field can be defined by I(X)
an irreducible GF (p) polynomial of degree k. In a
certain way, GF (pk) is seen as GF (p)(X)/I(X).
Hence, elements of GF (pk) can be considered as
GF (p) polynomials of degree lower than k.

1) In medium characteristic: When the charac-
teristic p is larger than k, we can consider a set of
k different points (e1, ..., ek) in GF (p) for defining
an element of GF (pk), we call this set the Lagrange
Base. Then, an element of GF (pk) which can be
defined as a polynomial of degree lower than k,
due to the Lagrange interpolation formulas, can
be represented by its values at these k points. An
element A(X) = α0 + α1X + ... + αk−1X

k−1

of GF (p) can be represented by (a1, ..., ak) with
ai = |A(ei)|p. We remark that:

ai = |A(ei)|p = |A(X) mod (X − ei)|p .

Thus, if we note, mi(X) = (X − ei), we obtain a
residue representation similar to RNS ([5]) with the
same operations properties.

For representing correctly the product of two
polynomials of degree k, we will see in section III
that we need to increase the Lagrange base to 2k
elements, for that reason the condition needed for
an arithmetic over GF (pk) is p > 2k to assume the
existence of these points.

2) In characteristic two: If the characteristic is
smaller than the degree: GF (pn) with p < n,
which is always the case in characteristic 2, then
we consider a set (m1(X), ...,mk(X)) of coprime
GF (p) polynomials which defines a residue base.
Thus, an element A(X) of GF (pn) is defined by
(a1, ..., ak) the set of its residues over the base:
ai(X) = |A(X)|mi(X).

If the mi(X) have the same degree d: k×d > n,
then the a(X) are GF (p) polynomials of degree
lower than d. We can remark that, sparser are the
mi(X), faster are the calculus. For this reason, we
had proposed in [4], to choose trinomials for the
residue base.

III. MODULAR MULTIPLICATION IN A RESIDUE
SYSTEM

We give in this section a way to perform the
arithmetic in a residue system over a finite field.
The addition is trivial in the case of the finite exten-
sion fields, we apply directly the residue addition.
For prime finite fields a reduction modp can be
needed, but it can be associated to one needed for
a product. Now, for the multiplication, a reduction
can be needed in most the cases. We present how
reduce the result of a product in a residue system.

A. Introduction to Montgomery reduction

The most used reduction algorithm is due to Peter
Montgomery [12]. It is currently considered as the
most efficient method. This approach evaluates first
a value q = −(Ap−1) mod (βs) (β is the radix

3

used or X in the polynomial case) such that (A +
qp)is a multiple of (βs). Then, it constructs R =
(A+qp)/βs, such that: R ≡ A×β−s (mod p) and
R < 2p if A < pβs. We note, Montg(A, βs, p) =
R.

This approach does not reduce exactly a value
A (or A(X)) modulo p (or I(X)), it computes
a reduced values which is equivalent to A × β−s

modulo p (or I(X)).
For avoiding an increase of the factor β−s, we

use the Montgomery notation: A′ = |A× βs|p, thus
Montg(A′ ×B′, βs, p) ≡ A×B × βs (mod p).

B. Montgomery reduction in a residue system

The Montgomery algorithm can be easily adapted
to residue systems [1]. In this case, it is necessary to
extend the base for two reasons: for representing the
exact value of the product, and to be able to multiply
by the inverse of the product of the elements of the
primary base.

The initial residue base is such that p < M
(or degree of M(X) ≥ k), and the auxiliary base
verifies p < M ′ (or degree of M ′(X) ≥ k), M ′

and M are coprimes.
The Montgomery multiplication algorithm

adapted to residue systems is decomposed in the
following steps, where B and C are two elements
of the finite field:

1) A← B×C (residue calculus in base M and
M ′),

2) q ← −(Ap−1) mod M (residue calculus in
base M),

3) Extension of the representation of q from the
base M to the base M ′,

4) R ← (A + qp) ×M−1 (residue calculus in
base M ′),

5) Extension of the representation of R from the
base M ′ to the base M .

The value A is represented in the two bases. This
suggests that the elements of the finite field B and
C must be defined in the two bases. Indeed, the
residue product of two elements must be performed
in the two bases before the modular reduction.

The extension of the representation comes from
the Lagrange interpolation.

If (a1, ..., ak) is the residue representation in the
base M , then

A =
k∑

i=1

∣∣∣∣∣ai ×
[

M

mi

]−1

mi

∣∣∣∣∣
mi

× M

mi
− αM

The factor α can be in certain cases neglected,
or computed [1]. If we note mi the elements of the
first base and m′

j these of the second, the extension
is obtained with:

A =

∣∣∣∣∣
k∑

i=1

∣∣∣∣∣ai ×
[

M

mi

]−1

mi

∣∣∣∣∣
mi

×
∣∣∣∣ M

mi

∣∣∣∣
m′

j

− α |M |m′
j

∣∣∣∣∣
m′

j

Another approach consists in the Newton inter-
polation where A is correctly reconstructed [4].

The residue multiplication is very efficient, for
a parallel implementation, its cost is the one of a
multiplication on a residue. The reduction part is
costly. It is quadratic for RNS [1], and Lagrange
representation [5]. We obtain a sub-quadratic com-
plexity, O(k1.6) for trinomials [4]. But, if we take
into account that, for base extensions, most of the
operations are multiplications by a constant, this
cost can be considerably smaller.

IV. APPLICATIONS TO CRYPTOGRAPHY

Many cryptographic protocols are based on math-
ematical results on algebraic curves. The most pop-
ular are based on the arithmetic over elliptic curves
and the pairings.

A. Elliptic curve formulas

An elliptic curve E(X) over a finite field GF (p)
(or GF (pk), p 6= 2, 3), can be defined by an equa-
tion of the following form Y 2Z = X3 + aXZ2 +
bZ3 (for p = 2, 3 there is equivalent equations).
We note that it exists different other curves or
formulations used in cryptography: Hessian, Jacobi
etc...[2].

A point P ∈ E(X) of order n defines an Abelean
subgroup. The addition of two points is given by
formulas obtained from the intersection of the curve
with the straight line defined by the added points
(or the tangent to the curve for a doubling). To

4

avoid any inversion, which is very costly, most
of the time we use homogeneous (or jacobean, or
chudnovski...) coordinates. Considering these pro-
jective coordinates, the addition formulas contain
only additions and multiplications over the finite
field. We have seen that, using a residue systems,
one operation in a finite field is done by a residue
operation followed by a reduction.

The operations in residue systems are very ef-
ficient except the reduction which is costly. It is
the opposite of the classical representation where
operations, like the multiplications, can be costly
but the reduction, for specific choices of p or I(X),
is particularly easy. This knowledge makes natural
the idea of modifying the formulas to minimize
the number of reductions, even if the number of
residue operations increase. Clearly, for a formula
like A×B +C ×D, only one reduction is needed.
This work which was done in [2], gives promising
results. It shows that for 512 bits values and more
over a prime field, Residues Systems are more
efficient than classical representations. This first
approach could probably be improved, and apply to
finite extension fields. Furthermore, a similar work
can be done for hyper-elliptic curves arithmetic.

B. Arithmetic of the pairings

Summarizing, we define a pairing as following:
G1 and G2 two additive abelean groups of cardinal
n and G3 a cyclic multiplicative group of cardinal
n. A pairing is a function e : G1 × G2 → G3

which verifies the following properties: bilinearity,
non-degeneracy. If we consider the pairings defined
on elliptic curves over a finite field GF (p), we
have more precisely G1 ⊂ E(GF (p)), G2 ⊂
E(GF (pk)) and G3 ⊂ GF (pk) with E an elliptic
curve and where k is the smallest integer such
that n divides pk − 1, k is called the embedded
degree of the curve. In [7] the authors propose
a taxonomy of the pairings over elliptic curves
with small embedding degree and large prime-order
subgroup which are the most implemented pairings
for cryptographic protocols [9] [10].

The construction of the pairing implies values of
GF (p) and GF (pk) into the formulas. An approach
with Residue Systems, similar to the one made

on ECC is interesting [3]. Most of the time for
algorithmic reasons, k is chosen as a small power
of 2 and 3. But with residue arithmetics, we can
pass over this restriction. With pairings, we can also
imagine two levels of residue systems: one over
GF (p) and one over GF (pk).

C. Conclusions

We have shown in this paper, that residue systems
are available for each kind of finite fields. The
arithmetic over these representations offers efficient
residue operations. The modular reduction which
is costly, is not necessary after each operation.
Hence, for applications using finite fields, we can
reformulate the different algebraic expressions used
for minimizing the number of reductions. Thus,
residue systems becomes efficient. Some results are
already available for elliptic curves defined over
prime finite fields. Further works must be done on
elliptic curves over finite extension fields and hyper-
elliptic curves.

REFERENCES

[1] Bajard, J.C., Didier, L.S., Kornerup, P.: Modular multi-
plication and base extension in residue number systems.
15th IEEE Symposium on Computer Arithmetic, 2001 Vail
Colorado USA pp. 59–65

[2] Bajard, J.C., Duquesne, S., Ercegovac M. and Meloni N.:
Residue systems efficiency for modular products summa-
tion: Application to Elliptic Curves Cryptography, in Ad-
vanced Signal Processing Algorithms, Architectures, and
Implementations XVI, SPIE 2006, San Diego, USA.

[3] Bajard, J.C. and ElMrabet N.: Pairing in cryptography:
an arithmetic point of view, Advanced Signal Processing
Algorithms, Architectures, and Implementations XVII, part
of the SPIE Optics & Photonics 2007 Symposium. August
2007 San Diego, USA.

[4] J.C. Bajard, L. Imbert, and G. A. Jullien: Parallel Mont-
gomery Multiplication in GF (2k) using Trinomial Residue
Arithmetic, 17th IEEE symposium on Computer Arithmetic,
2005, Cape Cod, MA, USA.pp. 164-171

[5] J.C. Bajard, L. Imbert et Ch. Negre, Arithmetic Operations
in Finite Fields of Medium Prime Characteristic Using
the Lagrange Representation, journal IEEE Transactions on
Computers, September 2006 (Vol. 55, No. 9) p p. 1167-1177

[6] Bajard, J.C., Meloni, N., Plantard, T.: Efficient RNS bases
for Cryptography, IMACS’05, Applied Mathematics and
Simulation, (2005).

[7] Freeman D., Sott M. and Teske E.: A Taxonomy of Pairing-
Friendly Elliptic Curves, http://eprint.iacr.org/2006/372.pdf

[8] Garner, H.L.: The residue number system, IRE Transactions
on Electronic Computers, EL 8:6 (1959) 140–147.

5

[9] Granger R., Page D., and Smart N.: High security pairing-
based cryptography revisited. In Algorithmic Number The-
ory Symposium ANTS-VII, volume 4076 of Lecture Notes
in Computer Science, pages 480?494. Springer, 2006.

[10] Koblitz N. and Menezes A.: Pairing-based cryptography
at high security levels. In Proceedings of Cryptography
and Coding: 10th IMA International Conference, volume
3796 of Lecture Notes in Computer Science, pages 13?36.
Springer, 2005.

[11] Knuth, D.: Seminumerical Algorithms. The Art of Com-
puter Programming, vol. 2, Addison-Wesley (1981).

[12] Montgomery, P.L.: Modular multiplication without trial
division, Math. Comp. 44:170 (1985) 519–521.

[13] Svoboda, A. and Valach, M.: Operational Circuits, Stroje
na Zpracovani Informaci, Sbornik III, Nakl. CSAV, Prague,
1955, pp.247-295.

[14] Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its
Applications to Computer Technology, McGraw-Hill (1967).

