
© The Author 2011. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxr119

RNS-Based Elliptic Curve Point
Multiplication for Massive

Parallel Architectures

Samuel Antão
1,∗

, Jean-Claude Bajard
2

and Leonel Sousa
3

1Instituto Superior Técnico/INESC-ID, Technical University of Lisbon, Lisbon, Portugal
2Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie, Paris, France
3Instituto Superior Técnico/INESC-ID, Technical University of Lisbon, Lisbon, Portugal

∗Corresponding author: sfan@sips.inesc-id.pt

Acceleration of cryptographic applications on massive parallel computing platforms, such as Graphic
Processing Units (GPUs), becomes a real challenge concerning practical implementations. In this
paper, we propose a parallel algorithm for Elliptic Curve (EC) point multiplication in order to
compute EC cryptography on these platforms. The proposed approach relies on the usage of the
Residue Number System (RNS) to extract parallelism on high-precision integer arithmetic. Results
suggest a maximum throughput of 9827 EC multiplications per second and minimum latency of
29.2 ms for a 224-bit underlying field, in a commercial Nvidia 285 GTX GPU. Performances up
to an order of magnitude better in latency and 122% in throughput are achieved regarding other
approaches reported in the related art. An experimental analysis of the scalability, based on OpenCL
descriptions of the proposed algorithms, suggest that further advantage can be obtained from the
proposed RNS approach for GPUs and EC curves supported by underlying finite fields of smaller

size, regarding implementations on general purpose multi-cores.

Keywords: residue number system; elliptic curve; cryptography; GPU

Received 24 May 2011; revised 19 October 2011
Handling editor: Albert Levi

1. INTRODUCTION

The recent developments on computing architectures suggest
that computing devices tend to contain an increasing number
of simpler cores as a way to boost the computational power
of such parallel devices. However, these developments demand
an extra effort to design efficient and scalable algorithms to
exploit the parallel capabilities of the computing platforms.
Introducing a controlled additional penalty may result in
enhanced parallelization solutions that take advantage of the
existing massive multi-core platform’s capabilities.

Examples of massive parallel computing devices are
Graphical Processing Units (GPUs). GPUs have been
increasingly used as a powerful accelerator in several
high computational demanding applications [1]. The huge
computational power of a GPU allied with its low cost, mainly
because of mass production for the gaming market, turn the
GPUs interesting for General Purpose Processing (GPGPU) [1].
Applications that take advantage of the GPU computing power

can be found in different fields, such as physics [2, 3],
biology [4], cryptography [5, 6], and of course image and video
processing and coding.

The general purpose Central Processing Units (CPUs), which
are present in every single desktop or laptop, nowadays
tend to contain increasingly more cores, although less
numerous and individually more complex than the GPU’s
cores. Nevertheless, the evolution of GPUs and CPUs tends to
approach both solutions to the same path, hence the constraints
and performance guidelines for both devices tend to be
common.

The different applications may have different properties
that turn them more or less suitable to be implemented on
massive parallel platforms, namely: (i) low data dependencies,
allowing to compute in parallel instances over independent data
sets; (ii) regular description, allowing for the identification of
different single computation flows to enhance the parallelization
and scalability for data sets with different sizes; (iii) low

The Computer Journal, 2011

 The Computer Journal Advance Access published November 30, 2011
 at B

IU
S Jussieu on January 4, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

2 S. Antão et al.

number of memory accesses, taking advantage of the huge
processing power reducing stalling effects waiting for data from
memory; and (iv) high computation over small input/output
data, reducing the impact of the communication delays in
the overall performance. Considering the above properties,
despite the different application fields, implementations on
massive parallel platforms have similar challenges that demand
designing/redesigning algorithms to use extensive parallel
processing on independent data sets.

In this paper, we get through the efficient implementation of
asymmetric cryptography supported on Elliptic Curves (ECs)
on massive parallel computation devices. EC cryptography
arose as a promising competitor to the widely used Rivest–
Shamir–Adleman (RSA), due to the reduced key size required
to provide the same security. The algorithms used in EC
cryptography do not meet all the requirements for a direct and
efficient implementation on highly parallel computing devices.
In particular, the EC point multiplication with a scalar (private
key), which is the most computational demanding operation in
EC cryptography, represents a demanding computation which
input is a small data set represented by three integers of up to
521 bits, consisting of a private and a public key [7].Yet, the EC
point multiplication is constructed on several successive steps
where the scalar is browsed, and there are data dependencies
between the successive steps.

In order to overcome the inefficiency due to the data depen-
dencies and compute in parallel the EC point multiplication,
we propose in this paper to use the Residue Number System
(RNS) approach [8]. RNS is an alternative representation of
integer numbers in several smaller residues for an established
basis.With the operands sharing a common RNS representation,
the computation can be performed in parallel on each residue
(channel). Hence, RNS representation is an attractive approach
to enhance the parallelization of algorithms. We combine the
RNS representation with the Montgomery ladder algorithm for
EC point multiplication in order to obtain high performance
implementations of EC cryptography supported on massive par-
allel computation devices. We propose parallel algorithms and
evaluate their efficiency on both GPUs and multi-core CPUs,
in order to conclude about the best practices and generalize the
results for other parallel architectures.

This paper is organized as follows. In Section 2, we provide
background on the operations required by EC cryptography
supported on the underlying field GF(p), and give an overview
of the RNS arithmetic. Section 3 describes in detail the
Montgomery method to efficiently perform multi-precision
modular multiplication with RNS representation. Section 4
proposes the RNS-based algorithms and presents the main
aspects for implementing them in a GPU architecture with
CUDA. Section 5 discusses the obtained experimental results
and accesses the obtained performance figures regarding the
related art. In Section 5.3, based on an OpenCL implementation,
the results are generalized for different architectures and
ECs supported on differently sized underlying fields. Finally,

Algorithm 1 Montgomery Ladder Algorithm
Require: EC point G ∈ E(a, b, p), k-bit scalar s.
Ensure: P = sG ∈ E(a, b, p).

1: P = G, Q = 2G;
2: for l = k − 2 down to 0 do
3: if sl = 1 then
4: P = P + Q, Q = 2Q;
5: else
6: Q = P + Q, P = 2P ;
7: end if
8: end for

Section 6 draws some conclusions from the developed work
and obtained results.

2. EC AND RNS BACKGROUND

This section provides the background on EC over GF(p) and
RNS arithmetic required for the rest of this paper.

2.1. EC cryptography over GF(p)

An EC E(a, b, p) over the finite field GF(p), with p a prime,
is a set composed by a point at infinity O and the points
Pi = (xi, yi) ∈ GF(p) × GF(p) that verify the following
equation:

y2
i = x3

i + axi + b, a, b ∈ GF(p). (1)

In order to obey smoothness conditions, the parameters a and b

verify −(4a3 + 27b2) �= 0 mod p. By establishing the addition
and doubling operation over the EC points, and by applying it
recursively, it is possible to obtain the multiplication of a point
P by a scalar s as Q = P +P +· · ·+P = sP . It is known to be
computationally hard to compute s knowing Q and P (Elliptic
Curve Discrete Logarithm Problem) [9].

The EC point addition and doubling are performed with
operations over the underlying field GF(p) applied to the
points’ coordinates. It is known that it is possible to obtain the
xR coordinate of a point addition R = P + Q, knowing the x

coordinates of P , Q and P − Q. This observation motivated
the proposal of a double and add algorithm that does not
require the y coordinate, known as the Montgomery Ladder for
EC [10]. Algorithm 1 presents the Montgomery Ladder method
for obtaining P = sG, where s is a scalar with size k (the most
significant bit of s, sk−1 = 1).

The operations over the coordinates, used to obtain the
EC point operations, require modular inversion, which is a
computationally demanding operation over a finite field. In
order to avoid a large number of inversions, the traditional
(affine) representation of the coordinates is replaced by
a projective representation. The projective representation
introduces an extra coordinate Z. In order to transpose between

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 3

the standard projective (X) and the affine (x) representations of
a coordinate, the equivalence x ⇔ X/Z holds. The projective
versions of point addition and doubling to support Algorithm 1
are the following (for sl = 0) [10]:

X2P = (X2
P − aZ2

P)2 − 8bXP Z3
P ,

Z2P = 4ZP (X3
P + aXP Z2

P + bZ3
P);

XP+Q = (XP XQ − aZP ZQ)2 − 4bZP ZQ(XP ZQ + XQZP),

ZP+Q = xG(XP ZQ − XQZP)2. (2)

For sl = 1, the formula used to double P is used to double
Q instead. Note that the expressions in (2) do not require
the y coordinate of an EC point. At the end of Algorithm 1,
the affine x and y coordinates can be obtained from the
projective ones (XP ,ZP) and (XQ,ZQ), which involves a
modular inversion [10]:

xP = XP /ZP , xQ = XQ/ZQ,

yP = −2b + (a + xGxP)(xG + xP) − xQ(xG − xP)2

2yG

.
(3)

As it can be concluded fromAlgorithm 1, each iteration of the
loop has data dependencies from the previous iteration, which
is an extra difficulty toward the design of a parallel algorithm.
Moreover, the sizes of the prime p for standardized EC are 192,
224, 256, 384 and 521 bits [7]. Thus, the operations over the
coordinates would require a datapath of the same size. In order
to adapt the coordinates’ size to the processing cores’ datapath
(usually 32-bit or 64-bit width) and expose more parallelism, we
propose to use an RNS representation of the field elements. This
representation allows parallelizing the field operations among
the available processing cores, providing the required degree of
parallelization toward an efficient implementation.

2.2. RNS overview

The RNS is based on the Chinese Remainder Theorem (CRT),
which states that, for a given basis Bn consisting of n

relatively prime integers (m1, m2, . . . , mn), there is a unique
representation for the integer X < M in the form

xj = X mod mj, 1 < j < n, M =
n∏

i=1

mi.

For two integers X and Y represented in RNS with the same
basis, the operation Z = X ⊗ Y mod M can be performed
directly on the channels by computing zj = xj ⊗ yj mod mj ,
where ⊗ represents addition, subtraction or multiplication. As
suggested above, the advantage of using the RNS representation
is the possibility of splitting the computation in n parallel
flows (henceforth called channels), each one operating modulo
a different mi . The conversion from binary to the RNS
representation for an integer X can be accomplished by

computing the residues xj directly and in parallel. For the
opposite conversion, there are two methods that can be used: the
Mixed Radix System (MRS), which uses sequential processing,
and the CRT, which allows parallelizing the computation [11].

The MRS method employs an intermediate mixed radix
representation during the conversion. The binary representation
X can be obtained from the mixed radix digits x ′

i as follows:

X = x ′
1 + x ′

2m1 + x ′
3m1m2 + · · · + x ′

nm1 · · · mn−1. (4)

The mixed radix digits are obtained from the RNS
representation of X using a recursive method [12], which is
not suitable for parallel implementations [6]. Since this method
does not suggest being worthwhile for GPU architectures, we
do not consider this method in the present work.

The alternative method relies on the CRT definition for
computing the binary representation:

X =
n∑

i=1

ξiMi − αM, α < n, ξi =
∣∣∣∣ xi

Mi

∣∣∣∣
mi

, (5)

where Mi = M/mi , | · |mi
denotes an operation modulo mi , and

|1/Mi |mi
is the multiplicative inverse of Mi modulo mi . In (5),

the subtraction of αM allows obtaining the required reduction
modulo M . Two main methods have been used to compute the
constant α. An extra modulus me can be defined and all the
operations performed not only on the basis Bn, but also on this
extra modulus (Shenoy and Kumaresan [13]). Hence, the RNS
representation of the integer X is (x1, x2, . . . , xn, xe). Applying
the reduction modulo me to (5), it is obtained that

xe =
∣∣∣∣∣

n∑
i=1

ξiMi

∣∣∣∣∣
me

− |αM|me
. (6)

Rewriting (6), α can be obtained as follows:

|α|me
=

∣∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

ξiMi − xe

∣∣∣∣∣
me

|M−1|me

∣∣∣∣∣∣
me

. (7)

Since α < n, choosing me ≥ n results in α = |α|me
.

Another possible method to compute α involves a successive
fixed point approximation approach (Kawamura et al. [14]).
Knowing that X < M or X/M < 1, this method observes
that (5) can be rewritten as

n∑
i=1

ξi

mi

= α + X

M
⇔ α =

⌊
n∑

i=1

ξi

mi

⌋
. (8)

Since (8) requires costly divisions by mi , an approximation (α̂)
to this expression is suggested:

α̂ =
⌊

n∑
i=1

truncq(ξi)

2r
+ β

⌋
, (9)

where r is such that 2r−1 < mi ≤ 2r , and truncq(ξi) sets the r−q

least significant bits of ξi to zero, with q < r . The parameter

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

4 S. Antão et al.

β is a corrective term that should be carefully chosen such
that α = α̂. The authors state a set of inequalities that allow
choosing good values for β supported on the maximum initial
approximation errors, respectively:

ε = max
i

(
2r − mi

2r

)
, δ = max

i

(
ξi − trunc(ξi)

mi

)
. (10)

In [14] two Theorems are stated concerning the computation
of the value α̂ and its relationship with β and the errors stated
in (10). One of these Theorems refers to the computation of a
non-exact, although bounded, value of α̂ that allows a non-exact
RNS to binary conversion. The other Theorem refers to an exact
conversion, suggesting that if a value of β is chosen such that
0 ≤ n(ε + δ) ≤ β < 1 and 0 ≤ X < (1 − β)M , then α = α̂.

3. RNS MONTGOMERY MULTIPLICATION

In order to perform EC arithmetic with RNS, we should not
only provide a method to add and to multiply, but also to
reduce. The Montgomery Modular Multiplication is an efficient
method that allows replacing the reduction modulo an integer N

(usually a prime) by a reduction modulo R = 2k , which can be
very easily accomplished operating on the binary representation
of an integer [15]. This method evaluates Z̄ = (XY)R =
X̄ȲR−1 mod N , operating in a so-called Montgomery domain
for which a field element X is replaced by X̄ = XR mod N .

An RNS version of the Montgomery modular multiplication
algorithm can be designed [8]. The RNS version follows the
same concepts of the binary version. However, with the RNS
representation it is no longer easy to reduce modulo a power of
2. Instead, defining an RNS basis Bn with dynamic range M , it is
easy to reduce an element represented with the basis Bn modulo
the dynamic range M . It only requires reducing modulo mi in
each one of the RNS channels. Hence, in the RNS Montgomery
Multiplication version R = M , thus the following expression
is evaluated instead:

Z̄ = X̄ȲM−1 mod N. (11)

In order to make the RNS version to behave correctly, the
conditions M > N and gcd(M, N) = 1 must be verified.
One of the drawbacks of the RNS version is its impossibility to
represent M−1 in Bn. Therefore, it is required to set another basis
B̃n with dynamic range M̃ such that M̃ > M , gcd(M̃, M) = 1
and gcd(M̃, N) = 1 to evaluate (11).

With the modified Montgomery modular multiplication
algorithm we need to compute U = (T + QN)M−1, where
T = X̄Ȳ . It is easy to see that U ≡ X̄ȲM−1 mod N . As the
inverse of M cannot be defined in Bn, an extra RNS basis B̃n

is set, which will be used to compute U . The division by M is
accomplished by multiplying by its inverse, which maintains the
multiplication result bounded and avoids the reduction modulo
N . Hence, we must ensure that M|(T + QN) ⇔ T + QN ≡ 0

mod M . Therefore, we must set the value of Q such that the
aforementioned conditions are verified. To ensure this, we need
to compute Q in each RNS channel i for the basis Bn:

0 = ti + qini mod mi ⇔ qi = −ti |n−1
i |mi

mod mi. (12)

After computing the value of Q, we can use one of the
conversion methods based on the CRT referred to in Section 2.2
to convert the value of Q to the basis B̃n. In this basis, for each
RNS channel i we compute:

ũi = (t̃i + q̃i ñi)|M−1|m̃i
mod m̃i . (13)

Afterwards, we convert the result U from basis B̃n to basis
Bn (note that U < 2N , since T < MN , QN < MN

and N < M). While computing algorithms based on the
Montgomery multiplication, we can allow the intermediary
results to be not exactly reduced but bounded. Thus, setting M

such that M > 4N , considering Z = U and applying Z as input
in further multiplications, the multiplication result U ′, despite
not exactly reduced, will be correct modulo N and bounded,
since U ′ < [(2N)2 + MN]/M < 2MN/M = 2N shares the
same upper bound with U . Figure 1 depicts an overview of the
aforementioned described base extension method.

The conversion between bases, base extension, can be
achieved by applying any of the RNS to binary conversion
algorithms described in Section 2.2 modulo each of the new
basis moduli. In other words, n parallel instances of an RNS
to binary conversion algorithm are computed, each one over a
different RNS channel of the new basis. In the RNS version
of the Montgomery multiplication algorithm, the most costly
steps are precisely the conversion between bases, since all
the other steps correspond to independent operations in each
RNS channel. Addressing this problem, an offset during the
conversion of Q from Bn to B̃n can be allowed. As (5) suggests,
the conversion from an RNS basis implies the computation of
a constant α that multiplied by the dynamic range M corrects
an offset in the conversion to maintain the result bounded by
M . In [8] it is suggested to use the CRT conversion without
the correction term introduced by α during the first conversion

Basis Bn Basis B̃n

ti = |x̄iȳi|mi
t̃i = ˜̄xi ˜̄yi m̃i

qi = −ti n−1
i

mi mi

ũi = t̃i + q̃iñi M−1
m̃i m̃i

ui

FIGURE 1. Base extension method overview.

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 5

(Bn to B̃n). With this approach, after the conversion we obtain a
value of Q̂ = Q + αM that contains an offset. With this offset,
the value of U is given by

Û = (T + Q̂N)M−1 = (T + QN)M−1 + αN. (14)

Since α < n, Û < (n + 2)N . In order to feed this result
in subsequent multiplications, we must chose M such that
M > (n + 2)2N , since this condition complemented with the
condition QN < NM ensures that the multiplication result is

Û ′ < [((n + 2)N)2 + MN]/M + nN

< 2MN/M + nN = (n + 2)N. (15)

In summary, with this method the computation of α during one
conversion is avoided while keeping the multiplication result
bounded by an acceptable value (note that n << N).

4. THE EC PARALLEL ALGORITHMS

In this section, we propose parallel algorithms for EC point
multiplication supported onAlgorithm 1, based on the projective
representation of the EC coordinates, and by adopting RNS
arithmetic, as introduced in Section 2. We target and evaluate the
proposed algorithms for a particular Nvidia GPU (Nvidia GTX
285 GPU) platform and EC using the CUDA framework [16],
in order to identify the performance guidelines prior to the
generalization for any type of curve and parallel computing
device. For this particularization a general EC standardized by
NIST is considered for a prime number p with 224 bits, where
a = −3 [7]. Since it is a standard, using this curve may enhance
the inter-operability of the algorithms with other application
following the standard. Nevertheless, this standardized curve
was not chosen because of any performance issue, since the
adopted algorithms are able to offer the same performance for
other curve parameters, namely, other underlying finite fields.
Hence, the proposed algorithms suit the demands of industrial
or military users interested in more generic algorithms, generic
curves or generic underlying finite fields to enhance security or
due to patent issues [17]. The Algorithm 1 to multiply a point G

by the scalar s, can be split into two sections: the initialization
section and the loop controlled by the scalar. The initialization
computes P = G and Q = 2G, and each iteration of the main
loop computes the operations in (2). The schedule in Table 1 can
be adopted to perform each of the EC point multiplication’s loop
iterations; this schedule is only for sl = 0. The loop schedule
for sl = 1 can be obtained by commutating P and Q in the loop
section of Table 1. In Table 1 is also presented a schedule for the
initialization section of the algorithm. Note that the EC point
multiplication algorithm’s schedule (Montgomery Ladder) only
has two inputs: the EC parameter b and the x coordinate of
the input point G (xG). The scheduling is organized around
sets of multiplications and additions. Each multiplication set
is composed of several independent field multiplications, and

TABLE 1. Operations scheduling for the initialization and
for each iteration of the loop in the EC point multiplication
algorithm (for sl = 0).

Init. mult. 1 A = x2
G

B = bxG

add. C = A + 3

mult. 2 C = C2

A = xGA

add. 2 XQ = C − 8B

ZQ = 4(A − 3xG + b)

Loop mult. 1 A = XP ZQ

B = XQZP

C = XP XQ

D = ZP ZQ

E = X2
P

F = Z2
P

H = bZP

add. 1 ZQ = A − B

XQ = A + B

C = C + 3D

A = E + 3F

mult. 2 D = DXQ

XQ = C2

ZQ = Z2
Q

A = A2

B = FH

E = EXP

F = XP F

add. 2 G = E + B − 3F

mult. 3 D = bD

ZQ = xZQ

B = XP B

F = ZP G

add. 3 XQ = XQ − 4D

XP = A − 8B

ZP = 4F

each addition set is composed of field additions/subtractions
and multiplications by small constants.

The generic flow of the proposed parallel algorithms is
presented in Fig. 2. In step 1, n threads perform the required
EC arithmetic in the n channels determined by each of
the basis Bn and B̃n. The operations performed prior the
reduction will constrain the minimum number of RNS channels
(number of threads), since the operations will determine the
required dynamic range which must bound the precision of
the operations. Higher number of RNS channels will allow
for higher parallelization but will also increase the reduction
complexity, thus the best trade-off must be achieved. In this

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

6 S. Antão et al.

α

FIGURE 2. RNS-based algorithm flow for EC point multiplication.

paper, different operations are considered prior to the reduction,
namely the operations that compute a complete iteration of the
EC point multiplication algorithm’s loop (see type I algorithm
in Section 4.2), and the operations that compound a single
multiplication and addition set of each loop’s iteration (see type
II algorithm in Section 4.3). Also, in this step the reduction
is prepared by computing the value Q (see (12)) in basis Bn,
which is required for the following reduction steps. In the
step 2, the conversion of Q to Q̃ is accomplished. In this
conversion an offset is allowed as described in Section 3,
since it allows reducing the conversion complexity without a
significant penalty in increased precision. Hence, in step 2, the
result Û in (14) is also computed. Since during conversion the
results of all the RNS channels of the basis Bn are required,
a synchronization barrier is adopted before step 2. Step 3 is
responsible for computing the value α in (5), which is required
to correct the offset that occurs in the final conversion from B̃n

to Bn that will take place in step 4. Computing α is a single task
for a single thread that gathers information on Û from all RNS
channels as the methods to compute this constant in Section 2.2
suggest; thus a synchronization barrier is required prior to this
step. Step 4 converts Û in basis B̃n to basis Bn, removing the
offset quantified by α obtaining the final reduced result U .

In the following sections, we give insight into the GPU
parallel architecture that will be used for evaluating the proposed
algorithms, and describe these algorithms with details. Two
main algorithms are tested: a Type I algorithm, which requires
higher dynamic range (more RNS channels), and a Type II
algorithm, which demands lower dynamic range. As it will be
shown, the type II algorithm is much more efficient to perform
the EC point multiplication on GPUs than the type I algorithm.
Nevertheless, for the sake of completeness, we present both
types of algorithms and the respective experimental results,
discussing the advantages of the type II compared with the type
I algorithm.

4.1. General purpose processing on GPUs

Tesla is a typical architecture of a GPU that consists of several
general purpose scalar processors grouped in multiprocessor
cores that allows for general purpose processing [18]. Figure 3
depicts an overview of the Tesla architecture, adopted in the
modern NVIDIA GPUs. Furthermore, the NVIDIA Compute
Unified Device Architecture (CUDA) allows programmers to
easily develop applications for these devices.

In order to exploit data parallelism on GPUs, CUDA provides
different units of parallelism. The smallest unit is the thread,
and each multiprocessor is able to run up to 32 simultaneous
threads, which have their own register file. A group of threads
that run simultaneously in a multiprocessor is called a warp,
and the way the threads in a warp are executed obeys a SIMD
flow. Whenever there is divergence in the executed threads of a
warp, the execution is serialized as only one thread is executed
at a time. The threads are organized in a higher level parallelism
abstraction unit called a block. Different blocks are independent
and can run in parallel by using the several multiprocessors.
A group of blocks that is executed in parallel in the existent
multiprocessor cores is called a grid. The way a sequential
algorithm can be parallelized in threads and blocks mainly
depends on the multiprocessor local resources (shared memory,
cache, registers availability) and on the data dependencies.

In each multiprocessor there is a 16 kB shared memory,
and a 8 kB symbols cache that can be used for read only
data (constants). Despite possible conflicts between different
threads, the memory inside a multiprocessor is accessed in the
same amount of time as a register. There is also a global memory,
where the initialization data is written by the GPU host. The
global memory has a higher accessing latency (40–60 times
higher than the shared memory latency [19]), thus its utilization
and accessing patterns should be judiciously set to avoid long
stall periods by a multiprocessor.

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 7

FIGURE 3. Tesla architecture overview employed in the Nvidia GPUs.

Each scalar processor core has pipelined floating point adders
and multipliers, which can be used for integer arithmetic. With
CUDA a 24-bit multiplication is performed in the same time as
other 32-bit integer operations, such as addition.A 32-bit integer
multiplication is 4 times slower. Moreover, it is not possible to
obtain the 16 most significant bits of a 24-bit multiplication;
only the 32 least significant bits are available.

An alternative to the CUDA framework for programming
GPUs is the Open Computing Language (OpenCL) frame-
work [20]. OpenCL is a programming framework that allows
users to program once and execute across heterogeneous plat-
forms consisting not only of GPUs but also CPUs and other
accelerators [21]. OpenCL supports a language based on C++
for coding kernels (functions that execute on OpenCL devices),
and provides an Application Programming Interface (API)
recently standardized. Two main API layers are provided: (i) a
platform layer API for hardware abstraction that allows query-
ing, selecting and initializing computing devices, and also creat-
ing computing contexts and queues; (ii) a runtime API layer for
managing resources and executing computing kernels, as well
as for scheduling the execution on the available resources. It
provides on-line or off-line compilation and generates comput-
ing kernel executables. With OpenCL data is communicated
between the host and computing devices as a buffer object,
which is an unstructured buffer such as C++ arrays of scalars,
vectors or other user-defined structures (these data structures are
accessed in the kernel programs via pointers). The programming
of the kernels is made in the C++ programming language, with
well-defined numerical accuracy, and IEEE 754 rounding with
specified maximum error.

Several GPU and CPU providers developed support for
OpenCL implementations. E.g.: (i) Nvidia supports OpenCL on
the CUDA compliant GPU devices [22]; (ii) AMD developed
the ATIstream technology that allows running OpenCL
implementations on the ATI GPUs, as well as on the AMD
multi-core processors [23]; and (iii) Apple supports OpenCL

on the Mac platforms (both CPU and GPU) that natively
ships with the Mac OS X operating system. In comparison
with frameworks that target single devices (e.g. the CUDA
framework for NVIDIA GPUs), the flexible implementations
based on OpenCL may present some overhead due to the
management implied in handling such flexibility.

4.2. Type I algorithm

Let us assume that the GPU inputs and outputs are in the
RNS format. These assumptions are based on the fact that the
computational demanding core of the algorithm is in the loop
for computing the resulting X and Z projective coordinates.

Regarding the operation schedule in Table 1, for each
EC point multiplication 11 variables are required to store
intermediate data. To perform modular operations among the
RNS channels, a multiplication has to be performed with full
precision, in order to perform reduction. Hence, since we can
only obtain a 32-bit result from a multiplication, we must use
input operands of 16 bits. Thus, each RNS channel compute
16-bit arithmetic modulo a basis element of the form 2k − c,
with k = 16 and c ≥ 0. The required number of RNS channels
depends on the range to represent the field operations result.
The number of EC point multiplications performed in parallel in
each multiprocessor depends on the available memory required
to efficiently store intermediate data and constants. Several
variables have to be loaded and stored in each EC point
multiplication step for each RNS channel. Thus, with this
intensive memory usage, global memory should only be used to
store the input data and the final results. Hence, the number of
multiplications handled by each multiprocessor is constrained
by the size of the shared memory.

The type I algorithm is based on the RNS Montgomery
Multiplication introduced in Section 3. The projective
coordinates of the input point are stored in global memory, and
the scalar is stored in constant memory. The type I algorithm

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

8 S. Antão et al.

obtains the resulting projective coordinates XP , ZP , XQ and ZQ

of the complete loop in Table 1 prior to the reduction. Note that
for the type I algorithm the inputs are not in the Montgomery
domain. Hence, the unreduced results are then multiplied by
M mod N , using the method introduced in Section 3, in order
to obtain the partial reduced values. Multiplying by M mod N

allows canceling the factor M−1 mod N introduced by the
Montgomery multiplication method, thus the output remains
in the same domain as the inputs. Thereafter, for the type I
algorithm, the schedule in Table 1 is modified to the schedule
in Table 2. Considering the results in [6] that compare the
Shenoy et al. and Kawamura et al. methods for computing α

(see Section 2.2) on a GPU, in order to obtain the final results in
the basis Bn from the results in the basis B̃n, we follow the
former approach (based on (7)) because it allows achieving
better performance.

Let us find the required dynamic range to compute the Table 2
loop without having to reduce intermediary results mod M . As
explained in Section 3, the maximum value of an output, in the
base extension method, is smaller than u = (n + 2)N , where
n is the number of channels and N = p, with p the prime that
defines the underlying field GF(p). We also know that the EC
parameter b < N . Since Table 2 loop operations are equivalent
to (2), the maximum value of a projective coordinate prior to
the multiplication by M mod N is

[X2P]max < (8N + 16)u4,

[Z2P]max < (4N + 16)u4;
[XP+Q]max < (8N + 16)u4,

[ZP+Q]max < 4Nu4.

(16)

Considering the inequalities above, the maximum value we are
willing to reduce is upper bounded by (8N+16)u4(M mod N).
Therefore, recalling that during the reduction we are interested
in computing (14), we must ensure that M ≥ (8N + 16)u4,
since this condition allows bounding the result Û < ((8N +
16)u4(M mod N) + MN)/M + nN < (MN + MN)/M +
nN = (n + 2)N = u. We define a moduli set composed of
2n elements of the form 216 − ci , with ci an odd number, and
c1 = 1; and compose the bases Bn and B̃n of elements of this
moduli set assuring M < M̃ . The required number of elements
in order to satisfy M ≥ (8N + 16)u4 in each base was found
to be n = 72. The extra element used to compute (7) is 2k such
that 2k > n; note than any number 2k is relative prime to Bn

and B̃n.
The multiplication by M mod N and the following reduction

is accomplished simultaneously for all the unreduced results
XP , ZP , XQ and ZQ. Table 3 details the operations performed
in each step of the algorithm flow in Fig. 2 by each of n

threads. Since we are also interested in low latency, an EC
point multiplication is accomplished in a single block of threads,
which runs in a single multiprocessor, allowing for the threads to
cooperate. We refer to any of the unreduced results XP , ZP , XQ

and ZQ as V , and W = M mod N . Each element of Bn (mi) and

TABLE 2. Operations scheduling for the initialization and
for each iteration of the loop in the implemented EC point
multiplication type I algorithm (for sl = 0).

Init. mult. 1 A = x2
G

B = bxG

add. C = A + 3

mult. 2 C = C2

A = xGA

add. 2 XQ = C − 8B

ZQ = 4(A − 3xG + b)

XQ = XQ(M mod N)

ZQ = ZQ(M mod N)

reduce XQ, ZQ

Loop mult. 1 A = XP ZQ

B = XQZP

C = XP XQ

D = ZP ZQ

E = X2
P

F = Z2
P

H = bZP

add. 1 ZQ = A − B

XQ = A + B

C = C + 3D

A = E + 3F

mult. 2 D = DXQ

XQ = C2

ZQ = Z2
Q

A = A2

B = FH

E = EXP

F = XP F

add. 2 G = E + B − 3F

mult. 3 D = bD

ZQ = xZQ

B = XP B

F = ZP G

add. 3 XQ = XQ − 4D

XP = A − 8B

ZP = 4F

XP = XP (M mod N)

ZP = ZP (M mod N)

XQ = XQ(M mod N)

ZQ = ZQ(M mod N)

reduce XP , ZP , XQ, ZQ

B̃n (m̃i) is assigned to the thread i. There is one thread associated
with an element me = 2k , being the thread responsible for
computing (7) and the required operations mod me. Each thread
performs arithmetic mod an element of the bases Bn and B̃n.

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 9

TABLE 3. Type I algorithm’s steps for the thread i.

Step in Figure 2 Computation for thread i

Step 1 Initialization or loop operations in Table 2
(mod mi) and (mod m̃i)

vi = −wivi(ni)
−1
mi

|Mi |−1
mi

mod mi

Step 2 ṽi =
(∣∣∣∑n

j=1 vjMj

∣∣∣
m̃i

ñi + ṽi w̃i

)
|M|−1

m̃i

ãi = ṽi |M̃i |−1
m̃i

Step 3 Init. or loop operations in Table 2 (mod me)
ve =(∣∣∣∑n

j=1 vjMj

∣∣∣
me

ne + vewe

)
|M|−1

me

αW =
(∣∣∣∑n

j=1 ãj M̃j

∣∣∣
me

− ve

)
|M̃|−1

me

Step 4 vi =
∣∣∣∑n

j=1 ãj M̃j − αW M̃

∣∣∣
mi

The steps presented in Table 3 uses the following precomputed
constants:

(i) N mod [Bn,me,B̃n]; N−1 mod Bn;
(ii) M−1

i mod Bn; M̃−1
i mod B̃n; M−1 mod [me,B̃n];

(iii) M̃−1 mod me; W = (M mod N) mod [Bn,me,B̃n].

Since the steps presented in Table 3 are computed to
obtain four reduced results simultaneously, the result μ =
{Mi mod m̃j , M̃i mod mj, Mi mod me, M̃i mod me} is com-
puted only once and shared by the four different running reduc-
tions in each iteration. The latency value for the type I algorithm
would not be practical in real applications (latency > 1 s), as
observed from Table 6. The main drawbacks of the type I algo-
rithm are related with the number of synchronizations, the num-
ber and size of the divergent code sections (computed in series
by a single thread), and with the complexity of computing the
result μ every iteration needed. Synchronization barriers and
divergence cannot be removed once (7) has to be computed
before the next dependent steps. The computation of μ exhibits
quadratic complexity, and thus trading the required dynamic
range (RNS channels) by the number of calls of the base exten-
sion algorithm may improve the performance. Replacing this
computation by table look-ups will not be efficient since we
would require 2n(n + 1) entries: for n = 72 and 16-bit entries,
this corresponds to 21,024 bytes, which exceeds the shared
memory capacity.

4.3. Type II algorithm

Once the potential inefficiencies of the type I algorithm are
identified, a type II algorithm is proposed. These inefficiencies
are mainly due to the large M/N ratio in the type I algorithm,
which is caused by a higher dynamic range M , resulting

in reduced performance in the basis extension method. The
dynamic range considered in type II algorithm only supports
the computation of a set of multiplications and a set of additions
in Table 1 prior to a reduction or, in other words, prior to a base
extension. Considering the modifications introduced by the type
II algorithm, the schedule in Table 1 is updated to the schedule
in Table 4.

Let us find the required dynamic range to compute any set
of multiplications followed by a set of additions in Table 4. As
explained in Section 3, the maximum value of the output, in the
base extension method, is smaller than u = (n + 2)N , where
n is the number of channels and N = p, with p the prime
that defines the underlying field GF(p). We also know that the
EC parameter b < N , and xG < N . Performing an analysis
on Table 4, similar to the one presented in (16), the required
dynamic range has its lower bounds in ZQ (initialization step,
add. 2), bounded by 4(u + 4N), or in XP (loop step, add.
4) bounded by 9u. By using u = (n + 2)N , we get that
9u > 4(u + 4N) for n > 1. Since a minimum n = 14 is
required to represent N in 16-bit channels, the precision is
bounded by 9u. Performing an analysis as the one presented
in (15), considering that the multiplication inputs are bounded
by 9u, setting M > (9u)2/N = (9(n + 2))2N will bound the
multiplication output (addition input) to

Û < [(9u)2 + MN]/M + nN <

< [MN + MN]/M + nN = (n + 2)N = u, (17)

which is the bound from where we depart. For a 224-bit prime N,
the condition M > (9(n+2))2N results in n = 15, considering
that the moduli that compound the RNS bases are obtained as
in the type I algorithm, i.e. are of the form 2k − c [24].

The type II algorithm also follows the flow in Fig. 2 and
its steps. The steps detailed in Table 5 already contain the
optimizations to the type II algorithm, where X and Y are
any input of a multiplication set in the initialization or loop in
Table 4, and Z is an output. Similarly to type I algorithm, each
thread has one correspondent element of Bn (mi) and B̃n (m̃i).
There is a thread that is associated with an element me = 2k ,
being the thread responsible for computing α in (7) and all the
required operations mod me, assuming a divergent behavior for
this purpose.

In the RNS Montgomery Multiplication (Section 3), there
are several constants employed. These constants can be more
efficiently applied if merged into only one [25]. These changes
allow saving memory and computation resources. The following
summarizes the merging of constants and the required changes
in the RNS Montgomery Multiplication:

(i) New constant ri = −|niMi |−1
mi

;

(ii) New constant si = ∣∣ñi |M̃i |−2
m̃i

∣∣
m̃i

;

(iii) New constant ti = ∣∣|M|−1
m̃i

|M̃i |m̃i

∣∣
m̃i

;

(iv) Remove constants |ni |−1
mi

, |Mi |−1
mi

, |M̃i |−1
m̃i

, and |M|−1
m̃i

;

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

10 S. Antão et al.

TABLE 4. Operations scheduling for the initialization and
for each iteration of the loop in the implemented EC point
multiplication type II algorithm (for sl = 0).

Inputs xG and b in Montgomery domain.

Init. mult. 1 A = x2
G

B = bxG

reduce A, B

add. C = A + 3

mult. 2 C = C2

A = xGA

reduce C, A

add. 2 XQ = C − 8B

ZQ = 4(A − 3xG + b)

Loop mult. 1 A = XP ZQ

B = XQZP

C = XP XQ

D = ZP ZQ

E = X2
P

F = Z2
P

H = bZP

reduce A, B, C, D, E, F, H

add. 1 ZQ = A − B

XQ = A + B

C = C + 3D

A = E + 3F

mult. 2 D = DXQ

XQ = C2

ZQ = Z2
Q

A = A2

B = FH

E = EXP

F = XP F

reduce D, XQ, ZQ, A, B, E, F

add. 2 G = E + B − 3F

mult. 3 D = bD

ZQ = xZQ

B = XP B

F = ZP G

reduce D, ZQ, B, F

add. 3 XQ = XQ − 4D

XP = A − 8B

ZP = 4F

(v) The operands x̃ in the basis B̃n are stored as ξ̃x =
|x̃|M̃i |−1

m̃i
|m̃i

. Note that the results of this basis are not
needed to retrieve the final results, thus the algorithm
output remains in the same format.

The latency for the optimized algorithm was measured and
is 263.0 ms (see Table 6) for the complete point multiplication,

TABLE 5. Type II algorithm’s steps for the thread i.

Step in Figure 2 Computation for thread i

Step 1 zi = xiyiri mod mi

Step 2 ξ̃zi =
(∣∣∣∑n

j=1 zjMj

∣∣∣
m̃i

si + ξ̃xi ξ̃yi

)
ti

Step 3 ze =
(∣∣∣∑n

j=1 zjMj

∣∣∣
me

ne + xeye

)
|M|−1

me

αz =
(∣∣∣∑n

j=1 ξ̃zj M̃j

∣∣∣
me

− ze

)
|M̃|−1

me

Compute set add. k operations mod me

Step 4 zi =
∣∣∣∑n

j=1 ξ̃zj M̃j − αzM̃

∣∣∣
mi

Compute set add. k operations mod [mi/m̃i]

TABLE 6. Total latency of EC point multiplication considering
different approaches.

Type Description Latency[ms]

I – 1665.9
II Constant mem. 263.0

Shared mem. 266.1
μ look-up computing (shared mem.) 97.0
μ look-up precomputing (const. mem.) 111.5
Optimized reduction method (Version S) 33.4
Uses Kawamura method (Version K) 29.2

regardless of the data transfers. We also exploited the effect of
getting the constants from shared memory, copying them at a
first moment, from the constant memory since shared memory
allows up to 16 simultaneous accesses while constant memory
allows only 1. However, the results of this modification did not
prove fruitful, since the latency was 1.2% higher (266.1 ms) as
Table 6 suggests.

With the reduction of the RNS precision regarding the type
I algorithm, a table look-up for the results μ is now possible,
since for n = 15 only 960 bytes are required. We implemented
two versions of the algorithm that use the table look-up stored in
shared memory, computed at the beginning, and a pre-computed
table loaded in constant memory. The obtained latency is
97.0 ms for the shared memory look-up approach, and 111.5 ms
(15% higher) for the constant memory look-up as Table 6
suggests. These results suggest that the look-up is a good option,
and also that the memory conflicts in accessing the constant
memory start having a significant impact while the latency is
decreasing.

The reduction operation over the RNS channels using the
C ‘%’ operation is known to be very demanding in the GPU
platforms. Since a basis element has the form m = 216 − c,
when we compute an operation we get a result z′ = z′

H 216 +z′
L,

and we want to obtain z = z′ mod m. This operation can be

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 11

Algorithm 2 Alternative reduction algorithm

Require: z′ = z′
H 216 + z′

L , m, c.
Ensure: z = z′ mod m.

1: while z′ > 2m − 1 do
2: z′ = cz′

H + z′
L;

3: end while
4: z = min(z′, z′ − m);
5: return z

accomplished recurring to Algorithm 2. Note that the step 4 of
Algorithm 2 returns the correct result since we are considering
unsigned arithmetic. The maximum number of iterations in
the loop is constrained by the maximum value of c. In the
adopted basis, for computing (m − 1)2 only up to 2 iterations
are required. This bounds the required number of iterations to
reduce after a multiplication, which avoids the evaluation of
loop conditions. Following the same idea, for an addition z =
(x+y) mod m we can compute only z = min(x+y, x+y−m)

and for a subtraction z = (x − y) mod m we can compute
z = min(x − y, x − y + m). The computation of the minimum
corresponds to only one GPU instruction, and allows avoiding
conditions that can potentially create divergent sections of
the program, thus serializing the computation. Employing this
optimized reduction technique, the latency of the EC point
multiplication algorithm is reduced to 33.4 ms (2.9 times lower
than the previous best implementation) as Table 6 suggests.

The Kawamura et al. method for computing α in (5) can be
used instead of the Shenoy et al. method by computing (9) as
explained in Section 2.2. In the current GPU implementation
we have to choose the RNS channel’s precision r = 16. For
this alternative conversion method, we must set the dynamic
range M̃ of the basis B̃n as M̃(1 − β) > Û , where Û is the
multiplication result prior to the conversion from B̃n to Bn that
is known to be bounded by Û < (n + 2)N . Therefore, we have
to compute the lower bound for β since we are not interested
in increasing the dynamic range M̃ for representing Û due to
this conversion. The bounds for β are � ≤ β < 1, where � is
obtained from the approximation errors given by � = n(ε +δ),
and n is the number of channels (see (10)). Since the moduli
of the basis B̃n are obtained as m̃i = 2r − c̃i , the minimum
moduli magnitude is obtained when c̃i is maximum. We denote
the modulus with higher c̃i as k. Hence, the value of ε is given by

ε = max

(
2r − m̃i

2r

)
= 2r − k

2r
. (18)

Following the same rational, the value of δ is obtained as

δ = max
i

(
ξi − truncq(ξi)

mi

)
≤ 2r−q − 1

k
. (19)

Recall that the truncq() function truncates the q most significant
bits, and hence the value of δ is upper bounded when the
numerator has only the r − q less significant bits set.

Since we are interested in low values of β, we can assign

β = � = n

k
[2r + 2r−q − k − 1]. (20)

The value of β decreases while q increases, although the
required precision for computing α with this method also
increases with q. Hence, we shall obtain the minimum value
of q that allows complying M̃(1 − β) > Û without increasing
the number of channels (n = 15) given by M > (9(n + 2))2N .

Let us compute the value of q for this purpose. By knowing
that M̃ > M > (9(n + 2))2N , Û > (n + 2)N , and Û <

(1 − β)M̃ , the following inequalities comply

(n + 2)N < (1 − β)(9(n + 2))2N ⇔
⇔ β < 1 − 1

81(n + 2)
. (21)

We find that (21) provides an upper bound for β in order to
maintain the number of channels n (for this particular case
n = 15). With this upper bound (20) can be used to seek the
minimum value of q that allows β to comply (21). For this
particular case (n = 15 and r = 16) q = 5. Once the value of q

is set, the value of α in the step 3 of Table 5 can be obtained as

α =
⌊∑n

i=1(truncq(ξ̃i)/2r−q) + �
⌋

2q
, (22)

where � = �2qβ�. Note that the computation is obtained only
with shift operations and an accumulation with maximum value
n(2q − 1). With this method we get rid of all the computation
over the extra modulus me, significantly reducing the size of
the divergent computation section. For computing α with the
Kawamura et al. method, the latency is shortened by 12%
compared with the Shenoy et al. method (see Table 6).

5. EXPERIMENTAL EVALUATION

In this subsection, we discuss the presented GPU imple-
mentations and summarize the results for the proposed algo-
rithms. Relative assessment is also presented by considering
the related art.

5.1. Implementation and experimental results

Table 6 presents a summary for the obtained latency results
for both proposed algorithms, and the different approaches for
the type II algorithm. These results were obtained using the
NVIDIA 285 GTX GPU and the release 3.1 of the CUDA tools.
Table 7 summarizes the experimental setup employed in the
measurements. Note that the stated latency results do not include
the processing time that would be required for converting the
inputs and outputs to and from RNS, respectively. Concerning
the binary to RNS (forward) conversion of the inputs, each
thread i involved in an EC point multiplication has to compute

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

12 S. Antão et al.

TABLE 7. Experimental setup summary for the CUDA
measurements.

Implementation Characteristics

GPU NVIDIA GeForce GTX 285
30 multiprocessors (1476 MHz)
1 GB video memory (1242 MHz)
Nvidia CUDA version 3.1
Nvidia CUDA-OpenCL version 3.1

Host Intel Core 2 Quad Q9550 (2.83 GHz)
2 × 2 GB Memory (DDR2 1066)
PCI Express 16x

gi = |G|mi
and g̃i = |G|m̃i

. Given that G can be split into n

w-bit words ςj such that

G =
n∑

j=1

2(j−1)wςj , (23)

the result gi can be obtained as

gi =
∣∣∣∣∣∣

n∑
j=1

ςj τj

∣∣∣∣∣∣
mi

, (24)

where the constant τj = |2(j−1)w|mi
. Regarding that g̃i can be

obtained with the same method expressed in (24), and since
this method has less complexity than, for example, step 2 of
Table 5, we can estimate that the forward conversion impact
in the performance is less than that for a base extension.
Thus, since a base extension is performed for each bit of
the scalar involved in the EC point multiplication, for a 224-
bit scalar the forward conversion penalty is <1/224 = 0.44%.
Concerning the RNS to binary (reverse) conversion, the final
result X can be obtained from the residues x̃i by using (5).
With this purpose, each thread i compute ξ̃i M̃i which can be
accomplished with n − 1 multiply-and-add operations with w-
bit entries. The value −αM̃ can be computed with n multiply-
and-add operations with w-bit entries. Finally, an accumulation
of all the values ξ̃i M̃i and −αM̃ retrieves the final result.
To compute the final accumulation, each thread i computes
a digit with weight 2(i−1)w with n additions and, finally, a
single thread propagates the data that may be overlapping
in the digits of different weights obtaining the final result
with n − 1 additions. Hence, the final accumulation latency
corresponds to 2n − 1 additions. Therefore, the computation
of ξ̃i M̃i and the final accumulation have less complexity than
step 4 and step 2 in Table 5, respectively. Summarizing, the
reverse conversion is faster than a single base extension. Given
the aforementioned considerations, the impact of both forward
and reverse conversions are expected to be negligible in the
performance (<1%), and hence we do not consider them in the
experimental results presented in this paper.

As suggested in Table 6, the type I algorithm results
in a huge latency penalty due to the large dynamic range
employed in this approach, increasing the complexity of the base
extension procedure, which is not compensated by the increased
parallelism.

The proposed type II algorithm without look-up tables for
the result μ suggests a latency of 263.0 ms for the complete
point multiplication regardless of the data transfers. The effect
of getting the required constants from shared memory, copying
them at a first moment resulted in 1.2% higher (266.1 ms)
latency, despite the shared memory allows up to 16 simultaneous
accesses while the constant memory only allows 1.

A table look-up for the results μ is possible for the type II
algorithm, since for n = 15 we require 960 bytes (2n(n + 1)

look-up entries) to store the table, which fit both shared and
constant memory. The solutions with the look-up table stored in
shared memory, computed at the beginning, and a precomputed
table loaded in the constant memory were evaluated. A latency
of 97.0 ms is obtained for the shared memory look-up approach,
and 111.5 ms (15% higher) for the constant memory look-up.
These results suggest that the look-up is a good option, and also
that the memory conflicts accessing constant memory begin to
have a significant impact when the latency decreases.

With the introduction of the optimized reduction method
and by merging constants, the proposed type II algorithm
provides a latency of 33.4 ms as shown in Table 6. The
Kawamura method [14] (Version K) resulted in a latency figure
improvement, since one EC point multiplication takes 29.2 ms
to be computed, ∼12.6% lower than the version supported in
the Shenoy method [13] (Version S) (see Table 6). The fact that
the insertion of the Kawamura method result in lower latency,
contradicts some former performance results concerning these
two methods on GPUs [6, 26]. In [6] these two methods are
evaluated in the base extension method, but separately from
the application itself, in this case the RSA exponentiation. The
results in [6] suggest that the Shenoy method is able to provide
higher throughput, which can be measured as:

Throughput = # simultaneous EC point mults.

Latency
. (25)

In [26] the base extension method is also evaluated for the
EC point multiplication. The results in [26] suggested that
the Shenoy method provides lower latency but the Kawamura
method provides higher throughput. Although results in [26]
are for the same application herein considered, they use
a previous version of CUDA. Unfortunately, the CUDA
profiling capabilities did not allow us to infer about the
reason for the contradiction in the results between [26] and
this work. Given that the correctness of the program is
verified in this work and in [26], the reason for the observed
deviation is due to the CUDA programming framework
and run-time environment improvements/modifications, thus
proprietary information would be required to verify this issue.

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 13

0 2 4 6 8 10 12 14 16 18 20
25

30

35

40

45

50

55

60

65

70

75

Multiplications

La
te

nc
y

[m
s]

Shenoy et. al.
Kawamura et. al.

FIGURE 4. Latency for a different number of multiplications
per block.

For an EC point multiplication we are using 15 threads
corresponding to the 15 RNS channels. The CUDA framework
allows for up to 512 threads per multiprocessor, thus we can
perform more than one EC point multiplication per block,
as long as we have enough shared memory. The different
multiplications performed within the block can share the same
constants, including the look-up tables. Regarding the shared
memory constraint, we are able to run up to 20 EC point
multiplications, which correspond to 300 threads per block.
Figure 4 depicts the latency behavior while the number of
multiplications per block is increasing. We compare the Version
S (Shenoy method) andVersion K (Kawamura method) methods
since they present very close latency values for only one
EC point multiplication. As explained, we expect a better
performance for Version K. Actually, due to its expected
efficiency, Version K motivated the design of cryptographic
processors such as the one in [25]. As Fig. 4 suggests, the
Version K performance is better than Version S for any number
of simultaneous EC point multiplications. This result suggests
that, despite the results in [6, 26], the Version K is able
to provide both lower latency and higher throughput than
Version S. Moreover, the difference between the latencies of
both versions tends to increase with the number of simultaneous
EC point multiplications (4.2 ms for 1 EC point multiplication
and 8.8 ms for 20 simultaneous EC point multiplications), which
suggest that the advantage of the Version K will be even more
pronounced regarding the throughput metric.

We can expand our throughput also by taking advantage of
the 30 existent multiprocessors in the employed GPU by using
several blocks of threads. Figure 5 shows the Version S latency
while expanding the number of blocks, for different number of
EC point multiplications per block. Figure 5 shows the shape of a
step with the discontinuity at the 30-block mark while increasing
the number of threads per block. The number of multiprocessors

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

Blocks

La
te

nc
y

[m
s]

1 Mult/Block
3 Mult/Block
6 Mult/Block
12 Mult/Block

FIGURE 5. Version S latency vs. the number of blocks.

in the GPU is 30, thus this step is related with the ability
of the compiler to assign different blocks to be computed
simultaneously in the same multiprocessor. While the number
of multiplications per block increases, the multiprocessors start
being loaded with a larger amount of computation demands,
hence the compiler starts splitting different blocks in sets of
30, computed in series by the 30 multiprocessors, and the gap
increases.

Figure 6 shows the Version K latency and the throughput
behavior for different combinations of the number of blocks
and multiplications per block. From Fig. 6, we can confirm
the existence of the step at the 30 blocks. Another result
of Fig. 6 is that it is not worthwhile to use more than 30
blocks to achieve higher throughputs, especially for a large
number of multiplications per block. The obtained results
suggest a maximum throughput of 8579 operations (op)/s for
the Version S, and 9827 op/s for the Version K. Version K can
compute 600 EC point multiplications in 61.3 ms.

Despite the presented results referring to a 224-bit prime
field, the proposed approach can be applied to any finite field
given that the computational resources are not a limitation. The
limitation for large finite fields arises from the available shared
memory which, for the Version K implementation, must store
twelve 2n variables (see Table 4) and the value μ introduced in
Section 4.2 that has 2n2 entries; the μ is the main contributor
for the memory limitation since it grows quadratically with the
number of channels. Since the channel width w = 16 bits,
which corresponds to 2 bytes, the total memory required for
a given n is 4(n2 + 12n) bytes. Regarding the 16 385 bytes of
shared memory available in the GPU in Table 7, the maximum
number of channels that can be supported is n = 58. Therefore,
we estimate that the maximum dynamic range M must have
<928 bits. Given that M > (9(n+ 2))2N (see Section 4.3), the
maximum size of the prime N that defines the underlying finite
field should be 908 bits.

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

14 S. Antão et al.

0
10

20
30

40
50

60

0

5

10

15

20
20

40

60

80

100

120

140

blocks

multiplications per block

La
te

nc
y

[m
s]

Latency

0
10

20
30

40
50

60

0

5

10

15

20
0

2000

4000

6000

8000

10000

blocks

multiplications per block

T
hr

ou
gh

pu
t [

op
/s

]

Throughput

(a) (b)

FIGURE 6. Version K latency and throughput vs. different combinations of blocks and multiplications per block.

In the obtained experimental results, the latency of the data
transfers between the GPU and the host CPU and vice versa
were not considered because it is negligible with regard to the
processing latency in the GPU. Experimental results suggest
that, for the experimental setup in Table 7, the latency of the
data transfers ranges from 0.07%, for the configuration with 1
processing block and 1 EC point multiplication per block, to
at most 0.19%, for the configuration with 60 processing blocks
and 20 EC point multiplications per block.

5.2. Related art

The comparison with the related art, namely the experimental
results, is not straightforward since different GPU platforms
are employed, with different architectural characteristics and
performances. Table 8 summarizes the related art performance
figures compared with the work herein proposed. In this
table we also included the results of the Version K algorithm
for an OpenCL implementation to allow a performance
comparison between the CUDA framework and the OpenCL
implementation. This comparison suggests that similar latency

TABLE 8. Related art comparison for 224-bit EC point multiplica-
tion.

References Platform Lat. (ms) T.put (op/s) Observations

[6] 8800 GTS 305 1413
[27] 8800 GTS – 3019 ECM results
[19] 9800 GX2 – 1972
Ours 8800 GTS 30.3 3138 12 mul./block
[28] 295 GTX – 5895 ECM results
Ours 285 GTX 29.2 9827 20 mul./block
Ours 285 GTX 29.2 7474 OpenCL impl.

values can be obtained but the throughput values are 1.3 times
higher for the CUDA implementation. The decrease in the
throughput figure for the OpenCL implementation results from
overheads due to the enhanced flexibility of the implementation.
It becomes more pronounced while the number of concurrent
EC point multiplications in the GPU is increased.

In [6] different approaches are proposed and compared
to compute asymmetric cryptography, namely RSA and EC
cryptography on a Nvidia 8800GTS GPU. For EC point
multiplication, the authors only present results for a method
based on the schoolbook-type multiplication with reduction
modulo a Mersenne number. Due to the lack of inherent
parallelism in this method, an EC point multiplication is
performed in only one thread, and the number of threads per
block is limited to 36, due to shared memory restrictions. The
authors’ implementation suggests a latency of 305 ms and a
throughput of 1413 operations/s.

In [27] EC point multiplication is evaluated on a GPU
for integer factorization (ECM). In this work, the authors
use Montgomery representation for integers and set a
multiprocessor as an 8-way array capable of simultaneously
computing 8 field operations.Authors extrapolated a throughput
figure that is about 2.14 times higher than the one in [6];
however, results for the latency of an EC point multiplication
are not provided.

A C++ library (PACE) that supports modular arithmetic on an
Nvidia 9800GX2 GPU is evaluated in [19]. Using this library,
the authors present results for an EC point multiplication.
The Montgomery representation of integers is used to perform
multi-precision arithmetic using the Finely Integrated Operand
Scanning (FIOS) [15]. For 224-bit precision, results suggest a
throughput of 1972 op/s.

In [28] results for EC-based integer factorization suggest a
throughput of 5895 op/s for a 192-bit Edward Elliptic Curve and

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 15

an Nvidia 295 GTX GPU. The authors employ the Montgomery
modular multiplication using a schoolbook algorithm and for
the EC point multiplication the scalar is browsed in a double-
and -add algorithm using a windowed integer recoding method.

Table 8 also present results for our best implementation
running on an NVIDIA 8800GTS GPU, in order to perform a
fair comparison with the other related art figures. However, due
to register restrictions, it is not possible to apply the optimized
implementation that runs on the 285 GTX platform. For the
8800 GTS, the implementation runs up to 12 multiplications
per block. For this platform, Version K also offers better
performance both in latency and throughput. Comparing the
9800 GX2 implementation with the 8800 GTS one, we have to
bear in mind that the GPU of the former has more computational
resources than the latter.

The proposed implementation surpasses in an order of
magnitude the latency figures of the related art. The proposed
implementation provides 59% more throughput than [19] with
our 8800 GTS implementation. Moreover, 4% more throughput
is achieved than the extrapolation described in [27] and 122%
more throughput than [6]. Also, despite using a higher-end
GPU, a smaller curve and an EC that requires less modular
multiplications to perform the EC point multiplication, the
authors in [28] report a throughput figure that is about 1.6 times
lower than the one of the implementation herein proposed with
the 285 GTX GPU.

Table 9 presents results reported in the related art concerning
platforms other than GPUs, with standard ECs otherwise
specified. These results were gathered after a thorough review
of the related art and are, to the best of our knowledge,
the most competitive in terms of latency and throughput
for EC point multiplication. The purpose of this table is
neither to directly compare the presented results nor relatively
assess the herein achieved ones, since different platforms

have different computational capabilities and different aims.
While ASIC implementations target both low power and static
computation figures, General Purpose (GP) processors target
an inexpensive and flexible implementation. FPGAs target a
compromise between the two previous implementations. Also,
this table does not introduce considerations on the circuit area
and power efficiency of the implementations, which results
in the ASIC implementations to suggest lower performance
regarding other platforms such as FPGAs. Moreover, not only
the devices that support the implementations but also the
algorithmic approaches vary. Regarding the EC arithmetic,
several EC types can be used (e.g. Edward and Montgomery
ECs [29, 30]) that are known to reduce the number of the
required field operations, namely the field multiplications.
Furthermore, different projective coordinates can be used to
represent EC points that change the algorithmic demands in
terms of field operations. Also, other algorithms to perform EC
point multiplication can be used instead of the Montgomery
Ladder, such as algorithms that involve recoding of the
scalar in order to reduce the number of point additions
when a double and add approach is used [29]. Despite the
possible approaches, the work proposed herein focus is on
the acceleration/parallelization of the field operations using
RNS, addressing the Montgomery Ladder algorithm as an
example to obtain the EC point multiplication over standard
curves, which has the advantage of being resistant against
time attacks. Thus, the same concepts and methodology herein
presented can be easily applied to any other EC algorithm.
The work in [31] proposes an RNS implementation of the EC
point multiplication that supports the finite field multiplication
in the Horner scheme. Still, it is not possible to relatively
assess the results in [31] because they refer to an FPGA
platform. Considering the aforementioned reasons, these results
are intended only to provide a state of the art overview just to

TABLE 9. Related art comparison for EC point multiplication supported in platforms other than GPUs.

References Platform Lat. (ms) T.put (op/s) p size (bits) Details

[32] ASIC 0.095 10 526 256 0.18 μm CMOS technology
[33] ASIC 1.01 990 256 0.13 μm CMOS technology
[31] FPGA 4.08 302 224 Xilinx Virtex, RNS approach using Horner multiplication scheme
[34] FPGA 0.365 37 700 224 Xilinx Virtex-4, employing embedded DSPs
[29] GP proc. 0.089 22 472 256 2.6 GHz AMD Opt., Twisted Edward EC
[29] GP proc. 0.105 19 048 256 2.6 GHz AMD Opt., Weierstrass EC, Jacobian coord.
[30] GP proc. 0.128 15 600 255 2.4 GHz AMD Opt., Montgomery EC
[35] Cell 0.218 27 474 255 Sony Playstation 3, Montgomery EC
[36] DSP 1.69 592 224 Texas Instruments C6416 DSP
[37] μ cont. 11.25 89 160 416 MHz Imote 2, TinyECC library
[38] GP proc. 0.717 5574 224 3.0 GHz AMD Ph. II X4, Crypto++ Library 5.6.1
[39] GP proc. 0.275 14 509 224 3.0 GHz AMD Ph. II X4, MIRACL Library 5.4.2
[40] GP proc. 0.714 5600 224 3.2 GHz AMD Ph. II X4, eBACS result (OpenSSL based)
– GP proc. 1.093 3703 224 3.0 GHz AMD Ph. II X4, Alg. 1 using GMP Library 5.0.1

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

16 S. Antão et al.

allow an easier contextualization of the work herein proposed
and its performance metrics.

Regarding Table 9, we can identify implementations
supported in platforms other than GPUs that offer better
latency figures than the proposed GPU implementation. This
is due to the more complex datapath in these implementations,
which are likely to suit in a more efficient way the
requirements of the irregular EC point multiplication’s flow.
Concerning the throughput metric, some implementations beat
the GPU’s figures. Note that we estimate the throughput by
assuming that the multi-core processors are able to provide
an EC point multiplication in the same latency for each
one of their single cores. Filtering the non-library-based
implementations supported on general purpose platforms, we
identify better throughputs in [29] (22 472 op/s) and in [35]
(27 474 op/s). Nevertheless, we have to bear in mind that
these implementations support special ECs (Montgomery and
Twisted Edward curves) that allow a reduction of the field
operations required to accomplish an EC point multiplication,
while the results for the work herein proposed were obtained
using standardized ECs [7].Also, the implementation in [29] not
only is obtained from a highly optimized assembly description,
but also does not have the advantages of the Montgomery
Ladder concerning side channel and time attacks. Instead, a
scalar recoding method is used that allows avoiding additions
in a double- and -add algorithm to compute the EC point
multiplication. In Table 9, we also present performance figures
for three well-known optimized libraries with support for EC
cryptography. We compiled the most recent version of both
libraries Crypto++ [38] and MIRACL [39] for a system based
on the quad-core 3.0 GHz AMD Phenom II general purpose
processor using the GNU C and C++ compiler version 4.3.1,
while the results for the OpenSSL-based library were obtained
from the asymmetric cryptography benchmark repository
eBACS [40] for a 224-bit standard curve. Results suggest
that the proposed GPU solution supersede by up to 1.7 times
the throughput metric of the library-based implementations
except for the MIRACL library. In the last line of Table 9 is
also included an implementation that does not use the RNS
approach in the CPU. It results from a direct implementation
of Algorithm 1 with the point addition and doubling in
(2), using the GNU Multiple Precision Arithmetic Library
(GMP), version 5.0.1 [41]. GMP is a library for multi-precision
arithmetic that is highly optimized for several commercial
CPUs, including the one in Table 10. In this implementation
the available parallelism of the CPU cores is exploited using
OpenMP [42], which is anAPI for programming shared memory
parallel systems. Nevertheless, for the latency result, only one
thread is running the application since no cooperation between
threads exists while computing the EC point multiplication.
This last implementation is the one with closer characteristics
regarding the presented GPU implementation (same EC point
multiplication algorithm, projective coordinates, and curve).
Hence, it is the one that better allows for a relative assessment

TABLE 10. Experimental setup summary for the OpenCL
measurements.

Implementation Characteristics

CPU AMD Ph. II X4 945 4-Core (3.0 GHz)
OpenSUSE 11.0 Operating System
2 × 2 GB Memory (DDR3 1333)
64-bit datapath
ATIstream OpenCL support

with the work herein proposed: despite a higher latency, the
GPU implementation herein proposed provides more than 2.6
times more throughput than the result in Table 9.

5.3. Generalization for other architectures

In Section 5, we presented the RNS-based algorithms for EC
point multiplication and experimental evaluation on a GPU. The
presented analysis allows pointing out the best direction toward
an efficient implementation of the EC point multiplication
algorithm: (i) a smaller dynamic range is desired since a huge
parallelization of a single multiplication should not pay off the
increase of the base extension complexity; (ii) it is worthwhile
to precompute constants (e.g. the μ result) in the device instead
of transferring them from memory, taking advantage of the
enhanced computational power of the device regarding the
memory access efficiency; and (iii) the Kawamura method
(Version K) suggests more interesting performance, in terms
of throughput and latency, than the Shenoy method (Version S).
Following the aforementioned guidelines, in this Section we
generalize the obtained results for other devices. Also, we
develop an analysis of the scalability of the proposed algorithms
for ECs supported on differently sized underlying finite fields.
The presented analysis is based only on the versions S and K
implementations, since these are the ones that suggest better
performance.

In order to obtain a generic implementation of the proposed
algorithms that target different devices, we programmed the
Versions S and K of the algorithms with OpenCL [20]. In
this generalization effort, two different devices are targeted:
(i) a GPU and (ii) a multi-core CPU. Table 10 describes the
experimental setup for the CPU. For the GPU, the experimental
setup is the same as in Table 7.

Figure 7 depicts the latency figures for both the CPU and the
GPU, as well as for several standard curves based on underlying
fields with different sizes [7]. In these figures we also included
the performance figures of the Montgomery LadderAlgorithm 1
implemented with the GMP Library and OpenMP reported
in Table 9. In Fig. 7 we observe that Version K offers more
interesting latency metrics than Version S, which confirms the
results obtained for the CUDA implementation in Table 6. We
do not intend to compare the CPU with GPU implementation
since different technologies, aimed at different applications,

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 17

192 224 256 384 521
0

0.05

0.1

0.15

0.2

0.25

Underlying field size [bit]

La
te

nc
y

[s
]

Version S
Version K

GPU

192 224 256 384 521
0

0.05

0.1

0.15

0.2

Underlying field size [bit]

La
te

nc
y

[s
]

Version S
Version K
OpenMP

CPU

(a) (b)

FIGURE 7. Latency figures of the OpenCL implementations for both CPU and GPU devices.

are used. Nevertheless, from Fig. 7, we observe that, for the
Version K and the smaller field sizes, the CPU latency is up to
2.5 smaller than that of the GPUs, but for the larger field sizes,
the results converge and the CPU latency is only 1.05 smaller.
This suggests that the computation time does not increase with
the field size in the GPU as fast as in the CPU. This effect
may also be related with the thread switching in the CPU that
introduces more penalty than in the GPU, where, for only one
point multiplication per multiprocessor, there are also very few
conflicts between threads. The commutation between threads
can also be a reason for the high latency of the RNS approach
regarding the OpenMP implementation in the CPU (up to 32
times higher for the 521-bit configuration).

The OpenCL (and OpenMP) maximum throughput metrics
are presented in Fig. 8. The throughput values were obtained
by increasing the number of point multiplications per OpenCL

192 224 256 384 521
0

2000

4000

6000

8000

10000

12000

Underlying field size [bit]

T
hr

ou
gh

pu
t [

po
in

t m
ul

ts
./s

]

Version S − GPU
Version K − GPU
Version S − CPU
Version K − CPU
OpenMP − CPU

FIGURE 8. Throughput figures of the OpenCL implementations for
both CPU and GPU devices.

thread group (thread block in the CUDA terminology), while
the available core’s local memory (shared memory in CUDA)
is enough to fit the required variables. The number of groups
(blocks in CUDA) is the same as the number of available
cores in the device (30 in the GPU and 4 in the CPU).
The results in Fig. 8 suggest that the Version K in both
CPU and GPU devices provides higher throughput (up to
1.19 and 1.02 more throughput for the GPU and CPU,
respectively). Also, regarding the CUDA implementation, the
OpenCL implementation provides 1.31 less throughput for the
224-bit configuration. These results also suggest that the GPU
can exploit more the RNS capabilities providing a throughput

2 4 6 8 10 12 14 16 18 20 22
0

5000

10000

Point mults. per blockT
hr

ou
gh

pu
t [

po
in

t m
ul

ts
./s

]

Version K − GPU Version K − CPU OpenMP − CPU

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

500

1000

Point mults. per blockT
hr

ou
gh

pu
t [

po
in

t m
ul

ts
./s

]

Version K − GPU Version K − CPU OpenMP − CPU

(a)

(b)

FIGURE 9. Throughput figures of the OpenCL implementations for
both CPU and GPU devices, and several EC point multiplications per
block. (a) 192-bit underlying field and (b) 521-bit underlying field.

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

18 S. Antão et al.

more than an order of magnitude higher than that of the
CPU’s. It can also be observed that the GPU implementation
provides up to two times more throughput for the smaller
field sizes and up to 1.5 times less throughput for the larger
field sizes when compared with the OpenMP implementation.
This result suggests the existence of a break point from which
the parallelization obtained by the RNS approach does not
pay off the increase of the base extension complexity. This
effect is the same behind the discussion in Section 5. This
discussion concludes that the type I algorithm is not worthwhile
regarding the type II algorithm approaches. The results in
Fig. 8 also suggest that the CPU is not a suitable platform
to take advantage of the RNS approach, providing up to 32
times less throughput for OpenCL implementations regarding
the OpenMP approach, since it does not provide enough
parallelism. In Fig. 9 we can observe the throughput metric
behavior when the multiplications per OpenCL group increase
for the smallest and largest underlying finite field employed in
our tests. These results show that the increasing of the number of
multiplications per block only affects the GPU implementation
in both field sizes, since for the CPU implementations the
behavior resembles a horizontal line. These results acknowledge
the lack of parallelism in the CPU, which does not allow the RNS
approach to be profitable.

6. CONCLUSIONS

In this paper, we have proposed parallel algorithms for EC point
multiplication on a GPU by adopting a new RNS approach.
This RNS approach achieves a higher level of parallelism, and
thus higher performance in the massive parallel architecture of
the GPU. We tested different implementation versions, which
attempt to exploit different properties of the GPU platform.

Experimental results suggest a maximum throughput of 9827
EC point multiplications per second and minimum latency of
29.2 ms, using an Nvidia 285 GTX GPU for an EC curve
supported on a 224-bit underlying prime field. Moreover, up to
an order of magnitude of reduction in latency and up to 122%
throughput improvement are obtained regarding the results in
the related art. The gains of the proposed implementation result
from the higher utilization of the multiprocessor cores, by
computing up to 20 simultaneous EC point multiplications in
each GPU multiprocessor.

We also analyzed the scalability and the results for other
architectures, programming the algorithms with OpenCL.
Results suggest that the employed RNS approach is more
advantageous for lower size underlying fields.Also, comparison
of the different architectures’ allowed concluding that a
commercial CPU (with 4 cores) does not provide enough
parallelism/thread commutation efficiency for a worthwhile
implementation of the RNS approach. However, the number
of cores is expected to significantly increase in general purpose
processors, thus making the proposed algorithms also suitable
for this type of multi-core processors.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Pedro Trancoso from the
University of Cyprus for his availability in testing the proposed
implementation in the Nvidia 8800 GTS GPU.

FUNDING

This work was supported by FCT (Fundação para a Ciência
e Tecnologia) through the PIDDAC Program funds (INESC-
ID multi annual funding) and Pessoa PHC in Portugal, and by
Égide in France.

REFERENCES

[1] Owens, J., Houston, M., Luebke, D., Green, S., Stone, J. and
Phillips, J. (2008) GPU Computing. Proc. IEEE, 96, 879–899.

[2] Preis, T., Virnau, P., Paul, W. and Schneider, J.J. (2009) GPU
accelerated Monte Carlo simulation of the 2D and 3D Ising
model. J. Comput. Phys., 228, 4468–4477.

[3] Takahashi, T. and Hamada, T. (2009) GPU-accelerated boundary
element method for Helmholtz’equation in three dimensions. Int.
J. Numer. Methods Eng., 80, 1295–1321.

[4] Manavski, S. and Valle, G. (2008) CUDA compatible GPU cards
as efficient hardware accelerators for Smith–Waterman sequence
alignment. BMC Bioinf., 9, 1295–1321.

[5] Manavski, S. (2007) CUDA Compatible GPU as an Efficient
Hardware Accelerator for AES Cryptography. Proc. IEEE Int.
Conf. Signal Processing and Communications 2007—ICSPC
2007, Dubai, UnitedArab Emirates, November 24–27, pp. 65–68.
IEEE.

[6] Szerwinski, R. and Güneysu, T. (2008) Exploiting the Power
of GPUs for Asymmetric Cryptography. In Oswald, E. and
Rohatgi, P. (eds), Proc. Workshop on Cryptographic Hardware
and Embedded Systems 2008 – CHES 2008, Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg.

[7] FIPS PUB 186-3 (2009) Federal Information Processing
Standards Publication 186-3: Digital Signature Standard.
National Institute of Standards and Technology. Gaithersburg,
MD, USA.

[8] Bajard, J.-C., Didier, L.-S. and Kornerup, P. (2001) Modular
Multiplication and Base Extensions in Residue Number Systems.
Proc. 15th IEEE Symp. Computer Arithmetic 2001—ARITH
2001, Vail, CO, USA, June 11–17, pp. 59 –65. IEEE.

[9] Blake, I., Seroussi, G., Smart, N. and Cassels, J.W.S. (2005)
Advances in Elliptic Curve Cryptography, London Mathematical
Society Lecture Note Series. Cambridge University Press,
New York, NY, USA.

[10] Bajard, J., Duquesne, S. and Ercegovac, M. (2010) Combining
leak–resistant arithmetic for elliptic curves defined over Fp and
RNS representation. IACR Cryptology ePrint Archive, 311, 1–25.

[11] Szabo, N. and Tanaka, R. (1967) Residue Arithmetic and its
Applications to Computer Technology. McGraw-Hill, New York,
NY, USA.

[12] Yassine, H. and Moore, W. (1991) Improved mixed-radix
conversion for residue number system architectures. IEE
Proc.-G: Circuits Devices Syst., 138, 120–124.

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

RNS based Elliptic Curve Point Multiplication 19

[13] Shenoy, A. and Kumaresan, R. (1989) Fast base extension using a
redundant modulus in RNS. IEEE Trans. Comput., 38, 292 –297.

[14] Kawamura, S., Koike, M., Sano, F. and Shimbo, A. (2000) Cox-
RowerArchitecture for Fast Parallel Montgomery Multiplication.
In Preneel, B. (ed.), Proc. EUROCRYPT 2000—Advances in
Cryptology, Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg.

[15] Kaya Koç, Ç., Acar, T. and Kaliski, J., B.S. (1996) Analyzing and
comparing Montgomery multiplication algorithms. IEEE Micro,
16, 26–33.

[16] NVIDIA CUDA C Programming Guide (2010) CUDA Toolkit
3.1. NVIDIA Corporation. Santa Clara, CA, USA.

[17] Bernstein, D. (2008) Curve25519: New Diffie–Hellman Speed
Records. In Yung, M., Dodis, Y., Kiayias, A. and Malkin, T.
(eds), Public Key Cryptography—PKC 2006, Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg.

[18] Lindholm, E., Nickolls, J., Oberman, S. and Montrym, J. (2008)
NVIDIA Tesla: A Unified Graphics and Computing Architecture.
IEEE Micro, 28, 39–55.

[19] Giorgi, P., Izard, T. and Tisserand, A. (2010) Comparison of
Modular Arithmetic Algorithms on GPUs. In Chapman, B.,
Desprez, F., Joubert, G.R., Lichnewsky, A., Peters, F. and Priol,
T. (eds), Parallel Computing: From Multicores and GPU’s
to Petascale—Advances in Parallel Computing. IOS Press,
Amsterdam, The Netherlands.

[20] OpenCL web page - Khronos Group. Available online:
http://www.khronos.org/opencl/.

[21] OpenCL Specification (2009) The OpenCL Specification—
Version 1.0.48. Khronos OpenCL Working Group. Available
online.

[22] OpenCL Programming Guide for the CUDA Architecture (2010)
CUDA Toolkit 3.1. NVIDIA Corporation. Santa Clara, CA, USA.

[23] ATI Stream Technology. Available online: http://www.amd.
com/stream.

[24] Bajard, J., Meloni, N. and Plantard, T. (2005) Efficient RNS
Bases for Cryptography. Proc. 17th IMACS World Congress:
Scientific Computation, Applied Mathematics and Simulation,
Paris, France, July 11–15, pp. 1–7. IMACS.

[25] Guillermin, N. (2010) A High Speed Coprocessor for Elliptic
Curve Scalar Multiplication over Fp. In Mangard, S. and
Standaert, F.-X. (eds), Proc. Workshop on Cryptographic
Hardware and Embedded Systems 2010—CHES 2010, Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg.

[26] Antão, S., Bajard, J.-C. and Sousa, L. (2010) Elliptic Curve Point
Multiplication on GPUs. Proc. 21st IEEE Int. Conf. Application-
Specific Systems Architectures and Processors—ASAP 2010,
Rennes, France, July 7–9, pp. 192–199. IEEE.

[27] Bernstein, D., Chen, T.-R., Cheng, C.-M., Lange, T. and Yang,
B.-Y. (2009) ECM on Graphics Cards. In Joux, A. (ed.), Proc.
EUROCRYPT 2009—Advances in Cryptology, Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg.

[28] Bernstein, D., Chen, H., Chen, M., Cheng, C., Hsiao, C., Lange,
T., Lin, Z. and Yang, B. (2009) The Billion-Mulmod-Per-Second

PC. Proc. Special-Purpose Hardware for Attacking Crypto-
graphic Systems Workshop 2010- SHARKS 2010, Lousanne,
Switzerland, September 9–10, pp. 131–144. SHARKS.

[29] Longa, P. and Gebotys, C. (2010) Analysis of efficient techniques
for fast elliptic curve cryptography on x86-64 based processors.
IACR Cryptology ePrint Archive, 335, 1–34.

[30] Gaudry, P. and Thomé, E. (2007) The mpFq Library and
Implementing Curve-Based Key Exchanges. Proc. Software
Performance Enhancement for Encryption and Decryption
Meeting—SPEED 2007, Amsterdam, The Netherlands, June 11–
12, pp. 49–64. ECRYPT.

[31] Schinianakis, D., Fournaris, A., Michail, H., Kakarountas, A. and
Stouraitis, T. (2009) An RNS implementation of an Fp elliptic
curve point multiplier. IEEE Trans. Circuits Syst. I: Regular
Papers, 56, 1202–1213.

[32] Zhang, X. and Li, S. (2007) A High Performance ASIC
Based Elliptic Curve Cryptographic Processor over GF(p). Proc.
2nd Int. Design and Test Workshop—IDT 2007, Cairo, Egypt,
December 16–18, pp. 182–186. IEEE.

[33] Chen, G., Bai, G. and Chen, H. (2007) A high-performance
elliptic curve cryptographic processor for general curves over
GF(p) based on a systolic arithmetic unit. IEEE Trans. Circuits
Syst. II: Express Briefs, 54, 412 –416.

[34] Güneysu, T. and Paar, C. (2008) Ultra High Perfor-
mance ECC over NIST Primes on Commercial FPGAs. In
Oswald, E. and Rohatgi, P. (eds), Proc. Workshop on Cryp-
tographic Hardware and Embedded Systems 2008—CHES
2008, Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg.

[35] Costigan, N. and Schwabe, P. (2009) Fast Elliptic-Curve
Cryptography on the Cell Broadband Engine. In Preneel,
B. (ed.), Proc. AFRICACRYPT 2009—Progress in Cryptol-
ogy, Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg.

[36] Yan, H., Shi, Z. and Fei, Y. (2009) Efficient Implementation of
Elliptic Curve Cryptography on DSP for Underwater Sensor
Networks. Proc. Workshop on Optimizations for DSP and
Embedded Systems—ODES 2009, Chamonix, France, April 2,
pp. 1–9. ODES.

[37] Liu, A. and Ning, P. (2008) TinyECC: A Configurable Library for
Elliptic Curve Cryptography in Wireless Sensor Networks. Proc.
7th Int. Conf. Information Processing in Sensor Networks—IPSN
2008, St. Louis, MO, USA, April 22–24, pp. 245–256. IEEE
Computer Society.

[38] Crypto++ Library. Available online: http://www.cryptopp.com/.
[39] Multiprecision Integer and RationalArithmetic C/C++ Library—

MIRACL. Available online: http://www.shamus.ie/.
[40] ECRYPT Benchmarking of Cryptographic Systems. Available

online: http://bench.cr.yp.to/.
[41] The GNU Multiple Precision Arithmetic Library. http://gmplib.

org/.
[42] The OpenMP API specification for parallel programming.

Available online: http://openmp.org.

The Computer Journal, 2011

 at B
IU

S Jussieu on January 4, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 EC and RNS background
	2.1 EC cryptography over GF(p)
	2.2 RNS overview

	3 RNS Montgomery Multiplication
	4 The EC Parallel Algorithms
	4.1 General purpose processing on GPUs
	4.2 Type I algorithm
	4.3 Type II algorithm

	5 Experimental Evaluation
	5.1 Implementation and experimental results
	5.2 Related art
	5.3 Generalization for other architectures

	6 Conclusions

