Useful Arithmetic for Cryptography

Jean Claude Bajard

LIP6 - UPMC (Paris 6)/ CNRS France

8 Jul. 2013

Introduction Modern Public Key Cryptography

- In 1985, Victor S. Miller [1] and Neal Koblitz [2] introduced Elliptic Curve Cryptography.
- Gödel Prize 2013: Dan Boneh, Matthew K. Franklin [3] and Antoine Joux [4] for Pairing Cryptography.
- Group operations on points of elliptic curve defined on finite fields.
- Basic finite field operations: addition, multiplication, inversion...

Content Finite Fields Representations Multiplication in GF(p)Back to multiplication Modular Reduction Multiplication in $GF(2^m)$ Polynomial Approaches Approaches using specific bases Inversion in a Finite Field Another Approach: Residue Systems Introduction to Residue Systems Modular reduction in Residue Systems Applications to Cryptography

Finite Fields Representations

General Principles [5]

- A finite field $F(+, \times)$ is a finite set F such that:
 - ► *F*(+) is an Abelian Group
 - ► F(+,×) is a Ring where every element (excepted 0 for ×) has an inverse

Elementary Finite Fields have an order equal to a prime p. Example of a such finite prime field $\mathbb{Z}/p\mathbb{Z}$

$$\mathbb{Z}/p\mathbb{Z} = \{0, 1, 2, ..., p-1\}$$

Calculus are based on modular arithmetic.

Splitting Finite Field

More generally, Finite Field has an order equal to a power of a prime, we note $GF(p^m)$ or \mathbb{F}_{p^m} with p prime. p is the caracteristic, if $u \in GF(p^m)$ then $p \times u = 0$.

► as a set of polynomial residues modulo an irreducible polynomial P(X) of degree m in F_p[x]

► as a set of the powers of a primitive element g, GF(p^m) = {0, g⁰, g¹, ..., g^{p^m-2}}

▶ as a set of linear combinations of base elements : canonical $\{1, \alpha, \alpha^2, ..., \alpha^{m-1}\}$ ou normal $\{\alpha, \alpha^p, \alpha^{p^2} ..., \alpha^{p^{m-1}}\}$ $(\alpha \text{ root of } P(X))$

Example in $GF(2^2)$ (notice $GF(2^2) \neq \mathbb{Z}/2^2\mathbb{Z}$)

- Polynomials in GF(2)[X] : 0, 1, X, 1 + X.
- Addition on GF(2): 1 + (1 + X) = X.

Product with a modular reduction in function of an irreducible one.

- ► $X^2 + X + 1$ is irreducible over GF(2), GF(4) can be represented by $GF(2)[X]/X^2 + X + 1$.
- Multiplication modulo X² + X + 1: X * (1 + X) = (X + X²) mod (X² + X + 1) = 1
- The choice of the irreducible polynomial impacts the complexity.

Multiplication in GF(p)Multiplication of two values

Back to multiplication

Multiplication of two values

Product of two numbers

via polynomials

• Let $A = \sum_{i=0}^{k-1} a_i \beta^i$ and $B = \sum_{i=0}^{k-1} b_i \beta^i$ be two numbers in base β • Let $A(X) = \sum_{i=0}^{k-1} a_i X^i$ and $B(X) = \sum_{i=0}^{k-1} b_i X^i$ be the associated

polynomials

• Evaluation of the product $P = A \times B$:

- 1. Polynomial Evaluation: $P(X) = A(X) \times B(X)$
- 2. Calculus of the value: $P(\beta) = A(\beta) \times B(\beta)$

Product of two numbers via polynomials: Remarks

- Step 1, the p_i are lower than $k \times \beta^2$
- Step 2, the calculus of P(β) becomes a reduction of the p_i by carry propagation.

Polynomial representations

• A polynomial of degree k - 1 can be defined:

by its k coefficients a_i

$$A(X) = \sum_{i=0}^{k-1} a_i X^i$$

or by k values in different points e_i

for
$$i = 0..k - 1$$
, $A(e_i) = \sum_{j=0}^{k-1} a_j e_i^j$

 e_i are chosen, in respect to two criteria: easy evaluation and small size for the $A(e_i)$.

Arithmetic and Cryptography Multiplication in GF(p) Back to multiplication

Polynomial Product

defined by coefficients

$$P(X) = A(X) \times B(X) = \left(\sum_{i=0}^{k-1} a_i X^i\right) \times \left(\sum_{i=0}^{k-1} b_i X^i\right) = \sum_{i=0}^{2k-2} p_i X^i$$

$$\begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_{k-1} \\ \vdots \\ p_{k-1} \\ \vdots \\ p_{2k-3} \\ p_{2k-2} \end{pmatrix} = \left(\begin{array}{cccc} a_0 & 0 & 0 & \dots & 0 \\ a_1 & a_0 & 0 & \dots & 0 \\ a_1 & a_0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ a_{k-1} & a_{k-2} & a_{k-3} & \dots & a_0 \\ 0 & a_{k-1} & a_{k-2} & \dots & a_1 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & a_{k-1} \end{array}\right) \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{k-2} \\ b_{k-1} \end{pmatrix}$$

$$k^2 \text{ products}$$

13/116

Arithmetic and Cryptography Multiplication in GF(p) Back to multiplication

Polynomial Product

defined by points

►
$$P(X) = A(X) \times B(X) = (\sum_{i=0}^{k-1} a_i X^i) \times (\sum_{i=0}^{k-1} b_i X^i) = \sum_{i=0}^{2k-2} p_i X^i$$

is computed at $2k - 1$ differents points:

$$\begin{cases}
P(e_0) = A(e_0) \times B(e_0) \\
P(e_1) = A(e_1) \times B(e_1) \\
\vdots \\
P(e_{2k-3}) = A(e_{2k-3}) \times B(e_{2k-3}) \\
P(e_{2k-2}) = A(e_{2k-2}) \times B(e_{2k-2}) \\
2k - 1 \text{ products.}
\end{cases}$$

14/116

Coefficient reconstruction Lagrange approach

▶ Use of a sum of k polynomials, such that the *i*-th one is equal to $P(e_i)$ for e_i , and 0 for all other e_j with $j \neq i$.

$$\mathcal{P}(X) = \sum_{i=0}^{k-1} \mathcal{P}(e_i) rac{\prod_{j
eq i} (X - e_j)}{\prod_{j
eq i} (e_i - e_j)}$$

Coefficient reconstruction

Newton approach

The main idea is to use polynomials of increasing degrees k = 1 i = 1 $P(X) = \sum \hat{p}_i \prod (X - e_j) = \hat{p}_0 + \hat{p}_1 (X - e_0) + \hat{p}_2 (X - e_0) (X - e_1) + \dots$ i = 0 i = 0 $\hat{p}_0 = p'_0$ \hat{r} $\hat{p}_1 = (p'_1 - \hat{p}_0)/(e_1 - e_0)$ $\hat{p}_i = (\dots (p'_i - \hat{p}_0)/(e_i - e_0) - \hat{p}_1)/(e_i - e_1) - \dots - \hat{p}_{i-1})/(e_i - e_{i-1})$ $\hat{p}_{k-1} = (\dots (p'_{k-1} - \hat{p}_0)/(e_{k-1} - e_0) - \hat{p}_1)/(e_{k-1} - e_1) \dots - \hat{p}_{k-2})/(e_{k-1} - e_{k-2})$ with, $p'_i = P(e_i)$

Arithmetic and Cryptography Multiplication in *GF(p)* Back to multiplication

Product of two numbers Karatsuba Algorithm(1)

 Select points e₀ = 0, e₁ = -1 and e₂ = ∞
 We have: A = ∑_{i=0}^{k-1} a_i \beta^i = (∑_{i=0}^{k/2-1} a_{k/2+i} \beta^i) \beta^{k/2} + ∑_{i=0}^{k./2-1} a_i \beta^i = A_1 \beta^{k/2} + A_0

 Polynomial view: A(X) = A₁X + A₀

$$\begin{cases} A(0) = A_0 \\ A(-1) = A_0 - A_1 \\ A(\infty) = \lim_{X \to \infty} A_1 X \end{cases}$$

Product of two numbers Karatsuba Algorithm (2)

$$\begin{pmatrix} P(0) = A_0 B_0 \\ P(-1) = (A_0 - A_1)(B_0 - B_1) \\ P(\infty) = \lim_{X \to \infty} A_1 B_1 X^2 \end{cases}$$

Newton interpolation

$$\begin{pmatrix} \hat{p}_0 = P(0) = A_0 B_0 \\ \hat{p}_1 = (P(-1) - \hat{p}_0)/(-1) = (A_1 - A_0)(B_0 - B_1) + A_0 B_0 \\ \hat{p}_\infty = \lim_{X \to \infty} ((P(\infty) - \hat{p}_0)/X - \hat{p}_1)/(X + 1) = A_1 B_1 \end{cases}$$

Product of two numbers Karatsuba Algorithm(3)

Reconstruction

$$\begin{array}{rcl} P(X) &=& \hat{p}_0 + \hat{p}_1 \ X + \hat{p}_\infty \ X \ (X+1) \\ &=& A_0 B_0 \\ && + ((A_1 - A_0)(B_0 - B_1) + A_0 B_0 + A_1 B_1) X \\ && + A_1 B_1 X^2 \end{array}$$

Final evaluation

$$P(\beta^{k/2}) = A_0B_0 + ((A_1 - A_0)(B_0 - B_1) + A_0B_0 + A_1B_1)\beta^{k/2} + A_1B_1\beta^k$$

Product of two numbers Karatsuba Algorithm (4) : Complexity

- Let denote K(k) as the number of elementary operations
- ► By recurrence $K(k) = 3K(k/2) + \alpha k$, we suppose that the addition is linear
- We obtain $K(k) = O(k^{\log_2(3)})$

Product of two numbers Toom Cook Algorithm (1)

The Karatsuba approach can be generalized:

- ▶ Select points $e_0 = 0$, $e_1 = -1$, $e_2 = 1$, $e_3 = 2$ and $e_4 = \infty$
- We have:

 $A = A_2 \beta^{2k/3} + A_1 \beta^{k/3} + A_0$

• Polynomial view: $A(X) = A_2X^2 + A_1X + A_0$

$$\begin{cases} A(0) = A_0 \\ A(-1) = A_2 - A_1 + A_0 \\ A(1) = A_2 + A_1 + A_0 \\ A(2) = 4A_2 + 2A_1 + A_0 \\ A(2) = \lim_{X \to \infty} A_2 X^2 \end{cases}$$

Product of two numbers Toom Cook Algorithm (2)

With Newton

$$\begin{cases} \hat{p}_0 = P(0) = A_0 B_0 \\ \hat{p}_1 = (P(-1) - \hat{p}_0)/(-1) \\ \hat{p}_2 = ((P(1) - \hat{p}_0)/(1) - \hat{p}_1)/(2) \\ \hat{p}_3 = (((P(2) - \hat{p}_0)/(2) - \hat{p}_1)/(3) - \hat{p}_2)/(1) \\ \hat{p}_4 = \lim_{X \to \infty} ((((P(\infty) - \hat{p}_0)/X - \hat{p}_1)/(X + 1) - \hat{p}_2)/(X - 1) - \hat{p}_3)/(X - 2) \\ = A_2 B_2 \end{cases}$$

▶ We notice a division by $3 \rightarrow$ limits of this approach

• Reconstruction by computing $P(\beta^{k/3})$: $P(X) = \hat{p}_0 + X(\hat{p}_1 + (X+1)(\hat{p}_2 + (X-1)(\hat{p}_3 + \hat{p}_4(X-2))))$

Product of two numbers Toom Cook Algorithm (3)

- Let denote $T_3(k)$ as the number of elementary operations
- By recurrence $T_3(k) = 5T_3(k/3) + \alpha k$, assuming that addition is linear

• We obtain
$$T_3(k) = O(k^{\log_3(5)})$$

Product of two numbers Toom Cook Algorithm (4), asymptotic point of view

- Splitting by n
- With $T_n(k)$ he number of elementary operations
- ► By recurrence $T_n(k) = (2n-1)T_n(k/n) + \alpha k$, assuming that addition is linear
- We obtain $T_n(k) = O(k^{\log_n(2n-1)})$
- Then the complexity of the multiplication can reach $O(k^{1+\epsilon})$

Fourier Transform Complexité Algorithme FFT

- ▶ Select points: the n^{th} roots of unity, $\omega^n = 1$, ω primitive.
- ▶ Properties: ω^{2k} is a $\frac{n}{2}$ th root, $(\omega^k)^{n/2} = -1$ (assuming *n* even)

$$A(\omega^{k}) = \sum_{i=0}^{\frac{n}{2}-1} a_{2i}\omega^{2ik} + \omega^{k} \sum_{i=0}^{\frac{n}{2}-1} a_{2i+1}\omega^{2ik} = A_{0}(\omega^{2k}) + \omega^{k}A_{1}(\omega^{2k})$$

F(n) number of elementary op. for a FFT of dimension n

• We have $F(n) = 2F(n/2) + \alpha n$, then, $F(n) = O(n \log_2 n)$

Multiplication in GF(p)

Modular Reduction

p fixed

Two options:

Specific p allowing an easy reduction

$$p=eta^n-\xi$$
 avec ξ

• Common $p \rightarrow$ generic algorithms

 $p=eta^n-\xi \hspace{0.3cm} \mbox{with} \hspace{0.3cm} 0\leq \xi<eta^{n/2} \mbox{ and } \xi^2\leq eta^n-2eta^{n/2}+1$

We have $C = A \times B \leq (p-1)^2$

- We write $C = C_1 \beta^n + C_0$
- First reduction pass: $C \equiv C_1 \xi + C_0 (= C') \pmod{p}$
- Second reduction pass: $C' \equiv C'_1 \xi + C'_0 (= C'') \pmod{p}$
- Final touch:

If $C'' + \xi \ge \beta^n$ Then $R = C'' + \xi - \beta^n$, Else R = C''

Modular Reduction $p = \beta^n - \xi$ with $0 \le \xi < \beta^{n/2}$

This reduction uses two multiplications by ξ, two options Choose a very small ξ, for example, ξ < β → digit×number Choose a very sparce ξ → shift and add approach If ξ > β^{n/2}, then the number of passes increases

Modular Reduction with $p = \beta^n - 1$

30/116

Modular Reduction with $p = \beta^n - 1$

$$M = \begin{pmatrix} a_0 & 0 & \dots & 0 & 0 \\ a_1 & a_0 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots \\ a_{n-2} & a_{n-3} & \dots & a_0 & 0 \\ a_{n-1} & a_{n-2} & \dots & a_1 & a_0 \end{pmatrix} + \begin{pmatrix} 0 & a_{n-1} & a_{n-2} & \dots & a_1 \\ 0 & 0 & a_{n-1} & \dots & a_2 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & a_{n-1} \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} a_0 & a_{n-1} & a_{n-2} & \dots & a_1 \\ a_1 & a_0 & a_{n-1} & \dots & a_2 \\ \vdots & \vdots & \dots & \vdots \\ a_{n-2} & a_{n-3} & \dots & a_0 & a_{n-1} \\ a_{n-1} & a_{n-2} & \dots & a_1 & a_0 \end{pmatrix}$$

Modular Reduction with $p = \beta^n - \beta^t - 1$

If t < n/2 then M is obtained with one matrix addition.

Multiplication in GF(p)

Generic Modular Reduction

Generic Modular Reduction Barrett Algorithm [7]

Reduction of A modulo P via the approximation of the quotient.

- ► Conditions: $\beta^{n-1} \leq P < \beta^n$ et $A < P^2 < \beta^{2n}$
- We can write that: $\beta^{u+v}A P \times \frac{\beta^{n+u}}{P} \times \frac{A}{\beta^{n-v}} = 0$

If
$$u \geq n+1$$
 and $v \geq 2$ then $(eta^{u+1}+eta^{n+v})/eta^{u+v} < 1$

• We deduce:
$$A \mod P \equiv A - P$$

$$< \left\lfloor \frac{\lfloor \frac{\beta^{2n+1}}{P} \rfloor \times \lfloor \frac{A}{\beta^{n+2}} \rfloor}{\beta^{n+3}} \right\rfloor < 2P$$

Arithmetic and Cryptography Multiplication in GF(p) Modular Reduction

Generic Modular Reduction Barrett Algorithm [7] Barrett(A, P)Inputs $\beta^{n-1} < P < \beta^n$ and $A < P^2 < \beta^{2n}$ Output $R = A \pmod{P}$ et $Q = \lfloor \frac{A}{P} \rfloor$ Core $Q \leftarrow \left\lfloor \frac{\lfloor \frac{\beta^{2n+1}}{P} \rfloor \times \lfloor \frac{A}{\beta^{n-2}} \rfloor}{\beta^{n+3}} \right\rfloor$ $R \leftarrow A - Q \times P$ If R > P. Then $R \leftarrow R - P$ and $Q \leftarrow Q + 1$

Complexity: 2 products of n + 1 digits

Generic Modular Reduction Montgomery Algorithm [8]

Reduction of A modulo P via a multiple of P.

- Conditions : $\beta^{n-1} \leq P < \beta^n$ and $A < P\beta^n$
- The scheme is to add a multiple of P to A such that the result is a multiple of βⁿ
- The division by β^n in base β is a shift.
- The output of this approach is $A \times \beta^{-n} \mod P$

Generic Modular Reduction Montgomery Algorithm [8]

```
Montgomery(A, P)
        Inputs \beta^{n-1} < P < \beta^n and A < P\beta^n < \beta^{2n}
       Output R = A \times \beta^{-n} \mod P
           Core Q \leftarrow A \times |-P^{-1}|_{\beta^n} \mod \beta^n
                   R \leftarrow (A + Q \times P) R is a multiple of \beta^n
                   R \leftarrow R \div \beta^n division by \beta^n is a shift. (R < 2P)
                   If R > P Then R \leftarrow R - P (optional)
Complexity: 2 products of n digits (in fact close to two half
products)
```


Generic Modular Reduction

Montgomery Representation

- To avoid the accumulation of factors $\beta^{-n} \mod P$, we note: $\widetilde{A} = A \times \beta^n \mod P$
- Thee construction $\widetilde{A} = \text{Montgomery}(A \times |\beta^{2n}|_P, P)$
- Stable for addition and multiplication using Montgomery reduction:
 - $\widetilde{A} + \widetilde{B} = \widetilde{A + B}$ and $\widetilde{AB} = Montgomery(\widetilde{A} \times \widetilde{B}, P)$
- Reconversion to standard: $A = Montgomery(\widetilde{A}, P)$
- It is the most used algorithm in cryptography

Interleaved Modular Multiplication Montgomery Algorithm MontgomeryI(A, B, P)

Inputs $\beta^{n-1} \leq P < \beta^n$ ad $AB < P\beta^n < \beta^{2n}$ and $B = \sum b_i \beta^i$ Output $R = A \times B \times \beta^{-n} \mod P$ Core $R \leftarrow 0$ For i = 0 to i = n - 1 do $R \leftarrow (R + b_i \times A)$ $q_i \leftarrow r_0 \times |-p_0^{-1}|_\beta \mod \beta$ $R \leftarrow (R + q_i \times P)$ multiple of β $R \leftarrow R \div \beta$ at the end (R < 2P) If $R \geq P$, Then $R \leftarrow R - P$ (optional)

39/116

Binary Interleaved Modular Multiplication Montgomery Algorithm MontgomeryB(A, B, P)

Inputs $2^{n-1} \leq P < 2^n$ and $AB < 2^n P < 2^{2n}$ and $B = \sum_{i=1}^{n-1} b_i 2^i$ Output $R = A \times B \times 2^{-n} \mod P$ Core $R \leftarrow 0$ For i = 0 to i = n - 1 do $R \leftarrow (R + b_i \bullet A)$ $q_i \leftarrow r_0$ In fact $|-p_0^{-1}|_2 = 1$ if P odd $R \leftarrow (R + q_i \bullet P)$ multiple of 2 $R \leftarrow R >> 1$ at the end (R < 2P) If R > P, Then $R \leftarrow R - P$ (optional)

40/116

Bipartite Modular Multiplication [9]

This approach is based on:

We define * as: $X * Y = (X \times Y) \times R^{-1} \mod P$ We split *y*: $Y = Y_h \times R + Y_l$ for example $R = \beta^{n/2}$ thus $X * Y = (X \times Y_h \mod P + X \times Y_l \times R^{-1} \mod P) \mod P$

- $X \times Y_h \mod P$ is computed using Barret.
- $X \times Y_I \times R^{-1} \mod P$ is computed via Montgomery.
- These two operations can be done in parallelel

Multiplication in $GF(2^m)$

Multiplication in $GF(2^m)$

Most of the hardware implementations use $GF(2^m)$ where basic operators are AND and XOR.

The different approaches for the modular reduction needed in the multiplication over $GF(2^m)$ are:

- The ones depending of the finite field
- The generic ones
- Those using specific bases

Multiplication in *GF*(2^{*m*}) Polynomial Approaches

Multiplication in $GF(2^m)$

The calculus of $C(X) = A(X) \times B(X) \mod P(X)$ can be executed in two steps:

1. a polynomial product $C'(X) = A(X) \times B(X)$,

2. a modular reduction P(X): $C(X) = C'(X) \mod P(X)$

45/116

Montgomery Algorithm

- A(X) * B(X) is computed in GF(2^m) defined by P(X) a degree m irreducible polynomial
- ► Montgomery compute A(X) * B(X) * R⁻¹(X)modP(X) where R(X) is a fixed element and R⁻¹(X) is its inverse mod P(X). We know R(X) and P(X) (irreducible), we can precompute R⁻¹(X) and P'(X) such that:

$$R^{-1}(X) * R(X) + P'(X) * P(X) = 1$$

F

Montgomery Algorithm (generic case)

Inputs: A(X) and B(X) of degrees lower than m *Outputs:* $T(X) = A(X) * B(X) * R^{-1}(X) \mod P(X)$ **Precomputed:** P'(X), R(X)

Product:
$$C(X) = A(X) * B(X)$$

Reduction: $Q(X) = -C(X) * P'(X) \mod R(X)$
 $T(X) = (C(X) + Q(X) * P(X)) div R(X)$

- The complexity is due to the three products.
- The reduction modulo R(X) and the division by R(X) are easy if $R(X) = X^m$.

Montgomery Algorithm (execution)

Polynomial representations:

We decompose the evaluation using matrices, into two parts:

- The first lines for the computation of Q(X)
- The last lines for the result T(X)

Montgomery Algorithm (execution)

Decomposition of the calculus for Q(X): (the lower degrees)

$$Q(X) = - \begin{pmatrix} p'_0 & 0 & \cdots & 0 & 0 \\ p_1 & p'_0 & \cdots & 0 & 0 \\ \\ p'_{m-2} & p'_{m-3} & \cdots & p'_0 & 0 \\ p'_{m-1} & p'_{m-2} & \cdots & p'_1 & p'_0 \end{pmatrix} \begin{pmatrix} a_0 & 0 & \cdots & 0 & 0 \\ a_1 & a_0 & \cdots & 0 & 0 \\ \\ a_{m-2} & a_{m-3} & \cdots & a_0 & 0 \\ a_{m-1} & a_{m-2} & \cdots & a_1 & a_0 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ \\ \vdots \\ b_{m-2} \\ b_{m-1} \end{pmatrix}$$

Then for T(X):(the upper degrees)

$$\begin{pmatrix} 0 & a_{m-1} & \dots & a_2 & a_1 \\ 0 & 0 & \dots & a_2 & a_1 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & a_{m-1} \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ \dots \\ b_{m-3} \\ b_{m-2} \\ b_{m-1} \end{pmatrix} + \begin{pmatrix} 1 & p_{m-1} & \dots & p_2 & p_1 \\ 0 & 1 & \dots & p_2 & p_1 \\ \dots & \dots & p_{m-1} & p_{m-2} \\ 0 & 0 & \dots & 1 & p_{m-1} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ \dots \\ q_{m-3} \\ q_{m-2} \\ q_{m-1} \end{pmatrix}$$

Montgomery Algorithm (complexity of the general case)

- Complexity counting the number of elementary operations over GF(2):
 - $m^2 + (m-1)^2$ multiplications (AND)
 - $(m-1)^2 + (m-2)^2 + m$ additions (XOR).
- For this approach we can use the Montgomery representation: $\widetilde{A}(X) = A(X) \times R(X) \pmod{P}(X)$
- It can be generalized to $GF(p^k)$

Iterative Montgomery in $GF(2^m)$ with $R(X) = X^m$

Inputs:

A(X) and B(X) of degrees lower than m Output: $T(X) = A(X) * B(X) * R^{-1}(X) \mod P(X)$ Precomputed: P'(X), R(X)

Initialisation Loop

$$\begin{array}{l}
 I(X) = 0 \\
 For \ i = 0 \ \text{to} \ m - 1 \ \text{do} \\
 T(X) = T(X) + a_i * B(X) \\
 T(X) = (T(X) + t_0 * P(X))/X
 \end{array}$$

Iterative Montgomery in $GF(2^m)$ with $R(X) = X^m$

- At each step a division by X, hence at the end it is equivalent to R(X) = X^m.
- Moreover P(X) is irreducible, thus its constant term is 1, idem for P'(X).
- The complexity given in logical gates:
 - 2m² XOR (for the additions)
 - and 2m² AND (for the products)

Method of Mastrovito [10] Approach Idea

• $GF(2^m)$ is defined by a root α of the irreducible P(X) of degree m.

► The elements of $GF(2^m)$ are given in the canonical $\{1, \alpha, \alpha^2, ..., \alpha^{m-1}\}$: $A = \sum_{i=0}^{m-1} a_i \alpha^i$ and $B = \sum_{i=0}^{m-1} b_i \alpha^i$. ► We note $C = A \times B$ in $GF(2^m)$, $C = \sum_{i=0}^{m-1} c_i \alpha^i$.

Mastrovito proposed to construct Z, a matrix $m \times m$ using the coefficients of A, such that:

 $C = Z \times B$

Method of Mastrovito

Construction of Z

- Z is obtained by:
 - 1. constructing the matrix $(m-1) \times m$, Q which is the representations of X^k for $k \ge m$ modulo P(X):

$$\begin{pmatrix} X^m \\ X^{m+1} \\ \dots \\ X^{2m-2} \end{pmatrix} = Q \times \begin{pmatrix} X^0 \\ X^1 \\ \dots \\ X^{m-1} \end{pmatrix}$$

2. and then, the matrix Z is obtained with:

$$z_{i,j} = \begin{cases} a_i \text{ for } j = 0, \ i = 0 \dots m - 1\\ u(i-j) * a_{i-j} + \sum_{t=0}^{j-1} q_{j-1-t,i} * a_{m-1-t}, \text{ else }, \text{ with } u(t) = \begin{cases} 1 \text{ if } t \ge 0\\ 0 \text{ else} \end{cases}$$

Method of Mastrovito Cost of the approach

- The complexity is due to the construction of Z which can need m³/2 And and Xor, the choice of the irreducible polynomial is fundamental.
- ▶ With trinomials like $X^m + X + 1$ the multiplication is done with $m^2 - 1$ XOR and m^2 AND.
- There are some variants

if all the coefficients are 1 (all-one polynomial)
 P(X) = 1 + X + X² + ... + X^m, in this case X^{m+1} ≡ 1 (mod P(X))
 or for regular sparced polynomials
 P(X) = 1 + X^Δ + X^{2Δ} + ... + X^{kΔ=m}, here X^{(k+1)Δ} ≡ 1 (mod P(X)).

Method of Mastrovito I

Example with a trinomial

We consider $GF(2^7)$ with the canoical base $\{1, \alpha, \alpha^2, ..., \alpha^6\}$ where α is a root of the irreducible $P(X) = X^7 + X + 1$. Thus,

$$\begin{aligned} \alpha^{7} &= \alpha + 1 &\to (1, 1, 0, 0, 0, 0, 0) \\ \alpha^{8} &= \alpha^{2} + \alpha &\to (0, 1, 1, 0, 0, 0, 0) \\ \alpha^{9} &= \alpha^{3} + \alpha^{2} &\to (0, 0, 1, 1, 0, 0, 0) \\ \alpha^{10} &= \alpha^{4} + \alpha^{3} &\to (0, 0, 0, 1, 1, 0, 0) \\ \alpha^{11} &= \alpha^{5} + \alpha^{4} &\to (0, 0, 0, 0, 0, 1, 1, 0) \\ \alpha^{11} &= \alpha^{6} + \alpha^{5} &\to (0, 0, 0, 0, 0, 0, 1, 1) \\ Q &= \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ \end{pmatrix}$$

Arithmetic and Cryptography Multiplication in *GF*(2^{*m*}) Polynomial Approaches

Method of Mastrovito II

Example with a trinomial

57/116

Arithmetic and Cryptography Multiplication in *GF*(2^{*m*}) Polynomial Approaches

Méthode de Mastrovito

Exemple avec un All-One

If $P(X) = 1 + X + X^2 + ... + X^m$, the matrix Z can be written as $Z = Z_1 + Z_2$ with: $Z_1 = \begin{pmatrix} a_0 & 0 & a_{m-1} & \dots & a_3 & a_2 \\ a_1 & a_0 & 0 & a_{m-1} & & a_4 & a_3 \\ & & & & & & & \\ & & & & & & & \\ a_{m-2} & a_{m-3} & & & & a_0 & 0 \\ a_{m-1} & a_{m-2} & & & & a_1 & a_0 \end{pmatrix}$ $Z_{2} = \begin{pmatrix} 0 & a_{m-1} & a_{m-2} & a_{1} \\ 0 & a_{m-1} & a_{m-2} & a_{1} \\ & & & \ddots & \\ 0 & a_{m-1} & a_{m-2} & a_{1} \end{pmatrix}$ (ie ligne X^{m}) and

Toeplitz Matrices

Definition

A $n \times n$ matrix is Toeplitz if $[t_{i,j}]_{1 \le i,j \le n}$ are such that $t_{i,j} = t_{i-1,j-1}$ for $i,j \ge 1$.

$$T = \begin{bmatrix} t_n & t_{n+1} & t_{n+2} & \cdots & t_{2n-1} \\ t_{n-1} & t_n & t_{n+1} & & \vdots \\ t_{n-2} & t_{n-1} & t_n & & \vdots \\ \vdots & & & & \vdots \\ t_1 & & t_{n-1} & t_n \end{bmatrix}$$

Remark: An addition of 2 Toeplitz requires only 2n - 1 additions.

Toeplitz Matrices

Definition

A $n \times n$ matrix is Toeplitz if $[t_{i,j}]_{1 \le i,j \le n}$ are such that $t_{i,j} = t_{i-1,j-1}$ for $i,j \ge 1$.

$$T = \begin{bmatrix} t_n & t_{n+1} & t_{n+2} & \cdots & t_{2n-1} \\ t_{n-1} & t_n & t_{n+1} & & \vdots \\ t_{n-2} & t_{n-1} & t_n & & \vdots \\ \vdots & & & & \vdots \\ t_1 & & t_{n-1} & t_n \end{bmatrix}$$

Remark: An addition of 2 Toeplitz requires only 2n - 1 additions.

Toeplitz Matrices

Definition

A $n \times n$ matrix is Toeplitz if $[t_{i,j}]_{1 \le i,j \le n}$ are such that $t_{i,j} = t_{i-1,j-1}$ for $i,j \ge 1$.

$$T = \begin{bmatrix} t_n & t_{n+1} & t_{n+2} & \cdots & t_{2n-1} \\ t_{n-1} & t_n & t_{n+1} & & \vdots \\ t_{n-2} & t_{n-1} & t_n & & \vdots \\ \vdots & & & & \vdots \\ t_1 & & t_{n-1} & t_n \end{bmatrix}$$

Remark: An addition of 2 Toeplitz requires only 2n - 1 additions.

Product matrix-vector with a Toeplitz [11]

If *T* is Toeplitz $n \times n$ with 2|n then:

$$T \cdot V = \begin{bmatrix} T_1 & T_0 \\ T_2 & T_1 \end{bmatrix} \begin{bmatrix} V_0 \\ V_1 \end{bmatrix}$$

is such that:
$$T \cdot V = \begin{bmatrix} P_0 + P_2 \\ P_1 + P_2 \end{bmatrix}$$

with
$$P_0 = (T_0 + T_1) \cdot V_1,$$

$$P_1 = (T_1 + T_2) \cdot V_0,$$

$$P_2 = T_1 \cdot (V_0 + V_1),$$

with

Complexity of the Toeplitz - vector product

Fan and Hasan proposed also a 3-way split method.

	Two-way split method	Three-way split method
# AND	$n^{\log_2(3)}$	$n^{\log_3(6)}$
# XOR	$5.5n^{\log_2(3)} - 6n + 0.5$	$\frac{24}{5}n^{\log_3(6)} - 5n + \frac{1}{5}$
Delay	$T_A + 2\log_2(n)D_X$	$D_A + 3\log_3(n)D_X$

 D_A is the delay of one AND and D_X the one for one XOR.

61/116

Application of Toeplitz - vector approach

- We have seen that C(X) = A(X) × B(X) mod P(X) can be obtained with C(X) = Z × B(X), where Z is a m × m matrix
- Using circular permutations of rows or columns, Z can be transformed into a Toeplitz.
- ► Fan-Hasan did it with trinomials, pentanomials (2006) and All-One (2007), then Hasan-Nègre (2010) used quadrinomals (with Q(X) = (X + 1)P(X))

Application of Toeplitz - vector approach Example

We consider
$$GF(2^6)$$
 with $P(X) = X^6 + X + 1$

$$Z = \begin{pmatrix} a_0 & a_5 & a_4 & a_3 & a_2 & a_1 \\ a_1 & a_0 + a_5 & a_5 + a_4 & a_4 + a_3 & a_3 + a_2 & a_2 + a_1 \\ a_2 & a_1 & a_0 + a_5 & a_5 + a_4 & a_4 + a_3 & a_3 + a_2 \\ a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 & a_4 + a_3 \\ a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 & a_4 + a_3 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 \\ a_5 & a_6 & a_6$$

is transformed in Toeplitz with a rotation of the 1st row to the last one

$$Z' = \begin{pmatrix} a_1 & a_0 + a_5 & a_5 + a_4 & a_4 + a_3 & a_3 + a_2 & a_2 + a_1 \\ a_2 & a_1 & a_0 + a_5 & a_5 + a_4 & a_4 + a_3 & a_3 + a_2 \\ a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 & a_4 + a_3 \\ a_4 & a_3 & a_2 & a_1 & a_0 + a_5 & a_5 + a_4 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 + a_5 \\ a_0 & a_5 & a_4 & a_3 & a_2 & a_1 \end{pmatrix}$$

Multiplication in $GF(2^n)$ Approaches using specific bases

Normal Base for $GF(2^m)$

We call normal base of GF(2^m), the base {α, α², α^{2²}..., α^{2^{m-1}}} where α is a root of P(X) (irreducible of degree m) (α^{2ⁱ} are roots of P(X), Frobenius property, P(X)^{2ⁱ} = P(X^{2ⁱ}))

• A in
$$GF(2^m)$$
: $A = (a_0, a_1, ..., a_{m-1}) = \sum_{i=0}^{m-1} a_i \alpha^{2^i}$

The square operation is a left rotation:
we have
$$A^2 = \sum_{i=0}^{m-1} a_i \alpha^{2^{i+1}}$$
 but $\alpha^{2^m} = \alpha$,
thus, $A^2 = a_{m-1}\alpha + \sum_{i=1}^{m-1} a_{i-1}\alpha^{2^i}$ in other words $A^2 = (a_{m-1}, a_0, ..., a_{m-2})$.

Normal Base: Multiplication of Massey-Omura [13]

• We have $D = A \times B = A \times M \times B^t$ with:

$$M = \begin{pmatrix} \alpha^{2^{0}+2^{0}} & \alpha^{2^{0}+2^{1}} & \dots & \alpha^{2^{0}+2^{j}} & \dots & \alpha^{2^{0}+2^{m-2}} & \alpha^{2^{0}+2^{m-1}} \\ \alpha^{2^{1}+2^{0}} & \alpha^{2^{1}+2^{1}} & \dots & \alpha^{2^{1}+2^{j}} & \dots & \alpha^{2^{1}+2^{m-2}} & \alpha^{2^{1}+2^{m-1}} \\ \alpha^{2^{i}+2^{0}} & \alpha^{2^{i}+2^{1}} & \dots & \alpha^{2^{i}+2^{j}} & \dots & \alpha^{2^{i}+2^{m-2}} & \alpha^{2^{i}+2^{m-1}} \\ \alpha^{2^{m-1}+2^{0}} & \alpha^{2^{m-1}+2^{1}} & \dots & \alpha^{2^{m-1}+2^{j}} & \dots & \alpha^{2^{m-1}+2^{m-2}} & \alpha^{2^{m-1}+2^{m-1}} \end{pmatrix}$$

- $M = M_0 \alpha + M_1 \alpha^2 + ... + M_{m-1} \alpha^{2^{m-1}}$ where M_i are composed of 0 and 1.
- Thus, D = A × B is obtained coordinate by coordinate with d_{m-1-k} = A × M_{m-1-k} × B^t for k = 0, ..., m − 1.

Normal Base: Multiplication of Massey-Omura [13] Storage of one matrix

- ▶ We have $D^{2^k} = A^{2^k} \times B^{2^k}$ and the power to 2^k is given by k left rotations: $d_{m-1-k} = A^{2^k} \times M_{m-1} \times (B^{2^k})^t$ for k = 0, ..., m-1
- The complexity is given by the number of 1's in M_{m-1} which depends on m and on P(X).
- ► The lower bound is 2m 1. When this bound is reached, the base is said "optimal" [12]
- If all the coefficients of P(X) are 1 (All-One), it is reached and the complexity is m² AND and 2m² − 2m XOR.

Normal Base: Multiplication of Massey-Omura [13] Example

We consider $GF(2^4)$ and the normal base $(\alpha^{2^0}, \alpha^{2^1}, \alpha^{2^2}, \alpha^{2^3})$ where α is a root of $P(X) = X^4 + X^3 + 1$ (irreducible)

$$M = \begin{pmatrix} \alpha^{2} & \alpha + \alpha^{2} + \alpha^{8} & \alpha + \alpha^{4} & \alpha + \alpha^{4} + \alpha^{8} \\ \alpha + \alpha^{2} + \alpha^{8} & \alpha^{4} & \alpha + \alpha^{2} + \alpha^{4} & \alpha^{2} + \alpha^{8} \\ \alpha + \alpha^{4} + \alpha^{8} & \alpha^{2} + \alpha^{4} & \alpha^{8} & \alpha^{2} + \alpha^{4} + \alpha^{8} \\ \alpha + \alpha^{4} + \alpha^{8} & \alpha^{2} + \alpha^{8} & \alpha^{2} + \alpha^{4} + \alpha^{8} & \alpha \end{pmatrix}$$

Thus,
$$M_{3} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Normal Base: Modified Massey-Omura [14]

If P(X) is All-One, the complexity can be decreased to m² AND and m² − 1 XOR, by decomposing M_{m−1}

•
$$M_{m-1} = (P + Q) \pmod{2}$$

with $P_{i,j} = \begin{cases} 1 & \text{if } i = (m/2 + j) \mod m \\ 0 & \text{else} \end{cases}$
• Let $T^{(k)}$ be such that: $B^{2^k} = BT^{(k)}$,
we have $T^{(k)}PT^{(k)t} = P$,

and

$$d_{m-1-k} = A \times P \times B^{t} + A^{2^{k}} \times Q \times (B^{2^{k}})^{t}$$

for $k = 0, ..., m-1$

Normal Base: Modified Massey-Omura [14] Example

We consider $GF(2^4)$ and the normal base $(\alpha^{2^0}, \alpha^{2^1}, \alpha^{2^2}, \alpha^{2^3})$ where α is a root of $P(X) = X^4 + X^3 + X^2 + X + 1$ (irreducible). With $\gamma = \alpha + \alpha^2 + \alpha^4 + \alpha^8$, we obtain:

$$M = \begin{pmatrix} \alpha^2 & \alpha^3 & \gamma & \alpha^4 \\ \alpha^8 & \alpha^4 & \alpha & \gamma \\ \gamma & \alpha & \alpha^8 & \alpha^2 \\ \alpha^4 & \gamma & \alpha^2 & \alpha \end{pmatrix}$$

Thus:

$$M_{3} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = P + Q = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Dual Bases in $GF(2^m)$ Definition

• Trace Function: linear form $Tr(u) = \sum u^{2^i} \in GF(2)$ with $u \in GF(2^m)$ (minimal polynomial of α , $P(X) = \prod_{i=0}^{m-1} (X - \alpha^{2^i}) \in GF(2)[X]$) **Dual Bases**: two bases $\{\lambda_i, i = 0..m - 1\}$ and $\{\nu_j, j = 0..m - 1\}$ are dual if $Tr(\lambda_i.\nu_j) = \begin{cases} 1 & i = j \\ 0 & i \neq i \end{cases}$ Base conversion : m = 1 $Tr(\nu_j.x) = x_j$ where x_j with $x = \sum x_j \lambda_j$

Dual Bases in $GF(2^m)$ General Definition

• An other linear form: $f(u) = Tr(\beta.u)$ where $\beta \in GF(2^k)$

-

Dual bases if
$$Tr(\beta . \lambda_i . \nu_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Base conversion:

$$Tr(\beta.\nu_j.x) = x_j$$
 where x_j with $x = \sum_{j=0}^{m-1} x_j \lambda_j$

Multiplication avec les Bases duales dans $GF(2^m)$ [15]

- We consider the canonical base {αⁱ, i = 0..m − 1} and a dual base with (f, β)
- Be a, b et c in $GF(2^m)$: $c = a \times b$

$$\begin{pmatrix} Tr(b\beta) & Tr(b\beta\alpha) & \dots & Tr(b\beta\alpha^{m-1}) \\ Tr(b\beta\alpha) & Tr(b\beta\alpha^2) & \dots & Tr(b\beta\alpha^m) \\ Tr(b\beta\alpha^{m-1}) & Tr(b\beta\alpha^m) & \dots & Tr(b\beta\alpha^{2m-2}) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \\ a_{m-1} \end{pmatrix} = \begin{pmatrix} Tr(c\beta) \\ Tr(c\beta\alpha) \\ Tr(c\beta\alpha^{m-1}) \end{pmatrix}$$

- first line, we find the coordinates of b in the dual base,
- coordinates of a are in the canonical one,
- c is obtained in the dual base.

► Goal: find f such that the dual base is a permutation of the canonical one [16]

Dual Bases in $GF(2^m)$: example 1

In $GF(2^4)$, we consider the canonical base $(1, \alpha, \alpha^2, \alpha^3)$ where α is a root of $P(X) = X^4 + X^3 + 1$ (irreducible) Consider the base,

$$(\alpha^{12} = \alpha + 1, \alpha^{11} = \alpha^3 + \alpha^2 + 1, \alpha^{10} = \alpha^3 + \alpha, \alpha^{13} = \alpha^2 + \alpha)$$

which satisfies $Tr(\alpha^{10}) = Tr(\alpha^{11}) = Tr(\alpha^{13}) = Tr(\alpha^{14}) = Tr(1) = 0$, et $Tr(\alpha^{12}) = Tr(\alpha) = 1$. Thus bases $(1, \alpha, \alpha^2, \alpha^3)$ and $(\alpha^{12}, \alpha^{11}, \alpha^{10}, \alpha^{13})$ are dual. Let $A = \alpha^{12} = (1, 1, 0, 0)$ and $B = \alpha^7 = (0, 1, 1, 1)$ in the canonical base, and $A = \alpha^{12} = (1, 0, 0, 0)$ and $B = \alpha^7 = (0, 1, 1, 0)$ in the dual one. We have,

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

We verify that $C = \alpha^4 = (1, 0, 1, 0)$ in the dual base and

 $\mathcal{C}=(1,0,0,1)$ in the canonical one

Dual Bases in $GF(2^m)$: example 2

We consider $GF(2^4)$ and the canonical base $(1, \alpha, \alpha^2, \alpha^3)$ with α root of $P(X) = X^4 + X^3 + 1$. We consider the linear form $Tr(\alpha^{10}u)$. In this case, the dual base is a permutation of the canonical one. $(\alpha^2, \alpha, 1, \alpha^3)$. Base conversion is trivial and the product of $A = \alpha^{12}$ and $B = \alpha^7$ becomes:

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

We verify that $C = \alpha^4$.

Inversion in a Finite Field

Extended Euclid Algorithm

- Evaluation of the inverse of a modulo b using Bezout identity b.u₁ + a.u₂ = gcd(a, b).
- We consider $U = (u_1, u_2, u_3)$ and $V = (v_1, v_2, v_3)$ such that:

 $u_1b + u_2a = u_3$ $v_1b + v_2a = v_3$

- ▶ Initialization $(u_1, u_2, u_3) = (1, 0, b)$ and $(v_1, v_2, v_3) = (0, 1, a)$
- We apply the Euclid GCD algorithm on u₃ and v₃ keeping the previous identities

In fact terms of index 2 are not useful for the computing of the inverse

Extended Euclide Algorithm in GF(p)

Result $u_2 \equiv a^{-1} \mod p$

Extended Euclide Algorithm in $GF(2^m)$

Result $U_2 \equiv A^{-1} \mod P(X)$

In $GF(2^m)$, this algorithm is in O(k) (at each step the degree decreases)

Extended Euclide Algorithm in $GF(2^4)$ We consider $A(X) = X^2 + 1$ and $P(X) = X^4 + X^3 + 1$ irreducible. $u_1(X) = 1$ $u_2(X) = 0$ $u_3(X) = P(X) = X^4 + X^3 + 1$ $v_1(X) = 0$ $v_2(X) = 1$ $v_3(X) = A(X) = X^2 + 1$ n = 2 $u_1(X) = 1$ $u_2(X) = X^2$ $u_3(X) = X^3 + X^2 + 1$ $v_1(X) = 0$ $v_2(X) = 1$ $v_3(X) = X^2 + 1$ $\begin{array}{rrrr} n=1 & u_1(X)=1 & u_2(X)=X^2+X & u_3(X)=X^2+X+1 \\ & v_1(X)=0 & v_2(X)=1 & v_3(X)=X^2+1 \end{array}$ $\begin{array}{ll} n=0 & u_1(X)=0 & u_2(X)=1 & u_3(X)=X^2+1 \\ v_1(X)=1 & v_2(X)=X^2+X+1 & v_3(X)=X \end{array}$ $n = 1 \quad u_1(X) = 1 \quad u_2(X) = X^2 + X + 1 \qquad u_3(X) = x$ $y_1(X) = X \quad y_2(X) = X^2 + X^3 + X + 1 \qquad y_3(X) = 1$ $\begin{array}{ll} n=1 & u_1(X)=X & u_2(X)=X^2+X^3+X+1 & u_3(X)=1 \\ & v_1(X)=1+X^2 & v_2(X)=X^4+X^3+1 & v_3(X)=0 \end{array}$ We verify that $(X^2 + X^3 + X + 1)(X^2 + 1) = 1 \mod (X^4 + X^3 + 1)$ and $X^2 + X^3 + X + 1$ is the inverse of $X^2 + 1$ modulo P(X).

Fermat-Euler Approach

- **Theorem**: If $\beta \neq 0$ in \mathbb{F}_q , then $\beta^q = \beta$ in \mathbb{F}_q . β is a root of $X^q = X$
- Corollary: For $\beta \neq 0$ in \mathbb{F}_q : $\beta^{q-2} = \beta^{-1}$
- In GF(p) we need an exponentiation to p − 2 which can be costly.
- ▶ In $GF(2^m)$, we have $\beta^{-1} = \beta^{2^m-2}$. The exponentiation uses the binary

representation of the exponent, we can use a square and multiply strategy, minimizing the multiplications considering that $2^m - 2 = 111...1100$ [17].

Fermat-Euler Approach

Example in $GF(2^4)$

We consider $GF(2^4)$ and the canonical base $(1, \alpha, \alpha^2, \alpha^3)$ where α is a root of $P(X) = X^4 + X^3 + 1$ (irreducible). We have $2^4 - 2 = 14$. Let $A(X) = X^2 + 1$, we have

 $A^{-1}(X) = A^{14}(X) = (X^2 + 1)^{14} \mod (X^4 + X^3 + 1)$

The binary representation of 14 is 1110, thus,

$$(X^{2}+1)^{14} = ((((X^{2}+1)^{2})(X^{2}+1))^{2})(X^{2}+1))^{2} \mod (X^{4}+X^{3}+1)$$

Step by step:

$$\begin{array}{lll} (X^2+1)^2 & = X^3 \\ ((X^2+1)^2)(X^2+1) & = (X^2+1)^3 & = X+1 \\ (((X^2+1)^2)(X^2+1))^2 & = (X^2+1)^6 & = X^2+1 \\ ((((X^2+1)^2)(X^2+1))^2)(X^2+1) & = (X^2+1)^7 & = X^3 \\ ((((X^2+1)^2)(X^2+1))^2)(X^2+1))^2 & = (X^2+1)^{14} & = X^3+X^2+X+1 \end{array}$$

Fermat-Euler Approach

Example in $GF(2^{31})$ We consider $GF(2^{31})$

operation	valuer	exponent	
β^2	$=\beta^2$	10	
$\beta^2 \beta$	$=\beta^3$	11	
$(\beta^3)^{2^2}$	$= \beta^{12}$	1100	
$\beta^{12}\beta^3$	$= \beta^{15}$	1111	
$(\beta^{15})^{2^4}$	$= \beta^{240}$	11110000	
$\beta^{240}\beta^{15}$	$= \beta^{255}$	11111111	
$(\beta^{255})^{2^8}$	$= \beta^{65280}$	11111110000000	
$\beta^{65280}\beta^{255}$	$= \beta^{65535}$	111111111111111	
$(\beta^{65535})^{2^{15}}$	$= \beta^{2147450880}$	111111111111111000000000000000000000000	
$(\beta^{255})^{2^7}$	$= \beta^{32640}$	11111110000000	
$(\beta^{15})^{2^3}$	$= \beta^{120}$	1111000	
$(\beta^3)^{2^1}$	$=\beta^{6}$	110	
$\beta^{2147450880}\beta^{32640}$	$= \beta^{2147483520}$	1111111111111111111111110000000	
$\beta^{120}\beta^6$	$= \beta^{126}$	1111110	
$\beta^{2147483520}\beta^{126}$	$= \beta^{2147483646}$	1111111111111111111111111111111111111	
	· · · · · · · · · · · · · · · · · · ·		

Another Approach: Residue Systems

Introduction to Residue Systems

Another Approach: Residue Systems Introduction to Residue Systems

Introduction to Residue Systems

- In some applications, like cryptography, we use finite field arithmetics on huge numbers or large polynomials.
- Residue systems are a way to distribute the calculus on small arithmetic units.
- Are these systems suitable for finite field arithmetics?

Residue Number Systems in \mathbb{F}_p , *p* prime

- Modular arithmetic mod p, elements are considered as integers.
- Residue Number System
 - RNS base: a set of coprime numbers $(m_1, ..., m_k)$
 - ▶ RNS representation: $(a_1, ..., a_k)$ with $a_i = |A|_{m_i}$
 - ▶ Full parallel operations mod M with $M = \prod_{i=1}^{k} m_i$ $(|a_1 \otimes b_1|_{m_1}, \dots, |a_n \otimes b_n|_{m_n}) \to A \otimes B \pmod{M}$
- Very fast product, but an extension of the base could be necessary and a reduction modulo p is needed.

Residue Number Systems in \mathbb{F}_p , *p* prime

•
$$\Phi(m) = \sum_{\substack{p \leq m \\ p \text{ prime}}} \log p = \log \prod_{\substack{p \leq m \\ p \text{ prime}}} p \sim m$$

• If $2^{m-1} \leq M < 2^m$, then the size of moduli is of order $\mathcal{O}(\log m)$.

In other words, if addition and multiplication have complexities of order Θ(f(m)), then in RNS the complexities become Θ(f(log m)).

Lagrange representations in \mathbb{F}_{p^k} with p > 2k

- ► Arithmetic modulo *I*(*X*), an irreducible 𝔽_p polynomial of degree *k*. Elements of 𝔽_{p^k} are considered as 𝔽_p polynomials of degree lower than *k*.
- Lagrange representation
 - ▶ is defined by k different points $e_1, ..., e_k$ in \mathbb{F}_p . $(k \leq p)$
 - A polynomial A(X) = α₀ + α₁X + ... + α_{k-1}X^{k-1} over 𝔽_p is given in Lagrange representation by:

$$(a_1 = A(e_1), ..., a_k = A(e_k)).$$

▶ Remark: a_i = A(e_i) = A(X) mod (X - e_i). If we note m_i(X) = (X - e_i), we obtain a similar representation as RNS.

Operations are made independently on each A(e_i) (like in FFT or Tom-Cook approaches). We need to extend to 2k points for the product.

Trinomial residue in \mathbb{F}_{2^n}

- ► Arithmetic modulo *I*(*X*), an irreducible 𝔽₂ polynomial of degree *n*. Elements of 𝔽_{2ⁿ} are considered as 𝔽₂ polynomials of degree lower than *n*.
- Trinomial representation
 - ▶ is defined by a set of k coprime trinomials $m_i(X) = X^d + X^{t_i} + 1$, with $k \times d \ge n$,
 - an element A(X) is represented by $(a_1(X), ..., a_k(X))$ with $a_i(X) = A(X) \mod m_i(X)$.
 - This representation is equivalent to RNS.
- Operations are made independently for each $m_i(X)$

Residue Systems

- Residue systems could be an issue for computing efficiently the product.
- The main operation is now the modular reduction for constructing the finite field elements.
- The choice of the residue system base is important, it gives the complexity of the basic operations.

Another Approach: Residue Systems

L-Modular reduction in Residue Systems

Modular reduction in Residue Systems

Reduction of Montgomery on \mathbb{F}_{ρ}

- The most used reduction algorithm is due to Montgomery (1985)[8]
- For reducing A modulo p, one evaluates q = -(Ap⁻¹) mod 2^s, then one constructs R = (A + qp)/2^s. The obtained value satisfies: R ≡ A × 2^{-s} (mod p) and R < 2p if A < p2^s. We note Montg(A, 2^s, p) = R.
- Montgomery notation: A' = A × 2^s mod p Montg(A' × B', 2^s, p) = (A × B) × 2^s (mod p)

Residue version of Montgomery Reduction

- ► The residue base is such that p < M (or deg M(X) ≥ deg I(X))
- We use an auxiliary base such that p < M' (or deg M'(X) ≥ deg I(X)), M' and M coprime. (Exact product, and existence of M⁻¹)
- Steps of the algorithm
 - 1. $Q = -(Ap^{-1}) \mod M$ (calculus in base M)
 - 2. Extension of the representation of Q to the base M'
 - 3. $R = (A + Qp) \times M^{-1}$ (calculus in base M')
 - 4. Extension of the representation of R to the base M
- The values are represented in the two bases.

Extension of Residue System Bases (from M to M')

The extension comes from the Lagrange interpolation. If $(a_1, ..., a_k)$ is the residue representation in the base M, then

$$A = \sum_{i=1}^{k} \left| a_i \times \left[\frac{M}{m_i} \right]_{m_i}^{-1} \right|_{m_i} \times \frac{M}{m_i} - \alpha M$$

The factor α can be, in certain cases, neglected or computed [18] Another approach consists in the Newton interpolation where A is correctly reconstructed. [21] In the polynomial case, the term $-\alpha M$ vanishes.

Arithmetic and Cryptography
Another Approach: Residue Systems
Modular reduction in Residue Systems

Extension for Q

By the CRT

$$\widehat{Q} = \sum_{i=1}^{n} \left| q_i \left| M_i \right|_{m_i}^{-1} \right|_{m_i} M_i = Q + \alpha M$$

where $0 \le \alpha < n$. When \widehat{Q} has been computed, it is possible to compute \widehat{R} as

$$\widehat{R} = (AB + \widehat{Q}p)M^{-1} = (AB + Qp + \alpha Mp)M^{-1}$$

= $(AB + Qp)M^{-1} + \alpha p$

so that $\widehat{R} \equiv R \equiv ABM^{-1} \pmod{p}$, which is sufficient for our purpose. Also, assuming that AB < pM, we find that $\widehat{R} < (n+2)p$ since $\alpha < n$.

Extension R

Extension of Residue System Bases

We first translate into an intermediate representation (MRS):

$$\begin{cases} \zeta_1 = a_1 \\ \zeta_2 = (a_2 - \zeta_1) \ m_1^{-1} \ \text{mod} \ m_2 \\ \zeta_3 = ((a_3 - \zeta_1) \ m_1^{-1} - \zeta_2) \ m_2^{-1} \ \text{mod} \ m_3 \\ \vdots \\ \zeta_n = (\dots ((a_n - \zeta_1) \ m_1^{-1} - \zeta_2) \ m_2^{-1} - \dots - \zeta_{n-1}) \ m_{n-1}^{-1} \ \text{mod} \ m_n. \end{cases}$$

We evaluate A, with Horner's rule, as

 $A = (\dots ((\zeta_n m_{n-1} + \zeta_{n-1}) m_{n-2} + \dots + \zeta_3) m_2 + \zeta_2) m_1 + \zeta_1.$

Features of the residue systems

- Efficient multiplication, the cost being the cost of one multiplication on one residue.
- ► Costly reduction: $O(k^{1.6})$ for trinomials [21] (annexe 109), $2k^2 + 3k \rightarrow \sim O(k)$ for RNS [18] (annexe 104), $O(k^2) \rightarrow O(k)$ for Lagrange representation [22] (annexe 112).
- If we take into account that most of the operations are multiplications by a constant, the cost can be considerably smaller.

Another Approach: Residue Systems

Applications to Cryptography

Applications to Cryptography

Elliptic curve cryptography

- The main idea comes from the efficiency of the product and the cost of the reduction in Residue Systems.
- We try to minimize the number of reductions. A reduction is not necessary after each operation. Clearly, for a formula like A × B + C × D, only one reduction is needed.
- Elliptic Curve Cryptography is based on addition of points . We use appropriate forms (Hessian, Jacobi, Montgomery...) and coordinates: projective, Jacobian or Chudnowski...
- For 512 bits values, Residues Systems for curves defined over a prime field, are more efficient than classical representations [19]

Pairings

- ► To summarize, we define a pairing as follows: let G₁ and G₂ be two additive abelian groups of cardinal n, and G₃ a multiplicative group of cardinal n.
- A pairing is a function e : G₁ × G₂ → G₃ which verifies the following properties: Bilinearity, Non-degeneracy.

For pairings defined on an elliptic curve *E* over a finite field 𝔽_p, we have *G*₁ ⊂ *E*(𝔽_p), *G*₂ ⊂ *E*(𝔽_{p^k}) and *G*₃ ⊂ 𝔽_{p^k}, where *k* is the smallest integer such that *n* divides *p^k* − 1; *k* is called the embedded degree of the curve.

Pairings

- ► The construction of the pairing involves values over F_p and F_{p^k} in the formulas. An approach with Residue Systems, similar to the one made on ECC could be interesting [20]
- k is most of the time chosen as a small power of 2 and 3 for algorithmic reasons. Residue arithmetics allows us to pass over this restriction.
- With pairings, we can also imagine two levels of Residue Systems: one over 𝑘_p and one over 𝑘_p^k.

ANNEXES

Détails of the implementation in Residue Systems

Annexe \mathbb{F}_p

Table: Hamming weight $w(m_{i,j}^{-1})$ of the inverse of m_i modulo m_j .

	mi							
m _i	2 ^k	$2^{k} - 1$	$2^k - 2^{t_1} - 1$	$2^k - 2^{t_2} - 1$	$2^k - 2^{t_1} + 1$	$2^k - 2^{t_2} + 1$		
2 ^k		1						
$2^{k} - 1$	1		2	2				
$2^k - 2^{t_1} - 1$	$\left[\frac{k}{t_1}\right]$	1		$\frac{k-t_2}{t_1-t_2}$	2			
$2^k - 2^{t_2} - 1$	$\left[\frac{k}{t_2}\right]$	1	$\frac{k-t_1}{t_1-t_2}$			2		
$2^k - 2^{t_1} + 1$	$\left[\frac{k}{t_1}\right]$	$\frac{k-1}{t_1-1}$	2			$\frac{k-t_1}{t_1-t_2}$		
$2^k - 2^{t_2} + 1$	$\left[\frac{k}{t_2}\right]$	$\frac{k-1}{t_2-1}$		2	$\frac{k-t_1}{t_1-t_2}$			

Back to 98

Table: Hamming weight $w(m_{i,j}^{-1})$ of the inverse of m_i modulo m_j .

	mj						
mi	2 ^k	$2^{k} - 1$	$2^k - 2^{t+1} - 1$	$2^k - 2^t - 1$	$2^k - 2^{t+1} + 1$	$2^k - 2^t + 1$	
2 ^k		1					
$2^{k} - 1$	1		2	2			
$2^k - 2^{t+1} - 1$	$\frac{k}{t+1}$	1		2	2	$\frac{k-t}{t-1}$	
$2^k - 2^t - 1$	$\left[\frac{k}{t}\right]$	1	2		$\frac{k-t-1}{t-1}$	2	
$2^k - 2^{t+1} + 1$	$\frac{k}{t+1}$	$\frac{k-1}{t}$	2	$\frac{k-t}{t-1}$		2	
$2^k - 2^t + 1$	$\frac{k}{t}$	$\frac{k-1}{t-1}$	$\frac{k-t-1}{t-1}$	2	2		

Back to 98

Pair of 5 Moduli - Parallel mode

The dynamical range is								
$M = 2^{320} - 2^{267} - 2^{265} - 2^{258} - 2^{256} + 2^{213} + 2^{206} - 2^{204} + 2^{195} - $								
$2^{193} - 2^{157} - 2^{151} - 2^{148} - 2^{142} + 2^{138} + 2^{129} + 2^{95} + 2^{87} + 2^{85} + 2^{87} + 2^{8} + 2^{8} + 2^{8} + 2^{8} + 2^{8} +$								
$2^{76} - 2^{67} + 2^{64} - 2^{31} + 2^{29} - 2^{22} + 2^{20} + 2^{11} - 2^9 + 2^2 - 1$ and								
M < M'.								
	$m_1 = 2^{64} - 2^8 - 1$	3	$m_1' = 2^{64} - 2^{10} + 1$	3				
RNS bases	$m_2 = 2^{64} - 2^{16} - 1$	3	$m_2' = 2^{64} - 2^9 - 1$	3				
for 5 moduli	$m_3 = 2^{64} - 2^{22} - 1$	3	$m_3^{\prime} = 2^{64} - 2^2 + 1$	3				
(P)	$m_4 = 2^{64} - 2^{28} - 1$	3	$m_4' = 2^{64} - 1$	2				
	$m_5 = 2^{64}$	1	$m_5' = 2^{64} - 2^{10} - 1$	3				

Back to 98

Annexes

Inverses $m_{i,j}^{-1}$ in basis \mathcal{B}_5	$\omega(m_{i,j}^{-1})$
$m_{1,2}^{-1} = 2^{48} + 2^{40} + 2^{32} + 2^{24} + 2^{16} + 2^{8}$	6
$m_{1,3}^{1,2} = 2^{42} + 2^{28} + 2^{14}$ $m_{1,3}^{1,3} = 2^{56} + 2^{56} + 2^{14}$	3
$m^{-1} - 200 - 200 - 200 - 200 + 200 - 2$	11
$m^{-1} = 2^{56} - 2^{48} + 2^{40} - 2^{32} + 2^{24} - 2^{16} + 2^8 - 1$	8
$m_{2}^{-1} = 2^{42} + 2^{30} + 2^{30} + 2^{24} + 2^{10} + 2^{12} + 2^{0}$	7
$m_{-1}^{-1} = 2^{36} + 2^{24} + 2^{12}$	3
$m^{-1} - 2^{40} - 2^{52} + 2^{10} - 1$	4
$m_{2}^{-1} = 2^{36} + 2^{30} + 2^{24} + 2^{18} + 2^{12} + 2^{6}$	6
$m_{2}^{-1} = 2^{04} - 2^{44} + 2^{22} - 1$	4
$m_{4,5}^{3,5} = 2^{64} - 2^{56} + 2^{28} - 1$	4

Back to 98

Inverses $m'_{i,i}$ in basis \mathcal{B}'_5	$\omega(m'_{i,j}^{-1})$
$m'_{1,2}^{-1} = 2^{62} - 2^{54} - 2^{46} - 2^{38} - 2^{30} - 2^{22} - 2^{14} - 2^8 + 2^6$	9
$m'_{1,3}^{-1} = 2^{63} + 2^{61} - 2^{53} - 2^{45} - 2^{37} - 2^{29} - 2^{21} - 2^{13} - 2^{5} - 2$	10
$m'_{1,4}^{2,1} = 2^{54} + 2^{45} + 2^{36} + 2^{27} + 2^{18} + 2^9 + 1$	7
$m'_{1,5}^{-1} = 2^{63} - 2^9$	2
$m'_{2,2}^{-1} = 2^{62} - 2^{54} - 2^{46} - 2^{38} - 2^{30} - 2^{22} - 2^{14} - 2^{6} - 1$	9
$m_{2,4}^{2,5} = 2^{64} - 2^{55} - 1$	3
$m'_{2,5}^{-1} = 2^{55} - 2$	2
$m'_{2,4}^{-1} = 2^{63} - 1$	2
$m'_{3,5}^{3,4} = 2^{54} + 2^{45} + 2^{36} + 2^{27} + 2^{18} + 2^{9}$	6
$m'_{4,5}^{-1} = 2^{54} - 1$	2
Back to 98	

Annexe \mathbb{F}_{2^n}

To compute

$$\psi = F \times T_j^{-1} \bmod T_i. \tag{1}$$

We use the nptation , $B_{j,i}(X) = T_j \mod T_i$. Thus, (1) becomes

$$\psi = F \times B_{j,i}^{-1} \mod T_i.$$
⁽²⁾

We evaluate (2) like a Montgomery reduction, where $B_{j,i}$ is the Montgomery factor:

1.
$$\phi = F \times T_i^{-1} \mod B_{j,i},$$

 $(F + \phi, T_i \text{ multiple of } B_{j,i}).$
2. $\psi = (F + \phi T_i)/B_{j,i}$
(with a division by $B_{j,i}$).
Back to 98

We remark that $B_{j,i}(X) = X^{t_j}(X^{t_i-t_j}+1)$ for $t_j < t_i$ In order to evaluate (2), we compute

$$\psi = \left(F \times (X^a)^{-1} \mod T_i\right) \times \left(X^b + 1\right)^{-1} \mod T_i.$$
 (3)

We evaluate $F \times (X^a)^{-1} \mod T_i$ in two steps:

$$\phi = F \times T_i^{-1} \mod X^a$$

$$\psi = (F + \phi \times T_i) / X^a$$
(4)
(5)

Back to 98

To end (3), we compute $F \times (X^b + 1)^{-1} \mod T_i$ (degree of F is at most d-1) in four steps:

$$F = F \mod (X^b + 1) \tag{6}$$

$$\phi = F \times T_i^{-1} \mod (X^b + 1) \tag{7}$$

$$\rho = F + \phi \times T_i \tag{8}$$

$$\psi=
ho/(X^b+1)$$
 (We have $ho=\psi X^b+\psi$ thus ho mod $X^b=\psi$ mod X^b) (9)

Back to 98

Annexe \mathbb{F}_{p^k}

Let us consider the first 2k integers: we define $E = \{0, \ldots, k-1\}$ and $E' = \{k, \ldots, 2k-1\}$. We can precompute k - 1 constants $C_j = ((e_j - e_1)(e_j - e_2) \dots (e_j - e_{j-1}))^{-1} \mod p$, for $2 \le j \le k$ and we can evaluate $(\hat{q}_1, \ldots, \hat{q}_k)$

$$\begin{cases} \hat{q}_{1} = q_{1} \mod p, \\ \hat{q}_{2} = (q_{2} - \hat{q}_{1})C_{2} \mod p, \\ \hat{q}_{3} = (q_{3} - (\hat{q}_{1} + 2\hat{q}_{2}))C_{3} \mod p, \\ \vdots \\ \hat{q}_{k} = (q_{k} - (\hat{q}_{1} + (k - 1)(\hat{q}_{2} + (k - 2)(\hat{q}_{3} + \dots + 2\hat{q}_{k-1})\dots)))C_{k} \mod p. \end{cases}$$
(10)

$$q'_{i} = \left((\dots (\hat{q}_{k}(e'_{i} - e_{k-1}) + \hat{q}_{k-1})(e'_{i} - e_{k-2}) + \cdots + \hat{q}_{2})(e'_{i} - e_{1}) + \hat{q}_{1} \right) \mod p. \quad (11)$$

$$\begin{cases} q_1' = ((\dots(\hat{q}_k \times 2 + \hat{q}_{k-1}) \\ \times 3 + \dots + \hat{q}_2) \times k + \hat{q}_1) \mod p, \\ q_2' = ((\dots(\hat{q}_k \times 3 + \hat{q}_{k-1}) \\ \times 4 + \dots + \hat{q}_2) \times (k+1) + \hat{q}_1) \mod p, \\ \vdots \\ q_k' = ((\dots(\hat{q}_k \times (k+1) + \hat{q}_{k-1}) \\ \times (k+2) + \dots + \hat{q}_2) \times (2k-1) + \hat{q}_1) \mod p, \end{cases}$$
(12)
Show to 98

113/116

For example the multiplication by $45 = (10\overline{1}0\overline{1}01)_2$ gives three additions if one considers the NAF, or with only two if one considers its factorization $45 = 9 \times 5$.

С	#A	С	#A	С	#A
1	0	16	0	31	1
2	0	17	1	32	0
3	1	18	1	33	1
4	0	19	2	34	1
5	1	20	1	35	2
6	1	21	2	36	1
7	1	22	2 2	37	2
8	0	22 23	2	38	2 2
9	1	24	1	39	2
10	1	25	2	40	1
11	2	26	2	41	2
12		27	2	42	2
13	1 2	28	1	43	3
14	1	29	2	44	2
15	1	30	1	45	2

Table: Number of addition (#A) required in the multiplication by some small constants c

p	form of <i>p</i>	k	1
59	$2^6 - 2^2 - 1$	29	170
67	$2^{6} + 3$	29 31	175 188
73	$2^6 + 2^3 + 1$	29 31	179 191
127	$2^7 - 1$	23 61	160 426
257	$2^8 + 1$	23 73	184 584
503	$2^9 - 2^3 - 1$	19 61	170 547
521	$2^9 + 2^3 + 1$	19 61	171 550
8191	$2^{13} - 1$	13 43	168 558
65537	$2^{16} + 1$	11 37	176 592
131071	$2^{17} - 1$	11 31	186 526
524287	$2^{19} - 1$	11 31	208 588
2147483647	$2^{31} - 1$	7 19	216 588
2305843009213693951	$2^{61} - 1$	3 7	182 426

Table: Good candidates for p and k suitable for elliptic curve cryptography and the corresponding key lengths

REFERENCES

Miller, V. (1985). "Use of elliptic curves in cryptography". CRYPTO 85: 417-426.

📔 Koblitz, N. (1987).

"Elliptic curve cryptosystems".

Mathematics of Computation 48 (177): 203-209.

- Boneh, Dan; Franklin, Matthew (2003).
 "Identity-based encryption from the Weil pairing".
 SIAM Journal on Computing 32 (3): 586-615.
- Joux, Antoine (2004).

"A one round protocol for tripartite Diffie-Hellman". Journal of Cryptology 17 (4): 263-276.

R. Lidl and H. Niederreiter. *Finite Fields.* Addison-Wesley, Reading, 1985.

Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and Their Applications. Cambridge University Press, revised edition edition, 1994.

Paul Barrett

Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor. Advances in Cryptology – CRYPTO' 86 Lecture Notes in Computer Science Volume 263, 1987, pp 311-323

- Montgomery, P.L.: Modular multiplication without trial division. *Math. Comp.* **44:170** (1985) 519–521
- M. Kaihara and N. Takagi *"Bipartite Modular Multiplication Method"* IEEE Trans. on Computers, vol. 57, No. 2, 157-164, Feb. 2007.

E. Mastrovito "VLSI Architectures for Computation in Galois Fields."

PhD thesis, Linkoping University, Dept. Electr. Eng., 1991

H. Fan and M. A. Hasan.

"A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields," IEEE Trans. Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

- R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone and R. Wilson. Optimal normal basis in $gf(p^m)$. Discrete Applied Mathematics, 1989.

J.L. Massey and J.K. Omura

"Computational Method and Apparatus for Finite Field Arithmetic"

US patent No 4,587,627, 1986.

Hasan, Wang, and Bhargava.

A modified massey-omura parallel multiplier for a class of finite fields.

IEEETC: IEEE Transactions on Computers, 42, 1993.

- Sebastian T.J. Fenn, Mohammed Benaissa and David Taylor. gf(2^m) multiplication and division over the dual basis. IEEE Transactions on Computers, 1996.
- M. Anwarul Hasan Huapeng Wu and Ian F. Blake. New low-complexity bit-parallel finite field multipliers using weakly dual bases.
 - IEEE Transactions on Computers, 1998.
- 🔋 Takagi, Yoshiki, and Takagi.

A fast algorithm for multiplicative inversion in $GF(2^m)$ using normal basis.

IEEETC: IEEE Transactions on Computers, 50, 2001.

Bajard, J.C., Didier, L.S., Kornerup, P.: Modular multiplication and base extension in residue number systems 15th IEEE Symposium on Computer Arithmetic, 2001 Vail Colorado USA pp. 59–65

- Bajard, J.C., Duquesne, S., Ercegovac M. and Meloni N.: Residue systems efficiency for modular products summation: Application to Elliptic Curves Cryptography, in Advanced Signal Processing Algorithms, Architectures, and Implementations XVI, SPIE 2006, San Diego, USA.
- Bajard, J.C. and ElMrabet N.: Pairing in cryptography: an arithmetic point of view, *Advanced Signal Processing Algorithms, Architectures, and Implementations XVII, part of the SPIE Optics & Photonics 2007 Symposium. August 2007 San Diego, USA.*

J.C. Bajard, L. Imbert, and G. A. Jullien: Parallel Montgomery Multiplication in *GF*(2^k) using Trinomial Residue Arithmetic, 17th IEEE symposium Computer Arithmetic, 2005 Cod, MA, USA.pp. 164-171

- J.C. Bajard, L. Imbert et Ch. Negre, Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation, *journal IEEE Transactions on Computers, September 2006 (Vol. 55, No. 9) p p. 1167-1177*
- Bajard, J.C., Meloni, N., Plantard, T.: Efficient RNS bases for Cryptography IMACS'05, Applied Mathematics and Simulation, (2005)
- Garner, H.L.: The residue number system. *IRE Transactions* on *Electronic Computers, EL* **8:6** (1959) 140–147
- Knuth, D.: Seminumerical Algorithms. The Art of Computer Programming, vol. 2. *Addison-Wesley (1981)*

Montgomery, P.L.: Modular multiplication without trial division. *Math. Comp.* **44170** *(1985) 519–521*

- Svoboda, A. and Valach, M.: Operational Circuits. Stroje na Zpracovani Informaci, Sbornik III, Nakl. CSAV, Prague, 1955, pp.247-295.
- Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Applications to Computer Technology. *McGraw-Hill (1967)*

