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Introduction
Modern Public Key Cryptography

I In 1985, Victor S. Miller [1] and Neal Koblitz [2] introduced
Elliptic Curve Cryptography.

I Gödel Prize 2013: Dan Boneh, Matthew K. Franklin [3] and
Antoine Joux [4] for Pairing Cryptography.

I Group operations on points of elliptic curve defined on finite
fields.

I Basic finite field operations: addition, multiplication,
inversion...
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Finite Fields Representations

Finite Fields Representations
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Finite Fields Representations

General Principles [5]

A finite field F (+,×) is a finite set F such that:

I F (+) is an Abelian Group

I F (+,×) is a Ring where every element (excepted 0 for ×) has
an inverse

Elementary Finite Fields have an order equal to a prime p.
Example of a such finite prime field Z/pZ

Z/pZ = {0, 1, 2, ..., p − 1}

Calculus are based on modular arithmetic.
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Finite Fields Representations

Splitting Finite Field

More generally, Finite Field has an order equal to a power of a
prime, we note GF (pm) or Fpm with p prime.
p is the caracteristic, if u ∈ GF (pm) then p × u = 0.

I as a set of polynomial residues modulo an irreducible
polynomial P(X ) of degree m in Fp[x ]

I as a set of the powers of a primitive element g ,
GF (pm) = {0, g0, g1, ..., gpm−2}

I as a set of linear combinations of base elements :
canonical {1, α, α2, ..., αm−1} ou normal {α, αp, αp2

..., αpm−1}
(α root of P(X ))
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Finite Fields Representations

Example in GF (22) (notice GF (22) 6= Z/22Z)

I Polynomials in GF (2)[X ] : 0, 1, X , 1 + X .

I Addition on GF (2) : 1 + (1 + X ) = X .
I Product with a modular reduction in function of an irreducible

one.
I X 2 + X + 1 is irreducible over GF (2), GF (4) can be

represented by GF (2)[X ]/X 2 + X + 1.
I Multiplication modulo X 2 + X + 1:

X ∗ (1 + X ) = (X + X 2) mod (X 2 + X + 1) = 1
I The choice of the irreducible polynomial impacts the

complexity.
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Multiplication in GF (p)

Multiplication in GF (p)
Multiplication of two values
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Multiplication in GF (p)

Back to multiplication

Multiplication of two values
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
via polynomials

I Let A =
k−1∑
i=0

aiβ
i and B =

k−1∑
i=0

biβ
i be two numbers in base β

I Let A(X ) =
k−1∑
i=0

aiX
i and B(X ) =

k−1∑
i=0

biX
i be the associated

polynomials
I Evaluation of the product P = A× B:

1. Polynomial Evaluation: P(X ) = A(X )× B(X )
2. Calculus of the value: P(β) = A(β)× B(β)



Arithmetic and Cryptography 11/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
via polynomials: Remarks

I Step 1, the pi are lower than k × β2

I Step 2, the calculus of P(β) becomes a reduction of the pi by
carry propagation.
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Multiplication in GF (p)

Back to multiplication

Polynomial representations

I A polynomial of degree k − 1 can be defined:
I by its k coefficients ai

A(X ) =
k−1∑
i=0

aiX
i

I or by k values in different points ei

for i = 0..k − 1, A(ei ) =
k−1∑
j=0

aje
j
i

ei are chosen, in respect to two criteria: easy evaluation and
small size for the A(ei ).
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Multiplication in GF (p)

Back to multiplication

Polynomial Product
defined by coefficients

I P(X ) = A(X )× B(X ) = (
k−1∑
i=0

aiX
i )× (

k−1∑
i=0

biX
i ) =

2k−2∑
i=0

piX
i



p0

p1

...
pk−1

...
p2k−3

p2k−2


=



a0 0 0 . . . 0
a1 a0 0 . . . 0
...

... . . .
...

ak−1 ak−2 ak−3 . . . a0

0 ak−1 ak−2 . . . a1

...
... . . .

...
0 0 . . . 0 ak−1




b0

b1

...
bk−2

bk−1


k2 products.
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Multiplication in GF (p)

Back to multiplication

Polynomial Product
defined by points

I P(X ) = A(X )× B(X ) = (
k−1∑
i=0

aiX
i )× (

k−1∑
i=0

biX
i ) =

2k−2∑
i=0

piX
i

is computed at 2k − 1 differents points:

P(e0) = A(e0)× B(e0)
P(e1) = A(e1)× B(e1)

...
P(e2k−3) = A(e2k−3)× B(e2k−3)
P(e2k−2) = A(e2k−2)× B(e2k−2)

2k − 1 products.
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Multiplication in GF (p)

Back to multiplication

Coefficient reconstruction
Lagrange approach

I Use of a sum of k polynomials, such that the i−th one is
equal to P(ei ) for ei , and 0 for all other ej with j 6= i .

P(X ) =
k−1∑
i=0

P(ei )

∏
j 6=i (X − ej)∏
j 6=i (ei − ej)
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Multiplication in GF (p)

Back to multiplication

Coefficient reconstruction
Newton approach

I The main idea is to use polynomials of increasing degrees

P(X ) =
k−1∑
i=0

p̂i

i−1∏
j=0

(X − ej) = p̂0 + p̂1(X − e0) + p̂2(X − e0)(X − e1) + . . .

p̂0 = p′0
p̂1 = (p′1 − p̂0)/(e1 − e0)
. . .
p̂i = (. . . (p′i − p̂0)/(ei − e0)− p̂1)/(ei − e1)− . . .− p̂i−1)/(ei − ei−1)
. . .
p̂k−1 = (. . . (p′k−1 − p̂0)/(ek−1 − e0)− p̂1)/(ek−1 − e1) . . .− p̂k−2)/(ek−1 − ek−2)

with, p′i = P(ei )
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
Karatsuba Algorithm(1)

I Select points e0 = 0, e1 = −1 and e2 =∞
I We have:

A =
k−1∑
i=0

aiβ
i = (

k/2−1∑
i=0

ak/2+iβ
i )βk/2 +

k./2−1∑
i=0

aiβ
i = A1β

k/2 + A0

I Polynomial view: A(X ) = A1X + A0
A(0) = A0

A(−1) = A0 − A1

A(∞) = lim
X→∞

A1X
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
Karatsuba Algorithm (2)

I Values of the product polynomials
P(0) = A0B0

P(−1) = (A0 − A1)(B0 − B1)
P(∞) = lim

X→∞
A1B1X

2

I Newton interpolation
p̂0 = P(0) = A0B0

p̂1 = (P(−1)− p̂0)/(−1) = (A1 − A0)(B0 − B1) + A0B0

p̂∞ = lim
X→∞

((P(∞)− p̂0)/X − p̂1)/(X + 1) = A1B1
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
Karatsuba Algorithm(3)

I Reconstruction
P(X ) = p̂0 + p̂1 X + p̂∞ X (X + 1)

= A0B0

+((A1 − A0)(B0 − B1) + A0B0 + A1B1)X
+A1B1X

2

I Final evaluation P(βk/2) = A0B0

+((A1 − A0)(B0 − B1) + A0B0 + A1B1)βk/2

+A1B1β
k
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
Karatsuba Algorithm (4) : Complexity

I Let denote K (k) as the number of elementary operations

I By recurrence K (k) = 3K (k/2) + αk , we suppose that the
addition is linear

I We obtain K (k) = O(k log2(3))
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
Toom Cook Algorithm (1)

The Karatsuba approach can be generalized:

I Select points e0 = 0, e1 = −1 , e2 = 1, e3 = 2 and e4 =∞
I We have:

A = A2β
2k/3 + A1β

k/3 + A0

I Polynomial view: A(X ) = A2X
2 + A1X + A0

A(0) = A0

A(−1) = A2 − A1 + A0

A(1) = A2 + A1 + A0

A(2) = 4A2 + 2A1 + A0

A(∞) = lim
X→∞

A2X
2
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
Toom Cook Algorithm (2)

I With Newton

p̂0 = P(0) = A0B0

p̂1 = (P(−1)− p̂0)/(−1)
p̂2 = ((P(1)− p̂0)/(1)− p̂1)/(2)
p̂3 = (((P(2)− p̂0)/(2)− p̂1)/(3)− p̂2)/(1)
p̂4 = lim

X→∞
((((P(∞)− p̂0)/X − p̂1)/(X + 1)− p̂2)/(X − 1)− p̂3)/(X − 2)

= A2B2

I We notice a division by 3 → limits of this approach

I Reconstruction by computing P(βk/3):
P(X ) = p̂0 + X (p̂1 + (X + 1)(p̂2 + (X − 1)(p̂3 + p̂4(X − 2))))
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
Toom Cook Algorithm (3)

I Let denote T3(k) as the number of elementary operations

I By recurrence T3(k) = 5T3(k/3) + αk , assuming that
addition is linear

I We obtain T3(k) = O(k log3(5))
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Multiplication in GF (p)

Back to multiplication

Product of two numbers
Toom Cook Algorithm (4), asymptotic point of view

I Splitting by n

I With Tn(k) he number of elementary operations

I By recurrence Tn(k) = (2n − 1)Tn(k/n) + αk , assuming that
addition is linear

I We obtain Tn(k) = O(k logn(2n−1))

I Then the complexity of the multiplication can reach O(k1+ε)
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Multiplication in GF (p)

Back to multiplication

Fourier Transform
Complexité Algorithme FFT

I Select points: the nthroots of unity, ωn = 1, ω primitive.

I Properties: ω2k is a n
2

th root, (ωk)n/2 = −1 (assuming n
even)

A(ωk) =

n
2−1∑
i=0

a2iω
2ik + ωk

n
2−1∑
i=0

a2i+1ω
2ik = A0(ω2k) + ωkA1(ω2k)

I F (n) number of elementary op. for a FFT of dimension n

I We have F (n) = 2F (n/2) + αn, then, F (n) = O(n log2 n)
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Multiplication in GF (p)

Modular Reduction

Multiplication in GF (p)

Modular Reduction
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Multiplication in GF (p)

Modular Reduction

Modular Reduction
p fixed

Two options:

I Specific p allowing an easy reduction

p = βn − ξ avec ξ < βn/2

I Common p → generic algorithms
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Multiplication in GF (p)

Modular Reduction

Modular Reduction
p = βn − ξ with 0 ≤ ξ < βn/2 and ξ2 ≤ βn − 2βn/2 + 1

We have C = A× B ≤ (p − 1)2

I We write C = C1β
n + C0

I First reduction pass: C ≡ C1ξ + C0 (= C ′) (mod p)

I Second reduction pass: C ′ ≡ C ′1ξ + C ′0 (= C”) (mod p)

I Final touch:
If C” + ξ ≥ βn Then R = C” + ξ − βn, Else R = C”



Arithmetic and Cryptography 29/116

Multiplication in GF (p)

Modular Reduction

Modular Reduction
p = βn − ξ with 0 ≤ ξ < βn/2

I This reduction uses two multiplications by ξ, two options
I Choose a very small ξ, for example, ξ < β → digit×number
I Choose a very sparce ξ → shift and add approach

I If ξ > βn/2, then the number of passes increases



Arithmetic and Cryptography 30/116

Multiplication in GF (p)

Modular Reduction

Modular Reduction with p = βn − 1

(
1, β, β2, . . . β2n−2

)


a0 0 0 . . . 0
a1 a0 0 . . . 0
...

... . . .
...

an−1 an−2 an−3 . . . a0

0 an−1 an−2 . . . a1

...
... . . .

...
0 0 . . . 0 an−1




b0

b1

...
bn−2

bn−1



C ≡
(

1, β, β2, . . . βn−1
)
.M.


b0

b1

...
bn−2

bn−1

 (mod p)
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Multiplication in GF (p)

Modular Reduction

Modular Reduction with p = βn − 1

M =


a0 0 . . . 0 0
a1 a0 . . . 0 0
...

... . . .
...

an−2 an−3 . . . a0 0
an−1 an−2 . . . a1 a0

+


0 an−1 an−2 . . . a1

0 0 an−1 . . . a2

...
... . . .

...
0 0 . . . 0 an−1

0 0 0 . . . 0



M =


a0 an−1 an−2 . . . a1

a1 a0 an−1 . . . a2

...
... . . .

...
an−2 an−3 . . . a0 an−1

an−1 an−2 . . . a1 a0


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Multiplication in GF (p)

Modular Reduction

Modular Reduction with p = βn − βt − 1

If t < n/2 then M is obtained with one matrix addition.

M =



a0 an−1 an−2 . . . a1
a1 a0 an−1 . . . a2

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

.

. . . .

.

.

.
an−2 an−3 . . . a0 an−1
an−1 an−2 . . . a1 a0


+



0 0 0 . . . 0

.

.

.

.

.

. . . .

.

.

.
0 0 0 . . . 0
0 an−1 an−2 . . . a1

.

.

.

.

.

. . . .

.

.

.
0 . . . an−1 . . . an−t



+



0 . . . an−1 . . . an−t+1

.

.

.

.

.

. . . .

.

.

.
0 0 . . . 0 an−1
0 0 0 . . . 0

.

.

.

.

.

. . . .

.

.

.
0 0 0 . . . 0


+



0 0 0 . . . 0

.

.

.

.

.

. . . .

.

.

.
0 0 0 . . . 0
0 . . . an−1 . . . an−t+1

.

.

.

.

.

. . . .

.

.

.
0 0 . . . 0 an−1


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Multiplication in GF (p)

Modular Reduction

Multiplication in GF (p)

Generic Modular Reduction
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Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Barrett Algorithm [7]

Reduction of A modulo P via the approximation of the quotient.

I Conditions: βn−1 ≤ P < βn et A < P2 < β2n

I We can write that: βu+vA− P × βn+u

P × A
βn−v = 0

I βu+vA− P × b β
n+u

P
c × b A

βn−v c =

P

(
b β

n+u

P
cf ( A

βn−v ) + b A
βn−v cf ( β

n+u

P
) + f ( A

βn−1 )f ( β
2n

P
)

)
< P(βu+1 + (βn+v − 1) + 1)

with f (.) the fractional part function

If u ≥ n + 1 and v ≥ 2 then (βu+1 + βn+v )/βu+v < 1

I We deduce: A mod P ≡ A− P ×

⌊
bβ

2n+1

P
c×b A

βn−2 c
βn+3

⌋
< 2P
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Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Barrett Algorithm [7]

Barrett(A ,P)

Inputs βn−1 ≤ P < βn and A < P2 < β2n

Output R = A (mod P) et Q = bAP c

Core Q ←

⌊
bβ

2n+1

P
c×b A

βn−2 c
βn+3

⌋
R ← A− Q × P

If R ≥ P, Then R ← R − P and Q ← Q + 1

Complexity: 2 products of n + 1 digits
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Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Montgomery Algorithm [8]

Reduction of A modulo P via a multiple of P.

I Conditions : βn−1 ≤ P < βn and A < Pβn

I The scheme is to add a multiple of P to A such that the
result is a multiple of βn

I The division by βn in base β is a shift.

I The output of this approach is A× β−n mod P
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Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Montgomery Algorithm [8]

Montgomery(A, P)

Inputs βn−1 ≤ P < βn and A < Pβn < β2n

Output R = A× β−n mod P

Core Q ← A× | − P−1|βn mod βn

R ← (A + Q × P) R is a multiple of βn

R ← R ÷ βn division by βn is a shift, (R < 2P)

If R ≥ P Then R ← R − P (optional)

Complexity: 2 products of n digits (in fact close to two half
products)
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Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Montgomery Representation

I To avoid the accumulation of factors β−n mod P, we note:
Ã = A× βn mod P

I Thee construction Ã = Montgomery(A× |β2n|P ,P)

I Stable for addition and multiplication using Montgomery
reduction:
Ã + B̃ = Ã + B and ÃB = Montgomery(Ã× B̃,P)

I Reconversion to standard: A = Montgomery(Ã,P)

I It is the most used algorithm in cryptography
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Multiplication in GF (p)

Modular Reduction

Interleaved Modular Multiplication
Montgomery Algorithm

MontgomeryI(A, B, P)

Inputs βn−1 ≤ P < βn ad AB < Pβn < β2n and B =
n−1∑
i=0

biβ
i

Output R = A× B × β−n mod P

Core R ← 0

For i = 0 to i = n − 1 do

R ← (R + bi × A)
qi ← r0 × | − p−1

0 |β mod β
R ← (R + qi × P) multiple of β

R ← R ÷ β at the end (R < 2P)

If R ≥ P, Then R ← R − P (optional)
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Multiplication in GF (p)

Modular Reduction

Binary Interleaved Modular Multiplication
Montgomery Algorithm

MontgomeryB(A , B, P)

Inputs 2n−1 ≤ P < 2n and AB < 2nP < 22n and B =
n−1∑
i=0

bi2
i

Output R = A× B × 2−n mod P

Core R ← 0

For i = 0 to i = n − 1 do

R ← (R + bi • A)
qi ← r0 In fact | − p−1

0 |2 = 1 if P odd

R ← (R + qi • P) multiple of 2

R ← R >> 1 at the end (R < 2P)

If R ≥ P, Then R ← R − P (optional)
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Multiplication in GF (p)

Modular Reduction

Bipartite Modular Multiplication [9]

I This approach is based on:

We define ∗ as: X ∗ Y = (X × Y )× R−1 mod P
We split *y*: Y = Yh × R + Yl for example R = βn/2

thus X ∗ Y = (X × Yh mod P + X × Yl × R−1 mod P) mod P

I X × Yh mod P is computed using Barret.

I X × Yl × R−1 mod P is computed via Montgomery.

I These two operations can be done in parallelel
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Multiplication in GF (2m)

Multiplication in GF (2m)
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Multiplication in GF (2m)

Multiplication in GF (2m)

Most of the hardware implementations use GF (2m) where basic
operators are AND and XOR.
The different approaches for the modular reduction needed in the
multiplication over GF (2m) are:

I The ones depending of the finite field

I The generic ones

I Those using specific bases
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Multiplication in GF (2m)

Polynomial Approaches

Multiplication in GF (2m)

Polynomial Approaches
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Multiplication in GF (2m)

Polynomial Approaches

Multiplication in GF (2m)

The calculus of C (X ) = A(X )× B(X ) mod P(X ) can be executed
in two steps:

1. a polynomial product C ′(X ) = A(X )× B(X ),
c ′0
c ′1
...
c ′m−1

c ′m
...
c ′2m−2

 =


a0 0 ... 0 0
a1 a0 0 0 0

....
am−1 a1 a0

0 am−1 a1

...
0 0 0 am−1

×
 b0

b1

...
bm−1



2. a modular reduction P(X ) : C (X ) = C ′(X ) mod P(X )



Arithmetic and Cryptography 46/116

Multiplication in GF (2m)

Polynomial Approaches

Montgomery Algorithm

I A(X ) ∗ B(X ) is computed in GF (2m) defined by P(X ) a
degree m irreducible polynomial

I Montgomery compute A(X ) ∗B(X ) ∗R−1(X )modP(X ) where
R(X ) is a fixed element and R−1(X ) is its inverse modP(X ).
We know R(X ) and P(X ) (irreducible), we can precompute R−1(X ) and
P ′(X ) such that:

R−1(X ) ∗ R(X ) + P ′(X ) ∗ P(X ) = 1
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Montgomery Algorithm (generic case)

Inputs: A(X ) and B(X ) of degrees lower than m
Outputs: T (X ) = A(X ) ∗ B(X ) ∗ R−1(X ) mod P(X )

Precomputed: P ′(X ), R(X )

Product: C (X ) = A(X ) ∗ B(X )
Reduction: Q(X ) = −C (X ) ∗ P ′(X ) mod R(X )

T (X ) =
(
C (X ) + Q(X ) ∗ P(X )

)
div R(X)

I The complexity is due to the three products.

I The reduction modulo R(X ) and the division by R(X ) are easy if
R(X ) = Xm.
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Montgomery Algorithm (execution)

I Polynomial representations:

A(X ) = a0 + a1X + a2X
2 + ...+ am−1X

m−1

B(X ) = b0 + b1X + b2X
2 + ...+ bm−1X

m−1

P(X ) = p0 + p1X + p2X
2 + ...+ pm−1X

m−1 + Xm

P ′(X ) = p′0 + p′1X + p′2X
2 + ...+ p′m−1X

m−1

I We decompose the evaluation using matrices, into two parts:
I The first lines for the computation of Q(X )
I The last lines for the result T (X )
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Montgomery Algorithm (execution)

Decomposition of the calculus for Q(X ): (the lower degrees)

Q(X ) = −


p′0 0 ... 0 0
p′1 p′0 ... 0 0

p′m−2 p′m−3 ... p′0 0

p′m−1 p′m−2 ... p′1 p′0




a0 0 ... 0 0
a1 a0 ... 0 0

am−2 am−3 ... a0 0
am−1 am−2 ... a1 a0




b0
b1
...

bm−2
bm−1



Then for T (X ):(the upper degrees)


0 am−1 ... a2 a1
0 0 ... a2 a1

0 0 ... am−1 am−2
0 0 ... 0 am−1
0 0 ... 0 0




b0
b1
...

bm−3
bm−2
bm−1

+


1 pm−1 ... p2 p1
0 1 ... p2 p1

0 0 ... pm−1 pm−2
0 0 ... 1 pm−1
0 0 ... 0 1




q0
q1
...

qm−3
qm−2
qm−1


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Montgomery Algorithm (complexity of the general case)

I Complexity counting the number of elementary operations
over GF (2):
I m2 + (m − 1)2 multiplications (AND)
I (m − 1)2 + (m − 2)2 + m additions (XOR).

I For this approach we can use the Montgomery representation:
Ã(X ) = A(X )× R(X ) (mod P)(X )

I It can be generalized to GF (pk)
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Iterative Montgomery in GF (2m) with R(X ) = Xm

Inputs: A(X ) and B(X ) of degrees lower than m

Output: T (X ) = A(X ) ∗ B(X ) ∗ R−1(X ) mod P(X )
Precomputed: P ′(X ), R(X )

Initialisation T (X ) = 0
Loop For i = 0 to m − 1 do

T (X ) = T (X ) + ai ∗ B(X )
T (X ) = (T (X ) + t0 ∗ P(X ))/X
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Iterative Montgomery in GF (2m) with R(X ) = Xm

I At each step a division by X , hence at the end it is equivalent
to R(X ) = Xm.

I Moreover P(X ) is irreducible, thus its constant term is 1,
idem for P ′(X ).

I The complexity given in logical gates:
I 2m2 XOR (for the additions)
I and 2m2 AND (for the products)
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Method of Mastrovito [10]
Approach Idea

I GF (2m) is defined by a root α of the irreducible P(X ) of degree m.

I The elements of GF (2m) are given in the canonical {1, α, α2, ..., αm−1}:

A =
m−1∑
i=0

aiα
i and B =

m−1∑
i=0

biα
i .

I We note C = A× B in GF (2m), C =
m−1∑
i=0

ciα
i .

Mastrovito proposed to construct Z , a matrix m ×m using the
coefficients of A, such that:

C = Z × B
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Method of Mastrovito
Construction of Z

Z is obtained by:

1. constructing the matrix (m − 1)×m, Q which is the representations of
X k for k ≥ m modulo P(X ):

Xm

Xm+1

...
X 2m−2

 = Q ×


X 0

X 1

...
Xm−1


2. and then, the matrix Z is obtained with:

zi,j =


ai for j = 0, i = 0 . . .m − 1

u(i − j) ∗ ai−j +
∑j−1

t=0 qj−1−t,i ∗ am−1−t , else , with u(t) =

{
1 if t ≥ 0
0 else
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Method of Mastrovito
Cost of the approach

I The complexity is due to the construction of Z which can
need m3/2 And and Xor , the choice of the irreducible
polynomial is fundamental.

I With trinomials like Xm + X + 1 the multiplication is done
with m2 − 1 XOR and m2 AND.

I There are some variants
I if all the coefficients are 1 (all-one polynomial)

P(X ) = 1 + X + X 2 + ...+ Xm, in this case Xm+1 ≡ 1 (mod P(X ))
I or for regular sparced polynomials

P(X ) = 1 + X∆ + X 2∆ + ...+ X k∆=m, here X (k+1)∆ ≡ 1 (mod P(X )).
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Method of Mastrovito I
Example with a trinomial

We consider GF (27) with the canoical base {1, α, α2, ..., α6} where
α is a root of the irreducible P(X ) = X 7 + X + 1. Thus,

α7 = α + 1 → (1, 1, 0, 0, 0, 0, 0)
α8 = α2 + α → (0, 1, 1, 0, 0, 0, 0)
α9 = α3 + α2 → (0, 0, 1, 1, 0, 0, 0)
α10 = α4 + α3 → (0, 0, 0, 1, 1, 0, 0)
α11 = α5 + α4 → (0, 0, 0, 0, 1, 1, 0)
α11 = α6 + α5 → (0, 0, 0, 0, 0, 1, 1)

Q =


1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1


et
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Method of Mastrovito II
Example with a trinomial

Z =



a0 a6 a5 a4 a3 a2 a1

a1 a0 + a6 a6 + a5 a5 + a4 a4 + a3 a3 + a2 a2 + a1

a2 a1 a0 + a6 a6 + a5 a5 + a4 a4 + a3 a3 + a2

a3 a2 a1 a0 + a6 a6 + a5 a5 + a4 a4 + a3

a4 a3 a2 a1 a0 + a6 a6 + a5 a5 + a4

a5 a4 a3 a2 a1 a0 + a6 a6 + a5

a6 a5 a4 a3 a2 a1 a0 + a6


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Méthode de Mastrovito
Exemple avec un All-One

If P(X ) = 1 + X + X 2 + ...+ Xm, the matrix Z can be written as
Z = Z1 + Z2 with:

Z1 =


a0 0 am−1 . . . a3 a2

a1 a0 0 am−1 a4 a3

. . .

. . .
am−2 am−3 a0 0
am−1 am−2 a1 a0


and

Z2 =


0 am−1 am−2 a1

0 am−1 am−2 a1

. . .
0 am−1 am−2 a1

 (ie ligne Xm)
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Toeplitz Matrices

Definition
A n × n matrix is Toeplitz if [ti ,j ]1≤i ,j≤n are such that
ti ,j = ti−1,j−1 for i , j ≥ 1.

T =



tn tn+1 tn+2 · · · t2n−1

tn−1 tn tn+1
...

tn−2 tn−1 tn
...

...
...

t1 tn−1 tn


Remark: An addition of 2 Toeplitz requires only 2n − 1 additions.
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Toeplitz Matrices

Definition
A n × n matrix is Toeplitz if [ti ,j ]1≤i ,j≤n are such that
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T =



tn tn+1 tn+2 · · · t2n−1

tn−1 tn tn+1
...

tn−2 tn−1 tn
...

...
...

t1 tn−1 tn


Remark: An addition of 2 Toeplitz requires only 2n − 1 additions.
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Product matrix-vector with a Toeplitz [11]

If T is Toeplitz n × n with 2|n then:

T · V =

[
T1 T0

T2 T1

] [
V0

V1

]
is such that:

T · V =

[
P0 + P2

P1 + P2

]
with P0 = (T0 + T1) · V1,

P1 = (T1 + T2) · V0,
P2 = T1 · (V0 + V1),



Arithmetic and Cryptography 61/116

Multiplication in GF (2m)

Polynomial Approaches

Complexity of the Toeplitz - vector product

Fan and Hasan proposed also a 3-way split method.

Two-way split method Three-way split method

# AND nlog2(3) nlog3(6)

# XOR 5.5nlog2(3) − 6n + 0.5 24
5 nlog3(6) − 5n + 1

5
Delay TA + 2 log2(n)DX DA + 3 log3(n)DX

DA is the delay of one AND and DX the one for one XOR.
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Application of Toeplitz - vector approach

I We have seen that C (X ) = A(X )× B(X ) mod P(X ) can be
obtained with C (X ) = Z × B(X ), where Z is a m ×m matrix

I Using circular permutations of rows or columns, Z can be
transformed into a Toeplitz.

I Fan-Hasan did it with trinomials, pentanomials (2006) and
All-One (2007), then Hasan-Nègre (2010) used quadrinomals
(with Q(X ) = (X + 1)P(X ))
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Application of Toeplitz - vector approach
Example

We consider GF (26) with P(X ) = X 6 + X + 1

Z =


a0 a5 a4 a3 a2 a1
a1 a0 + a5 a5 + a4 a4 + a3 a3 + a2 a2 + a1
a2 a1 a0 + a5 a5 + a4 a4 + a3 a3 + a2
a3 a2 a1 a0 + a5 a5 + a4 a4 + a3
a4 a3 a2 a1 a0 + a5 a5 + a4
a5 a4 a3 a2 a1 a0 + a5


is transformed in Toeplitz with a rotation of the 1st row to the last one

Z ′ =


a1 a0 + a5 a5 + a4 a4 + a3 a3 + a2 a2 + a1
a2 a1 a0 + a5 a5 + a4 a4 + a3 a3 + a2
a3 a2 a1 a0 + a5 a5 + a4 a4 + a3
a4 a3 a2 a1 a0 + a5 a5 + a4
a5 a4 a3 a2 a1 a0 + a5
a0 a5 a4 a3 a2 a1


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Multiplication in GF (2n)

Approaches using specific bases
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Normal Base for GF (2m)

I We call normal base of GF (2m), the base
{α, α2, α22

..., α2m−1} where α is a root of P(X ) (irreducible of
degree m) ( α2i are roots of P(X ), Frobenius property, P(X )2i = P(X 2i ))

I A in GF (2m): A = (a0, a1, ..., am−1) =
m−1∑
i=0

aiα
2i .

I The square operation is a left rotation:

we have A2 =

m−1∑
i=0

aiα
2i+1

but α2m = α,

thus, A2 = am−1α +

m−1∑
i=1

ai−1α
2i in other words A2 = (am−1, a0, ..., am−2).
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Normal Base: Multiplication of Massey-Omura [13]
I We have D = A× B = A×M × Bt with:

M =



α20+20
α20+21

. . . α20+2j . . . α20+2m−2
α20+2m−1

α21+20
α21+21

. . . α21+2j . . . α21+2m−2
α21+2m−1

α2i +20
α2i +21

. . . α2i +2j . . . α2i +2m−2
α2i +2m−1

α2m−1+20
α2m−1+21

. . . α2m−1+2j . . . α2m−1+2m−2
α2m−1+2m−1



I M = M0 α + M1 α
2 + ...+ Mm−1 α

2m−1
where Mi are

composed of 0 and 1.

I Thus, D = A× B is obtained coordinate by coordinate with
dm−1−k = A×Mm−1−k × Bt for k = 0, ...,m − 1.
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Normal Base: Multiplication of Massey-Omura [13]
Storage of one matrix

I We have D2k = A2k × B2k and the power to 2k is given by k
left rotations:
dm−1−k = A2k ×Mm−1 × (B2k )t for k = 0, ...,m − 1

I The complexity is given by the number of 1′s in Mm−1 which
depends on m and on P(X ).

I The lower bound is 2m − 1. When this bound is reached, the
base is said ”optimal”[12]

I If all the coefficients of P(X ) are 1 (All-One), it is reached
and the complexity is m2 AND and 2m2 − 2m XOR.
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Normal Base: Multiplication of Massey-Omura [13]
Example

We consider GF (24) and the normal base (α20
, α21

, α22
, α23

) where
α is a root of P(X ) = X 4 + X 3 + 1 (irreducible)

M =

 α2 α + α2 + α8 α + α4 α + α4 + α8

α + α2 + α8 α4 α + α2 + α4 α2 + α8

α + α4 α + α2 + α4 α8 α2 + α4 + α8

α + α4 + α8 α2 + α8 α2 + α4 + α8 α


Thus,

M3 =


0 1 0 1
1 0 0 1
0 0 1 1
1 1 1 0


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Normal Base: Modified Massey-Omura [14]

I If P(X ) is All-One, the complexity can be decreased to m2

AND and m2 − 1 XOR, by decomposing Mm−1

I Mm−1 = (P + Q) (mod 2)

with Pi ,j =

{
1 if i = (m/2 + j) mod m
0 else

I Let T (k) be such that: B2k = BT (k),
we have T (k)PT (k)t = P,

and
dm−1−k = A× P × Bt + A2k × Q × (B2k )t

for k = 0, ...,m − 1
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Normal Base: Modified Massey-Omura [14]
Example

We consider GF (24) and the normal base (α20

, α21

, α22

, α23

) where α is a root
of P(X ) = X 4 + X 3 + X 2 + X + 1 (irreducible). With γ = α + α2 + α4 + α8,
we obtain:

M =

 α2 α8 γ α4

α8 α4 α γ

γ α α8 α2

α4 γ α2 α


Thus:

M3 =

(
0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 0

)
= P + Q =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
+

(
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0

)
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Dual Bases in GF (2m)
Definition

I Trace Function: linear form Tr(u) =
m−1∑
i=0

u2i ∈ GF (2) with

u ∈ GF (2m) (minimal polynomial of α, P(X ) =
∏m−1

i=0 (X − α2i ) ∈ GF (2)[X ])

I Dual Bases: two bases {λi , i = 0..m − 1} and

{νj , j = 0..m − 1} are dual if Tr(λi .νj) =

{
1 i = j
0 i 6= j

I Base conversion :

Tr(νj .x) = xj where xj with x =
m−1∑
j=0

xjλj
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Dual Bases in GF (2m)
General Definition

I An other linear form: f (u) = Tr(β.u) where β ∈ GF (2k)

I Dual bases if Tr(β.λi .νj) =

{
1 i = j
0 i 6= j

I Base conversion:

Tr(β.νj .x) = xj where xj with x =
m−1∑
j=0

xjλj
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Multiplication avec les Bases duales dans GF (2m) [15]

I We consider the canonical base {αi , i = 0..m − 1} and a dual
base with (f , β)

I Be a, b et c in GF (2m): c = a× b Tr(bβ) Tr(bβα) .. Tr(bβαm−1)
Tr(bβα) Tr(bβα2) .. Tr(bβαm)

Tr(bβαm−1) Tr(bβαm) .. Tr(bβα2m−2)


 a0

a1

am−1

 =

 Tr(cβ)
Tr(cβα)

Tr(cβαm−1)


I first line, we find the coordinates of b in the dual base,
I coordinates of a are in the canonical one,
I c is obtained in the dual base.

I Goal: find f such that the dual base is a permutation of the
canonical one [16]
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Dual Bases in GF (2m): example 1
In GF (24), we consider the canonical base (1, α, α2, α3) where α is a root of
P(X ) = X 4 + X 3 + 1 (irreducible)
Consider the base,

(α12 = α + 1, α11 = α3 + α2 + 1, α10 = α3 + α, α13 = α2 + α)

which satisfies Tr(α10) = Tr(α11) = Tr(α13) = Tr(α14) = Tr(1) = 0, et
Tr(α12) = Tr(α) = 1.
Thus bases (1, α, α2, α3) and (α12, α11, α10, α13) are dual.
Let A = α12 = (1, 1, 0, 0) and B = α7 = (0, 1, 1, 1) in the canonical base, and
A = α12 = (1, 0, 0, 0) and B = α7 = (0, 1, 1, 0) in the dual one. We have,(

0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0

)(
1
1
0
0

)
=

(
1
0
1
0

)

We verify that C = α4 = (1, 0, 1, 0) in the dual base and
C = (1, 0, 0, 1) in the canonical one.
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Dual Bases in GF (2m): example 2

We consider GF (24) and the canonical base (1, α, α2, α3) with α root of
P(X ) = X 4 + X 3 + 1.
We consider the linear form Tr(α10u). In this case, the dual base is a
permutation of the canonical one. (α2, α, 1, α3).
Base conversion is trivial and the product of A = α12 and B = α7 becomes:

1 1 1 0
1 1 0 1
1 0 1 0
0 1 0 1




1
1
0
0

 =


0
0
1
1


We verify that C = α4.
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Inversion in a Finite Field

Extended Euclid Algorithm

I Evaluation of the inverse of a modulo b using Bezout identity
b.u1 + a.u2 = gcd(a, b).

I We consider U = (u1, u2, u3) and V = (v1, v2, v3) such that:

u1b + u2a = u3

v1b + v2a = v3

I Initialization (u1, u2, u3) = (1, 0, b) and (v1, v2, v3) = (0, 1, a)

I We apply the Euclid GCD algorithm on u3 and v3 keeping the
previous identities

In fact terms of index 2 are not useful for the computing of the inverse
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Inversion in a Finite Field

Extended Euclide Algorithm in GF (p)

Initialization u1 ← 1 u2 ← 0 u3 ← p
v1 ← 0 v2 ← 1 v3 ← a

Loop while v3 6= 0

q = bu3/v3c
t1 ← u1 − q.v1 t2 ← u2 − q.v2 t3 ← u3 − q.v3

u1 ← v1 u2 ← v2 u3 ← v3

v1 ← t1 v2 ← t2 v3 ← t3

Result u2 ≡ a−1 mod p
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Inversion in a Finite Field

Extended Euclide Algorithm in GF (2m)

Initialisation U1 ← 1 U2 ← 0 U3 ← P(X )
V1 ← 0 V2 ← 1 V3 ← A(X )

Loop while V3 6= 0

n = deg(U3)− deg(V3)
T1 ← U1 − X n.V1 t2 ← U2 − X n.V2 T3 ← U3 − X n.V3

If deg(t3) ≥ deg(v3)
U1 ← T1 U2 ← T2 U3 ← T3

then
U1 ← V1 U2 ← V2 U3 ← V3

V1 ← T1 V2 ← T2 V3 ← T3

Result U2 ≡ A−1 mod P(X )
In GF (2m), this algorithm is in O(k) (at each step the degree decreases)
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Extended Euclide Algorithm in GF (24)
We consider A(X ) = X 2 + 1 and P(X ) = X 4 + X 3 + 1 irreducible.

u1(X ) = 1 u2(X ) = 0 u3(X ) = P(X ) = X 4 + X 3 + 1

v1(X ) = 0 v2(X ) = 1 v3(X ) = A(X ) = X 2 + 1

n = 2 u1(X ) = 1 u2(X ) = X 2 u3(X ) = X 3 + X 2 + 1

v1(X ) = 0 v2(X ) = 1 v3(X ) = X 2 + 1

n = 1 u1(X ) = 1 u2(X ) = X 2 + X u3(X ) = X 2 + X + 1

v1(X ) = 0 v2(X ) = 1 v3(X ) = X 2 + 1

n = 0 u1(X ) = 0 u2(X ) = 1 u3(X ) = X 2 + 1

v1(X ) = 1 v2(X ) = X 2 + X + 1 v3(X ) = X

n = 1 u1(X ) = 1 u2(X ) = X 2 + X + 1 u3(X ) = x

v1(X ) = X v2(X ) = X 2 + X 3 + X + 1 v3(X ) = 1

n = 1 u1(X ) = X u2(X ) = X 2 + X 3 + X + 1 u3(X ) = 1

v1(X ) = 1 + X 2 v2(X ) = X 4 + X 3 + 1 v3(X ) = 0

We verfify that (X 2 + X 3 + X + 1)(X 2 + 1) = 1 mod (X 4 + X 3 + 1) and

X 2 + X 3 + X + 1 is the inverse of X 2 + 1 modulo P(X ).
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Fermat-Euler Approach

I Theorem: If β 6= 0 in Fq, then βq = β in Fq. β is a root of
X q = X

I Corollary: For β 6= 0 in Fq: βq−2 = β−1

I In GF (p) we need an exponentiation to p − 2 which can be
costly.

I In GF (2m), we have β−1 = β2m−2. The exponentiation uses the binary

representation of the exponent, we can use a square and multiply strategy, minimizing the multiplications

considering that 2m − 2 = 111...1100 [17].
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Fermat-Euler Approach
Example in GF (24)

We consider GF (24) and the canonical base (1, α, α2, α3) where α is a root of
P(X ) = X 4 + X 3 + 1 (irreducible). We have 24 − 2 = 14.
Let A(X ) = X 2 + 1, we have

A−1(X ) = A14(X ) = (X 2 + 1)14 mod (X 4 + X 3 + 1)

The binary representation of 14 is 1110, thus,

(X 2 + 1)14 = ((((X 2 + 1)2)(X 2 + 1))2)(X 2 + 1))2 mod (X 4 + X 3 + 1)

Step by step:

(X 2 + 1)2 = X 3

((X 2 + 1)2)(X 2 + 1) = (X 2 + 1)3 = X + 1

(((X 2 + 1)2)(X 2 + 1))2 = (X 2 + 1)6 = X 2 + 1

((((X 2 + 1)2)(X 2 + 1))2)(X 2 + 1) = (X 2 + 1)7 = X 3

(((((X 2 + 1)2)(X 2 + 1))2)(X 2 + 1))2 = (X 2 + 1)14 = X 3 + X 2 + X + 1
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Inversion in a Finite Field

Fermat-Euler Approach
Example in GF (231)

We consider GF (231). We want to compute β231−2, but 231 − 2 = 2147483646
is 1111111111111111111111111111110 in binary.

operation valuer exponent

β2 = β2 10

β2β = β3 11

(β3)22
= β12 1100

β12β3 = β15 1111

(β15)24
= β240 11110000

β240β15 = β255 11111111

(β255)28
= β65280 1111111100000000

β65280β255 = β65535 1111111111111111

(β65535)215
= β2147450880 1111111111111111000000000000000

(β255)27
= β32640 111111110000000

(β15)23
= β120 1111000

(β3)21
= β6 110

β2147450880β32640 = β2147483520 1111111111111111111111110000000

β120β6 = β126 1111110

β2147483520β126 = β2147483646 1111111111111111111111111111110
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Another Approach: Residue Systems

Introduction to Residue Systems

Introduction to Residue Systems

I In some applications, like cryptography, we use finite field
arithmetics on huge numbers or large polynomials.

I Residue systems are a way to distribute the calculus on small
arithmetic units.

I Are these systems suitable for finite field arithmetics?
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Introduction to Residue Systems

Residue Number Systems in Fp, p prime

I Modular arithmetic mod p, elements are considered as
integers.

I Residue Number System
I RNS base: a set of coprime numbers (m1, ...,mk)
I RNS representation: (a1, ..., ak) with ai = |A|mi

I Full parallel operations modM with M =
∏k

i=1 mi

(|a1 ⊗ b1|m1
, . . . , |an ⊗ bn|mn

)→ A⊗ B (mod M)

I Very fast product, but an extension of the base could be
necessary and a reduction modulo p is needed.
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Another Approach: Residue Systems

Introduction to Residue Systems

Residue Number Systems in Fp, p prime

I Φ(m) =
∑
p≤m

p prime

log p = log
∏
p≤m

p prime

p ∼ m

I If 2m−1 ≤ M < 2m, then the size of moduli is of order
O(logm).

I In other words, if addition and multiplication have
complexities of order Θ(f (m)), then in RNS the complexities
become Θ(f (logm)).
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Introduction to Residue Systems

Lagrange representations in Fpk with p > 2k

I Arithmetic modulo I (X ), an irreducible Fp polynomial of
degree k. Elements of Fpk are considered as Fp polynomials
of degree lower than k .

I Lagrange representation
I is defined by k different points e1, ...ek in Fp. (k ≤ p.)
I A polynomial A(X ) = α0 + α1X + ...+ αk−1X

k−1 over Fp is
given in Lagrange representation by:

(a1 = A(e1), ..., ak = A(ek)).

I Remark: ai = A(ei ) = A(X ) mod (X − ei ). If we note
mi (X ) = (X − ei ), we obtain a similar representation as RNS.

I Operations are made independently on each A(ei ) (like in FFT
or Tom-Cook approaches). We need to extend to 2k points
for the product.
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Introduction to Residue Systems

Trinomial residue in F2n

I Arithmetic modulo I (X ), an irreducible F2 polynomial of
degree n. Elements of F2n are considered as F2 polynomials of
degree lower than n.

I Trinomial representation
I is defined by a set of k coprime trinomials

mi (X ) = X d + X ti + 1, with k × d ≥ n,
I an element A(X ) is represented by (a1(X ), ...ak(X )) with

ai (X ) = A(X ) mod mi (X ).
I This representation is equivalent to RNS.

I Operations are made independently for each mi (X )
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Introduction to Residue Systems

Residue Systems

I Residue systems could be an issue for computing efficiently
the product.

I The main operation is now the modular reduction for
constructing the finite field elements.

I The choice of the residue system base is important, it gives
the complexity of the basic operations.
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Modular reduction in Residue Systems
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Another Approach: Residue Systems

Modular reduction in Residue Systems

Reduction of Montgomery on Fp

I The most used reduction algorithm is due to Montgomery
(1985)[8]

I For reducing A modulo p,
one evaluates q = −(Ap−1) mod 2s ,
then one constructs R = (A + qp)/2s .
The obtained value satisfies: R ≡ A× 2−s (mod p) and
R < 2p if A < p2s .
We note Montg(A, 2s , p) = R.

I Montgomery notation: A′ = A× 2s mod p
Montg(A′ × B ′, 2s , p) ≡ (A× B)× 2s (mod p)
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Modular reduction in Residue Systems

Residue version of Montgomery Reduction

I The residue base is such that p < M
(or degM(X ) ≥ deg I (X ))

I We use an auxiliary base such that p < M ′

(or degM ′(X ) ≥ deg I (X )), M ′ and M coprime.
(Exact product, and existence of M−1)

I Steps of the algorithm

1. Q = −(Ap−1) mod M (calculus in base M)
2. Extension of the representation of Q to the base M ′

3. R = (A + Qp)×M−1 (calculus in base M ′)
4. Extension of the representation of R to the base M

I The values are represented in the two bases.
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Modular reduction in Residue Systems

Extension of Residue System Bases (from M to M ′)

The extension comes from the Lagrange interpolation.
If (a1, ..., ak) is the residue representation in the base M, then

A =
k∑

i=1

∣∣∣∣∣ai ×
[
M

mi

]−1

mi

∣∣∣∣∣
mi

× M

mi
− αM

The factor α can be, in certain cases, neglected or computed [18]
Another approach consists in the Newton interpolation where A is
correctly reconstructed. [21]
In the polynomial case, the term −αM vanishes.
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Modular reduction in Residue Systems

Extension for Q

By the CRT

Q̂ =
n∑

i=1

∣∣∣qi |Mi |−1
mi

∣∣∣
mi

Mi = Q + αM

where 0 ≤ α < n.
When Q̂ has been computed, it is possible to compute R̂ as

R̂ = (AB + Q̂p)M−1 = (AB + Qp + αMp)M−1

= (AB + Qp)M−1 + αp

so that R̂ ≡ R ≡ ABM−1 (mod p), which is sufficient for our
purpose. Also, assuming that AB < pM, we find that
R̂ < (n + 2)p since α < n.
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Another Approach: Residue Systems

Modular reduction in Residue Systems

Extension R

Shenoy and Kumaresan (1989):

We have (
n∑

i=1

Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

) = R + α×M

α =

∣∣∣∣∣|M|−1
mn+1

(
n∑

i=1

∣∣∣∣Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

∣∣∣∣
mn+1

− |R|mn+1

)∣∣∣∣∣
mn+1

r̃j =

∣∣∣∣∣
n∑

i=1

∣∣∣∣Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

∣∣∣∣
m̃j

− |αM|m̃j

∣∣∣∣∣
m̃j
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Modular reduction in Residue Systems

Extension of Residue System Bases

We first translate into an intermediate representation (MRS):

ζ1 = a1

ζ2 = (a2 − ζ1) m−1
1 mod m2

ζ3 =
(
(a3 − ζ1) m−1

1 − ζ2

)
m−1

2 mod m3

...

ζn =
(
. . .
(
(an − ζ1) m−1

1 − ζ2

)
m−1

2 − · · · − ζn−1

)
m−1

n−1 mod mn.

We evaluate A, with Horner’s rule, as

A = (. . . ((ζn mn−1 + ζn−1) mn−2 + · · ·+ ζ3) m2 + ζ2) m1 + ζ1.
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Modular reduction in Residue Systems

Features of the residue systems

I Efficient multiplication, the cost being the cost of one
multiplication on one residue.

I Costly reduction: O(k1.6) for trinomials [21] (annexe 109),
2k2 + 3k →∼ O(k) for RNS [18] (annexe 104),
O(k2)→ O(k) for Lagrange representation [22] (annexe 112).

I If we take into account that most of the operations are
multiplications by a constant, the cost can be considerably
smaller.
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Another Approach: Residue Systems

Applications to Cryptography

Elliptic curve cryptography

I The main idea comes from the efficiency of the product and
the cost of the reduction in Residue Systems.

I We try to minimize the number of reductions. A reduction is
not necessary after each operation. Clearly, for a formula like
A× B + C × D, only one reduction is needed.

I Elliptic Curve Cryptography is based on addition of points .
We use appropriate forms (Hessian, Jacobi, Montgomery...)
and coordinates: projective, Jacobian or Chudnowski...

I For 512 bits values, Residues Systems for curves defined over
a prime field, are more efficient than classical representations
[19]
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Applications to Cryptography

Pairings

I To summarize, we define a pairing as follows: let G1 and G2

be two additive abelian groups of cardinal n, and G3 a
multiplicative group of cardinal n.

I A pairing is a function e : G1 × G2 → G3 which verifies the
following properties: Bilinearity, Non-degeneracy.

I For pairings defined on an elliptic curve E over a finite field
Fp, we have G1 ⊂ E (Fp), G2 ⊂ E (Fpk ) and G3 ⊂ Fpk , where

k is the smallest integer such that n divides pk − 1; k is called
the embedded degree of the curve.
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Another Approach: Residue Systems

Applications to Cryptography

Pairings

I The construction of the pairing involves values over Fp and
Fpk in the formulas. An approach with Residue Systems,
similar to the one made on ECC could be interesting [20]

I k is most of the time chosen as a small power of 2 and 3 for
algorithmic reasons. Residue arithmetics allows us to pass
over this restriction.

I With pairings, we can also imagine two levels of Residue
Systems: one over Fp and one over Fpk .
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ANNEXES

Détails of the implementation in Residue Systems
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Annexes

Annexe Fp

Table: Hamming weight w(m−1
i,j ) of the inverse of mi modulo mj .

mj

mi 2k 2k − 1 2k − 2t1 − 1 2k − 2t2 − 1 2k − 2t1 + 1 2k − 2t2 + 1

2k 1

2k − 1 1 2 2

2k − 2t1 − 1
⌈

k
t1

⌉
1

k−t2
t1−t2

2

2k − 2t2 − 1
⌈

k
t2

⌉
1

k−t1
t1−t2

2

2k − 2t1 + 1
⌈

k
t1

⌉
k−1
t1−1

2
k−t1
t1−t2

2k − 2t2 + 1
⌈

k
t2

⌉
k−1
t2−1

2
k−t1
t1−t2

Back to 98
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Table: Hamming weight w(m−1
i,j ) of the inverse of mi modulo mj .

mj

mi 2k 2k − 1 2k − 2t+1 − 1 2k − 2t − 1 2k − 2t+1 + 1 2k − 2t + 1

2k 1

2k − 1 1 2 2

2k − 2t+1 − 1
⌈

k
t+1

⌉
1 2 2 k−t

t−1

2k − 2t − 1
⌈
k
t

⌉
1 2 k−t−1

t−1
2

2k − 2t+1 + 1
⌈

k
t+1

⌉
k−1
t

2 k−t
t−1

2

2k − 2t + 1
⌈
k
t

⌉
k−1
t−1

k−t−1
t−1

2 2

Back to 98



Arithmetic and Cryptography 106/116

Annexes

Pair of 5 Moduli - Parallel mode

The dynamical range is
M = 2320 − 2267 − 2265 − 2258 − 2256 + 2213 + 2206 − 2204 + 2195 −
2193 − 2157 − 2151 − 2148 − 2142 + 2138 + 2129 + 295 + 287 + 285 +
276 − 267 + 264 − 231 + 229 − 222 + 220 + 211 − 29 + 22 − 1 and
M < M ′.

m1 = 264 − 28 − 1 3 m′1 = 264 − 210 + 1 3
RNS bases m2 = 264 − 216 − 1 3 m′2 = 264 − 29 − 1 3

for 5 moduli m3 = 264 − 222 − 1 3 m′3 = 264 − 22 + 1 3
(P) m4 = 264 − 228 − 1 3 m′4 = 264 − 1 2

m5 = 264 1 m′5 = 264 − 210 − 1 3

Back to 98
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Inverses m−1
i,j in basis B5 ω(m−1

i,j )

m−1
1,2 = 248 + 240 + 232 + 224 + 216 + 28 6

m−1
1,3 = 242 + 228 + 214 3

m−1
1,4 = 260 − 256 − 252 + 244 + 240 − 232 + 221 + 216 − 212 − 28 + 1 11

m−1
1,5 = 256 − 248 + 240 − 232 + 224 − 216 + 28 − 1 8

m−1
2,3 = 242 + 236 + 230 + 224 + 218 + 212 + 26 7

m−1
2,4 = 236 + 224 + 212 3

m−1
2,5 = 248 − 232 + 216 − 1 4

m−1
3,4 = 236 + 230 + 224 + 218 + 212 + 26 6

m−1
3,5 = 264 − 244 + 222 − 1 4

m−1
4,5 = 264 − 256 + 228 − 1 4

Back to 98
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Inverses m′−1
i,j in basis B′5 ω(m′−1

i,j )

m′−1
1,2 = 262 − 254 − 246 − 238 − 230 − 222 − 214 − 28 + 26 9

m′−1
1,3 = 263 + 261 − 253 − 245 − 237 − 229 − 221 − 213 − 25 − 2 10

m′−1
1,4 = 254 + 245 + 236 + 227 + 218 + 29 + 1 7

m′−1
1,5 = 263 − 29 2

m′−1
2,3 = 262 − 254 − 246 − 238 − 230 − 222 − 214 − 26 − 1 9

m′−1
2,4 = 264 − 255 − 1 3

m′−1
2,5 = 255 − 2 2

m′−1
3,4 = 263 − 1 2

m′−1
3,5 = 254 + 245 + 236 + 227 + 218 + 29 6

m′−1
4,5 = 254 − 1 2

Back to 98
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Annexe F2n

To compute
ψ = F × T−1

j mod Ti . (1)

We use the nptation , Bj ,i (X ) = Tj mod Ti . Thus, (1) becomes

ψ = F × B−1
j ,i mod Ti . (2)

We evaluate (2) like a Montgomery reduction, where Bj ,i is the
Montgomery factor:

1. φ = F × T−1
i mod Bj ,i ,

(F + φ.Ti multiple of Bj ,i ).

2. ψ = (F + φTi )/Bj ,i

(with a division by Bj ,i ).

Back to 98
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We remark that Bj ,i (X ) = X tj (X ti−tj + 1) for tj < ti
In order to evaluate (2), we compute

ψ =
(
F × (X a)−1 mod Ti

)
×
(
X b + 1

)−1
mod Ti . (3)

We evaluate F × (X a)−1 mod Ti in two steps:

φ = F × T−1
i mod X a (4)

ψ = (F + φ× Ti ) /X
a (5)

Back to 98
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To end (3), we compute F × (X b + 1)−1 mod Ti (degree of F is
at most d − 1) in four steps:

F = F mod (X b + 1) (6)

φ = F × T−1
i mod (X b + 1) (7)

ρ = F + φ× Ti (8)

ψ = ρ/(X b + 1) (We have ρ = ψXb + ψ thus ρ mod Xb = ψ mod Xb) (9)

Back to 98
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Annexe Fpk

Let us consider the first 2k integers: we define E = {0, . . . , k − 1}
and E ′ = {k , . . . , 2k − 1}.
We can precompute k − 1 constants
Cj = ((ej − e1)(ej − e2) . . . (ej − ej−1))−1 mod p, for 2 ≤ j ≤ k
and we can evaluate (q̂1, . . . , q̂k)

q̂1 = q1 mod p,

q̂2 = (q2 − q̂1)C2 mod p,

q̂3 = (q3 − (q̂1 + 2q̂2))C3 mod p,

...

q̂k = (qk − (q̂1 + (k − 1)(q̂2 + (k − 2)(q̂3 + . . .

+ 2q̂k−1) . . . )))Ck mod p.

(10)

Back to 98
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q′i =
(
(. . . (q̂k(e ′i − ek−1) + q̂k−1)(e ′i − ek−2) + · · ·

+ q̂2)(e ′i − e1) + q̂1

)
mod p. (11)

q′1 = ((. . . (q̂k × 2 + q̂k−1)

× 3 + · · ·+ q̂2)× k + q̂1) mod p,

q′2 = ((. . . (q̂k × 3 + q̂k−1)

× 4 + · · ·+ q̂2)× (k + 1) + q̂1) mod p,

...

q′k = ((. . . (q̂k × (k + 1) + q̂k−1)

× (k + 2) + · · ·+ q̂2)× (2k − 1) + q̂1) mod p,

(12)

Back to 98
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For example the multiplication by 45 = (1010101)2 gives three
additions if one considers the NAF, or with only two if one
considers its factorization 45 = 9× 5.

c #A c #A c #A

1 0 16 0 31 1
2 0 17 1 32 0
3 1 18 1 33 1
4 0 19 2 34 1
5 1 20 1 35 2
6 1 21 2 36 1
7 1 22 2 37 2
8 0 23 2 38 2
9 1 24 1 39 2

10 1 25 2 40 1
11 2 26 2 41 2
12 1 27 2 42 2
13 2 28 1 43 3
14 1 29 2 44 2
15 1 30 1 45 2

Table: Number of addition (#A) required in the multiplication by some
small constants c

Back to 98
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p form of p k l

59 26 − 22 − 1 29 170

67 26 + 3 29 . . . 31 175 . . . 188

73 26 + 23 + 1 29 . . . 31 179 . . . 191

127 27 − 1 23 . . . 61 160 . . . 426

257 28 + 1 23 . . . 73 184 . . . 584

503 29 − 23 − 1 19 . . . 61 170 . . . 547

521 29 + 23 + 1 19 . . . 61 171 . . . 550

8191 213 − 1 13 . . . 43 168 . . . 558

65537 216 + 1 11 . . . 37 176 . . . 592

131071 217 − 1 11 . . . 31 186 . . . 526

524287 219 − 1 11 . . . 31 208 . . . 588

2147483647 231 − 1 7 . . . 19 216 . . . 588

2305843009213693951 261 − 1 3 . . . 7 182 . . . 426

Table: Good candidates for p and k suitable for elliptic curve
cryptography and the corresponding key lengths

Back to 98



Arithmetic and Cryptography 116/116
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Références

IEEETC: IEEE Transactions on Computers, 42, 1993.

Sebastian T.J. Fenn, Mohammed Benaissa and David Taylor.
gf (2m) multiplication and division over the dual basis.
IEEE Transactions on Computers, 1996.

M. Anwarul Hasan Huapeng Wu and Ian F. Blake.
New low-complexity bit-parallel finite field multipliers using
weakly dual bases.
IEEE Transactions on Computers, 1998.

Takagi, Yoshiki, and Takagi.
A fast algorithm for multiplicative inversion in GF (2m) using
normal basis.
IEEETC: IEEE Transactions on Computers, 50, 2001.

Bajard, J.C., Didier, L.S., Kornerup, P.: Modular
multiplication and base extension in residue number systems.



Arithmetic and Cryptography 116/116
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