
Arithmetic and Cryptography 1/116

Useful Arithmetic for Cryptography

Jean Claude Bajard

LIP6 - UPMC (Paris 6)/ CNRS
France

8 Jul. 2013

Arithmetic and Cryptography 2/116

Introduction
Modern Public Key Cryptography

I In 1985, Victor S. Miller [1] and Neal Koblitz [2] introduced
Elliptic Curve Cryptography.

I Gödel Prize 2013: Dan Boneh, Matthew K. Franklin [3] and
Antoine Joux [4] for Pairing Cryptography.

I Group operations on points of elliptic curve defined on finite
fields.

I Basic finite field operations: addition, multiplication,
inversion...

Arithmetic and Cryptography 3/116

Content
Finite Fields Representations

Multiplication in GF (p)
Back to multiplication
Modular Reduction

Multiplication in GF (2m)
Polynomial Approaches
Approaches using specific bases

Inversion in a Finite Field

Another Approach: Residue Systems
Introduction to Residue Systems
Modular reduction in Residue Systems
Applications to Cryptography

Annexes

Références

Arithmetic and Cryptography 4/116

Finite Fields Representations

Finite Fields Representations

Arithmetic and Cryptography 5/116

Finite Fields Representations

General Principles [5]

A finite field F (+,×) is a finite set F such that:

I F (+) is an Abelian Group

I F (+,×) is a Ring where every element (excepted 0 for ×) has
an inverse

Elementary Finite Fields have an order equal to a prime p.
Example of a such finite prime field Z/pZ

Z/pZ = {0, 1, 2, ..., p − 1}

Calculus are based on modular arithmetic.

Arithmetic and Cryptography 6/116

Finite Fields Representations

Splitting Finite Field

More generally, Finite Field has an order equal to a power of a
prime, we note GF (pm) or Fpm with p prime.
p is the caracteristic, if u ∈ GF (pm) then p × u = 0.

I as a set of polynomial residues modulo an irreducible
polynomial P(X) of degree m in Fp[x]

I as a set of the powers of a primitive element g ,
GF (pm) = {0, g0, g1, ..., gpm−2}

I as a set of linear combinations of base elements :
canonical {1, α, α2, ..., αm−1} ou normal {α, αp, αp2

..., αpm−1}
(α root of P(X))

Arithmetic and Cryptography 7/116

Finite Fields Representations

Example in GF (22) (notice GF (22) 6= Z/22Z)

I Polynomials in GF (2)[X] : 0, 1, X , 1 + X .

I Addition on GF (2) : 1 + (1 + X) = X .
I Product with a modular reduction in function of an irreducible

one.
I X 2 + X + 1 is irreducible over GF (2), GF (4) can be

represented by GF (2)[X]/X 2 + X + 1.
I Multiplication modulo X 2 + X + 1:

X ∗ (1 + X) = (X + X 2) mod (X 2 + X + 1) = 1
I The choice of the irreducible polynomial impacts the

complexity.

Arithmetic and Cryptography 8/116

Multiplication in GF (p)

Multiplication in GF (p)
Multiplication of two values

Arithmetic and Cryptography 9/116

Multiplication in GF (p)

Back to multiplication

Multiplication of two values

Arithmetic and Cryptography 10/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
via polynomials

I Let A =
k−1∑
i=0

aiβ
i and B =

k−1∑
i=0

biβ
i be two numbers in base β

I Let A(X) =
k−1∑
i=0

aiX
i and B(X) =

k−1∑
i=0

biX
i be the associated

polynomials
I Evaluation of the product P = A× B:

1. Polynomial Evaluation: P(X) = A(X)× B(X)
2. Calculus of the value: P(β) = A(β)× B(β)

Arithmetic and Cryptography 11/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
via polynomials: Remarks

I Step 1, the pi are lower than k × β2

I Step 2, the calculus of P(β) becomes a reduction of the pi by
carry propagation.

Arithmetic and Cryptography 12/116

Multiplication in GF (p)

Back to multiplication

Polynomial representations

I A polynomial of degree k − 1 can be defined:
I by its k coefficients ai

A(X) =
k−1∑
i=0

aiX
i

I or by k values in different points ei

for i = 0..k − 1, A(ei) =
k−1∑
j=0

aje
j
i

ei are chosen, in respect to two criteria: easy evaluation and
small size for the A(ei).

Arithmetic and Cryptography 13/116

Multiplication in GF (p)

Back to multiplication

Polynomial Product
defined by coefficients

I P(X) = A(X)× B(X) = (
k−1∑
i=0

aiX
i)× (

k−1∑
i=0

biX
i) =

2k−2∑
i=0

piX
i



p0

p1

...
pk−1

...
p2k−3

p2k−2


=



a0 0 0 . . . 0
a1 a0 0 . . . 0
...

... . . .
...

ak−1 ak−2 ak−3 . . . a0

0 ak−1 ak−2 . . . a1

...
... . . .

...
0 0 . . . 0 ak−1




b0

b1

...
bk−2

bk−1


k2 products.

Arithmetic and Cryptography 14/116

Multiplication in GF (p)

Back to multiplication

Polynomial Product
defined by points

I P(X) = A(X)× B(X) = (
k−1∑
i=0

aiX
i)× (

k−1∑
i=0

biX
i) =

2k−2∑
i=0

piX
i

is computed at 2k − 1 differents points:

P(e0) = A(e0)× B(e0)
P(e1) = A(e1)× B(e1)

...
P(e2k−3) = A(e2k−3)× B(e2k−3)
P(e2k−2) = A(e2k−2)× B(e2k−2)

2k − 1 products.

Arithmetic and Cryptography 15/116

Multiplication in GF (p)

Back to multiplication

Coefficient reconstruction
Lagrange approach

I Use of a sum of k polynomials, such that the i−th one is
equal to P(ei) for ei , and 0 for all other ej with j 6= i .

P(X) =
k−1∑
i=0

P(ei)

∏
j 6=i (X − ej)∏
j 6=i (ei − ej)

Arithmetic and Cryptography 16/116

Multiplication in GF (p)

Back to multiplication

Coefficient reconstruction
Newton approach

I The main idea is to use polynomials of increasing degrees

P(X) =
k−1∑
i=0

p̂i

i−1∏
j=0

(X − ej) = p̂0 + p̂1(X − e0) + p̂2(X − e0)(X − e1) + . . .

p̂0 = p′0
p̂1 = (p′1 − p̂0)/(e1 − e0)
. . .
p̂i = (. . . (p′i − p̂0)/(ei − e0)− p̂1)/(ei − e1)− . . .− p̂i−1)/(ei − ei−1)
. . .
p̂k−1 = (. . . (p′k−1 − p̂0)/(ek−1 − e0)− p̂1)/(ek−1 − e1) . . .− p̂k−2)/(ek−1 − ek−2)

with, p′i = P(ei)

Arithmetic and Cryptography 17/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
Karatsuba Algorithm(1)

I Select points e0 = 0, e1 = −1 and e2 =∞
I We have:

A =
k−1∑
i=0

aiβ
i = (

k/2−1∑
i=0

ak/2+iβ
i)βk/2 +

k./2−1∑
i=0

aiβ
i = A1β

k/2 + A0

I Polynomial view: A(X) = A1X + A0
A(0) = A0

A(−1) = A0 − A1

A(∞) = lim
X→∞

A1X

Arithmetic and Cryptography 18/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
Karatsuba Algorithm (2)

I Values of the product polynomials
P(0) = A0B0

P(−1) = (A0 − A1)(B0 − B1)
P(∞) = lim

X→∞
A1B1X

2

I Newton interpolation
p̂0 = P(0) = A0B0

p̂1 = (P(−1)− p̂0)/(−1) = (A1 − A0)(B0 − B1) + A0B0

p̂∞ = lim
X→∞

((P(∞)− p̂0)/X − p̂1)/(X + 1) = A1B1

Arithmetic and Cryptography 19/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
Karatsuba Algorithm(3)

I Reconstruction
P(X) = p̂0 + p̂1 X + p̂∞ X (X + 1)

= A0B0

+((A1 − A0)(B0 − B1) + A0B0 + A1B1)X
+A1B1X

2

I Final evaluation P(βk/2) = A0B0

+((A1 − A0)(B0 − B1) + A0B0 + A1B1)βk/2

+A1B1β
k

Arithmetic and Cryptography 20/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
Karatsuba Algorithm (4) : Complexity

I Let denote K (k) as the number of elementary operations

I By recurrence K (k) = 3K (k/2) + αk , we suppose that the
addition is linear

I We obtain K (k) = O(k log2(3))

Arithmetic and Cryptography 21/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
Toom Cook Algorithm (1)

The Karatsuba approach can be generalized:

I Select points e0 = 0, e1 = −1 , e2 = 1, e3 = 2 and e4 =∞
I We have:

A = A2β
2k/3 + A1β

k/3 + A0

I Polynomial view: A(X) = A2X
2 + A1X + A0

A(0) = A0

A(−1) = A2 − A1 + A0

A(1) = A2 + A1 + A0

A(2) = 4A2 + 2A1 + A0

A(∞) = lim
X→∞

A2X
2

Arithmetic and Cryptography 22/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
Toom Cook Algorithm (2)

I With Newton

p̂0 = P(0) = A0B0

p̂1 = (P(−1)− p̂0)/(−1)
p̂2 = ((P(1)− p̂0)/(1)− p̂1)/(2)
p̂3 = (((P(2)− p̂0)/(2)− p̂1)/(3)− p̂2)/(1)
p̂4 = lim

X→∞
((((P(∞)− p̂0)/X − p̂1)/(X + 1)− p̂2)/(X − 1)− p̂3)/(X − 2)

= A2B2

I We notice a division by 3 → limits of this approach

I Reconstruction by computing P(βk/3):
P(X) = p̂0 + X (p̂1 + (X + 1)(p̂2 + (X − 1)(p̂3 + p̂4(X − 2))))

Arithmetic and Cryptography 23/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
Toom Cook Algorithm (3)

I Let denote T3(k) as the number of elementary operations

I By recurrence T3(k) = 5T3(k/3) + αk , assuming that
addition is linear

I We obtain T3(k) = O(k log3(5))

Arithmetic and Cryptography 24/116

Multiplication in GF (p)

Back to multiplication

Product of two numbers
Toom Cook Algorithm (4), asymptotic point of view

I Splitting by n

I With Tn(k) he number of elementary operations

I By recurrence Tn(k) = (2n − 1)Tn(k/n) + αk , assuming that
addition is linear

I We obtain Tn(k) = O(k logn(2n−1))

I Then the complexity of the multiplication can reach O(k1+ε)

Arithmetic and Cryptography 25/116

Multiplication in GF (p)

Back to multiplication

Fourier Transform
Complexité Algorithme FFT

I Select points: the nthroots of unity, ωn = 1, ω primitive.

I Properties: ω2k is a n
2

th root, (ωk)n/2 = −1 (assuming n
even)

A(ωk) =

n
2−1∑
i=0

a2iω
2ik + ωk

n
2−1∑
i=0

a2i+1ω
2ik = A0(ω2k) + ωkA1(ω2k)

I F (n) number of elementary op. for a FFT of dimension n

I We have F (n) = 2F (n/2) + αn, then, F (n) = O(n log2 n)

Arithmetic and Cryptography 26/116

Multiplication in GF (p)

Modular Reduction

Multiplication in GF (p)

Modular Reduction

Arithmetic and Cryptography 27/116

Multiplication in GF (p)

Modular Reduction

Modular Reduction
p fixed

Two options:

I Specific p allowing an easy reduction

p = βn − ξ avec ξ < βn/2

I Common p → generic algorithms

Arithmetic and Cryptography 28/116

Multiplication in GF (p)

Modular Reduction

Modular Reduction
p = βn − ξ with 0 ≤ ξ < βn/2 and ξ2 ≤ βn − 2βn/2 + 1

We have C = A× B ≤ (p − 1)2

I We write C = C1β
n + C0

I First reduction pass: C ≡ C1ξ + C0 (= C ′) (mod p)

I Second reduction pass: C ′ ≡ C ′1ξ + C ′0 (= C”) (mod p)

I Final touch:
If C” + ξ ≥ βn Then R = C” + ξ − βn, Else R = C”

Arithmetic and Cryptography 29/116

Multiplication in GF (p)

Modular Reduction

Modular Reduction
p = βn − ξ with 0 ≤ ξ < βn/2

I This reduction uses two multiplications by ξ, two options
I Choose a very small ξ, for example, ξ < β → digit×number
I Choose a very sparce ξ → shift and add approach

I If ξ > βn/2, then the number of passes increases

Arithmetic and Cryptography 30/116

Multiplication in GF (p)

Modular Reduction

Modular Reduction with p = βn − 1

(
1, β, β2, . . . β2n−2

)


a0 0 0 . . . 0
a1 a0 0 . . . 0
...

... . . .
...

an−1 an−2 an−3 . . . a0

0 an−1 an−2 . . . a1

...
... . . .

...
0 0 . . . 0 an−1




b0

b1

...
bn−2

bn−1



C ≡
(

1, β, β2, . . . βn−1
)
.M.


b0

b1

...
bn−2

bn−1

 (mod p)

Arithmetic and Cryptography 31/116

Multiplication in GF (p)

Modular Reduction

Modular Reduction with p = βn − 1

M =


a0 0 . . . 0 0
a1 a0 . . . 0 0
...

... . . .
...

an−2 an−3 . . . a0 0
an−1 an−2 . . . a1 a0

+


0 an−1 an−2 . . . a1

0 0 an−1 . . . a2

...
... . . .

...
0 0 . . . 0 an−1

0 0 0 . . . 0



M =


a0 an−1 an−2 . . . a1

a1 a0 an−1 . . . a2

...
... . . .

...
an−2 an−3 . . . a0 an−1

an−1 an−2 . . . a1 a0



Arithmetic and Cryptography 32/116

Multiplication in GF (p)

Modular Reduction

Modular Reduction with p = βn − βt − 1

If t < n/2 then M is obtained with one matrix addition.

M =



a0 an−1 an−2 . . . a1
a1 a0 an−1 . . . a2

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

.

. . . .

.

.

.
an−2 an−3 . . . a0 an−1
an−1 an−2 . . . a1 a0


+



0 0 0 . . . 0

.

.

.

.

.

. . . .

.

.

.
0 0 0 . . . 0
0 an−1 an−2 . . . a1

.

.

.

.

.

. . . .

.

.

.
0 . . . an−1 . . . an−t



+



0 . . . an−1 . . . an−t+1

.

.

.

.

.

. . . .

.

.

.
0 0 . . . 0 an−1
0 0 0 . . . 0

.

.

.

.

.

. . . .

.

.

.
0 0 0 . . . 0


+



0 0 0 . . . 0

.

.

.

.

.

. . . .

.

.

.
0 0 0 . . . 0
0 . . . an−1 . . . an−t+1

.

.

.

.

.

. . . .

.

.

.
0 0 . . . 0 an−1



Arithmetic and Cryptography 33/116

Multiplication in GF (p)

Modular Reduction

Multiplication in GF (p)

Generic Modular Reduction

Arithmetic and Cryptography 34/116

Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Barrett Algorithm [7]

Reduction of A modulo P via the approximation of the quotient.

I Conditions: βn−1 ≤ P < βn et A < P2 < β2n

I We can write that: βu+vA− P × βn+u

P × A
βn−v = 0

I βu+vA− P × b β
n+u

P
c × b A

βn−v c =

P

(
b β

n+u

P
cf (A

βn−v) + b A
βn−v cf (β

n+u

P
) + f (A

βn−1)f (β
2n

P
)

)
< P(βu+1 + (βn+v − 1) + 1)

with f (.) the fractional part function

If u ≥ n + 1 and v ≥ 2 then (βu+1 + βn+v)/βu+v < 1

I We deduce: A mod P ≡ A− P ×

⌊
bβ

2n+1

P
c×b A

βn−2 c
βn+3

⌋
< 2P

Arithmetic and Cryptography 35/116

Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Barrett Algorithm [7]

Barrett(A ,P)

Inputs βn−1 ≤ P < βn and A < P2 < β2n

Output R = A (mod P) et Q = bAP c

Core Q ←

⌊
bβ

2n+1

P
c×b A

βn−2 c
βn+3

⌋
R ← A− Q × P

If R ≥ P, Then R ← R − P and Q ← Q + 1

Complexity: 2 products of n + 1 digits

Arithmetic and Cryptography 36/116

Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Montgomery Algorithm [8]

Reduction of A modulo P via a multiple of P.

I Conditions : βn−1 ≤ P < βn and A < Pβn

I The scheme is to add a multiple of P to A such that the
result is a multiple of βn

I The division by βn in base β is a shift.

I The output of this approach is A× β−n mod P

Arithmetic and Cryptography 37/116

Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Montgomery Algorithm [8]

Montgomery(A, P)

Inputs βn−1 ≤ P < βn and A < Pβn < β2n

Output R = A× β−n mod P

Core Q ← A× | − P−1|βn mod βn

R ← (A + Q × P) R is a multiple of βn

R ← R ÷ βn division by βn is a shift, (R < 2P)

If R ≥ P Then R ← R − P (optional)

Complexity: 2 products of n digits (in fact close to two half
products)

Arithmetic and Cryptography 38/116

Multiplication in GF (p)

Modular Reduction

Generic Modular Reduction
Montgomery Representation

I To avoid the accumulation of factors β−n mod P, we note:
Ã = A× βn mod P

I Thee construction Ã = Montgomery(A× |β2n|P ,P)

I Stable for addition and multiplication using Montgomery
reduction:
Ã + B̃ = Ã + B and ÃB = Montgomery(Ã× B̃,P)

I Reconversion to standard: A = Montgomery(Ã,P)

I It is the most used algorithm in cryptography

Arithmetic and Cryptography 39/116

Multiplication in GF (p)

Modular Reduction

Interleaved Modular Multiplication
Montgomery Algorithm

MontgomeryI(A, B, P)

Inputs βn−1 ≤ P < βn ad AB < Pβn < β2n and B =
n−1∑
i=0

biβ
i

Output R = A× B × β−n mod P

Core R ← 0

For i = 0 to i = n − 1 do

R ← (R + bi × A)
qi ← r0 × | − p−1

0 |β mod β
R ← (R + qi × P) multiple of β

R ← R ÷ β at the end (R < 2P)

If R ≥ P, Then R ← R − P (optional)

Arithmetic and Cryptography 40/116

Multiplication in GF (p)

Modular Reduction

Binary Interleaved Modular Multiplication
Montgomery Algorithm

MontgomeryB(A , B, P)

Inputs 2n−1 ≤ P < 2n and AB < 2nP < 22n and B =
n−1∑
i=0

bi2
i

Output R = A× B × 2−n mod P

Core R ← 0

For i = 0 to i = n − 1 do

R ← (R + bi • A)
qi ← r0 In fact | − p−1

0 |2 = 1 if P odd

R ← (R + qi • P) multiple of 2

R ← R >> 1 at the end (R < 2P)

If R ≥ P, Then R ← R − P (optional)

Arithmetic and Cryptography 41/116

Multiplication in GF (p)

Modular Reduction

Bipartite Modular Multiplication [9]

I This approach is based on:

We define ∗ as: X ∗ Y = (X × Y)× R−1 mod P
We split *y*: Y = Yh × R + Yl for example R = βn/2

thus X ∗ Y = (X × Yh mod P + X × Yl × R−1 mod P) mod P

I X × Yh mod P is computed using Barret.

I X × Yl × R−1 mod P is computed via Montgomery.

I These two operations can be done in parallelel

Arithmetic and Cryptography 42/116

Multiplication in GF (2m)

Multiplication in GF (2m)

Arithmetic and Cryptography 43/116

Multiplication in GF (2m)

Multiplication in GF (2m)

Most of the hardware implementations use GF (2m) where basic
operators are AND and XOR.
The different approaches for the modular reduction needed in the
multiplication over GF (2m) are:

I The ones depending of the finite field

I The generic ones

I Those using specific bases

Arithmetic and Cryptography 44/116

Multiplication in GF (2m)

Polynomial Approaches

Multiplication in GF (2m)

Polynomial Approaches

Arithmetic and Cryptography 45/116

Multiplication in GF (2m)

Polynomial Approaches

Multiplication in GF (2m)

The calculus of C (X) = A(X)× B(X) mod P(X) can be executed
in two steps:

1. a polynomial product C ′(X) = A(X)× B(X),
c ′0
c ′1
...
c ′m−1

c ′m
...
c ′2m−2

 =


a0 0 ... 0 0
a1 a0 0 0 0

....
am−1 a1 a0

0 am−1 a1

...
0 0 0 am−1

×
 b0

b1

...
bm−1



2. a modular reduction P(X) : C (X) = C ′(X) mod P(X)

Arithmetic and Cryptography 46/116

Multiplication in GF (2m)

Polynomial Approaches

Montgomery Algorithm

I A(X) ∗ B(X) is computed in GF (2m) defined by P(X) a
degree m irreducible polynomial

I Montgomery compute A(X) ∗B(X) ∗R−1(X)modP(X) where
R(X) is a fixed element and R−1(X) is its inverse modP(X).
We know R(X) and P(X) (irreducible), we can precompute R−1(X) and
P ′(X) such that:

R−1(X) ∗ R(X) + P ′(X) ∗ P(X) = 1

Arithmetic and Cryptography 47/116

Multiplication in GF (2m)

Polynomial Approaches

Montgomery Algorithm (generic case)

Inputs: A(X) and B(X) of degrees lower than m
Outputs: T (X) = A(X) ∗ B(X) ∗ R−1(X) mod P(X)

Precomputed: P ′(X), R(X)

Product: C (X) = A(X) ∗ B(X)
Reduction: Q(X) = −C (X) ∗ P ′(X) mod R(X)

T (X) =
(
C (X) + Q(X) ∗ P(X)

)
div R(X)

I The complexity is due to the three products.

I The reduction modulo R(X) and the division by R(X) are easy if
R(X) = Xm.

Arithmetic and Cryptography 48/116

Multiplication in GF (2m)

Polynomial Approaches

Montgomery Algorithm (execution)

I Polynomial representations:

A(X) = a0 + a1X + a2X
2 + ...+ am−1X

m−1

B(X) = b0 + b1X + b2X
2 + ...+ bm−1X

m−1

P(X) = p0 + p1X + p2X
2 + ...+ pm−1X

m−1 + Xm

P ′(X) = p′0 + p′1X + p′2X
2 + ...+ p′m−1X

m−1

I We decompose the evaluation using matrices, into two parts:
I The first lines for the computation of Q(X)
I The last lines for the result T (X)

Arithmetic and Cryptography 49/116

Multiplication in GF (2m)

Polynomial Approaches

Montgomery Algorithm (execution)

Decomposition of the calculus for Q(X): (the lower degrees)

Q(X) = −


p′0 0 ... 0 0
p′1 p′0 ... 0 0

p′m−2 p′m−3 ... p′0 0

p′m−1 p′m−2 ... p′1 p′0




a0 0 ... 0 0
a1 a0 ... 0 0

am−2 am−3 ... a0 0
am−1 am−2 ... a1 a0




b0
b1
...

bm−2
bm−1



Then for T (X):(the upper degrees)


0 am−1 ... a2 a1
0 0 ... a2 a1

0 0 ... am−1 am−2
0 0 ... 0 am−1
0 0 ... 0 0




b0
b1
...

bm−3
bm−2
bm−1

+


1 pm−1 ... p2 p1
0 1 ... p2 p1

0 0 ... pm−1 pm−2
0 0 ... 1 pm−1
0 0 ... 0 1




q0
q1
...

qm−3
qm−2
qm−1



Arithmetic and Cryptography 50/116

Multiplication in GF (2m)

Polynomial Approaches

Montgomery Algorithm (complexity of the general case)

I Complexity counting the number of elementary operations
over GF (2):
I m2 + (m − 1)2 multiplications (AND)
I (m − 1)2 + (m − 2)2 + m additions (XOR).

I For this approach we can use the Montgomery representation:
Ã(X) = A(X)× R(X) (mod P)(X)

I It can be generalized to GF (pk)

Arithmetic and Cryptography 51/116

Multiplication in GF (2m)

Polynomial Approaches

Iterative Montgomery in GF (2m) with R(X) = Xm

Inputs: A(X) and B(X) of degrees lower than m

Output: T (X) = A(X) ∗ B(X) ∗ R−1(X) mod P(X)
Precomputed: P ′(X), R(X)

Initialisation T (X) = 0
Loop For i = 0 to m − 1 do

T (X) = T (X) + ai ∗ B(X)
T (X) = (T (X) + t0 ∗ P(X))/X

Arithmetic and Cryptography 52/116

Multiplication in GF (2m)

Polynomial Approaches

Iterative Montgomery in GF (2m) with R(X) = Xm

I At each step a division by X , hence at the end it is equivalent
to R(X) = Xm.

I Moreover P(X) is irreducible, thus its constant term is 1,
idem for P ′(X).

I The complexity given in logical gates:
I 2m2 XOR (for the additions)
I and 2m2 AND (for the products)

Arithmetic and Cryptography 53/116

Multiplication in GF (2m)

Polynomial Approaches

Method of Mastrovito [10]
Approach Idea

I GF (2m) is defined by a root α of the irreducible P(X) of degree m.

I The elements of GF (2m) are given in the canonical {1, α, α2, ..., αm−1}:

A =
m−1∑
i=0

aiα
i and B =

m−1∑
i=0

biα
i .

I We note C = A× B in GF (2m), C =
m−1∑
i=0

ciα
i .

Mastrovito proposed to construct Z , a matrix m ×m using the
coefficients of A, such that:

C = Z × B

Arithmetic and Cryptography 54/116

Multiplication in GF (2m)

Polynomial Approaches

Method of Mastrovito
Construction of Z

Z is obtained by:

1. constructing the matrix (m − 1)×m, Q which is the representations of
X k for k ≥ m modulo P(X):

Xm

Xm+1

...
X 2m−2

 = Q ×


X 0

X 1

...
Xm−1


2. and then, the matrix Z is obtained with:

zi,j =


ai for j = 0, i = 0 . . .m − 1

u(i − j) ∗ ai−j +
∑j−1

t=0 qj−1−t,i ∗ am−1−t , else , with u(t) =

{
1 if t ≥ 0
0 else

Arithmetic and Cryptography 55/116

Multiplication in GF (2m)

Polynomial Approaches

Method of Mastrovito
Cost of the approach

I The complexity is due to the construction of Z which can
need m3/2 And and Xor , the choice of the irreducible
polynomial is fundamental.

I With trinomials like Xm + X + 1 the multiplication is done
with m2 − 1 XOR and m2 AND.

I There are some variants
I if all the coefficients are 1 (all-one polynomial)

P(X) = 1 + X + X 2 + ...+ Xm, in this case Xm+1 ≡ 1 (mod P(X))
I or for regular sparced polynomials

P(X) = 1 + X∆ + X 2∆ + ...+ X k∆=m, here X (k+1)∆ ≡ 1 (mod P(X)).

Arithmetic and Cryptography 56/116

Multiplication in GF (2m)

Polynomial Approaches

Method of Mastrovito I
Example with a trinomial

We consider GF (27) with the canoical base {1, α, α2, ..., α6} where
α is a root of the irreducible P(X) = X 7 + X + 1. Thus,

α7 = α + 1 → (1, 1, 0, 0, 0, 0, 0)
α8 = α2 + α → (0, 1, 1, 0, 0, 0, 0)
α9 = α3 + α2 → (0, 0, 1, 1, 0, 0, 0)
α10 = α4 + α3 → (0, 0, 0, 1, 1, 0, 0)
α11 = α5 + α4 → (0, 0, 0, 0, 1, 1, 0)
α11 = α6 + α5 → (0, 0, 0, 0, 0, 1, 1)

Q =


1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1


et

Arithmetic and Cryptography 57/116

Multiplication in GF (2m)

Polynomial Approaches

Method of Mastrovito II
Example with a trinomial

Z =



a0 a6 a5 a4 a3 a2 a1

a1 a0 + a6 a6 + a5 a5 + a4 a4 + a3 a3 + a2 a2 + a1

a2 a1 a0 + a6 a6 + a5 a5 + a4 a4 + a3 a3 + a2

a3 a2 a1 a0 + a6 a6 + a5 a5 + a4 a4 + a3

a4 a3 a2 a1 a0 + a6 a6 + a5 a5 + a4

a5 a4 a3 a2 a1 a0 + a6 a6 + a5

a6 a5 a4 a3 a2 a1 a0 + a6



Arithmetic and Cryptography 58/116

Multiplication in GF (2m)

Polynomial Approaches

Méthode de Mastrovito
Exemple avec un All-One

If P(X) = 1 + X + X 2 + ...+ Xm, the matrix Z can be written as
Z = Z1 + Z2 with:

Z1 =


a0 0 am−1 . . . a3 a2

a1 a0 0 am−1 a4 a3

. . .

. . .
am−2 am−3 a0 0
am−1 am−2 a1 a0


and

Z2 =


0 am−1 am−2 a1

0 am−1 am−2 a1

. . .
0 am−1 am−2 a1

 (ie ligne Xm)

Arithmetic and Cryptography 59/116

Multiplication in GF (2m)

Polynomial Approaches

Toeplitz Matrices

Definition
A n × n matrix is Toeplitz if [ti ,j]1≤i ,j≤n are such that
ti ,j = ti−1,j−1 for i , j ≥ 1.

T =



tn tn+1 tn+2 · · · t2n−1

tn−1 tn tn+1
...

tn−2 tn−1 tn
...

...
...

t1 tn−1 tn


Remark: An addition of 2 Toeplitz requires only 2n − 1 additions.

Arithmetic and Cryptography 59/116

Multiplication in GF (2m)

Polynomial Approaches

Toeplitz Matrices

Definition
A n × n matrix is Toeplitz if [ti ,j]1≤i ,j≤n are such that
ti ,j = ti−1,j−1 for i , j ≥ 1.

T =



tn tn+1 tn+2 · · · t2n−1

tn−1 tn tn+1
...

tn−2 tn−1 tn
...

...
...

t1 tn−1 tn


Remark: An addition of 2 Toeplitz requires only 2n − 1 additions.

Arithmetic and Cryptography 59/116

Multiplication in GF (2m)

Polynomial Approaches

Toeplitz Matrices

Definition
A n × n matrix is Toeplitz if [ti ,j]1≤i ,j≤n are such that
ti ,j = ti−1,j−1 for i , j ≥ 1.

T =



tn tn+1 tn+2 · · · t2n−1

tn−1 tn tn+1
...

tn−2 tn−1 tn
...

...
...

t1 tn−1 tn


Remark: An addition of 2 Toeplitz requires only 2n − 1 additions.

Arithmetic and Cryptography 60/116

Multiplication in GF (2m)

Polynomial Approaches

Product matrix-vector with a Toeplitz [11]

If T is Toeplitz n × n with 2|n then:

T · V =

[
T1 T0

T2 T1

] [
V0

V1

]
is such that:

T · V =

[
P0 + P2

P1 + P2

]
with P0 = (T0 + T1) · V1,

P1 = (T1 + T2) · V0,
P2 = T1 · (V0 + V1),

Arithmetic and Cryptography 61/116

Multiplication in GF (2m)

Polynomial Approaches

Complexity of the Toeplitz - vector product

Fan and Hasan proposed also a 3-way split method.

Two-way split method Three-way split method

AND nlog2(3) nlog3(6)

XOR 5.5nlog2(3) − 6n + 0.5 24
5 nlog3(6) − 5n + 1

5
Delay TA + 2 log2(n)DX DA + 3 log3(n)DX

DA is the delay of one AND and DX the one for one XOR.

Arithmetic and Cryptography 62/116

Multiplication in GF (2m)

Polynomial Approaches

Application of Toeplitz - vector approach

I We have seen that C (X) = A(X)× B(X) mod P(X) can be
obtained with C (X) = Z × B(X), where Z is a m ×m matrix

I Using circular permutations of rows or columns, Z can be
transformed into a Toeplitz.

I Fan-Hasan did it with trinomials, pentanomials (2006) and
All-One (2007), then Hasan-Nègre (2010) used quadrinomals
(with Q(X) = (X + 1)P(X))

Arithmetic and Cryptography 63/116

Multiplication in GF (2m)

Polynomial Approaches

Application of Toeplitz - vector approach
Example

We consider GF (26) with P(X) = X 6 + X + 1

Z =


a0 a5 a4 a3 a2 a1
a1 a0 + a5 a5 + a4 a4 + a3 a3 + a2 a2 + a1
a2 a1 a0 + a5 a5 + a4 a4 + a3 a3 + a2
a3 a2 a1 a0 + a5 a5 + a4 a4 + a3
a4 a3 a2 a1 a0 + a5 a5 + a4
a5 a4 a3 a2 a1 a0 + a5


is transformed in Toeplitz with a rotation of the 1st row to the last one

Z ′ =


a1 a0 + a5 a5 + a4 a4 + a3 a3 + a2 a2 + a1
a2 a1 a0 + a5 a5 + a4 a4 + a3 a3 + a2
a3 a2 a1 a0 + a5 a5 + a4 a4 + a3
a4 a3 a2 a1 a0 + a5 a5 + a4
a5 a4 a3 a2 a1 a0 + a5
a0 a5 a4 a3 a2 a1



Arithmetic and Cryptography 64/116

Multiplication in GF (2m)

Approaches using specific bases

Multiplication in GF (2n)

Approaches using specific bases

Arithmetic and Cryptography 65/116

Multiplication in GF (2m)

Approaches using specific bases

Normal Base for GF (2m)

I We call normal base of GF (2m), the base
{α, α2, α22

..., α2m−1} where α is a root of P(X) (irreducible of
degree m) (α2i are roots of P(X), Frobenius property, P(X)2i = P(X 2i))

I A in GF (2m): A = (a0, a1, ..., am−1) =
m−1∑
i=0

aiα
2i .

I The square operation is a left rotation:

we have A2 =

m−1∑
i=0

aiα
2i+1

but α2m = α,

thus, A2 = am−1α +

m−1∑
i=1

ai−1α
2i in other words A2 = (am−1, a0, ..., am−2).

Arithmetic and Cryptography 66/116

Multiplication in GF (2m)

Approaches using specific bases

Normal Base: Multiplication of Massey-Omura [13]
I We have D = A× B = A×M × Bt with:

M =



α20+20
α20+21

. . . α20+2j . . . α20+2m−2
α20+2m−1

α21+20
α21+21

. . . α21+2j . . . α21+2m−2
α21+2m−1

α2i +20
α2i +21

. . . α2i +2j . . . α2i +2m−2
α2i +2m−1

α2m−1+20
α2m−1+21

. . . α2m−1+2j . . . α2m−1+2m−2
α2m−1+2m−1



I M = M0 α + M1 α
2 + ...+ Mm−1 α

2m−1
where Mi are

composed of 0 and 1.

I Thus, D = A× B is obtained coordinate by coordinate with
dm−1−k = A×Mm−1−k × Bt for k = 0, ...,m − 1.

Arithmetic and Cryptography 67/116

Multiplication in GF (2m)

Approaches using specific bases

Normal Base: Multiplication of Massey-Omura [13]
Storage of one matrix

I We have D2k = A2k × B2k and the power to 2k is given by k
left rotations:
dm−1−k = A2k ×Mm−1 × (B2k)t for k = 0, ...,m − 1

I The complexity is given by the number of 1′s in Mm−1 which
depends on m and on P(X).

I The lower bound is 2m − 1. When this bound is reached, the
base is said ”optimal”[12]

I If all the coefficients of P(X) are 1 (All-One), it is reached
and the complexity is m2 AND and 2m2 − 2m XOR.

Arithmetic and Cryptography 68/116

Multiplication in GF (2m)

Approaches using specific bases

Normal Base: Multiplication of Massey-Omura [13]
Example

We consider GF (24) and the normal base (α20
, α21

, α22
, α23

) where
α is a root of P(X) = X 4 + X 3 + 1 (irreducible)

M =

 α2 α + α2 + α8 α + α4 α + α4 + α8

α + α2 + α8 α4 α + α2 + α4 α2 + α8

α + α4 α + α2 + α4 α8 α2 + α4 + α8

α + α4 + α8 α2 + α8 α2 + α4 + α8 α


Thus,

M3 =


0 1 0 1
1 0 0 1
0 0 1 1
1 1 1 0



Arithmetic and Cryptography 69/116

Multiplication in GF (2m)

Approaches using specific bases

Normal Base: Modified Massey-Omura [14]

I If P(X) is All-One, the complexity can be decreased to m2

AND and m2 − 1 XOR, by decomposing Mm−1

I Mm−1 = (P + Q) (mod 2)

with Pi ,j =

{
1 if i = (m/2 + j) mod m
0 else

I Let T (k) be such that: B2k = BT (k),
we have T (k)PT (k)t = P,

and
dm−1−k = A× P × Bt + A2k × Q × (B2k)t

for k = 0, ...,m − 1

Arithmetic and Cryptography 70/116

Multiplication in GF (2m)

Approaches using specific bases

Normal Base: Modified Massey-Omura [14]
Example

We consider GF (24) and the normal base (α20

, α21

, α22

, α23

) where α is a root
of P(X) = X 4 + X 3 + X 2 + X + 1 (irreducible). With γ = α + α2 + α4 + α8,
we obtain:

M =

 α2 α8 γ α4

α8 α4 α γ

γ α α8 α2

α4 γ α2 α


Thus:

M3 =

(
0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 0

)
= P + Q =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
+

(
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0

)

Arithmetic and Cryptography 71/116

Multiplication in GF (2m)

Approaches using specific bases

Dual Bases in GF (2m)
Definition

I Trace Function: linear form Tr(u) =
m−1∑
i=0

u2i ∈ GF (2) with

u ∈ GF (2m) (minimal polynomial of α, P(X) =
∏m−1

i=0 (X − α2i) ∈ GF (2)[X])

I Dual Bases: two bases {λi , i = 0..m − 1} and

{νj , j = 0..m − 1} are dual if Tr(λi .νj) =

{
1 i = j
0 i 6= j

I Base conversion :

Tr(νj .x) = xj where xj with x =
m−1∑
j=0

xjλj

Arithmetic and Cryptography 72/116

Multiplication in GF (2m)

Approaches using specific bases

Dual Bases in GF (2m)
General Definition

I An other linear form: f (u) = Tr(β.u) where β ∈ GF (2k)

I Dual bases if Tr(β.λi .νj) =

{
1 i = j
0 i 6= j

I Base conversion:

Tr(β.νj .x) = xj where xj with x =
m−1∑
j=0

xjλj

Arithmetic and Cryptography 73/116

Multiplication in GF (2m)

Approaches using specific bases

Multiplication avec les Bases duales dans GF (2m) [15]

I We consider the canonical base {αi , i = 0..m − 1} and a dual
base with (f , β)

I Be a, b et c in GF (2m): c = a× b Tr(bβ) Tr(bβα) .. Tr(bβαm−1)
Tr(bβα) Tr(bβα2) .. Tr(bβαm)

Tr(bβαm−1) Tr(bβαm) .. Tr(bβα2m−2)


 a0

a1

am−1

 =

 Tr(cβ)
Tr(cβα)

Tr(cβαm−1)


I first line, we find the coordinates of b in the dual base,
I coordinates of a are in the canonical one,
I c is obtained in the dual base.

I Goal: find f such that the dual base is a permutation of the
canonical one [16]

Arithmetic and Cryptography 74/116

Multiplication in GF (2m)

Approaches using specific bases

Dual Bases in GF (2m): example 1
In GF (24), we consider the canonical base (1, α, α2, α3) where α is a root of
P(X) = X 4 + X 3 + 1 (irreducible)
Consider the base,

(α12 = α + 1, α11 = α3 + α2 + 1, α10 = α3 + α, α13 = α2 + α)

which satisfies Tr(α10) = Tr(α11) = Tr(α13) = Tr(α14) = Tr(1) = 0, et
Tr(α12) = Tr(α) = 1.
Thus bases (1, α, α2, α3) and (α12, α11, α10, α13) are dual.
Let A = α12 = (1, 1, 0, 0) and B = α7 = (0, 1, 1, 1) in the canonical base, and
A = α12 = (1, 0, 0, 0) and B = α7 = (0, 1, 1, 0) in the dual one. We have,(

0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0

)(
1
1
0
0

)
=

(
1
0
1
0

)

We verify that C = α4 = (1, 0, 1, 0) in the dual base and
C = (1, 0, 0, 1) in the canonical one.

Arithmetic and Cryptography 75/116

Multiplication in GF (2m)

Approaches using specific bases

Dual Bases in GF (2m): example 2

We consider GF (24) and the canonical base (1, α, α2, α3) with α root of
P(X) = X 4 + X 3 + 1.
We consider the linear form Tr(α10u). In this case, the dual base is a
permutation of the canonical one. (α2, α, 1, α3).
Base conversion is trivial and the product of A = α12 and B = α7 becomes:

1 1 1 0
1 1 0 1
1 0 1 0
0 1 0 1




1
1
0
0

 =


0
0
1
1


We verify that C = α4.

Arithmetic and Cryptography 76/116

Inversion in a Finite Field

Inversion in a Finite Field

Arithmetic and Cryptography 77/116

Inversion in a Finite Field

Extended Euclid Algorithm

I Evaluation of the inverse of a modulo b using Bezout identity
b.u1 + a.u2 = gcd(a, b).

I We consider U = (u1, u2, u3) and V = (v1, v2, v3) such that:

u1b + u2a = u3

v1b + v2a = v3

I Initialization (u1, u2, u3) = (1, 0, b) and (v1, v2, v3) = (0, 1, a)

I We apply the Euclid GCD algorithm on u3 and v3 keeping the
previous identities

In fact terms of index 2 are not useful for the computing of the inverse

Arithmetic and Cryptography 78/116

Inversion in a Finite Field

Extended Euclide Algorithm in GF (p)

Initialization u1 ← 1 u2 ← 0 u3 ← p
v1 ← 0 v2 ← 1 v3 ← a

Loop while v3 6= 0

q = bu3/v3c
t1 ← u1 − q.v1 t2 ← u2 − q.v2 t3 ← u3 − q.v3

u1 ← v1 u2 ← v2 u3 ← v3

v1 ← t1 v2 ← t2 v3 ← t3

Result u2 ≡ a−1 mod p

Arithmetic and Cryptography 79/116

Inversion in a Finite Field

Extended Euclide Algorithm in GF (2m)

Initialisation U1 ← 1 U2 ← 0 U3 ← P(X)
V1 ← 0 V2 ← 1 V3 ← A(X)

Loop while V3 6= 0

n = deg(U3)− deg(V3)
T1 ← U1 − X n.V1 t2 ← U2 − X n.V2 T3 ← U3 − X n.V3

If deg(t3) ≥ deg(v3)
U1 ← T1 U2 ← T2 U3 ← T3

then
U1 ← V1 U2 ← V2 U3 ← V3

V1 ← T1 V2 ← T2 V3 ← T3

Result U2 ≡ A−1 mod P(X)
In GF (2m), this algorithm is in O(k) (at each step the degree decreases)

Arithmetic and Cryptography 80/116

Inversion in a Finite Field

Extended Euclide Algorithm in GF (24)
We consider A(X) = X 2 + 1 and P(X) = X 4 + X 3 + 1 irreducible.

u1(X) = 1 u2(X) = 0 u3(X) = P(X) = X 4 + X 3 + 1

v1(X) = 0 v2(X) = 1 v3(X) = A(X) = X 2 + 1

n = 2 u1(X) = 1 u2(X) = X 2 u3(X) = X 3 + X 2 + 1

v1(X) = 0 v2(X) = 1 v3(X) = X 2 + 1

n = 1 u1(X) = 1 u2(X) = X 2 + X u3(X) = X 2 + X + 1

v1(X) = 0 v2(X) = 1 v3(X) = X 2 + 1

n = 0 u1(X) = 0 u2(X) = 1 u3(X) = X 2 + 1

v1(X) = 1 v2(X) = X 2 + X + 1 v3(X) = X

n = 1 u1(X) = 1 u2(X) = X 2 + X + 1 u3(X) = x

v1(X) = X v2(X) = X 2 + X 3 + X + 1 v3(X) = 1

n = 1 u1(X) = X u2(X) = X 2 + X 3 + X + 1 u3(X) = 1

v1(X) = 1 + X 2 v2(X) = X 4 + X 3 + 1 v3(X) = 0

We verfify that (X 2 + X 3 + X + 1)(X 2 + 1) = 1 mod (X 4 + X 3 + 1) and

X 2 + X 3 + X + 1 is the inverse of X 2 + 1 modulo P(X).

Arithmetic and Cryptography 81/116

Inversion in a Finite Field

Fermat-Euler Approach

I Theorem: If β 6= 0 in Fq, then βq = β in Fq. β is a root of
X q = X

I Corollary: For β 6= 0 in Fq: βq−2 = β−1

I In GF (p) we need an exponentiation to p − 2 which can be
costly.

I In GF (2m), we have β−1 = β2m−2. The exponentiation uses the binary

representation of the exponent, we can use a square and multiply strategy, minimizing the multiplications

considering that 2m − 2 = 111...1100 [17].

Arithmetic and Cryptography 82/116

Inversion in a Finite Field

Fermat-Euler Approach
Example in GF (24)

We consider GF (24) and the canonical base (1, α, α2, α3) where α is a root of
P(X) = X 4 + X 3 + 1 (irreducible). We have 24 − 2 = 14.
Let A(X) = X 2 + 1, we have

A−1(X) = A14(X) = (X 2 + 1)14 mod (X 4 + X 3 + 1)

The binary representation of 14 is 1110, thus,

(X 2 + 1)14 = ((((X 2 + 1)2)(X 2 + 1))2)(X 2 + 1))2 mod (X 4 + X 3 + 1)

Step by step:

(X 2 + 1)2 = X 3

((X 2 + 1)2)(X 2 + 1) = (X 2 + 1)3 = X + 1

(((X 2 + 1)2)(X 2 + 1))2 = (X 2 + 1)6 = X 2 + 1

((((X 2 + 1)2)(X 2 + 1))2)(X 2 + 1) = (X 2 + 1)7 = X 3

(((((X 2 + 1)2)(X 2 + 1))2)(X 2 + 1))2 = (X 2 + 1)14 = X 3 + X 2 + X + 1

Arithmetic and Cryptography 83/116

Inversion in a Finite Field

Fermat-Euler Approach
Example in GF (231)

We consider GF (231). We want to compute β231−2, but 231 − 2 = 2147483646
is 1111111111111111111111111111110 in binary.

operation valuer exponent

β2 = β2 10

β2β = β3 11

(β3)22
= β12 1100

β12β3 = β15 1111

(β15)24
= β240 11110000

β240β15 = β255 11111111

(β255)28
= β65280 1111111100000000

β65280β255 = β65535 1111111111111111

(β65535)215
= β2147450880 1111111111111111000000000000000

(β255)27
= β32640 111111110000000

(β15)23
= β120 1111000

(β3)21
= β6 110

β2147450880β32640 = β2147483520 1111111111111111111111110000000

β120β6 = β126 1111110

β2147483520β126 = β2147483646 1111111111111111111111111111110

Arithmetic and Cryptography 84/116

Another Approach: Residue Systems

Introduction to Residue Systems

Another Approach: Residue Systems
Introduction to Residue Systems

Arithmetic and Cryptography 85/116

Another Approach: Residue Systems

Introduction to Residue Systems

Introduction to Residue Systems

I In some applications, like cryptography, we use finite field
arithmetics on huge numbers or large polynomials.

I Residue systems are a way to distribute the calculus on small
arithmetic units.

I Are these systems suitable for finite field arithmetics?

Arithmetic and Cryptography 86/116

Another Approach: Residue Systems

Introduction to Residue Systems

Residue Number Systems in Fp, p prime

I Modular arithmetic mod p, elements are considered as
integers.

I Residue Number System
I RNS base: a set of coprime numbers (m1, ...,mk)
I RNS representation: (a1, ..., ak) with ai = |A|mi

I Full parallel operations modM with M =
∏k

i=1 mi

(|a1 ⊗ b1|m1
, . . . , |an ⊗ bn|mn

)→ A⊗ B (mod M)

I Very fast product, but an extension of the base could be
necessary and a reduction modulo p is needed.

Arithmetic and Cryptography 87/116

Another Approach: Residue Systems

Introduction to Residue Systems

Residue Number Systems in Fp, p prime

I Φ(m) =
∑
p≤m

p prime

log p = log
∏
p≤m

p prime

p ∼ m

I If 2m−1 ≤ M < 2m, then the size of moduli is of order
O(logm).

I In other words, if addition and multiplication have
complexities of order Θ(f (m)), then in RNS the complexities
become Θ(f (logm)).

Arithmetic and Cryptography 88/116

Another Approach: Residue Systems

Introduction to Residue Systems

Lagrange representations in Fpk with p > 2k

I Arithmetic modulo I (X), an irreducible Fp polynomial of
degree k. Elements of Fpk are considered as Fp polynomials
of degree lower than k .

I Lagrange representation
I is defined by k different points e1, ...ek in Fp. (k ≤ p.)
I A polynomial A(X) = α0 + α1X + ...+ αk−1X

k−1 over Fp is
given in Lagrange representation by:

(a1 = A(e1), ..., ak = A(ek)).

I Remark: ai = A(ei) = A(X) mod (X − ei). If we note
mi (X) = (X − ei), we obtain a similar representation as RNS.

I Operations are made independently on each A(ei) (like in FFT
or Tom-Cook approaches). We need to extend to 2k points
for the product.

Arithmetic and Cryptography 89/116

Another Approach: Residue Systems

Introduction to Residue Systems

Trinomial residue in F2n

I Arithmetic modulo I (X), an irreducible F2 polynomial of
degree n. Elements of F2n are considered as F2 polynomials of
degree lower than n.

I Trinomial representation
I is defined by a set of k coprime trinomials

mi (X) = X d + X ti + 1, with k × d ≥ n,
I an element A(X) is represented by (a1(X), ...ak(X)) with

ai (X) = A(X) mod mi (X).
I This representation is equivalent to RNS.

I Operations are made independently for each mi (X)

Arithmetic and Cryptography 90/116

Another Approach: Residue Systems

Introduction to Residue Systems

Residue Systems

I Residue systems could be an issue for computing efficiently
the product.

I The main operation is now the modular reduction for
constructing the finite field elements.

I The choice of the residue system base is important, it gives
the complexity of the basic operations.

Arithmetic and Cryptography 91/116

Another Approach: Residue Systems

Modular reduction in Residue Systems

Modular reduction in Residue Systems

Arithmetic and Cryptography 92/116

Another Approach: Residue Systems

Modular reduction in Residue Systems

Reduction of Montgomery on Fp

I The most used reduction algorithm is due to Montgomery
(1985)[8]

I For reducing A modulo p,
one evaluates q = −(Ap−1) mod 2s ,
then one constructs R = (A + qp)/2s .
The obtained value satisfies: R ≡ A× 2−s (mod p) and
R < 2p if A < p2s .
We note Montg(A, 2s , p) = R.

I Montgomery notation: A′ = A× 2s mod p
Montg(A′ × B ′, 2s , p) ≡ (A× B)× 2s (mod p)

Arithmetic and Cryptography 93/116

Another Approach: Residue Systems

Modular reduction in Residue Systems

Residue version of Montgomery Reduction

I The residue base is such that p < M
(or degM(X) ≥ deg I (X))

I We use an auxiliary base such that p < M ′

(or degM ′(X) ≥ deg I (X)), M ′ and M coprime.
(Exact product, and existence of M−1)

I Steps of the algorithm

1. Q = −(Ap−1) mod M (calculus in base M)
2. Extension of the representation of Q to the base M ′

3. R = (A + Qp)×M−1 (calculus in base M ′)
4. Extension of the representation of R to the base M

I The values are represented in the two bases.

Arithmetic and Cryptography 94/116

Another Approach: Residue Systems

Modular reduction in Residue Systems

Extension of Residue System Bases (from M to M ′)

The extension comes from the Lagrange interpolation.
If (a1, ..., ak) is the residue representation in the base M, then

A =
k∑

i=1

∣∣∣∣∣ai ×
[
M

mi

]−1

mi

∣∣∣∣∣
mi

× M

mi
− αM

The factor α can be, in certain cases, neglected or computed [18]
Another approach consists in the Newton interpolation where A is
correctly reconstructed. [21]
In the polynomial case, the term −αM vanishes.

Arithmetic and Cryptography 95/116

Another Approach: Residue Systems

Modular reduction in Residue Systems

Extension for Q

By the CRT

Q̂ =
n∑

i=1

∣∣∣qi |Mi |−1
mi

∣∣∣
mi

Mi = Q + αM

where 0 ≤ α < n.
When Q̂ has been computed, it is possible to compute R̂ as

R̂ = (AB + Q̂p)M−1 = (AB + Qp + αMp)M−1

= (AB + Qp)M−1 + αp

so that R̂ ≡ R ≡ ABM−1 (mod p), which is sufficient for our
purpose. Also, assuming that AB < pM, we find that
R̂ < (n + 2)p since α < n.

Arithmetic and Cryptography 96/116

Another Approach: Residue Systems

Modular reduction in Residue Systems

Extension R

Shenoy and Kumaresan (1989):

We have (
n∑

i=1

Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

) = R + α×M

α =

∣∣∣∣∣|M|−1
mn+1

(
n∑

i=1

∣∣∣∣Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

∣∣∣∣
mn+1

− |R|mn+1

)∣∣∣∣∣
mn+1

r̃j =

∣∣∣∣∣
n∑

i=1

∣∣∣∣Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

∣∣∣∣
m̃j

− |αM|m̃j

∣∣∣∣∣
m̃j

Arithmetic and Cryptography 97/116

Another Approach: Residue Systems

Modular reduction in Residue Systems

Extension of Residue System Bases

We first translate into an intermediate representation (MRS):

ζ1 = a1

ζ2 = (a2 − ζ1) m−1
1 mod m2

ζ3 =
(
(a3 − ζ1) m−1

1 − ζ2

)
m−1

2 mod m3

...

ζn =
(
. . .
(
(an − ζ1) m−1

1 − ζ2

)
m−1

2 − · · · − ζn−1

)
m−1

n−1 mod mn.

We evaluate A, with Horner’s rule, as

A = (. . . ((ζn mn−1 + ζn−1) mn−2 + · · ·+ ζ3) m2 + ζ2) m1 + ζ1.

Arithmetic and Cryptography 98/116

Another Approach: Residue Systems

Modular reduction in Residue Systems

Features of the residue systems

I Efficient multiplication, the cost being the cost of one
multiplication on one residue.

I Costly reduction: O(k1.6) for trinomials [21] (annexe 109),
2k2 + 3k →∼ O(k) for RNS [18] (annexe 104),
O(k2)→ O(k) for Lagrange representation [22] (annexe 112).

I If we take into account that most of the operations are
multiplications by a constant, the cost can be considerably
smaller.

Arithmetic and Cryptography 99/116

Another Approach: Residue Systems

Applications to Cryptography

Applications to Cryptography

Arithmetic and Cryptography 100/116

Another Approach: Residue Systems

Applications to Cryptography

Elliptic curve cryptography

I The main idea comes from the efficiency of the product and
the cost of the reduction in Residue Systems.

I We try to minimize the number of reductions. A reduction is
not necessary after each operation. Clearly, for a formula like
A× B + C × D, only one reduction is needed.

I Elliptic Curve Cryptography is based on addition of points .
We use appropriate forms (Hessian, Jacobi, Montgomery...)
and coordinates: projective, Jacobian or Chudnowski...

I For 512 bits values, Residues Systems for curves defined over
a prime field, are more efficient than classical representations
[19]

Arithmetic and Cryptography 101/116

Another Approach: Residue Systems

Applications to Cryptography

Pairings

I To summarize, we define a pairing as follows: let G1 and G2

be two additive abelian groups of cardinal n, and G3 a
multiplicative group of cardinal n.

I A pairing is a function e : G1 × G2 → G3 which verifies the
following properties: Bilinearity, Non-degeneracy.

I For pairings defined on an elliptic curve E over a finite field
Fp, we have G1 ⊂ E (Fp), G2 ⊂ E (Fpk) and G3 ⊂ Fpk , where

k is the smallest integer such that n divides pk − 1; k is called
the embedded degree of the curve.

Arithmetic and Cryptography 102/116

Another Approach: Residue Systems

Applications to Cryptography

Pairings

I The construction of the pairing involves values over Fp and
Fpk in the formulas. An approach with Residue Systems,
similar to the one made on ECC could be interesting [20]

I k is most of the time chosen as a small power of 2 and 3 for
algorithmic reasons. Residue arithmetics allows us to pass
over this restriction.

I With pairings, we can also imagine two levels of Residue
Systems: one over Fp and one over Fpk .

Arithmetic and Cryptography 103/116

Annexes

ANNEXES

Détails of the implementation in Residue Systems

Arithmetic and Cryptography 104/116

Annexes

Annexe Fp

Table: Hamming weight w(m−1
i,j) of the inverse of mi modulo mj .

mj

mi 2k 2k − 1 2k − 2t1 − 1 2k − 2t2 − 1 2k − 2t1 + 1 2k − 2t2 + 1

2k 1

2k − 1 1 2 2

2k − 2t1 − 1
⌈

k
t1

⌉
1

k−t2
t1−t2

2

2k − 2t2 − 1
⌈

k
t2

⌉
1

k−t1
t1−t2

2

2k − 2t1 + 1
⌈

k
t1

⌉
k−1
t1−1

2
k−t1
t1−t2

2k − 2t2 + 1
⌈

k
t2

⌉
k−1
t2−1

2
k−t1
t1−t2

Back to 98

Arithmetic and Cryptography 105/116

Annexes

Table: Hamming weight w(m−1
i,j) of the inverse of mi modulo mj .

mj

mi 2k 2k − 1 2k − 2t+1 − 1 2k − 2t − 1 2k − 2t+1 + 1 2k − 2t + 1

2k 1

2k − 1 1 2 2

2k − 2t+1 − 1
⌈

k
t+1

⌉
1 2 2 k−t

t−1

2k − 2t − 1
⌈
k
t

⌉
1 2 k−t−1

t−1
2

2k − 2t+1 + 1
⌈

k
t+1

⌉
k−1
t

2 k−t
t−1

2

2k − 2t + 1
⌈
k
t

⌉
k−1
t−1

k−t−1
t−1

2 2

Back to 98

Arithmetic and Cryptography 106/116

Annexes

Pair of 5 Moduli - Parallel mode

The dynamical range is
M = 2320 − 2267 − 2265 − 2258 − 2256 + 2213 + 2206 − 2204 + 2195 −
2193 − 2157 − 2151 − 2148 − 2142 + 2138 + 2129 + 295 + 287 + 285 +
276 − 267 + 264 − 231 + 229 − 222 + 220 + 211 − 29 + 22 − 1 and
M < M ′.

m1 = 264 − 28 − 1 3 m′1 = 264 − 210 + 1 3
RNS bases m2 = 264 − 216 − 1 3 m′2 = 264 − 29 − 1 3

for 5 moduli m3 = 264 − 222 − 1 3 m′3 = 264 − 22 + 1 3
(P) m4 = 264 − 228 − 1 3 m′4 = 264 − 1 2

m5 = 264 1 m′5 = 264 − 210 − 1 3

Back to 98

Arithmetic and Cryptography 107/116

Annexes

Inverses m−1
i,j in basis B5 ω(m−1

i,j)

m−1
1,2 = 248 + 240 + 232 + 224 + 216 + 28 6

m−1
1,3 = 242 + 228 + 214 3

m−1
1,4 = 260 − 256 − 252 + 244 + 240 − 232 + 221 + 216 − 212 − 28 + 1 11

m−1
1,5 = 256 − 248 + 240 − 232 + 224 − 216 + 28 − 1 8

m−1
2,3 = 242 + 236 + 230 + 224 + 218 + 212 + 26 7

m−1
2,4 = 236 + 224 + 212 3

m−1
2,5 = 248 − 232 + 216 − 1 4

m−1
3,4 = 236 + 230 + 224 + 218 + 212 + 26 6

m−1
3,5 = 264 − 244 + 222 − 1 4

m−1
4,5 = 264 − 256 + 228 − 1 4

Back to 98

Arithmetic and Cryptography 108/116

Annexes

Inverses m′−1
i,j in basis B′5 ω(m′−1

i,j)

m′−1
1,2 = 262 − 254 − 246 − 238 − 230 − 222 − 214 − 28 + 26 9

m′−1
1,3 = 263 + 261 − 253 − 245 − 237 − 229 − 221 − 213 − 25 − 2 10

m′−1
1,4 = 254 + 245 + 236 + 227 + 218 + 29 + 1 7

m′−1
1,5 = 263 − 29 2

m′−1
2,3 = 262 − 254 − 246 − 238 − 230 − 222 − 214 − 26 − 1 9

m′−1
2,4 = 264 − 255 − 1 3

m′−1
2,5 = 255 − 2 2

m′−1
3,4 = 263 − 1 2

m′−1
3,5 = 254 + 245 + 236 + 227 + 218 + 29 6

m′−1
4,5 = 254 − 1 2

Back to 98

Arithmetic and Cryptography 109/116

Annexes

Annexe F2n

To compute
ψ = F × T−1

j mod Ti . (1)

We use the nptation , Bj ,i (X) = Tj mod Ti . Thus, (1) becomes

ψ = F × B−1
j ,i mod Ti . (2)

We evaluate (2) like a Montgomery reduction, where Bj ,i is the
Montgomery factor:

1. φ = F × T−1
i mod Bj ,i ,

(F + φ.Ti multiple of Bj ,i).

2. ψ = (F + φTi)/Bj ,i

(with a division by Bj ,i).

Back to 98

Arithmetic and Cryptography 110/116

Annexes

We remark that Bj ,i (X) = X tj (X ti−tj + 1) for tj < ti
In order to evaluate (2), we compute

ψ =
(
F × (X a)−1 mod Ti

)
×
(
X b + 1

)−1
mod Ti . (3)

We evaluate F × (X a)−1 mod Ti in two steps:

φ = F × T−1
i mod X a (4)

ψ = (F + φ× Ti) /X
a (5)

Back to 98

Arithmetic and Cryptography 111/116

Annexes

To end (3), we compute F × (X b + 1)−1 mod Ti (degree of F is
at most d − 1) in four steps:

F = F mod (X b + 1) (6)

φ = F × T−1
i mod (X b + 1) (7)

ρ = F + φ× Ti (8)

ψ = ρ/(X b + 1) (We have ρ = ψXb + ψ thus ρ mod Xb = ψ mod Xb) (9)

Back to 98

Arithmetic and Cryptography 112/116

Annexes

Annexe Fpk

Let us consider the first 2k integers: we define E = {0, . . . , k − 1}
and E ′ = {k , . . . , 2k − 1}.
We can precompute k − 1 constants
Cj = ((ej − e1)(ej − e2) . . . (ej − ej−1))−1 mod p, for 2 ≤ j ≤ k
and we can evaluate (q̂1, . . . , q̂k)

q̂1 = q1 mod p,

q̂2 = (q2 − q̂1)C2 mod p,

q̂3 = (q3 − (q̂1 + 2q̂2))C3 mod p,

...

q̂k = (qk − (q̂1 + (k − 1)(q̂2 + (k − 2)(q̂3 + . . .

+ 2q̂k−1) . . .)))Ck mod p.

(10)

Back to 98

Arithmetic and Cryptography 113/116

Annexes

q′i =
(
(. . . (q̂k(e ′i − ek−1) + q̂k−1)(e ′i − ek−2) + · · ·

+ q̂2)(e ′i − e1) + q̂1

)
mod p. (11)

q′1 = ((. . . (q̂k × 2 + q̂k−1)

× 3 + · · ·+ q̂2)× k + q̂1) mod p,

q′2 = ((. . . (q̂k × 3 + q̂k−1)

× 4 + · · ·+ q̂2)× (k + 1) + q̂1) mod p,

...

q′k = ((. . . (q̂k × (k + 1) + q̂k−1)

× (k + 2) + · · ·+ q̂2)× (2k − 1) + q̂1) mod p,

(12)

Back to 98

Arithmetic and Cryptography 114/116

Annexes

For example the multiplication by 45 = (1010101)2 gives three
additions if one considers the NAF, or with only two if one
considers its factorization 45 = 9× 5.

c #A c #A c #A

1 0 16 0 31 1
2 0 17 1 32 0
3 1 18 1 33 1
4 0 19 2 34 1
5 1 20 1 35 2
6 1 21 2 36 1
7 1 22 2 37 2
8 0 23 2 38 2
9 1 24 1 39 2

10 1 25 2 40 1
11 2 26 2 41 2
12 1 27 2 42 2
13 2 28 1 43 3
14 1 29 2 44 2
15 1 30 1 45 2

Table: Number of addition (#A) required in the multiplication by some
small constants c

Back to 98

Arithmetic and Cryptography 115/116

Annexes

p form of p k l

59 26 − 22 − 1 29 170

67 26 + 3 29 . . . 31 175 . . . 188

73 26 + 23 + 1 29 . . . 31 179 . . . 191

127 27 − 1 23 . . . 61 160 . . . 426

257 28 + 1 23 . . . 73 184 . . . 584

503 29 − 23 − 1 19 . . . 61 170 . . . 547

521 29 + 23 + 1 19 . . . 61 171 . . . 550

8191 213 − 1 13 . . . 43 168 . . . 558

65537 216 + 1 11 . . . 37 176 . . . 592

131071 217 − 1 11 . . . 31 186 . . . 526

524287 219 − 1 11 . . . 31 208 . . . 588

2147483647 231 − 1 7 . . . 19 216 . . . 588

2305843009213693951 261 − 1 3 . . . 7 182 . . . 426

Table: Good candidates for p and k suitable for elliptic curve
cryptography and the corresponding key lengths

Back to 98

Arithmetic and Cryptography 116/116

Références

REFERENCES

Arithmetic and Cryptography 116/116

Références

Miller, V. (1985).
”Use of elliptic curves in cryptography”.
CRYPTO 85: 417-426.

Koblitz, N. (1987).
”Elliptic curve cryptosystems”.
Mathematics of Computation 48 (177): 203-209.

Boneh, Dan; Franklin, Matthew (2003).
”Identity-based encryption from the Weil pairing”.
SIAM Journal on Computing 32 (3): 586-615.

Joux, Antoine (2004).
”A one round protocol for tripartite Diffie-Hellman”.
Journal of Cryptology 17 (4): 263-276.

R. Lidl and H. Niederreiter.
Finite Fields.
Addison-Wesley, Reading, 1985.

Arithmetic and Cryptography 116/116

Références

Rudolf Lidl and Harald Niederreiter.
Introduction to Finite Fields and Their Applications.
Cambridge University Press, revised edition edition, 1994.

Paul Barrett
Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor.
Advances in Cryptology – CRYPTO’ 86 Lecture Notes in
Computer Science Volume 263, 1987, pp 311-323

Montgomery, P.L.: Modular multiplication without trial
division. Math. Comp. 44:170 (1985) 519–521

M. Kaihara and N. Takagi
”Bipartite Modular Multiplication Method”
IEEE Trans. on Computers, vol. 57, No. 2, 157-164, Feb. 2007.

E. Mastrovito
”VLSI Architectures for Computation in Galois Fields.”

Arithmetic and Cryptography 116/116

Références

PhD thesis, Linkoping University, Dept. Electr. Eng., 1991

H. Fan and M. A. Hasan,
”A New Approach to Sub-quadratic Space Complexity Parallel
Multipliers for Extended Binary Fields,”
IEEE Trans. Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone and R. Wilson.
Optimal normal basis in gf (pm).
Discrete Applied Mathematics, 1989.

J.L. Massey and J.K. Omura
”Computational Method and Apparatus for Finite Field
Arithmetic”
US patent No 4,587,627, 1986.

Hasan, Wang, and Bhargava.
A modified massey-omura parallel multiplier for a class of
finite fields.

Arithmetic and Cryptography 116/116

Références

IEEETC: IEEE Transactions on Computers, 42, 1993.

Sebastian T.J. Fenn, Mohammed Benaissa and David Taylor.
gf (2m) multiplication and division over the dual basis.
IEEE Transactions on Computers, 1996.

M. Anwarul Hasan Huapeng Wu and Ian F. Blake.
New low-complexity bit-parallel finite field multipliers using
weakly dual bases.
IEEE Transactions on Computers, 1998.

Takagi, Yoshiki, and Takagi.
A fast algorithm for multiplicative inversion in GF (2m) using
normal basis.
IEEETC: IEEE Transactions on Computers, 50, 2001.

Bajard, J.C., Didier, L.S., Kornerup, P.: Modular
multiplication and base extension in residue number systems.

Arithmetic and Cryptography 116/116

Références

15th IEEE Symposium on Computer Arithmetic, 2001 Vail
Colorado USA pp. 59–65

Bajard, J.C., Duquesne, S., Ercegovac M. and Meloni N.:
Residue systems efficiency for modular products summation:
Application to Elliptic Curves Cryptography, in Advanced
Signal Processing Algorithms, Architectures, and
Implementations XVI, SPIE 2006, San Diego, USA.

Bajard, J.C. and ElMrabet N.: Pairing in cryptography: an
arithmetic point of view, Advanced Signal Processing
Algorithms, Architectures, and Implementations XVII, part of
the SPIE Optics & Photonics 2007 Symposium. August 2007
San Diego, USA.

J.C. Bajard, L. Imbert, and G. A. Jullien: Parallel Montgomery
Multiplication in GF (2k) using Trinomial Residue Arithmetic,
17th IEEE symposium on Computer Arithmetic, 2005, Cape
Cod, MA, USA.pp. 164-171

Arithmetic and Cryptography 116/116

Références

J.C. Bajard, L. Imbert et Ch. Negre, Arithmetic Operations in
Finite Fields of Medium Prime Characteristic Using the
Lagrange Representation, journal IEEE Transactions on
Computers, September 2006 (Vol. 55, No. 9) p p. 1167-1177

Bajard, J.C., Meloni, N., Plantard, T.: Efficient RNS bases for
Cryptography IMACS’05, Applied Mathematics and
Simulation, (2005)

Garner, H.L.: The residue number system. IRE Transactions
on Electronic Computers, EL 8:6 (1959) 140–147

Knuth, D.: Seminumerical Algorithms. The Art of Computer
Programming, vol. 2. Addison-Wesley (1981)

Montgomery, P.L.: Modular multiplication without trial
division. Math. Comp. 44:170 (1985) 519–521

Arithmetic and Cryptography 116/116

Références

Svoboda, A. and Valach, M.: Operational Circuits. Stroje na
Zpracovani Informaci, Sbornik III, Nakl. CSAV, Prague, 1955,
pp.247-295.

Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its
Applications to Computer Technology. McGraw-Hill (1967)

	Finite Fields Representations
	Multiplication in GF(p)
	Back to multiplication
	Modular Reduction

	Multiplication in GF(2m)
	Polynomial Approaches
	Approaches using specific bases

	Inversion in a Finite Field
	Another Approach: Residue Systems
	Introduction to Residue Systems
	Modular reduction in Residue Systems
	Applications to Cryptography

	Annexes
	Références

