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Arithmetic for Cryptography

Basic protocols

Key Agreement

Diffie-Hellman (1976)

Construction p a prime number and g a generator of Z∗p 1

Character A selects a random x, and sends a = gx mod p to B

Character B selects a random y, and sends b = gy mod p to A

Common Secret A constructs k = bx mod p and B constructs
k′ = ay mod p, thus k = k′

1in fact, the order of g equals to the biggest factor of p − 1 is sufficient
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Arithmetic for Cryptography

Basic protocols

Public Key Cryptosystem

I RSA (1978) Robustness due to factorization

Construction n = p ∗ q, p and q two large primes,
e, and d such that e × d ≡ 1 (mod φ(n)).

Sender message m, m < n, computes c = me mod n
and sends c

Receptor Secret key d , computes m = cd mod n

I El Gamal (1985) Based on DH, with (p, g , ga) as public key,
Robustness due to Discrete Logarithm Problem

I ECC Koblitz-Miller (1985) Law group of the points of an
elliptic curve curve defined on a finite field Fp. DH or El
Gamal can be applied using k times a point P (generator).
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Arithmetic for Cryptography

Basic protocols

Arithmetic point of view

I Multiplication with huge numbers (300 to 2000 bits)

I Modular reduction, without division (division is costly)

I Exponentiation, using the representation of the exponent

I Exponent most of the time is secret
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Arithmetic for Cryptography

Interpolation and Multiplication

Evaluation of the product P = A× B

1. Considering numbers as polynomials

A =
k−1∑
i=0

aiβ
i → A(X ) =

k−1∑
i=0

aiX
i

2. Evaluation of a polynomial product: P(X ) = A(X )× B(X )
I using a matrix-vector product

I using interpolation: i = 0...k , A(ei ) =
k−1∑
i=0

aie
i
i

3. Evaluation of the value: P(β) = A(β)× B(β)
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Arithmetic for Cryptography

Interpolation and Multiplication

Evaluation of the product P = A× B

I Karatsuba-Ofman (1962): with A(X ) = A1X + A0 and
e0 = 0, e1 = −1 et e2 =∞, complexity K (n) = O(nlog2(3))

I Toom-Cook (1963-1966): with A(X ) = A2X
2 + A1X + A0

and e0 = 0, e1 = −1 , e2 = 1, e3 = 2 et e4 =∞, complexity
T3(n) = O(nlog3(5))... Tk(n) = O(nlogk (2k−1)).

I Schönhage-Strassen (1971): ω primitive nth root of unity,
ωn = 1, ei = ωi for i = 0..n − 1, complexity
FFT (n) = O(n log n log log n).

I But in practice the school-book algorithm in O(n2) is
sufficient2

2see gmp-mparam.h of GMP for the different architectures x 86-64
Karatsuba 28 (1792), Toom-Cook 81 (5184), FFT 7552
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Arithmetic for Cryptography

General Modular Reduction

Montgomery Reduction (1985)3

Montgomery(A P)

Input βn−1 ≤ P < βn et A < Pβn < β2n

Output , R = A× β−n mod P

Core Q ← A× |P−1|βn mod βn

R ← (A− Q × P)÷ βn, (R < 2P)

While R ≥ P do R ← R − P

Complexity : 2 products of n digits (close to 2 half products)

I Montgomery notation: Ã = A× βn mod P

I Ã = Montgomery(A× |β2n|P ,P)

I Ã + B̃ = Ã + B et ÃB = Montgomery(Ã× B̃,P)

31986 Barrett algorithm 40
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Number systems and Cryptography 11/51

Residue Number Systems

Chinese Remainder Theorem

Definition of the Residue Number Systems

I Issue from the Chinese Remainder Theorem4 , introduced in
computer arithmetic in 1957-1967 5.

I Residue Number System
I RNS base: a set of coprime numbers (m1, ...,mk)
I RNS representation: (a1, ..., ak) with ai = |A|mi

I Full parallel operations modM with M =
∏k

i=1 mi

(|a1 ⊗ b1|m1
, . . . , |an ⊗ bn|mn

)→ A⊗ B (mod M)

I Very fast addition and product, but comparison and division
are costly.

4Ch’in Chiu-Shao 1247
51957 Svoboda and Valach, 1959 Garner, 1967 Szabo and Tanaka
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Residue Number Systems

Chinese Remainder Theorem

Residue Number Systems: example

Modular system: B4m = {3, 7, 13, 19} M = 5187

X = 147 Y = 31 Z = 124
XRNS = {0, 0, 4, 14} YRNS = {1, 3, 5, 12} ZRNS = {1, 5, 7, 10}

XRNS +
RNS

YRNS = { |0 + 1|3, |0 + 3|7, |4 + 5|13, |14 + 12|19 }
= { 1, 3, 9, 7 }
= 178

XRNS ×RNS
YRNS = { |0× 1|3, |0× 3|7, |4× 5|13, |14× 12|19 }

= { 0, 0, 7, 16 }
= 4557
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Residue Number Systems

Chinese Remainder Theorem

Remarks about the complexities of RNS

I We consider m the biggest element of the RNS base

I Φ(m) =
∑
p≤m

p prime

log p = log
∏
p≤m

p prime

p ∼ m

I If 2m−1 ≤ M < 2m then the size moduli is of order O(logm).

I In other words, if addition and multiplication have
complexities of order Θ(f (m)) then in RNS the complexities
become Θ(f (logm)).
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Residue Number Systems

Modular reduction in RNS

Residue version of Montgomery Reduction6

I The residue base is such that p < M

I We use an auxiliary base such that p < M ′, M ′ and M
coprime.

I Steps of the algorithm

1. Q = −(Ap−1) mod M (calculus in base M)
2. Extension of the representation of Q to the base M ′

3. R = (A + Qp)×M−1 (calculus in base M ′)
4. Extension of the representation of R to the base M

I The values are represented in the two bases.

6Posh and Posh 1995, B.-Didier-Kornerup 1997
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Residue Number Systems

Modular reduction in RNS

Extension of Residue System Bases (from M to M ′)

I The extension are similar to the polynomial interpolations.

I We consider (a1, ..., ak) the residue representation of A in the
base M.

I The Lagrange interpolation gives,

A =
k∑

i=1

∣∣∣∣∣ai ×
[
M

mi

]−1
mi

∣∣∣∣∣
mi

× M

mi
− αM

The factor α can be, in certain cases, neglected or computed.

I Another approach consists in the Newton interpolation where
A is correctly reconstructed.
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Residue Number Systems

Modular reduction in RNS

Extension in RNS Montgomery

I The extension of Q from M to M ′ does not need to be exact,
Q is multiply by p (Annex 41) 7

I The second extension of R from M ′ to M must be exact.
Hence α must be determined,
I an extra modulo can be used (Annex 6) 8

I or from the interger part of
k∑

i=1

∣∣∣∣∣ai ×
[
M

mi

]−1
mi

∣∣∣∣∣
mi

× 1

mi

9

7B. - Didier -Kornerup 2001
8Shenoy - Kumaresan 1989
9Posh - Posh 1995, Kawamura - Koike - Sano - Shimbo 2000
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Residue Number Systems

Modular reduction in RNS

Exact Extension of Residue System Bases (Newton
interpolation)

We first translate in an intermediate representation Mixed Radix
Systems (MRS):10

ζ1 = a1

ζ2 = (a2 − ζ1) m−11 mod m2

ζ3 =
(
(a3 − ζ1) m−11 − ζ2

)
m−12 mod m3

...

ζn =
(
. . .
(
(an − ζ1) m−11 − ζ2

)
m−12 − · · · − ζn−1

)
m−1n−1 mod mn.

We evaluate A, with Horner’s rule, as

A = (. . . ((ζn mn−1 + ζn−1) mn−2 + · · ·+ ζ3) m2 + ζ2) m1 + ζ1.

10H.L. Garner 1958
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Residue Number Systems

Modular reduction in RNS

Some conclusions about RNS

I RNS is well adapted to parallel architectures (GPU,
Multicore,...)

I Modular reductions stay costly.

I For ECC or Pairing it is possible to reduce the number of
modular reductions based on the fact the A× B + C × D
needs only one reduction.

I As for interpolation, the choice of the bases are important.
Does it exist a FFT like approach for RNS ?
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Lattices and Modular Reduction

Lattices and Modular Reduction
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Lattices and Modular Reduction

Pseudo Mersenne and Reduction

Pseudo Mersenne and Reduction 11

When possible p can be chosen to facilitate the reduction
p = βn − ξ with 0 ≤ ξ < βn/2 (ξ2 ≤ βn − 2βn/2 + 1).

For reducing C (e.g. C = A× B ≤ (p − 1)2), we note
C = C1β

n + C0

I First step of reduction: C ≡ (C ′ = C1ξ + C0) (mod p)
C ′ = C ′1β

n + C ′0 with C ′1 ≤ ξ and C ′0 ≤ βn − 1

I Second step of reduction: C ′ ≡ (C ′′ = C ′1ξ + C ′0) (mod p)
with C” + ξ < βn + p

I Final step: If C” + ξ ≥ βn Then R = C” + ξ−βn else R = C”

11Crandall 1992
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Lattices and Modular Reduction

Pseudo Mersenne and Reduction

Réduction modulaire
p = βn − ξ avec 0 ≤ ξ < βn/2

I In this kind of reduction we have two products by ξ,
I ξ very small, for example ξ < β, for having a product by a digit
I ξ very sparse (most of the digit are equal to zero) then the

product is replaced by some shift-and-adds.

I Such Pseudo-Mersenne numbers are very few. Furthermore
for different reasons it could be not possible to have a
pseudo-Mersenne (i.e. RSA N = pq)

I The question is, Is it possible to have a number system where
p have this kind of properties??
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Lattices and Modular Reduction

Pseudo Mersenne and Reduction

Lattices and Modular Systems

I Number system: radix β and a set of digits {0, ..., β − 1}.
I We denote by p the modulo, with p < βn,

βn ≡
n−1∑
i=0

εiβ
i (mod p) with εi ∈ {0, ..., β − 1}

I A modular operation (for example: a modular multiplication):

1. Polynomial operation: W (X ) = A(X )
⊗

B(X )

2. Polynomial reduction : V (X ) = W (X ) mod (X n −
n−1∑
i=0

εiX
i )

I Pseudo-Mersenne properties for the reduction.
I The coefficients of V (X ) can be bigger than β − 1 the

maximal digit.

3. Coefficient reduction :M(X ) = Reductcoeff(V (X ))
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Lattices and Modular Reduction

Pseudo Mersenne and Reduction

Lattices and Modular Systems
Lattice approach

I A number A =
n−1∑
i=0

aiβ
i corresponds to a vector (a0, ..., an−1)

I We consider the lattice defined by the representations of zero
modulo p, equivalent to a combination of the carry
propagation and the modular reduction:

−β 1 ... 0 0
0 −β ... 0 0
...

...
...

...
...

0 0 ... −β 1
p 0 ... 0 0


← lattice
(det = p)

sublattice→
(det = βn − ε)


−β 1 ... 0 0
0 −β ... 0 0
...

...
...

...
...

0 0 ... −β 1
ε0 ε1 ... εn−2 (εn−1 − β)


I The goal is to find a vector G of the lattice (or sublattice)

such that V − G has all its coefficients equal to digits (close
vector).
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Lattices and Modular Reduction

Pseudo Mersenne and Reduction

Lattices and Modular Systems
Example

For P = 97 and β = 10, we have 102 ≡ 3 (mod P). We consider
the lattice: (

B0

B1

)
=

(
−10 1

3 −10

)
Let V (25, 12) = 25 + 12β.

For reducing V , we determine G (17, 8) = −2B0 − B1 a vector of
the lattice close to V .

Thus , V (25, 12) ≡ M(8, 4) = V (25, 12)− G (17, 8).
We verify that 25 + 120 = 145 ≡ 48 (mod 97)
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Lattices and Modular Reduction

Pseudo Mersenne and Reduction

Lattices and Modular Number Systems
Example

The reduction is equivalent to find a close vector.
Let G (X ) be this vector, then M(X ) = V (x)− G (X )

P = 97 β = 10

G

q
q q

q q
q q

q q
q q

q q
q qq q

q q
q q

q q

a
a

V(25,12)

M

q
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Lattices and Modular Reduction

Adapted Bases for Reduction

Lattices and Modular Systems
A new system

I Polynomial reduction depends of the representation of βn

(mod P)

I In Thomas Plantard’s PhD (2005),β can be as large as P :
βn ≡ ε (mod P) , for obtaining a set of digits {0, ..., ρ− 1}
where ρ is small

Example: Let us consider a MNS defined with
P = 17, n = 3, β = 7, ρ = 3. Over this system, we represent the
elements of Z17 as polynomials in β, of degree at most 2, with
coefficients in {0, 1, 2}
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Lattices and Modular Reduction

Adapted Bases for Reduction

Lattices and Modular Systems
A new system

0 1 2 3 4 5

0 1 2 β + 2β2 1 + β + 2β2 2 + β + 2β2

6 7 8 9 10 11

1 + β + β2 β 1 + β 2 + β 2β + 2β2 1 + 2β + 2β2

12 13 14 15 16

2β + β2 1 + 2β + β2 2β β2 1 + β2 2 + β2

The system is clearly redundant.
For example: 5 = β + β2 = 2 + β + 2β2, or
14 = 2β = 2 + 2β + β2 = 1 + 2β2.
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Lattices and Modular Reduction

Adapted Bases for Reduction

Lattices and Modular Systems
Construction of Plantard Systems

I In a first approach,n and ρ = 2k are fixed. The lattice is
constructed from the representation of ρ in the number
system. P and β are deduced. Efficient algorithm for finding a
close vector. 48

I In a general approach, where P, β and n are given, the
determination of ρ is obtained by reducing with LLL (Lenstra
Lenstra Lovasz, 1982). No efficient algorithm for finding a
close vector. 46
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Signed Digit Number Systems

Signed Digit Number Systems
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Signed Digit Number Systems

Redundant Number Systems

Redundant Number Systems: Avizienis (1961) 12

I Redundant Number Systems
Signed digits: xi ∈ {−a, . . . , −1, 0, 1, . . . , a} Radix β with
a ≤ β − 1.

I Properties
I If 2a+ 1 ≥ β, then each integer has at least one representation.

An integer X , with −aβn−1
β−1 ≤ X < aβn−1

β−1 , admits a (unique if

=) representation

X =
n−1∑
i=0

xiβ
i with xi ∈ {−a, · · · − 1, 0, 1, . . . , a}

I If 2a ≥ β + 1, then we have a carry free algorithm. 43

I Borrow-save (Duprat, Muller 1989): extension to radix 2.

12Cauchy 1840
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Signed Digit Number Systems

Redundant Number Systems

Example: radix 10, a = 9 43

235942 (= −164138)
+ 46167 (= 46047)

0011110 (= t)
271001 (= w)

282111 (= s = −118091)
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Signed Digit Number Systems

Redundant Number Systems

Properties of the signed digits redundant systems

I Advantages:
I Constant time carry-propagation-free addition
I Large radix: parallelisation
I Small radix: fast circuits, on-line calculus
I Increasing of the performances of the algorithms based on the

addition

I Drawbacks: comparisons, sign...
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Signed Digit Number Systems

Non Adjacent Forms

Non-Adjacent Form

I This representation is inspired from Booth recoding (1951)
used in multipliers.

I Definition of NAFw recoding: (Reitwiesner 1960) Let k be
an integer and w ≥ 2. The non-adjacent form of weight w of

k is given by k =
l−1∑
i=0

ki2
i where |ki | < 2w−1, kl−1 6= 0 and

each w -bit word contains at most one non-zero digit.

1. For a given k , NAFw (k) is unique.

2. For a given w ≥ 2, the length of NAFw (k) is at most equal to
the length of k plus one.

3. The average density of non-zero digits is 1/(w + 1).

1 2
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Signed Digit Number Systems

Non Adjacent Forms

NAFw Examples

We consider k = 31415592.

k2 = 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0
NAF2(k) = 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0
NAF3(k) = 1 0 0 0 1 0 0 0 0 1 0 0 3 0 0 0 1 0 0 3 0 0 3 0 0 0
NAF4(k) = 1 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0 3 0 0 0 0 5 0 0 0
NAF5(k) = 15 0 0 0 0 0 0 0 5 0 0 0 0 3 0 0 0 0 5 0 0 0
NAF6(k) = 15 0 0 0 0 0 1 0 0 0 0 0 17 0 0 0 0 0 27 0 0 0
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Signed Digit Number Systems

Non Adjacent Forms

Other Approaches

I Double bases systems: X =

nj∑
j=0

ni∑
i=0

xi ,j2
i3j , which give sparse

representations.
I Euclidean addition chain systems, inspired of Fibonacci

representation: k an integer, we define:
I F1 = 1,F2 = 2,Fn = Fn−2 + Fn−1
I k =

∑n
i=1 kiFi with ki = 0, 1

I and if ki = 1 then ki±1 = 0
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Conclusions

Conclusions

I Now the challenge is to protect against attacks.
I Redundant Systems different representations for the same

value.
I Leak Resistant Arithmetic in RNS.13

I Fault tolerant arithmetics.

I Lattices and modular arithmetic needs to be more explored.

I A FFT for RNS ?

13B. - Imbert - Liardet - Teglia 2004
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Conclusions

Thank you!
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Barret Reduction (1986)

Barrett(A P)

Input βn−1 ≤ P < βn et A < P2 < β2n

Output , R = A (mod P) et Q = bAP c

Core Q ←

⌊
bβ

2n

P
c×b A

βn−1 c
βn+1

⌋
R ← A− Q × P, (R < 3P)

While R ≥ P do R ← R − P and Q ← Q + 1

Complexity : 2 products of n + 1 digits
Retour 9
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Extension for Q

By the CRT

Q̂ =
n∑

i=1

∣∣∣qi |Mi |−1mi

∣∣∣
mi

Mi = Q + αM

where 0 ≤ α < n.
When Q̂ has been computed it is possible to compute R̂ as

R̂ = (AB + Q̂p)M−1 = (AB + Qp + αMp)M−1

= (AB + Qp)M−1 + αp

so that R̂ ≡ R ≡ ABM−1 (mod p), which is sufficient for our
purpose. Also, assuming that AB < pM we find that R̂ < (n + 2)p
since α < n.
(Back 16)
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Extension R

Shenoy et Kumaresan (1989):

we have (
n∑

i=1

Mi

∣∣∣|Mi |−1mi
ri

∣∣∣
mi

) = R + α×M

α =

∣∣∣∣∣|M|−1mn+1

(
n∑

i=1

∣∣∣∣Mi

∣∣∣|Mi |−1mi
ri

∣∣∣
mi

∣∣∣∣
mn+1

− |R|mn+1

)∣∣∣∣∣
mn+1

r̃j =

∣∣∣∣∣
n∑

i=1

∣∣∣∣Mi

∣∣∣|Mi |−1mi
ri

∣∣∣
mi

∣∣∣∣
m̃j

− |αM|m̃j

∣∣∣∣∣
m̃j

(Back 16)
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Annexe: Avizienis Algorithm 30
I We note S = X + Y with

X = xn−1...x0
Y = yn−1...y0
S = sn...s0

I Step 1: For i = 1 to n in parallel,

ti+1 = 1 if, xi + yi < −a + 1

1 if, xi + yi > a− 1

0 if, − a + 1 ≤ xi + yi ≤ a− 1

and wi = xi + yi − β ∗ ti+1

with wn = t0 = 0

I Step 2: for i = 0 to n in parallel,

si = wi + ti
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Annexe: NAFw Computing 33
Data: Two integers k ≥ 0 and w ≥ 2.
Result: NAFw (k) = (kl−1kl−2 . . . k1k0).
l ← 0;
while k ≥ 1 do

if k is odd then
kl ← k mod 2w ;
if kl > 2w−1 then

kl ← kl − 2w ;
end
k ← k − kl ;

else
kl ← 0;

end
k ← k/2, l ← l + 1;

end
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Annexe: Double and Add with NAFw 33
Data: P ∈ E , k =∈ N et w ≥ 2, NAFw (k) = (kl−1kl−2 . . . k1k0)

Pi = [i ]P pour i ∈ {1, 3, 5, . . . , 2w−1 − 1}
Result: Q = [k]P ∈ E .
begin

Q ← Pkl−1
;

pour i = l − 2 . . . 0 faire
Q ← [2]Q;
si ki 6= 0 alors

si ki > 0 alors
Q ← Q + Pki ;

sinon
Q ← Q − P−ki

fin

fin

fin

end
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Lattices and Modular Systems
Annexe: Examples of Plantard System 28

Example1: P = 53, n = 7, β = 14, ρ = 2.
We have β7 ≡ 2 (mod P). In this number system, integers have at
least two representations, the total number of representations is
128.
The lattice could be defined by (vectors in row):

V1

V2

V3

V4

V5

V6

V7


=



−14 1 0 0 0 0 0
0 −14 1 0 0 0 0
0 0 −14 1 0 0 0
0 0 0 −14 1 0 0
0 0 0 0 −14 1 0
0 0 0 0 0 −14 1

53 0 0 0 0 0 0
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Lattices and Modular Systems
Annexe: Examples of Plantard System 28

We can remark that there is a short vector : (1, 1, 0, 0, 0, 0, 1) =
V6 + 14 ∗V5 + 142 ∗V4 + 143 ∗V3 + 144 ∗V2 + (145 + 1) ∗V1 +V7.
From this vector we can construct a reduced basis of a sublattice,
using that: β7 ≡ 2 (mod P)

1 1 0 0 0 0 1
2 1 1 0 0 0 0
0 2 1 1 0 0 0
0 0 2 1 1 0 0
0 0 0 2 1 1 0
0 0 0 0 2 1 1
2 0 0 0 0 2 1
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Lattices and Modular Systems
Annexe: Examples of Plantard System 28

Example #2: (PhD of Thomas Plantard 2005) The number
system must verify: n = 8, β8 ≡ 2 (mod P) and ρ ∼ 232.
We search a representation of 232 very sparse giving a large P with
232 ≡ β5 + 1 (mod P).

We obtain the matrix M =


1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
2 0 0 0 1 0 0 0
0 2 0 0 0 1 0 0
0 0 2 0 0 0 1 0
0 0 0 2 0 0 0 0


We have the lattice 232Id −M = 0 mod P thus, P divides
det (232Id −M)
P = 1157920890216366222621247151603347568778042

45386980633020041035952359812890593
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Lattices and Modular Systems
Annexe: Examples of Plantard System 28

Then β is deduced as a solution of the gcd(X 8 − 2, 232 − X 5 − 1)
modulo P.
β = 144740111277045777827655893952245323141792170589

21488395049827733759590399996

The matrix M is useful for the reduction of the coefficients:
V = 232V1 + V0 = 232Id .V1 + V0 = M.V1 + V0

Here, the reduction if very efficient, two passes could be sufficient.
More generally, M is find with coefficients lower than 2k/2, which
means that three steps are sufficient.
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Conversion via CRT 16

I RNS representation X = (x1, x2, x3, · · · , xn)

I Shenoy et Kumaresan:

α =

∣∣∣∣∣∣(M)−1mn+1

n∑
i=1

∣∣∣∣∣Mi

∣∣∣∣ xiMi

∣∣∣∣
mi

∣∣∣∣∣
mn+1

− |X |mn+1

∣∣∣∣∣∣
mn+1

(1)

I Then,

X =
n∑

i=1

Mi

∣∣∣∣ xiMi

∣∣∣∣
mi

− αM (2)
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Conversion via Mixed Radix System ??

I RNS representation X = (x1, x2, x3, · · · , xn)

I ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 = x1 mod m1

a2 = (x2 − a1)m−11,2 mod m2

a3 = ((x3 − a1)m−11,3 − a2)m−12,3 mod m3

a4 = (((x4 − a1)m−11,4 − a2)m−12,4)− a3)m−13,4 mod m4
...

an = (· · · (xn − a1)m−11,n − a2)m−12,n)− · · · − an−1)m−1n−1,n mod mn

with m−1i ,j inverse of mi modulo mj

I Mixed Radix representation X = (a1, a2, a3, · · · , an)

I X = a1 + a2m1 + a3m1m2 + · · ·+ anm1 · · ·mn−1
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