Number systems and Cryptography

JC Bajard
LIP6, UPMC
4 place Jussieu, 75005 Paris, France

Hue August 2012

Contents

Arithmetic for Cryptography
Basic protocols
Interpolation and Multiplication
General Modular Reduction
Residue Number Systems
Chinese Remainder Theorem
Modular reduction in RNS
Lattices and Modular Reduction
Pseudo Mersenne and Reduction
Adapted Bases for Reduction
Signed Digit Number Systems
Redundant Number Systems
Non Adjacent Forms
Conclusions
Annexes

L Arithmetic for Cryptography

Arithmetic for Cryptography

Key Agreement

Diffie-Hellman (1976)

Construction p a prime number and g a generator of $\mathbb{Z}_{p}^{*}{ }^{1}$
Character A selects a random x, and sends $a=g^{x} \bmod p$ to B Character B selects a random y, and sends $b=g^{y} \bmod p$ to A
Common Secret A constructs $k=b^{x}$ mod p and B constructs
$k^{\prime}=a^{y} \bmod p$, thus $k=k^{\prime}$

Public Key Cryptosystem

- RSA (1978) Robustness due to factorization

Construction $\mathrm{n}=\mathrm{p} * \mathrm{q}, \mathrm{p}$ and q two large primes, e, and d such that $e \times d \equiv 1(\bmod \phi(n))$. Sender message $m, m<n$, computes $c=\mathrm{m}^{e} \bmod \mathrm{n}$ and sends C
Receptor Secret key d, computes $m=c^{d} \bmod n$

- El Gamal (1985) Based on DH, with (p, g, g^{a}) as public key, Robustness due to Discrete Logarithm Problem
- ECC Koblitz-Miller (1985) Law group of the points of an elliptic curve curve defined on a finite field \mathbb{F}_{p}. DH or El Gamal can be applied using k times a point P (generator).

L Arithmetic for Cryptography

Arithmetic point of view

- Multiplication with huge numbers (300 to 2000 bits)
- Modular reduction, without division (division is costly)
- Exponentiation, using the representation of the exponent
- Exponent most of the time is secret

Evaluation of the product $P=A \times B$

1. Considering numbers as polynomials

$$
A=\sum_{i=0}^{k-1} a_{i} \beta^{i} \rightarrow A(X)=\sum_{i=0}^{k-1} a_{i} X^{i}
$$

2. Evaluation of a polynomial product: $P(X)=A(X) \times B(X)$

- using a matrix-vector product
- using interpolation: $i=0 \ldots k, \quad A\left(e_{i}\right)=\sum_{i=0}^{k-1} a_{i} e_{i}^{i}$

3. Evaluation of the value: $P(\beta)=A(\beta) \times B(\beta)$

LArithmetic for Cryptography

Evaluation of the product $P=A \times B$

- Karatsuba-Ofman (1962): with $A(X)=A_{1} X+A_{0}$ and $e_{0}=0, e_{1}=-1$ et $e_{2}=\infty$, complexity $K(n)=O\left(n^{\log _{2}(3)}\right)$
- Toom-Cook (1963-1966): with $A(X)=A_{2} X^{2}+A_{1} X+A_{0}$ and $e_{0}=0, e_{1}=-1, e_{2}=1, e_{3}=2$ et $e_{4}=\infty$, complexity $T_{3}(n)=O\left(n^{\log _{3}(5)}\right) \ldots T_{k}(n)=O\left(n^{\log _{k}(2 k-1)}\right)$.
- Schönhage-Strassen (1971): ω primitive $n^{\text {th }}$ root of unity, $\omega^{n}=1$, $e_{i}=\omega^{i}$ for $i=0 . . n-1$, complexity $F F T(n)=O(n \log n \log \log n)$.
- But in practice the school-book algorithm in $O\left(n^{2}\right)$ is sufficient ${ }^{2}$

[^0] Karatsuba 28 (1792), Toom-Cook 81 (5184), FFT 7552

ᄂ Arithmetic for Cryptography

Montgomery Reduction (1985) ${ }^{3}$

Montgomery ($A P$)

$$
\text { Input } \beta^{n-1} \leq P<\beta^{n} \text { et } A<P \beta^{n}<\beta^{2 n}
$$

Output, $R=A \times \beta^{-n} \bmod P$
Core $Q \leftarrow A \times\left|P^{-1}\right|_{\beta^{n}} \bmod \beta^{n}$
$R \leftarrow(A-Q \times P) \div \beta^{n},(R<2 P)$
While $R \geq P$ do $R \leftarrow R-P$
Complexity: 2 products of n digits (close to 2 half products)

- Montgomery notation: $\widetilde{A}=A \times \beta^{n} \bmod P$
- $\widetilde{A}=\operatorname{Montgomery}\left(A \times\left|\beta^{2 n}\right|_{P}, P\right)$
- $\widetilde{A}+\widetilde{B}=\widetilde{A+B}$ et $\widetilde{A B}=\operatorname{Montgomery}(\widetilde{A} \times \widetilde{B}, P)$

[^1]
Residue Number Systems

Definition of the Residue Number Systems

- Issue from the Chinese Remainder Theorem ${ }^{4}$, introduced in computer arithmetic in 1957-1967 ${ }^{5}$.
- Residue Number System
- RNS base: a set of coprime numbers $\left(m_{1}, \ldots, m_{k}\right)$
- RNS representation: $\left(a_{1}, \ldots, a_{k}\right)$ with $a_{i}=|A|_{m_{i}}$
- Full parallel operations $\bmod M$ with $M=\prod_{i=1}^{k} m_{i}$ $\left(\left|a_{1} \otimes b_{1}\right|_{m_{1}}, \ldots,\left|a_{n} \otimes b_{n}\right|_{m_{n}}\right) \rightarrow A \otimes B(\bmod M)$
- Very fast addition and product, but comparison and division are costly.
${ }^{4}$ Ch'in Chiu-Shao 1247
${ }^{5} 1957$ Svoboda and Valach, 1959 Garner, 1967 Szabo and Tanaka

Residue Number Systems: example

Modular system: $\mathcal{B}_{m}^{4}=\{3,7,13,19\} \quad M=5187$
$X=147$
$Y=31$
$Z=124$
$X_{\text {RNS }}=\{0,0,4,14\} \quad Y_{R N S}=\{1,3,5,12\} \quad Z_{\text {RNS }}=\{1,5,7,10\}$
$\begin{aligned} X_{\text {RNS }}+{ }_{\text {RNS }} Y_{\text {RNS }} & =\left\{\begin{array}{cccccc} & |0+1|_{3}, & |0+3|_{7}, & |4+5|_{13}, & |14+12|_{19} & \} \\ & =\left\{\begin{array}{ccccc} & 1, & 3, & 9, & 7\end{array}\right\} \\ & = & 178 & & & \end{array}\right\}\end{aligned}$
$\begin{aligned} X_{R N S} \times_{\text {RNS }} Y_{\text {RNS }} & =\left\{\begin{array}{cccccc} & |0 \times 1|_{3}, & |0 \times 3|_{7}, & |4 \times 5|_{13}, & |14 \times 12|_{19} & \} \\ & =\left\{\begin{array}{ccc}0, & 0, & 7, \\ & = & 4557\end{array}\right. & \end{array}\right\} \\ & =\end{aligned}$

Remarks about the complexities of RNS

- We consider m the biggest element of the RNS base
- $\Phi(m)=\sum_{\substack{p \leq m \\ p \text { prime }}} \log p=\log \prod_{\substack{p \leq m \\ p \text { prime }}} p \sim m$
- If $2^{m-1} \leq M<2^{m}$ then the size moduli is of order $\mathcal{O}(\log m)$.
- In other words, if addition and multiplication have complexities of order $\Theta(f(m))$ then in RNS the complexities become $\Theta(f(\log m))$.

Residue version of Montgomery Reduction ${ }^{6}$

- The residue base is such that $p<M$
- We use an auxiliary base such that $p<M^{\prime}, M^{\prime}$ and M coprime.
- Steps of the algorithm

1. $Q=-\left(A p^{-1}\right) \bmod M($ calculus in base $M)$
2. Extension of the representation of Q to the base M^{\prime}
3. $R=(A+Q p) \times M^{-1}$ (calculus in base $\left.M^{\prime}\right)$
4. Extension of the representation of R to the base M

- The values are represented in the two bases.
${ }^{6}$ Posh and Posh 1995, B.-Didier-Kornerup 1997

Extension of Residue System Bases (from M to M^{\prime})

- The extension are similar to the polynomial interpolations.
- We consider $\left(a_{1}, \ldots, a_{k}\right)$ the residue representation of A in the base M.
- The Lagrange interpolation gives,

$$
A=\sum_{i=1}^{k}\left|a_{i} \times\left[\frac{M}{m_{i}}\right]_{m_{i}}^{-1}\right|_{m_{i}} \times \frac{M}{m_{i}}-\alpha M
$$

The factor α can be, in certain cases, neglected or computed.

- Another approach consists in the Newton interpolation where A is correctly reconstructed.

Extension in RNS Montgomery

- The extension of Q from M to M^{\prime} does not need to be exact, Q is multiply by $p(\text { Annex } 41)^{7}$
- The second extension of R from M^{\prime} to M must be exact. Hence α must be determined,
- an extra modulo can be used (Annex 6) ${ }^{8}$
- or from the interger part of $\sum_{i=1}^{k}\left|a_{i} \times\left[\frac{M}{m_{i}}\right]_{m_{i}}^{-1}\right|_{m_{i}} \times \frac{1}{m_{i}} 9$

[^2]
Exact Extension of Residue System Bases (Newton

 interpolation)We first translate in an intermediate representation Mixed Radix Systems (MRS): ${ }^{10}$

$$
\left\{\begin{array}{l}
\zeta_{1}=a_{1} \\
\zeta_{2}=\left(a_{2}-\zeta_{1}\right) m_{1}^{-1} \bmod m_{2} \\
\zeta_{3}=\left(\left(a_{3}-\zeta_{1}\right) m_{1}^{-1}-\zeta_{2}\right) m_{2}^{-1} \bmod m_{3} \\
\vdots \\
\zeta_{n}=\left(\ldots\left(\left(a_{n}-\zeta_{1}\right) m_{1}^{-1}-\zeta_{2}\right) m_{2}^{-1}-\cdots-\zeta_{n-1}\right) m_{n-1}^{-1} \bmod m_{n}
\end{array}\right.
$$

We evaluate A, with Horner's rule, as
$A=\left(\ldots\left(\left(\zeta_{n} m_{n-1}+\zeta_{n-1}\right) m_{n-2}+\cdots+\zeta_{3}\right) m_{2}+\zeta_{2}\right) m_{1}+\zeta_{1}$.

Some conclusions about RNS

- RNS is well adapted to parallel architectures (GPU, Multicore,...)
- Modular reductions stay costly.
- For ECC or Pairing it is possible to reduce the number of modular reductions based on the fact the $A \times B+C \times D$ needs only one reduction.
- As for interpolation, the choice of the bases are important. Does it exist a FFT like approach for RNS ?

Lattices and Modular Reduction

Pseudo Mersenne and Reduction ${ }^{11}$

When possible p can be chosen to facilitate the reduction
$p=\beta^{n}-\xi$ with $0 \leq \xi<\beta^{n / 2}\left(\xi^{2} \leq \beta^{n}-2 \beta^{n / 2}+1\right)$.
For reducing C (e.g. $C=A \times B \leq(p-1)^{2}$), we note
$C=C_{1} \beta^{n}+C_{0}$

- First step of reduction: $C \equiv\left(C^{\prime}=C_{1} \xi+C_{0}\right)(\bmod p)$ $C^{\prime}=C_{1}^{\prime} \beta^{n}+C_{0}^{\prime}$ with $C_{1}^{\prime} \leq \xi$ and $C_{0}^{\prime} \leq \beta^{n}-1$
- Second step of reduction: $C^{\prime} \equiv\left(C^{\prime \prime}=C_{1}^{\prime} \xi+C_{0}^{\prime}\right)(\bmod p)$ with $C^{\prime \prime}+\xi<\beta^{n}+p$
- Final step: If $C^{\prime \prime}+\xi \geq \beta^{n}$ Then $R=C^{\prime \prime}+\xi-\beta^{n}$ else $R=C^{\prime \prime}$

Réduction modulaire

$$
p=\beta^{n}-\xi \quad \text { avec } \quad 0 \leq \xi<\beta^{n / 2}
$$

- In this kind of reduction we have two products by ξ,
- ξ very small, for example $\xi<\beta$, for having a product by a digit
- ξ very sparse (most of the digit are equal to zero) then the product is replaced by some shift-and-adds.
- Such Pseudo-Mersenne numbers are very few. Furthermore for different reasons it could be not possible to have a pseudo-Mersenne (i.e. RSA $N=p q$)
- The question is, Is it possible to have a number system where p have this kind of properties??

Lattices and Modular Systems

- Number system: radix β and a set of digits $\{0, \ldots, \beta-1\}$.
- We denote by p the modulo, with $p<\beta^{n}$,

$$
\beta^{n} \equiv \sum_{i=0}^{n-1} \epsilon_{i} \beta^{i}(\bmod p) \text { with } \epsilon_{i} \in\{0, \ldots, \beta-1\}
$$

- A modular operation (for example: a modular multiplication):

1. Polynomial operation: $W(X)=A(X) \otimes B(X)$
2. Polynomial reduction: $V(X)=W(X) \bmod \left(X^{n}-\sum_{i=0}^{n-1} \epsilon_{i} X^{i}\right)$

- Pseudo-Mersenne properties for the reduction.
- The coefficients of $V(X)$ can be bigger than $\beta-1$ the maximal digit.

3. Coefficient reduction : $M(X)=$ Reductcoeff $(V(X))$

Lattices and Modular Systems

Lattice approach

- A number $A=\sum_{i=0}^{n-1} a_{i} \beta^{i}$ corresponds to a vector $\left(a_{0}, \ldots, a_{n-1}\right)$
- We consider the lattice defined by the representations of zero modulo p, equivalent to a combination of the carry propagation and the modular reduction:

$$
\left(\begin{array}{ccccc}
-\beta & 1 & \cdots & 0 & 0 \\
0 & -\beta & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & -\beta & 1 \\
p & 0 & \cdots & 0 & 0
\end{array}\right) \begin{gathered}
\leftarrow \text { lattice } \\
(\operatorname{det}=p) \\
\text { sublattice } \rightarrow \\
\left(\operatorname{det}=\beta^{n}-\epsilon\right)
\end{gathered}\left(\begin{array}{ccccc}
-\beta & 1 & \cdots & 0 & 0 \\
0 & -\beta & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & -\beta & 1 \\
\epsilon_{0} & \epsilon_{1} & \cdots & \epsilon_{n-2} & \left(\epsilon_{n-1}-\beta\right)
\end{array}\right)
$$

- The goal is to find a vector G of the lattice (or sublattice) such that $V-G$ has all its coefficients equal to digits (close vector).

Lattices and Modular Systems

Example
For $P=97$ and $\beta=10$, we have $10^{2} \equiv 3(\bmod P)$. We consider the lattice:

$$
\binom{B_{0}}{B_{1}}=\left(\begin{array}{cc}
-10 & 1 \\
3 & -10
\end{array}\right)
$$

Let $V(25,12)=25+12 \beta$.
For reducing V, we determine $G(17,8)=-2 B_{0}-B_{1}$ a vector of the lattice close to V.

Thus, $V(25,12) \equiv M(8,4)=V(25,12)-G(17,8)$.
We verify that $25+120=145 \equiv 48(\bmod 97)$

Lattices and Modular Number Systems

Example

The reduction is equivalent to find a close vector. Let $G(X)$ be this vector, then $M(X)=V(x)-G(X)$
$P=97 \beta=10$

Lattices and Modular Systems

A new system

- Polynomial reduction depends of the representation of β^{n} $(\bmod P)$
- In Thomas Plantard's PhD (2005), β can be as large as P : $\beta^{n} \equiv \epsilon(\bmod P)$, for obtaining a set of digits $\{0, \ldots, \rho-1\}$ where ρ is small
Example: Let us consider a MNS defined with
$P=17, n=3, \beta=7, \rho=3$. Over this system, we represent the elements of \mathbb{Z}_{17} as polynomials in β, of degree at most 2 , with coefficients in $\{0,1,2\}$

Lattices and Modular Reduction
-Adapted Bases for Reduction
Lattices and Modular Systems
A new system

0	1	2	3	4	5
0	1	2	$\beta+2 \beta^{2}$	$1+\beta+2 \beta^{2}$	$2+\beta+2 \beta^{2}$
6	7	8	9	10	11
$1+\beta+\beta^{2}$	β	$1+\beta$	$2+\beta$	$2 \beta+2 \beta^{2}$	$1+2 \beta+2 \beta^{2}$
12	13	14	15	16	
$2 \beta+\beta^{2}$	$1+2 \beta+\beta^{2}$	2β	β^{2}	$1+\beta^{2}$	$2+\beta^{2}$

The system is clearly redundant.
For example: $5=\beta+\beta^{2}=2+\beta+2 \beta^{2}$, or
$14=2 \beta=2+2 \beta+\beta^{2}=1+2 \beta^{2}$.

Lattices and Modular Systems

Construction of Plantard Systems

- In a first approach, n and $\rho=2^{k}$ are fixed. The lattice is constructed from the representation of ρ in the number system. P and β are deduced. Efficient algorithm for finding a close vector48
- In a general approach, where P, β and n are given, the determination of ρ is obtained by reducing with LLL (Lenstra Lenstra Lovasz, 1982). No efficient algorithm for finding a close vector. 46

Signed Digit Number Systems

Redundant Number Systems: Avizienis (1961) ${ }^{12}$

- Redundant Number Systems Signed digits: $x_{i} \in\{-a, \ldots,-1,0,1, \ldots, a\}$ Radix β with $a \leq \beta-1$.
- Properties
- If $2 a+1 \geq \beta$, then each integer has at least one representation. An integer X, with $-a \frac{\beta^{n}-1}{\beta-1} \leq X<a \frac{\beta^{n}-1}{\beta-1}$, admits a (unique if $=$) representation

$$
X=\sum_{i=0}^{n-1} x_{i} \beta^{i} \text { with } x_{i} \in\{-a, \cdots-1,0,1, \ldots, a\}
$$

- If $2 a \geq \beta+1$, then we have a carry free algorithm. 43
- Borrow-save (Duprat, Muller 1989): extension to radix 2.

Example: radix 10, $a=943$

$$
\begin{aligned}
\overline{2} 359 \overline{42} & (=-164138) \\
+461 \overline{1} 7 & (=46047) \\
\hline 0011 \overline{1} 10 & (=t) \\
\overline{2} 7100 \overline{1} & (=w) \\
\hline \overline{2} 82 \overline{1} 1 \overline{1} & (=s=-118091)
\end{aligned}
$$

Properties of the signed digits redundant systems

- Advantages:
- Constant time carry-propagation-free addition
- Large radix: parallelisation
- Small radix: fast circuits, on-line calculus
- Increasing of the performances of the algorithms based on the addition
- Drawbacks: comparisons, sign...

Non-Adjacent Form

- This representation is inspired from Booth recoding (1951) used in multipliers.
- Definition of $N A F_{w}$ recoding: (Reitwiesner 1960) Let k be an integer and $w \geq 2$. The non-adjacent form of weight w of k is given by $k=\sum_{i=0} k_{i} 2^{i}$ where $\left|k_{i}\right|<2^{w-1}, k_{l-1} \neq 0$ and each w-bit word contains at most one non-zero digit.

1. For a given $k, N A F_{w}(k)$ is unique.
2. For a given $w \geq 2$, the length of $N A F_{w}(k)$ is at most equal to the length of k plus one.
3. The average density of non-zero digits is $1 /(w+1)$.

$N A F_{w}$ Examples

We consider $k=31415592$.

$k_{2}=$	1	1101	1111	0101	1101	0010	0
$N A F_{2}(k)=$	10	$00 \overline{1} 0$	0000	$\overline{1} 0 \overline{1} 0$	$0 \overline{1} 01$	0010	1000
$N A F_{3}(k)$	10	$00 \overline{1} 0$	$000 \overline{1}$	0030	$00 \overline{1} 0$	$0 \overline{3} 00$	$\overline{3} 000$
$N A F_{4}(k)$	10	$00 \overline{1} 0$	0000	0050	$000 \overline{3}$	0000	5000
$N A F_{5}(k)=$		150	0000	0050	$000 \overline{3}$	0000	5000
$N A F_{6}(k)=$		150	0000	1000	$00 \overline{17} 0$	0000	2700

Other Approaches

- Double bases systems: $X=\sum_{j=0}^{n_{j}} \sum_{i=0}^{n_{i}} x_{i, j} 2^{i} 3^{j}$, which give sparse representations.
- Euclidean addition chain systems, inspired of Fibonacci representation: k an integer, we define:
- $F_{1}=1, F_{2}=2, F_{n}=F_{n-2}+F_{n-1}$
- $k=\sum_{i=1}^{n} k_{i} F_{i}$ with $k_{i}=0,1$
- and if $k_{i}=1$ then $k_{i \pm 1}=0$

Conclusions

Conclusions

- Now the challenge is to protect against attacks.
- Redundant Systems different representations for the same value.
- Leak Resistant Arithmetic in RNS. ${ }^{13}$
- Fault tolerant arithmetics.
- Lattices and modular arithmetic needs to be more explored.
- A FFT for RNS ?
${ }^{13}$ B. - Imbert - Liardet - Teglia 2004

uPmC

Annexes

Barret Reduction (1986)

Barrett (A P)
Input $\beta^{n-1} \leq P<\beta^{n}$ et $A<P^{2}<\beta^{2 n}$
Output , $R=A(\bmod P)$ et $Q=\left\lfloor\frac{A}{P}\right\rfloor$

$$
\begin{aligned}
\text { Core } & Q \leftarrow\left\lfloor\frac{\left\lfloor\frac{\beta^{2 n}}{P}\right\rfloor \times\left\lfloor\frac{A}{\beta^{\prime-1}}\right\rfloor}{\beta^{n+1}}\right\rfloor \\
& R \leftarrow A-Q \times P,(R<3 P) \\
& \text { While } R \geq P \text { do } R \leftarrow R-P \text { and } Q \leftarrow Q+1
\end{aligned}
$$

Complexity: 2 products of $n+1$ digits
Retour 9

Extension for Q

By the CRT

$$
\widehat{Q}=\left.\left.\sum_{i=1}^{n}\left|q_{i}\right| M_{i}\right|_{m_{i}} ^{-1}\right|_{m_{i}} M_{i}=Q+\alpha M
$$

where $0 \leq \alpha<n$.
When \widehat{Q} has been computed it is possible to compute \widehat{R} as

$$
\begin{aligned}
\widehat{R}=(A B+\widehat{Q} p) M^{-1} & =(A B+Q p+\alpha M p) M^{-1} \\
& =(A B+Q p) M^{-1}+\alpha p
\end{aligned}
$$

so that $\widehat{R} \equiv R \equiv A B M^{-1}(\bmod p)$, which is sufficient for our purpose. Also, assuming that $A B<p M$ we find that $\widehat{R}<(n+2) p$ since $\alpha<n$.
(Back 16)

Extension R

Shenoy et Kumaresan (1989):
we have $\left(\left.\left.\sum_{i=1}^{n} M_{i}| | M_{i}\right|_{m_{i}} ^{-1} r_{i}\right|_{m_{i}}\right)=R+\alpha \times M$

$$
\begin{aligned}
& \alpha=\left||M|_{m_{n+1}}^{-1}\left(\left.\left.\sum_{i=1}^{n}\left|M_{i}\right|\left|M_{i}\right|_{m_{i}}^{-1} r_{i}\right|_{m_{i}}\right|_{m_{n+1}}-|R|_{m_{n+1}}\right)\right|_{m_{n+1}} \\
& \tilde{r}_{j}=\left.\left.\left.\left|\sum_{i=1}^{n}\right| M_{i}| | M_{i}\right|_{m_{i}} ^{-1} r_{i}\right|_{m_{i}}\right|_{\widetilde{m_{j}}}-\left.|\alpha M|_{\widetilde{m_{j}}}\right|_{\widetilde{m_{j}}}
\end{aligned}
$$

(Back 16)

Annexe: Avizienis Algorithm 30

- We note $S=X+Y$ with

$$
\begin{aligned}
& X=x_{n-1} \ldots x_{0} \\
& Y=y_{n-1} \ldots y_{0} \\
& S=s_{n} \ldots s_{0}
\end{aligned}
$$

- Step 1: For $i=1$ to n in parallel,

$$
\begin{aligned}
& \qquad \begin{array}{l}
t_{i+1}= \\
\\
\\
\\
\\
\\
\\
\\
\text { and } \quad \\
\\
\text { and, } \quad \text { if, } x_{i}+y_{i}+y_{i}>a-1 \\
\text { with } \quad w_{n}= \\
w_{i}+y_{i}-\beta * t_{i+1} \\
t_{0}=0
\end{array}
\end{aligned}
$$

- Step 2: for $i=0$ to n in parallel,

$$
s_{i}=w_{i}+t_{i}
$$

Annexe: $N A F_{w}$ Computing 33
Data: Two integers $k \geq 0$ and $w \geq 2$. Result: $N A F_{w}(k)=\left(k_{l-1} k_{l-2} \ldots k_{1} k_{0}\right)$.
$1 \leftarrow 0$;
while $k \geq 1$ do

if k is odd then

$k_{I} \leftarrow k \bmod 2^{w}$;
if $k_{l}>2^{w-1}$ then
$k_{l} \leftarrow k_{l}-2^{\text {w }}$;
end
$k \leftarrow k-k_{l} ;$
else
$k_{l} \leftarrow 0 ;$
end
$k \leftarrow k / 2, I \leftarrow I+1 ;$
end

$$
P_{i}=[i] P \text { pour } i \in\left\{1,3,5, \ldots, 2^{w-1}-1\right\}
$$

Result: $Q=[k] P \in E$.
begin

$$
\begin{aligned}
& Q \leftarrow P_{k_{l-1}} ; \\
& \text { pour } i=I-2 \ldots 0 \text { faire }
\end{aligned}
$$

$$
Q \leftarrow[2] Q
$$

si $k_{i} \neq 0$ alors
si $k_{i}>0$ alors
$Q \leftarrow Q+P_{k_{i}} ;$
sinon

$$
Q \leftarrow Q-P_{-k_{i}}
$$

fin
fin
fin

Lattices and Modular Systems

Annexe: Examples of Plantard System 28

Example1: $P=53, n=7, \beta=14, \rho=2$.
We have $\beta^{7} \equiv 2(\bmod P)$. In this number system, integers have at least two representations, the total number of representations is 128.

The lattice could be defined by (vectors in row):

$$
\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5} \\
V_{6} \\
V_{7}
\end{array}\right)=\left(\begin{array}{ccccccc}
-14 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -14 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -14 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -14 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -14 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -14 & 1 \\
53 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Lattices and Modular Systems

Annexe: Examples of Plantard System 28
We can remark that there is a short vector: $(1,1,0,0,0,0,1)=$ $V_{6}+14 * V_{5}+14^{2} * V_{4}+14^{3} * V_{3}+14^{4} * V_{2}+\left(14^{5}+1\right) * V_{1}+V_{7}$.
From this vector we can construct a reduced basis of a sublattice, using that: $\beta^{7} \equiv 2(\bmod P)$

$$
\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 1 \\
2 & 0 & 0 & 0 & 0 & 2 & 1
\end{array}\right)
$$

Lattices and Modular Systems

Annexe: Examples of Plantard System 28
Example \#2: (PhD of Thomas Plantard 2005) The number system must verify: $n=8, \beta^{8} \equiv 2(\bmod P)$ and $\rho \sim 2^{32}$. We search a representation of 2^{32} very sparse giving a large P with $2^{32} \equiv \beta^{5}+1(\bmod P)$.
We obtain the matrix $M=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0\end{array}\right)$
We have the lattice $2^{32} / d-M=0 \bmod P$ thus, P divides $\operatorname{det}\left(2^{32} I d-M\right)$
$P=1157920890216366222621247151603347568778042$

Lattices and Modular Systems

Annexe: Examples of Plantard System 28

Then β is deduced as a solution of the $\operatorname{gcd}\left(X^{8}-2,2^{32}-X^{5}-1\right)$ modulo P.
$\beta=144740111277045777827655893952245323141792170589$
21488395049827733759590399996
The matrix M is useful for the reduction of the coefficients:
$V=2^{32} V_{1}+V_{0}=2^{32} I d . V_{1}+V_{0}=M \cdot V_{1}+V_{0}$
Here, the reduction if very efficient, two passes could be sufficient. More generally, M is find with coefficients lower than $2^{k / 2}$, which means that three steps are sufficient.

Conversion via CRT 16

- RNS representation $X=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right)$
- Shenoy et Kumaresan:

$$
\begin{equation*}
\alpha=\left.\left|(M)_{m_{n+1}}^{-1} \sum_{i=1}^{n}\right| M_{i}\left|\frac{x_{i}}{M_{i}}\right|_{m_{i}}\right|_{m_{n+1}}-\left.|X|_{m_{n+1}}\right|_{m_{n+1}} \tag{1}
\end{equation*}
$$

- Then,

$$
\begin{equation*}
X=\sum_{i=1}^{n} M_{i}\left|\frac{x_{i}}{M_{i}}\right|_{m_{i}}-\alpha M \tag{2}
\end{equation*}
$$

Conversion via Mixed Radix System

- RNS representation $X=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right)$

$$
\begin{aligned}
& a_{1}=x_{1} \bmod m_{1} \\
& a_{2}=\left(x_{2}-a_{1}\right) m_{1,2}^{-1} \bmod m_{2} \\
& a_{3}=\left(\left(x_{3}-a_{1}\right) m_{1,3}^{-1}-a_{2}\right) m_{2,3}^{-1} \bmod m_{3} \\
& \left.a_{4}=\left(\left(\left(x_{4}-a_{1}\right) m_{1,4}^{-1}-a_{2}\right) m_{2,4}^{-1}\right)-a_{3}\right) m_{3,4}^{-1} \bmod m_{4} \\
& \vdots \\
& \left.\left.a_{n}=\left(\cdots\left(x_{n}-a_{1}\right) m_{1, n}^{-1}-a_{2}\right) m_{2, n}^{-1}\right)-\cdots-a_{n-1}\right) m_{n-1, n}^{-1} \bmod m_{n}
\end{aligned}
$$

with $m_{i, j}^{-1}$ inverse of m_{i} modulo m_{j}

- Mixed Radix representation $X=\left(a_{1}, a_{2}, a_{3}, \cdots, a_{n}\right)$
- $X=a_{1}+a_{2} m_{1}+a_{3} m_{1} m_{2}+\cdots+a_{n} m_{1} \cdots m_{n-1}$

[^0]: ${ }^{2}$ see gmp-mparam.h of GMP for the different architectures x_86-64

[^1]: ${ }^{3} 1986$ Barrett algorithm 40

[^2]: ${ }^{7}$ B. - Didier -Kornerup 2001
 ${ }^{8}$ Shenoy - Kumaresan 1989
 ${ }^{9}$ Posh - Posh 1995, Kawamura - Koike - Sano - Shimbo 2000

