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Abstract—The modular exponentiation on large numbers is computationally intensive. An effective way for performing this operation
consists in using Montgomery exponentiation in the Residue Number System (RNS). This paper presents an algorithmic and

architectural study of such exponentiation approach. From the algorithmic point of view, new and state-of-the-art opportunities that
come from the reorganization of operations and precomputations are considered. From the architectural perspective, the design

opportunities offered by well-known computer arithmetic techniques are studied, with the aim of developing an efficient arithmetic cell
architecture. Furthermore, since the use of efficient RNS bases with a low Hamming weight are being considered with ever more

interest, four additional cell architectures specifically tailored to these bases are developed and the tradeoff between benefits and
drawbacks is carefully explored. An overall comparison among all the considered algorithmic approaches and cell architectures is

presented, with the aim of providing the reader with an extensive overview of the Montgomery exponentiation opportunities in RNS.

Index Terms—RNS, montgomery reduction, modular exponentiation, modular multiplication.
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1 INTRODUCTION

THE hardware implementation of modular exponentia-
tion for very large integers plays an important role in

various fields, being security among the most notable ones.
In recent years, many research efforts specifically focused
on the hardware implementation of Montgomery exponen-
tiation (ME) in the residue number system (RNS). In RNS,
very long integer multiplications and additions can be split
in independent short integer operations. However, other
operations such as division and modular reduction may be
difficult to execute [1]. ME, which is based on Montgomery
multiplication (MM) [2], can be performed by avoiding the
standard modular reduction approach.

A number of versions of the RNS Montgomery Exponen-
tiation (RNS ME) algorithm have been proposed, aimed at
reducing thedelayof exponentiation (e.g., [3], [4], [5]).Most of
the above approaches deal with the base extension (BE) part
of the algorithms, since this operation, which calculates a
number on a different RNS base, contributes in large part to
the overall computational effort of RNS ME.

AnRNSME technique in the context of RSAwasproposed
in [4] by Kawamura et al. This technique uses a new BE
algorithm, characterized by a summation that provides a
resultmodulo a smallmultiple of the base, which is corrected

after the sum of each element. In [6], further details and an
architecture were presented. The architecture was compared
with non-RNS approaches, showing better performance.

In [5], Bajard and Imbert described another ME
approach based on [7] and exploiting two BE techniques:
a new approximated BE and the BE algorithm proposed in
[8], where the result is approximated and corrected by
using an extra modulo.

In this paper, a comprehensive algorithmic and archi-
tectural study on RNS ME is presented. The paper is based
on an earlier work presented in [9], where new and state-of-
the-art approaches for reorganizing operations and for
exploiting precomputation were combined and analyzed,
and two RNS ME algorithms suitable to the BE approaches
used in [4] and [5] were discussed. A previous study
limited to the internal reorganization of the RNS Mon-
tgomery reduction was presented in [10]. Moreover, the
idea of rearranging internal operations and precomputed
values was simultaneously exploited by Guillermin in [11],
[12], where a reorganized RNS Montgomery reduction
algorithm with a BE approach based on [4] was applied to
elliptic curve cryptography. The algorithmic analysis in the
current work extends previous studies, and considers
operations both internal and external to the RNS Mon-
tgomery Multiplication (RNS MM) with the aim of limiting
the number of computations required during the Mon-
tgomery reduction.

The work in [9] also included a study on the cell
architecture presented in [6], and proposed a novel cell
architecture suitable to the approach used in [5] (which was
evaluated by means of a theoretical analysis based on
equivalent gates delay and area cost). In the current work,
the architectural perspective is significantly extended, by
exploiting the outcomes of the former analysis as well as
the synergies between algorithmic and architectural as-
pects. In particular, on the one hand, the use of techniques
well assessed in computer architecture design is explored,
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and a new cell architecture exploiting pipeline and
redundancy is proposed. On the other hand, efficient
RNS bases studied in [13], [14] are considered, and four
additional cell architectures are developed where a totally
different design based on additions rather than on modular
reductions is exploited. Furthermore, a comprehensive
comparison encompassing reorganized algorithms and
newly designed cells is carried out, based on algorithmic
analysis and logic synthesis. Results show that, without
additional constraints on the representable numbers, it is
possible to achieve a 41.1 percent reduction in delay, with a
17.6 percent increase in area, with respect to [6]. Moreover,
further improvements (up to a 41.8 percent reduction in
delay with a 2.8 percent reduction in area) can be reached at
the cost of stricter constraints on the size of the represen-
table numbers.

The remaining of the paper is organized as follows: In
Section 2, the impact of reorganization of operations and
preprocessing is analyzed. In Section 3, the architectural
study is discussed, by analyzing in detail the design of the
novel cell architectures. In Section 4, an overall comparison
is presented, considering all the algorithms and architec-
tures described in the paper. Finally, in Section 5, conclu-
sions are drawn.

2 ALGORITHMIC STUDY

In this section, a suitable reorganization of the operations
and of precomputations capable of reducing the number of
multiplications in RNSME algorithms is described. The RNS
ME corresponds to a classic square and multiply algorithm,
where RNSMMs are iterated in a loop. The RNSMM follows
the normal Montgomery multiplication approach, but it is
adapted to RNS. The main difference is the presence of two
BEs, which are required by RNS MM in order to execute the
modular reduction. The BE corresponds to an algorithm that
calculates a value represented on an RNS base on a different
base. Since the RNS ME uses the RNS MM that, in turn,
requires the BE, after a brief background on RNS the three
algorithms will be discussed separately by following a top-
down presentation approach.

The study first identifies in ananalyticalway the reduction
in the number of multiplications needed by the reorganized
algorithms. Then, the multiplications are classified and their
weight is analyzed in detail (by making reference to the
concept of multiplication step, i.e., to a set of kmultiplications
distributed on k cells), with the aim of precisely determining
the impact of such reorganization in the perspective of
pipelining and parallelization opportunities offered by RNS.
The algorithms will be discussed referring to symbols
reported in Table 1.

2.1 Mathematical Background
RNS allows long integers to be represented as sets of short
integers. Considering the base A ¼ ða1; a2; . . . ; akÞ, com-
posed of k relative prime numbers (where k is the base size),
any number x with 0 $ x < A ¼

Qk
i¼1 ai is uniquely repre-

sented by a sequence of positive integers ðx1; x2; . . . ; xkÞ,
where xi ¼ jxjai ; 8i : 1 $ i $ k.

In RNS, multiplications, additions, and subtractions
can be carried out independently and in parallel for each
base element, limiting both the operations and the carry
propagation to the bits of each independent element.

However, in RNS, other operations like overflow detec-
tion, division, and modular reduction are more computa-
tionally intensive than in other representations. For
instance, an exact division x

y can be executed by means of
the multiplication of x by the multiplicative inverse of y,
modulo A, but this operation can be performed without
affecting the size of the representable values only if the
greatest common divisor gcdðy;AÞ ¼ 1. If this condition is
not valid, a BE has to be operated, requiring a significant
computational effort.

An efficient BE technique is based on the Chinese
Remainder Theorem (CRT) [15]. CRT can be used to
convert a value x from an RNS base to a radix system.
The conversion expression is

x ¼
Xk

i¼1

jxiA
%1
i jaiAi

!!!!!

!!!!!
A

; ð1Þ

where Ai ¼ A
ai
, A%1

i is the multiplicative inverse of Ai on ai
and

Pk
i¼1 jxiA%1

i jaiAi is equal to xþ !A (with ! < k). In
order to complete a BE, the modular reductions of x by the
elements of the new base must be performed.

In this study, Ai and A%1
i are always used on the base

element ai, or on adifferent base. Since they are never used on
a base element aj of A with j 6¼ i, in order to simplify the
notation in the followingAi inA andA%1

i inAwill be used to
indicate ðjA0ja0 ; jA1ja1 ; . . . ; jAkjakÞ and ðjA%1

0 ja0 ; jA
%1
1 ja1 ; . . . ;

jA%1
k jakÞ, respectively.

2.2 Reorganization of the Operations
The algorithmic study reported in this work moves from
considering that, in the two state-of-the-art RNS ME
algorithms [4], [5], a common feature can be identified, i.e.,
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the presence of a significant number of multiplications of a
partial result by a precomputed value.

Taking into account the above characteristic, it is
observed that, by exploiting the commutative property, a
sequence of two multiplications of a partial result by a
precomputed value, e.g., ðx' k1Þ ' k2, could be substituted
by one multiplication of the original value by the product of
the two precomputed values, i.e., x' k3, with k3 ¼ k1 ' k2.
Therefore, by precomputing a different value, it is possible
to decrease the number of multiplications and reach the
same result. By considering other arithmetic properties, e.g.,
the distributive and associative ones, operations involved in
the considered algorithms could be arranged in a more
effective way.

The reorganization of operations and precomputed
values internal to the RNS MM has been already exploited
in various studies [10], [11], [12]. This section analyzes
reorganized algorithms for the RNS ME (where internal
reorganizations are combined with external ones by
following the approach proposed in [9]), and compares
them to the state-of-the-art algorithms in [4], [5].

2.3 RNS Montgomery Exponentiation
ME is carried out by iterating MM, where MM ðjx' yjNÞ
gives w ( xyR%1ðmodNÞ, with R the Montgomery constant.
ME computes jxejN at the maximum cost of 2 log2 eþ 2
MMs. Considering !x and !y such that !x ¼ jxRjN and
!y ¼ jyRjN , then z ¼ j!x!yR%1jN ¼ jxyRjN . Therefore, the ex-
ponentiation can be executed by iterating MM on !x. ME
provides the exact result, or the results plus N ; hence, a
final comparison and a possible subtraction are required.

The state-of-the-art and reorganized RNS ME algorithms
are shown in Fig. 1 ([4] and [5] are discussed together since,
although twodifferentRNSMEapproaches are exploited, the
mainpart of the algorithm is common). RNSME is performed
on two RNS bases,A ¼ ða1; . . . ; akÞ and B ¼ ðb1; . . . ; bkÞ, such
thatA ¼

Qk
j¼1 aj,B ¼

Qk
i¼1 bi, and gcd ðA;BÞ ¼ 1.B is used as

the Montgomery constant. SinceR ¼ B, jBjN and jB2jN must
be precomputed. Step 1 in Algorithm 1 [4], [5] calculates !x.
Step 2 initializes the exponentiation process, which is
executed in the loop from Steps 3 to 8.

In the reorganized algorithm (Algorithm 2), two multi-
plication steps are added outside the loop. Before entering
the loop, the values on base A are multiplied by A%1

j

(Step 1). This multiplication is performed on base A in the
state-of-the-art BEs at the end of RNS MM, in order to
extend the final result from A to B. With the aim of saving a
multiplication step, in the reorganized algorithm the correct
result on A is not provided, directly calculating it multi-
plied by A%1

j . All the input values in A of the RNS MM are
represented in a new notation where all the values are
premultiplied by A%1

j (and represented with a dhat accent).
This new notation is stable for the addition and our MM.
After the loop, a multiplication by Aj is executed to reach
the final result of the exponentiation (that can be either the
exact result, or the results plus a multiple of N).

2.4 RNS Montgomery Multiplication

In the state-of-the-art algorithms [4], [7], RNS MM is
performed on two RNS bases, A and B. Since B is used as
the Montgomery constant, B%1

A must be precomputed on the
base A, where B%1

A is the multiplicative inverse on A of B.
In Fig. 2, the state-of-the-art and reorganized RNS MM

algorithms are presented (and, as before, [4] and [7] are
treated together).B is usedas theMontgomeryconstant; thus,
by executing the multiplication of Step 3 in B, the modular
reductionbyB is immediate. Since adivisionbyB is required,
which must be executed in a base composed by elements
relatively prime toB, the BE toA of Step 4 is performed. The
multiplication in Step 5 and the addition in Step 6 are only
executedonA, since the result of Step6onBwouldbeequal to
0. The multiplication by B%1 in Step 7, which corresponds to
thedivision, is only performedonA, as previously described.
A final BE toB is required, in order to reach a valid result that
could be passed in input to other MMs.

The main difference between [4] and [7] is in the BE
technique used. Both the techniques are based on (1) and
avoid the modular reduction by A, which is computation-
ally intensive. Without the modular reduction, which
would give x as a final result, the partial result is equal to
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Fig. 1. The state-of-the-art and the reorganized RNS Montgomery exponentiation algorithms.



xþ !A (or xþ !B, according to the base of origin). In order
to perform the correction, Kawamura et al. [4] evaluate ! by
checking the most significant bits of the results of the
previous multiplication step. In [7], two BE techniques are
used: in the first one, there is no correction; in the second
one (first proposed in [8]), a redundant base element is used
to evaluate ! and to correct the result.

In the reorganized algorithm, the precomputed values
and the order of operations are modified as illustrated in
Table 2 (without considering the contribution of error
evaluation). The differences are

1. The precomputed values %N%1 and B%1
i in B are

substituted by %N%1B%1
i ; hence, the multiplication

by %N%1 in RNS MM is merged with the multi-
plication by B%1

i in the subsequent BE, thus saving
a multiplication step.

2. The precomputed values N and Aj are substituted
by AjN ; the multiplication by N in RNS MM is
merged with the summation of multiplications by
Aj in the previous BE and another multiplication
step is avoided.

3. The multiplication by B%1
A is split in two parts. One

part is merged with the summation of multiplica-
tions by AjN in A in the first BE. The precomputed
value AjN is substituted by AjNB%1

A . Also, s in A is
multiplied by B%1

A in the first BE; thus, the number of
multiplication steps remains unchanged.

4. The multiplication by A%1
j is not required, since all

the inputs in A are premultiplied by A%1
j . However,

a multiplication by Aj is required to reach the correct
value. This correction can be merged to the multi-
plication by B%1

A and no additional multiplication
step is required. Hence, the precomputed value B%1

A
is substituted by B%1

A Aj.

In the following, two versions of the reorganized algorithm
will be analyzed, by making reference to the different BE
approaches used by Kawamura et al. and Bajard et al. in [4]
and [7], respectively. The algorithms are presented by
including the redundant base element ar, even though it is
involved only in the latter approach.

By analyzing the RNS MM algorithms in Fig. 2, it can
be observed that Algorithm 3, Step 1 corresponds to Step 1
of the reorganized algorithm (Algorithm 4). In Step 2 of
Algorithm 4, the two inputs of the multiplication are
already premultiplied by A%1

j ; hence, the result is equal to
Step 2 in Algorithm 3, multiplied by A%2

j . In Algorithm 4,
Steps 3, 5, 6, and 7 of Algorithm 3 are moved into the first
BE, together with the multiplication by Aj that is required
to correct the input.

2.5 BE Approach by Kawamura et al.
The first BE proposed byKawamura et al. in [4] (Algorithm 5)
and KBE1, i.e., the reorganized BE based on the same
approach (Algorithm 6) are shown in Fig. 3. KBE1 includes
all the operations of Algorithm 5 as well as the operations of
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Fig. 2. The state-of-the-art and the reorganized RNS Montgomery multiplication algorithms.
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Operations in the State-of-the-Art and the Reorganized MM and BE Algorithms (without Error Evaluation)



Algorithm 3, Steps 3, 5, 6, and 7. While the first BE proposed
by Kawamura et al. only extends the value u from B to A,
KBE1 directly calculates ŵ of Algorithm 4, Step 3 from s of
Step 1 and ^̂s of Step 2.

The result of the summation in the BE of x from A to B is
~x ¼ xþ !A, where ! is an integer number with 0 $ ! < k.
The algorithm proposed by Kawamura et al. calculates the
approximate value of ! as ~! ¼ b"þ

Pk
0 truncðqiÞ=2rc ’

b
Pk

0 qi=bic; ~! is estimated accumulating the %th most
significant bits of qi, cut by truncðÞ and divided by 2r,
where truncðqiÞ ¼ qi ^ ð1ðrÞ . . . 1ðr%%þ1Þ0ðr%%Þ . . . 0ð1ÞÞð2Þ and ^
denotes a bitwise AND operation. The variable " represents
the starting value of the parameter used to calculate !. In
[4], two theorems prove that with proper values of ", with a
low % and by selecting the base elements so that 2r is close to
bi, the approximation does not introduce errors. In the first
BE, " ¼ 0 and the input is lower than B; therefore,
according to Theorem 2 in [4], the result of the BE is
~x < 2B. In the second BE, " ¼ 0:5 and the input is lower
than 2N ; hence, according to Theorem 1 in [4], the result of
the BE is correct. With r ¼ 32, k ¼ 33, and maxð2r % ai;
2r % biÞ < 216; 8i, it is possible to choose % ) 7. The
algorithm is the same for both the BEs, with exchanged
bases. This approach requires that A ) 4N and B ) 5N .

Algorithm 5 starts with the multiplication of each partial
result ubi by the precomputed value B%1

i , modulo bi. In

KBE1, the partial result used in the corresponding multi-
plication is sbi and the precomputed value is %N%1B%1

i . The
result of KBE1 Step 1 is the same of Algorithm 5, Step 1, for
the associative property. In Algorithm 5, Step 3 corresponds
to an initialization. In KBE1, Step 3 executes in A the
multiplication of ^̂s by the precomputed value B%1

A Aj, in
order to reach a result that can be added to the summation
by providing a value ready for the BE. In both the
algorithms, Steps from 5 to 7 evaluate the contribution of
each partial result qi to !. In Algorithm 5, Step 8 requires
k2 multiplications, corresponding to the summation of the
results of the multiplication of each partial result qi by the
corresponding precomputed value jBijaj , per base element
aj, and to the sum of the precomputed value %B, when the
floor f , used to evaluate !, is equal to 1. In the correspond-
ing step of KBE1, BiNB%1

A A%1
j and %NA%1

j ( %BNB%1
A A%1

j

are used instead of Bi and %B, respectively. For the
associative and distributive properties, KBE1 provides the
same result of Algorithm 7, Step 1.

Fig. 4 shows the second BE algorithm proposed in [4]
and the related reorganized algorithm. Algorithm 7 is the
same as Algorithm 5, but with the bases switched. KBE2 is
the same as Algorithm 7, but without the first step, since the
input is already multiplied by A%1

j .
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Fig. 3. The first BE presented in [4] and the reorganized BE (KBE1).

Fig. 4. The second BE presented in [4] and the reorganized BE (KBE2).



2.6 BE Approach by Bajard et al.
The MM algorithm proposed by Bajard et al. in [7] (and
applied in the context of RNS ME in [5]) uses two BE
algorithms; Algorithm 9 in Fig. 5 shows the first one, which
does not perform the BE correction in order to save time.
Algorithm 11 in Fig. 6, originally proposed by Shenoy and
Kumaresan [8], calculates the correct result. The error in the
result of the first BE does not affect the final result of the
MM, but larger bases are required, i.e., A;B > Nðkþ 2Þ2.

Algorithm 10 in Fig. 5 corresponds to the first reorga-
nized BE based on the approach by Bajard et al. (BBE1) and
includes the operations of Algorithm 9 and the operations
of Algorithm 3, Steps 3, 5, 6, and 7.

Algorithm 9 starts with the multiplication of each partial
result ubi by the precomputed valueB%1

i , modulo bi. In BBE1,
the partial result used in the corresponding multiplication is
sbi and the precomputed value is %N%1B%1

i . The result of
BBE1 Step 1 is the same as the result ofAlgorithm9, Step 1, for
the associative property. In Algorithm 9, Step 2 requires
k2 multiplications, corresponding to the summation of the
results of the multiplications of each partial result qi by the
correspondingprecomputedvalue jBijaj , per base element aj.
In the corresponding step of BBE1, BiNB%1

A A%1
j is used

instead ofBi. The result of the summation of the results of the
multiplications of these precomputed values by the corre-
sponding partial results are added to the multiplication of ^̂s
by the precomputed value B%1

A Aj. BBE1 provides the same
result of the first stepof the secondBEusedbyBajard et al., for
the associative and distributive properties.

The second BE used by Bajard et al. (Algorithm 11), and
the corresponding second reorganized BE (BBE2) (Algo-
rithm 12) are shown in Fig. 6. The value of ! is calculated by
evaluating the difference between the correct result and the

extended result on a redundant base element ar, such that
gcdðar; AÞ ¼ 1 and gcdðar; BÞ ¼ 1, according to [8]. Algo-
rithm 11, Step 2 calculates the difference between the
correct value of x in ar and the result of the BE on ar, which
correspond to

! ¼
jxjar % jxþ !Ajar

A
: ð2Þ

Algorithm 12 is the same as Algorithm 11 without Step 1,
since the input of the BE is already multiplied by A%1

j .

2.7 Analysis
This section presents an analysis focused on MM, which
corresponds to the most computationally intensive part in
the overall ME algorithm.

2.7.1 Number of Modular Multiplications
In [4] and [5], the metric used to evaluate the performance of
the proposed approachwas based on the number ofmodular
multiplications needed (as shown in Table 3). The reorga-
nized RNS MM algorithms requires 3k modular multi-
plications less than the state-of-the-art algorithms with the
same BE technique. The reorganized RNS ME requires
2k additional modular multiplications. Considering an RSA
scenario with an exponent of size g ¼ 1;024 and k ¼ 33, the
maximum number of modular multiplications would be
reduced from 4,938,450 to 4,735,566 (95.8 percent). Consider-
ing a smaller base where g ¼ 640 and k ¼ 21, the maximum
number of modular multiplications would be reduced from
1,319,178 to 1,238,454 (93.9 percent). The percentage reduc-
tion is slight better with a smaller base size, since the relative
weight of 3k (i.e., the reduction) over k2 (i.e., main contribu-
tion to the total cost) is greater.
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Fig. 5. The first BE used in [7] and the reorganized BE (BBE1).

Fig. 6. The second BE used in [7] and the reorganized BE (BBE2).



2.7.2 Characterization of the Modular Multiplications
Tables 4 and 5 provide a characterization of the multi-
plications involved in the state-of-the-art and the reorga-
nized RNS MM and BE algorithms (without correction) in
terms of multiplication steps.

Since each operation is performed at least on k base
elements, up to k cells can work in parallel, requiring
2kþ 7 multiplication steps for the multiplications shown
in Table 4, and only 2kþ 4 for Table 5.

The multiplication steps can be classified in the
perspective of pipelining and parallelization possibilities,
in order to calculate the number of cycles required by each
step. Multiplication step types are

. Type 1, multiplication steps that cannot be paralle-
lized or executed in pipeline, since they use as an
input the result of the previous operation, and their
output is used as input by the subsequent one; the
number of required cycles is p, where p corresponds
to the number of stages of the pipeline.

. Type 2, a group of multiplication steps that can be
executed in parallel or pipelined; they require p cycles
for the last multiplication step and one cycle for the
others; by considering M as the number of parallel
multipliers per cell, a group of x multiplication steps
requires b x

Mcþ p% 1 cycles.
. Type 3, multiplication steps that can be executed in

parallel toothers; they require zero cycles inparallel or
pipelined architectures, 1 cycle otherwise (b 1

pþM%1c).
Without considering the BE correction, the state-of-the-

art RNS MM involves: six Type 1 multiplication steps,
two groups of k Type 2 multiplication steps, and one
Type 3 multiplication step (ID 2). Therefore, the total
number of cycles per RNS MM is 2d k

Me% 2þ b 1
pþM%1cþ 8p.

Comparing Table 5 to Table 4, it can be observed that
the reorganized algorithm requires 4p cycles less than the
state-of-the-art one, but it needs b 1

pþM%1c additional cycles.

Therefore, the improvement is directly linked to the
number of pipeline stages and of parallel multipliers. As
a matter of example, by considering p ¼ 3, M ¼ 1, and k ¼
33 as in [4] (without BE correction), the reorganized RNS
MM algorithm obtains a delay reduction of 13.63 percent.
With a higher degree of pipelining, a larger reduction is
achieved (e.g., 16.66 percent with p ¼ 4 and M ¼ 1,
19.23 percent with p ¼ 5 and M ¼ 1, etc.).

The reorganized RNS ME algorithm requires 2p addi-
tional multiplication steps (Algorithm 2, Steps 1 and 11).
By considering an RSA scenario, with g ¼ 1;024, p ¼ 3,
M ¼ 1, and k ¼ 33, the maximum number of cycles would
be reduced from 180,400 to 155,806 (86.3 percent). Con-
sidering a smaller base where g ¼ 640 and k ¼ 21, the
maximum number of cycles would be reduced from 82,048
to 66,670 (81.2 percent). The percentage reduction is better
with a smaller base size, since the relative weight of 4p (i.e.,
the reduction) over k (i.e., main contribution to the total
cost) is greater.

2.8 Extension to Other Cryptosystems and Remarks
The reorganization of RNS ME provides greater benefits
when the RNS bases are small. However, in cryptography,
the exponentiation is typically used for RSA, which
requires very large bases. The reorganization of the
operations internal to the RNS Montgomery reduction has
been also exploited in cryptosystems that require single
executions or sequences of Montgomery reductions, e.g., in
elliptic curve cryptography [11], [12]. The RNS Montgom-
ery reduction has been recently exploited also in the context
of pairing [16], [17]. In these domains, the internal
reorganization can produce the same reduction in the
number of cycles, which, nonetheless, have a higher relative
weight (as described in Sections 2.7.1 and 2.7.2). Moreover,
although the new representation decreases the duration of
each modular reduction, it introduces a fixed delay
proportional to the number of input and output values.
Furthermore, this representation requires that the input of
the RNS Montgomery reduction is double hat (i.e., the
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product of two hat values). A different input would require
a different Montgomery reduction algorithm or an addi-
tional multiplication step to adapt it. Based on such
considerations, the application of reorganized algorithms
to other cryptosystems seems appealing, though an
extensive analysis would be required to precisely char-
acterize advantages and drawbacks.

3 ARCHITECTURAL STUDY

In [6], Nozaki et al. proposed a cell architecture suitable to
the algorithm presented in [4]. The cell is matched to a single
element per RNS base; hence, a set of k cells is required to
execute the exponentiation. A cell can be matched to more
than one element per base, in order to reduce the area
(though increasing the delay). The cell is composed by a
three-stage pipelined Modular Multiplier and Accumulator
Unit (MMAU), a Cox unit (that evaluates and corrects the
BE error) and some memory elements. The MMAU used by
Nozaki et al. is also suitable for the approach proposed by
Bajard et al.; nevertheless, in this case, an additional
redundant cell matched to the redundant base element is
used, instead of the Cox unit.

The architectural study starts with the analysis of the cell
architecture proposed in [6] (then extended to the approach
proposed by Bajard and Imbert). Then, the possible base
element types are analyzed, and five new cell architectures
are presented. The study moves from an extensive
theoretical investigation based on equivalent gates delay
and area cost reported in [18], and produces an exhaustive
analysis based on synthesis results.

3.1 Base Elements

RNS offers the opportunity to select the base elements,
which strongly affect the computational effort required by
the reduction. In [19], the authors showed that with a
modulus ai ¼ 2r % 2h % 1 and h < rþ1

2 , the modular reduc-
tion of jxjai , with x < a2i , can be reduced to

x ( x1 þ x2 þ x4 þ 2hðx3 þ x4Þ ðmod aiÞ; ð3Þ

where x1 ¼ xmod 2r, x2 ¼ bx* 2rc, x3 ¼ x2 mod 2r%h, and
x4 ¼ bx2 * 2r%hc.

This formula provides efficient base elements, which
nonetheless must be relatively prime and must satisfy the
algorithm size limitations. Formula ai ¼ 2r % 2h + 1 requires
the same computational effort as ai ¼ 2r % 2h % 1, but it can
provide more base elements.

A larger number of base elements can be reached by
ai ¼ 2r % ci, with ci < 2h and h < r%1

2 . In [13], the authors
showed that the modular reduction of x < 22r requires two
multiplications and three additions. The partial modular
reduction y ( xðmod aiÞ can be calculated by

y ¼ jxj2r þ ðx , rÞ - ci: ð4Þ

With x < 2z, z > r, and ci < 2h, it is y < maxð2rþ1; 2z%rþhþ1Þ.
Therefore, each iteration of thismethod can reach a reduction
of r% h% 1 bits. In order to reach a larger reduction per step
with input x > 22r, it is possible to calculate

y ¼ jxj2r þ jx , rj2r - ci þ ðx , 2rÞ - c2i : ð5Þ

With x < 2z, z > 2r, and ci < 2h, it is

y < maxð2rþhþ2; 2z%2rþ2hþ1Þ:

Therefore, each iteration can reach a reduction of 2r% 2h%
1 bits. This approach, which is also used in the architecture
proposed in [6], is more computationally expensive than
the previous one, but provides a larger number of possible
base elements.

An intermediate approach requires base elements com-
pliant with ai ¼ 2r % ci, with ci < 2h, h < rþ1

2 , and the
Hamming weight of ci, denoted as !ðciÞ, selected so that
!ðciÞ < t. The limit to the Hamming weight allows to
perform the modular reduction as a sequence of additions.
According to [14], a modular reduction of x < 22r requires
2!ðciÞ þ 2 additions.

3.2 Three-Stage MMAU Architecture
In this section, the MMAU architecture proposed in [6] is
analyzed. TheMMAU corresponds to a cell without the error
correction, as shown in Fig. 7. This cell is characterized by
three-stage pipelining (p ¼ 3) and includes one multiplier
(M ¼ 1). The MMAU is divided into the units listed below:

. Multiplier Adder Unit (MAU), which performs un-
signed multiplications and additions. It provides an
output on 2rþ log2 k bits.

. First Modular Reduction Unit (FMRU), which per-
forms the partial modular reduction (5). It provides
an output on rþ hþ 1 bits.

. Second Modular Reduction Unit (SMRU), which
calculates the final result of the modular reduction
performing (4) and an addition. The final reduction
requires to check the ðrþ 1Þth least significant bit.
When it is equal to “1,” the value is greater than ai;
hence, %ai is added in order to reach the right
modulo. The output is represented on r bits.
Although the final result is smaller than 2r, it can
still be larger than ai; nonetheless, according to [6], it
does not affect the overall results.

The Type 1 multiplication steps are executed sequentially by
each unit, requiring three cycles. The Type 3 multiplication
steps are executed in parallel to the Type 1 ones, exploiting
the unused units. Therefore, they do not require additional
cycles. The groups of Type 2 multiplication steps are
executed by the MAU, one multiplication and accumulation
per cycle. After the last multiplication step, two cycles are
required to reduce the result.

3.3 Proposed Four-Stage MMAU Architecture
An efficient cell can be obtained by introducing redundancy,
increasing the level of pipeline, and moving the accumula-
tion from the MAU to the FMRU. By using a carry-save
representation, the final adder of the MAU and of the FMRU
can be removed. Based on theoretical observations, the
SMRU can be split in two units, thus augmenting the degree
of pipelining. The area and the delay of the four-stage
architecture can be reduced by moving the addition
operation in the FMRU, thus limiting the number of input
lines of the MAU and of the FMRU. Fig. 7 shows the
corresponding architecture, which is divided into
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. The Multiplier Unit (MU), which performs unsigned
multiplications. It provides a carry-save output on
2r% 1 bits.

. The First Modular Reduction and Adder Unit
(FMRAU), which executes (4) and can accumulate
the results or add other values; (5) is not applicable,
since the input is too short. It provides a carry-save
output on rþ hþ log2 k bits.

. The SMRU, which computes (4). It provides a carry-
save output on rþ 1 bits.

. The TMRU, which performs the final addition and
reduction. It provides an output on r bits.

The area and the delay of the FMRAU are larger than in
the previous cell architecture, since the result of the MU is
redundant. However, the reduced number of bits attenuates
the area increase. In order to execute the final reduction,
three possible results are simultaneously calculated. One is
the partial result of the reduction, one is added to %ai, and
the last is added to %2ai. The most significant bits of the
partial results are checked, in order to select the correct one.

In this MMAU, the Type 1 multiplication steps are
executed sequentially by each unit, requiring four cycles.
The Type 3multiplication steps are executed in parallel to the
Type 1 multiplications, without requiring additional cycles.
The groups of Type 2multiplication steps are executed by the
MU and accumulated by the FMRAU, one per cycle. Lastly,
three further cycles are required to complete the groups of
Type 2 multiplication steps.

The four-stage MMAU architecture is characterized by a
delay that is smaller than with the three-stage one, but
requires a larger area.

3.4 Proposed !ðciÞ $ 3 MMAU Architecture
With a base compliant with !ðciÞ $ 3, it is possible to
substitute the multiplications used for the reduction with
additions. However, this strategy requires the management
of negative numbers. In order to avoid additional delays, in
the reduction units, the carry-save representation is
replaced with the borrow-save one, where the values are
expressed by two binary unsigned numbers (and the
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standard representation can be obtained by subtracting the
second from the first). The !ðciÞ $ 3 MMAU architecture is
divided into

. The MU, which performs unsigned multiplications.
It provides a carry-save output on 2r% 1 bits.

. The FMRAU, which can transform a carry-save
input in borrow-save representation, convert each
2r-bit input in 7r-bit numbers, and accumulate the
results or add other values. It provides a borrow-
save output on rþ 4þ log2 k bits.

. The SMRU, which performs the final reduction. It
produces a result on r bits.

The MMAU architecture is shown in Fig. 7. The two r-bit
numbers that represent the inputs of the FMRAU are
transformed in borrow-save representation and, then, in
fourteen r-bit numbers by two special shifters. By consider-
ing a design without a knowledge of base elements (i.e., each
cell can work with any base element respecting the
constraints), the special shifter consists in some wired links
and in six barrel shifters (which could be also substituted by
multiplexers). The negative special shifter is identical to the
positive one, but the sign of the numbers is switched. After
the special shifters, a borrow-save adder reduction tree
is used to reduce the number of partial results and to
accumulate the results or add other values. The result is
normally represented in borrow-save representation on
rþ 4 bits. However, at the end of the accumulation, it
requires rþ log2 kþ 4 bits. The SMRU is only able to reduce
numbers on rþ 4 bits; thus, when the result is larger, it is
used again as input in the FMRU, in order to reach the
required length. The SMRU evaluates 4 bits from r to rþ 3 of
the two outputs of FMRAU, and adds/subtracts a propor-
tional multiple of the base element. The partial result is
equivalent to that of the four-stage architecture; hence, the
same final reduction strategy is required.

This MMAU architecture can also be used when there
is a knowledge of base elements; in this case, the barrel
shifters are substituted by 2-input multiplexers. According
to the delay reduction in FMRAU, the addition used to
evaluate the 4 bits in the SMRU can be directly executed in
the FMRAU.

3.5 Proposed !ðciÞ $ 2 MMAU Architecture
With a base compliant with !ðciÞ $ 2, it is possible to reduce
the area and the delay of the modular reduction units. As
with !ðciÞ $ 3, negative numbers have to be managed. The
MMAU architecture is divided into the three units below:

. The MU, which performs unsigned multiplications.
It provides a carry-save output on 2r% 1 bits.

. The FMRU, which can transform a carry-save
input in borrow-save representation, convert each
2r-bit input in 4r-bit numbers, and accumulate the
results or add other values. It provides a borrow-
save output on rþ 2þ log2 k bits.

. The SMRU, which performs the final reduction. It
produces a result on r bits.

The !ðciÞ $ 2 MMAU architecture is close to the !ðciÞ $ 3
one, but smaller and faster. Only 3 bits of the result of the
borrow-save reduction tree are used to select the value to
add in the SMRU. This control is directly executed by the
FMRAU, in order to reduce the delay of the SMRU. When

there is no knowledge of base elements, two barrel shifters
are required. Otherwise, it is possible to substitute them
with 2-input multiplexers.

3.6 Higher Level of Pipelining
The proposed cell architectures are composed by macro-
pipeline stages. Each macrostage has a clear mathematical
function, and the stages of each cell architecture have been
balanced by considering the equivalent gates delay.
Therefore, they represent a technology independent and
functionally atomic solution. It could be possible to further
improve the time performance with a higher pipelining. In
the literature, there are examples of RNS arithmetic cells
designed for FPGA with higher level of pipeline [11], [12],
[16], [17]. However, a higher pipelining would increase the
area. Moreover, the identification of the best number of
pipeline stages is an optimization problem that is out of
the topic of this work, and its result would be strongly
dependent on technological choices.

In order to provide the reader with a rough idea about
the effects of a higher pipelined cell, an experimental
analysis has been carried out, by splitting each macrostage
of the Four-stage MMAU Architecture in two substages.
The corresponding eight-stage MMAU would give a
reduction in delay equal to 10.3 percent and an increase
of 16.6 percent in area with respect to the original one.

3.7 BE Correction (Approach by Kawamura et al.)
The approach proposed in [4] requires a Cox unit, in order
to perform the modular reduction. The Cox unit is
composed by an adder, a register, and a set of AND gates.
Fig. 8 shows the Cox unit connected to the MAU of the
three-stage MMAU on the left, and to the FMRU of the
fours-stage MMAU on the right. In the !ðciÞ $ 3 and
!ðciÞ $ 2 MMAU architectures, it can be connected to the
FMRU reduction tree. The size of the adder (%) can be set to
nine, with r ¼ 32, h ¼ 11, and k ¼ 33.

3.8 Error Correction (Approach by Bajard et al.)
The approach used in [5] requires a redundant cell matched
to ar. This cell calculates !, which is multiplied by A on the
other cells.

Fig. 9 shows the redundant cell, which is composed by a
Multiplier Unit and an Adder Unit (AU). Since this cell
works on a number of bits smaller than the other cells, two
multiplications can be processed in parallel and added in
one step. Moreover, as proposed in [5], ar can be a power of
two; hence, the modular reduction is immediate. The area
overhead is similar to the one proposed in [4]. The BE
correction requires an additional step. However, as sug-
gested in [5], it is possible to avoid a multiplication by using
tables, but the result should be summed by an additional
input line.

3.9 Analysis of Cell Architectures
All the described cell architectures have been synthesized
using the Nangate 45 nm Open Cell Library with Synopsys
Design Compiler. Table 6 shows the delay and area cost of
the cells by considering r ¼ 32, k ¼ 33, and h ¼ 11, as in [5]
and [6]. The delay refers to the combinatory net of each unit
involved in the considered cell architectures. The area of
each cell includes the MMAU, its registers, and the RAM.
The area is obtained by considering the RAM required for
the state-of-the-art algorithms; when the reorganized
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algorithms are used, 230 #m2 can be saved. All the
precomputed values are considered as updatable. All the
cells that use the Kawamura et al. BE approach include an
additional input for the correction. However, only the
three-stage cells directly include the Cox unit, while for the
other architectures the Cox unit is a separate cell. In the
latter case, the area of the Cox unit is 168 #m2 and its delay
is 0.18 ns. The ar cell is always separate. Its area is
17;043 #m2, while its delay is 0.49 ns and 0.39 ns for the MU
and the AU, respectively.

In the three-stage cell, the MAU is the slowest unit. The
version with the Kawamura et al. BE approach is slower,
since the output of the Cox cell is calculated and added in
the MAU during the same cycle. In the other cell
architectures, the Cox output is added in the FMRAU;
hence, it is calculated by the Cox unit during a cycle, and
added during the subsequent one. In this way, the effects of
the Cox unit on the delay are reduced. The architectural
improvements applied in the four-stage architecture reduce
the delay of all the units, but increase the area. The FMRAU
is the slowest unit of the !ðciÞ $ 3 MMAU without
knowledge of the base elements. This is mainly due to the
presence of the barrel shifters, which also contribute to
the large area. In the !ðciÞ $ 3 MMAU with knowledge of
base elements, the slowest unit is the MU, as in the four-
stage MMAU. This is due to the removal of the barrel
shifters from the FMRAU. Even in the !ðciÞ $ 2MMAU, the
slowest unit is the MU, thanks to the smaller borrow-save
adder reduction tree.

4 OVERALL COMPARISON

The comparison of all the algorithms and cell architec-
tures is summarized in Table 7. The area cost corresponds
to the k cells and the BE correction cell. The configuration
used is k ¼ 33, r ¼ 32, h ¼ 11, and M ¼ 1.

The reorganized algorithm provides a reduction in the
number of cycles, and a small reduction in the RAM size,
thanks to the lower number of precomputed values. When
compared to the state-of-the-art algorithm, with the
Kawamura et al. BE and the three-stage cell, it provides a
13.6 percent reduction in delay, and a 0.6 percent in area.

The impact of the BE technique depends on the
architecture considered. The technique proposed by Bajard
et al. requires always one cycle more than the one by

Kawamura et al.; however, the Kawamura et al. approach
often increases the delay, especially in the three-stage cell.
With the exception of the three-stage cell, where the Bajard
et al. approach is faster, the delay is always similar. Even
the area is not strongly affected by the BE approach.

The four-stage cell provides a reduction in delay, but
involves a moderate increase in area. With the state-of-the-
art algorithm and the Kawamura et al. BE, it reaches a
29.3 percent reduction in delay, and a 18.3 percent increase in
area. The eight-stage version of this cell reaches a 36.5 percent
reduction in delay, and a 37.9 percent increase in area.

The !ðciÞ $ 3 cell without knowledge of base elements
performs worse than the four-stage cell both with respect to
delay and area cost, whereas with knowledge of base
elements, it achieves better results. Therefore, this approach
can be effectively applied only if each cell is specifically
designed for two specific base elements. With respect to the
three-stage cell, the area is slightly larger.

The !ðciÞ $ 2 cell without knowledge of base elements
provides area and delay performance close to those of the
!ðciÞ $ 3 cell with knowledge of base elements. With
knowledge of base elements, the area is still reduced, and
it is even smaller than with the three-stage cell. However,
the constraint on the base size (k $ 10) limits the width of
the representable numbers to 319 bits. Therefore, this
approach cannot be applied to a 1,024-bit modulus.

Based on the above analysis, the following observations
can be made. The reorganized algorithm is more efficient
than the state-of-the-art one. By using efficient cells, the
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BE approach does not strongly affect performance. For
inputs larger than 1,343 or, when the cells are designed
independently of the base, larger than 319 bits, the four-
stage cell provides the best results. When numbers
between 1,343 and 320 bits have to be managed and the
knowledge of base elements is available, the !ðciÞ $ 3
architecture should be considered. When numbers to be
represented require less than 320 bits, the best cells are the
!ðciÞ $ 2 ones.

5 CONCLUSION

In this paper, an algorithmic and architectural study on
RNS ME has been presented. The opportunities that come
from the reorganization of the operations and of precom-
putations have been investigated. In the architectural
study, five new cell architectures have been presented, by
exploiting well-known design techniques emerging from
computer arithmetic and by considering efficient RNS
bases. All the algorithms and the cell architectures have
been compared. Results have shown that, by rearranging
operations and preprocessing, the delay can be significantly
reduced. Moreover, the analysis carried out on the cells for
efficient bases has shown that their performance are
particularly interesting only when their constraints are
strict, hence limiting their applicability. The overall analysis
should provide the reader with a comprehensive overview
of algorithmic and architectural approaches that could be
considered for performing RNE ME, by suggesting solu-
tions to be possibly considered depending on the particular
constraints set by the application scenario.
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TABLE 7
Area and Delay of the Cells, with k ¼ 33, r ¼ 32, h ¼ 11, and M ¼ 1

y !ðciÞ $ 2 is not compliant with k ¼ 33, but the results are anyway presented with k ¼ 33 in order to ensure a fair comparison.

TABLE 6
Area and Delay of the Units in the

Designed Cells with k ¼ 33, r ¼ 32, and h ¼ 11

yThe Cox cell (163 #m2) is included. zIncluding 17;741 #m2 and
17;511 #m2 for the memory required by the state-of-the-art approaches,
with [4] and [5] BEs, respectively. The reorganized approach saves
230 #m2.
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