
A CRT-Based Montgomery Multiplication
for Finite Fields of Small Characteristic

Jean-Claude Bajard∗, Laurent Imbert∗,†, Graham A. Jullien† and Hugh C. Williams†
∗LIRMM, CNRS UMR 5506, 161 rue Ada, 34392 Montpellier cedex 5, France

†University of Calgary, 2500 University drive NW, Calgary, AB, T2N 1N4, Canada

Abstract— We propose a new CRT-based multipli-
cation algorithm for finite fields Fpk of small prime
characteristic, whose complexity does not depend on a
special form of the reduction polynomial. With a com-
plexity of O(k3/2) this is the first general subquadratic
algorithm for fields of small odd characteristic.

I. INTRODUCTION

Finite field arithmetic is an important prerequisite
for elliptic curve cryptography (ECC) [1], [2]. ECC
has recently received a lot of attention, because
of its smaller key-size (the security provided by
a 160-bit key is equivalent to a 80-bit symmetric-
key for block ciphers or a 1024-bit RSA mod-
ulus) and improved theoretical robustness (there
is no known subexponential algorithm to solve
the ECDLP which is the foundation of ECC). As
witness of its commercial acceptance, is its recent
inclusion in various standards (see [3], [4]). These
standards recommend a small number of secure
curves defined over large prime fields Fp and binary
fields F2m . As a consequence, the use of other
finite fields of potential interest has received limited
attention.

In this paper we propose a modified Montgomery
multiplication algorithm for finite fields of small
prime characteristic, i.e. Fpk ' Fp[X]/(N), where
N is a monic irreducible polynomial of degree k,
called the reduction polynomial. Is is known that
the elements of Fpk can be modeled as polynomials
of degree at most k − 1, with coefficients in Fp.
(It is easy to verify that there are exactly pk such
polynomials.) The arithmetic operations (addition,
multiplication) are carried out using polynomial
arithmetic modulo N . In this work, we represent
the operands in a so-called Chinese Remainder

Representation (CR), where polynomials of degree
less than k are represented using their remainders
modulo m relatively prime binomials of degree d,
of the form Xd + c, where c ∈ Fp. Our algorithm
requires p > 2m and md ≥ k. Compared to the
classical Montgomery algorithm, our algorithm re-
quires fewer multiplications in Fp, with best results
obtained for fields of small characteristic. If m, d
are chosen close to

√
k, we obtain a subquadratic

complexity of O(k1.5), whereas Montgomery’s al-
gorithm is in O(k2).

II. MONTGOMERY MULTIPLICATION IN Fpk

In this section, we briefly recall the Mont-
gomery’s modular multiplication algorithm for in-
tegers, and its straightforward extension to finite
fields. Then, we present a new algorithm which
is a generalization of Montgomery multiplication,
where the elements of the finite field Fpk are
represented in polynomial residue arithmetic, i.e.
according to their remainders modulo a set of well
chosen, relatively prime polynomials.

Let us start with Montgomery’s multiplication
algorithm for integers [5]. Instead of computing
ab mod n, Montgomery’s algorithm returns1 s =
abr−1 mod n, where r is such that gcd(r, n) = 1.
In practice n is always an odd number, and r is
chosen as a power of 2 to reduce multiplication
and division by r to simple shifts. The number
r is often referred to as the Montgomery factor.
The computation is accomplished in two steps: first

1We use the notation x = y mod n to denote the remainder
x < n in the division of y by n; and the notation x ≡ y
(mod n) to express the fact that x and y have the same
remainder modulo n.



compute q = −abn−1 mod r, then ab + qn is a
multiple of r; hence, an exact division by r, which
is equivalent to some right shifts, gives the result. In
order to get an actual product, ab mod n, different
methods are possible. If s is the output of the
Montgomery product of a and b modulo n, i.e., s =
MM(a, b, n) (= abr−1 mod n), then, it is easy to
see that MM(s, r2 mod n, n) = a b mod n. Also,
MM(a, br mod n, n) = MM(ar mod n, b, n) =
a b mod n. When several multiplications need to be
performed modulo the same n, as in an exponentia-
tion, the inputs are first modified using the transfor-
mation, a → ar mod n, which has the advantage
of being stable over Montgomery multiplication
(indeed, we have MM(ar mod n, br mod n, n) =
a b r mod n). These conversions can be done at the
extra cost of only two Montgomery multiplications
(with r2 mod n and 1 as inputs respectively), which
is negligible compared to the cost of the exponen-
tiation. See [6] for more details.

Montgomery’s multiplication of large integers
has been generalized to binary fields F2k by
Ç. K. Koç and T. Acar [7]. Their solution is a direct
adaptation of the original Montgomery algorithm,
where the polynomial Xk plays the role of the
Montgomery factor r. Given A,B ∈ F2k , the
algorithm computes ABX−k mod N , where N is
the reduction polynomial of degree k in F2[X]. We
remark that Koç and Acar’s algorithm easily extends
to any extension fields Fpk . As in [7], we represent
Fpk with respect to a monic irreducible polynomial
N of degree k and we consider its elements as
polynomials of degree at most k− 1 in Fp[X]. Let
us define Ψ = Xk such that gcd(Ψ, N) = 1. Then,
given A,B ∈ Fp[X]/(N), Algorithm 1 below,
returns ABΨ−1 mod N .

Algorithm 1 Montgomery Multiplication over Fpk

Input: Two polynomials A,B ∈ Fp[X], with
degA,degB ≤ k − 1; a monic irreducible
polynomial N ∈ Fp[X], with degN = k; a
polynomial Ψ = Xk

Output: ABΨ−1 mod N
1: Q = −A×B ×N−1 mod Ψ
2: R = (A×B +Q×N) /Ψ

In this case, selecting Ψ = Xk seems to be the
perfect choice, since the reduction modulo Xk (in
Step 1) and the division by Xk (in Step 2) can be
easily implemented. Indeed, given two polynomials
U, V ∈ Fp[X], with degU,deg V < k, we compute
(U × V ) mod Xk by ignoring the coefficients of
U × V of order larger than k − 1. Similarly, (U ×
V )/Xk is given by the coefficients of (U × V ) of
order greater than or equal to k.

The complexity, in terms of the number of arith-
metic operations over Fp, can be easily determined
(see [8] for details). The computation of Q in Step 1
requires k(k+1) multiplications, and k(k−1) addi-
tions; whereas R, in Step 2, is computed in k(k−1)
multiplications, and (k−1)(k−2)

2 + k(k−1)
2 + (k− 1)

additions. If M and A denote the costs of one
multiplication and one addition in Fp respectively,
the total cost for Algorithm 1 is thus

2k2M + (2k2 − 2k)A. (1)

For most applications (especially for ECC) the
finite field is fixed and we can reasonably assume
that the reduction polynomial N and its inverse
modulo Xk have been precomputed. In this case,
the multiplications by the N−1 and N can be
simplified using optimized algorithms for multipli-
cation by a constant and by constant vectors, as
in [9]. The global cost of Algorithm 1 becomes

k2M + k2 CM + (2k2 − 2k)A, (2)

where CM denotes the cost of one multiplication
by a constant in Fp.

III. MODIFIED MONTGOMERY MULTIPLICATION
IN Fpk

In this section we first modify Algorithm 1 by
allowing the polynomial Ψ to be any polynomial of
degree k satisfying the condition gcd(Ψ, N) = 1
and by replacing the division by Ψ in Step 2 by a
multiplication by Ψ−1 modulo another given poly-
nomial Ψ′. Then we analyze a special case, where
Ψ,Ψ′ are the products of relatively prime polynomi-
als of small degree; and Ψ, Ψ′ are relatively prime.
Algorithm 2 below computes ABΨ−1 mod N for
any relatively prime polynomials Ψ,Ψ′, both of
degree k with gcd(Ψ, N) = 1.



Algorithm 2 Modified Montgomery Multiplication
over Fpk

Input: Two polynomials A,B ∈ Fp[X], with
degA,degB ≤ k − 1; a monic irreducible
polynomial N ∈ Fp[X], with degN = k; two
polynomials Ψ,Ψ′, with deg Ψ = deg Ψ′ ≥ k,
and gcd(Ψ,Ψ′) = gcd(Ψ, N) = 1

Output: ABΨ−1 mod N
1: Q = −A×B ×N−1 mod Ψ
2: R = (A×B +Q×N)×Ψ−1 mod Ψ′

Lemma 1: Algorithm 2 is correct and returns
ABΨ−1 mod N .

Proof: In Step 1, we compute Q such that
(AB + QN) is a multiple of Ψ. Indeed, we have
AB +QN ≡ AB −ABN−1N ≡ 0 (mod Ψ) and
degAB +QN = degQN ≤ 2k − 1. This implies
that there exists a polynomial f such that AB +
QN = fΨ, with deg f ≤ k−1. Now, in step 2, we
compute R modulo Ψ′. We have (AB+QN)Ψ−1 ≡
(fΨ)Ψ−1 ≡ f (mod Ψ′). Since deg Ψ′ ≥ k >
deg f , we have (AB+QN)Ψ−1 mod Ψ′ = f = R.
In general, for any polynomial h with deg h ≥ k,
and gcd(h,Ψ) = 1, we have (AB+QN)Ψ−1 mod
h = f . In particular, for h = N we have (AB +
QN)Ψ−1 ≡ ABΨ−1 (mod N) which concludes
the proof.

Of course, the generalization proposed in Algo-
rithm 2 is interesting, only if we can define poly-
nomials Ψ,Ψ′ such that the arithmetic operations
modulo Ψ and Ψ′ are easy to implement.

IV. NEW ALGORITHM

In this section, we define Ψ (resp. Ψ′) to be
the product of some relatively prime binomials of
the form Xd + c, where c ∈ Fp, and we use
the Chinese Remainder Theorem (CRT) in order
to represent the elements (polynomials) of Fp[X]
of degree less than k by their remainders modulo
sufficiently many of these binomials. The advantage
is that we distribute the costly arithmetic modulo Ψ
(resp. modulo Ψ′) into several independent arith-
metic units, each performing its arithmetic modulo
a very simple polynomial.

Suppose that Ψ =
∏m

i=1 ψi, where ψi = Xd+ci,
with ci ∈ Fp, and ci 6= cj for i 6= j. 2 Then, for
any arbitrary U ∈ Fp[X], we define ui = U mod
(Xd + ci). The following ring isomorphism given
by the Chinese Remainder Theorem

Fp[X]/(Ψ) → Fp[X]/(ψ1)× · · · × Fp[X]/(ψm)

U 7→ (u1, . . . , um) ,
(3)

tells us that if degU < deg Ψ = dm, then U
is uniquely defined by its remainders (u1, . . . , um)
modulo ψ1, . . . , ψm.

Definition 1: Let U ∈ Fp[X] with degU < k,
and let Ψ =

∏m
i=1(X

d + ci), with ci ∈ Fp and
ci 6= cj for i 6= j. We define the Chinese Remainder
(CR) representation of U modulo Ψ as

CRΨ(U) = (u1, . . . , um), (4)

where ui = U mod (Xd + ci) is a polynomial in
Fp[X] of degree at most d− 1, for i = 1, . . . ,m.

One advantage of the CR representation, is that
the arithmetic modulo Ψ is carried out implicitly by
performing the arithmetic modulo each ψi indepen-
dently. In Algorithm 2 we need another polynomial
Ψ′. We define Ψ′ =

∏m
i=1(X

d + c′i), where c′i 6= c′j
for i 6= j and ci 6= c′j for i, j = 1, . . . ,m.
This simply means that the ci’s and c′i’s are all
distinct. With Ψ and Ψ′ defined as above, we have
gcd(Ψ,Ψ′) = 1, and because N is irreducible in
Fp, we also have gcd(Ψ, N) = 1.

We assume that the input polynomials A,B are
given (or converted into) the CR representation
modulo both Ψ and Ψ′. In Step 1, we also need
CRΨ(N−1), which can be precomputed. We note
that since gcd(Ψ, N) = 1, then N−1 always exists
modulo Ψ. For the operations in Step 2, we also
need CRΨ′(Ψ−1) which also always exists, and
CRΨ′(N). Both can be precomputed. We remark
further that (Ψ−1 mod ψi) ∈ Fp, for i = 1, . . . ,m.
The only problem to solve is the conversion of
Q from its residue representation modulo Ψ to its
residue representation modulo Ψ′. Similarly, if we
wish to reuse the output of the multiplication, as in

2Note that with Ψ defined as above, we clearly need m < p.
Moreover, since we shall also define Ψ′ =

Qm
i=1(Xd + c′

i)
such that gcd(Ψ, Ψ′) = 1, this condition will become 2m < p.



the performance of an exponentiation, we need to
convert R back from CRΨ′ to CRΨ.

A straightforward approach is to use the con-
structive proof of the Chinese remainder theorem to
convert Q from its CR representation to its classical
polynomial (coefficient based) representation, and
then reduce it modulo each ψ′i to get CRΨ′(Q).
Another solution, however, which is much more ef-
ficient in this case, is to use Newton’s interpolation
algorithm.3

Assume CRΨ(Q) = (q1, . . . , qm). We want
to compute CRΨ′(Q) = (q′1, . . . , q

′
m). We must

first evaluate the intermediate values (ζ1, . . . , ζm) –
often referred to as the mixed-radix representation
in the integer case – where the ζi’s are polynomials
of degree less than d. The vector (ζ1, . . . , ζm) is
obtained by performing the following computations:

ζ1 = q1

ζ2 = (q2 − ζ1)ψ−1
1 mod ψ2

ζ3 =
(
(q3 − ζ1)ψ−1

1 − ζ2
)
ψ−1

2 mod ψ3

...

ζm =
(
. . .

(
(qm − ζ1)ψ−1

1 − ζ2
)
ψ−1

2 − · · ·
− ζm−1

)
ψ−1

m−1 mod ψm.
(5)

We then evaluate the polynomials q′i’s using
Horner’s rule as

q′i = (. . . ((ζmψm−1 + ζm−1)ψm−2 + · · ·
+ ζ3)ψ2 + ζ2)ψ1 + ζ1 mod ψ′i. (6)

Concerning (5), we remark that the main oper-
ation is a polynomial multiplication of the form
U×ψ−1

i mod ψj (e.g. for ζ2, we have U = q2−ζ1).
In (6), the main operation is also a polynomial
multiplication of the form V × ψi mod ψ′j . With
ψi, ψ

′
j defined as above, i.e., ψi = Xd + ci and

ψ′j = Xd + c′j , we have

ψi mod ψj = ci − cj mod p ∈ Fp. (7)

And thus,

ψ−1
i mod ψj = (ci − cj)−1 mod p ∈ Fp. (8)

3In fact, it is useful to think of the CRT as a special case of
interpolation.

As a consequence, (5) and (6) can be evaluated
without any polynomial multiplications! The only
required operations are the addition of two polyno-
mials of degree less than d and the multiplication of
a polynomial of degree less than d by an element
of Fp. Both are very easy operations that can be
fully parallelized. In the complexity analysis of our
multiplication algorithm, we will only consider the
number of real polynomial multiplications and the
number of multiplications by integer constants. For
the computation of the ζi’s, we have to evaluate
m(m−1)/2 expressions of the form U×ψ−1

i mod
ψj = U × (ci − cj)−1, since degU < d. Thus, it
requires dm(m−1)/2 CM , where CM denotes the
cost of one multiplication by an integer constant in
Fp. For (6), we have to compute (m−1) expressions
of the form V × ψi mod ψj = V × (ci − cj)
for each q′i, where deg V < k. The cost is thus
dm(m − 1) CM . The total cost for one Newton’s
interpolation is thus equal to

CNewton =
3
2
dm(m− 1) CM. (9)

Let us now analyze the cost of our modi-
fied Montgomery algorithm with Ψ,Ψ′ defined as
above. Given CRΨ(A) and CRΨ(B), Algorithm 2
first computes CRΨ(A×B) = (t1, . . . , tm), where
ti = (ai × bi) mod ψi. The cost is m polynomial
multiplications modulo a polynomial of the form
Xd + c. In order to provide a more accurate com-
plexity measure, let us make precise the cost of our
main operation; i.e., the product

(ai × bi) mod (Xd + ci), (10)

where deg ai,deg bi ≤ d − 1. Assuming we first
compute the product si = (ai × bi) using the basic
high-school algorithm, we need d2 multiplications
in Fp. (Note that when d is large, it might be more
interesting to use a more efficient polynomial mul-
tiplication algorithm, such as Karatsuba-like meth-
ods [10].) The result si is a polynomial of degree at
most 2d− 2. The reduction part is performed using
the congruence Xd ≡ −ci mod ψi. We have

si = (si mod Xd)− ci (si − si mod Xd)/Xd.
(11)



The reduction modulo Xd and the division by Xd

are easy operations, performed at no cost. They
simply consists of ignoring the terms of si of order
larger than d−1 (for the reduction modulo Xd), and
considering only those terms of order larger than or
equal to d for the division. Since deg si ≤ 2d− 2,
the multiplication of the higher part of si by ci
requires d − 1 CM . Thus, the cost for (10) is
equal to d 2 M + (d − 1) CM . In the following
analysis, we will also encounter some polynomial
multiplications modulo Xd + c, where one of the
operands is a constant polynomial. In these cases,
the cost is d 2 CM + (d− 1) CM .

After CRΨ(A × B) is computed, we evaluate
CRΨ(Q) = (q1, . . . , qm), where qi = (−ti ×
ñi) mod ψi, and (ñ1, . . . , ñm) = CRΨ(N−1) is
the CR representation of N−1 modulo Ψ. Because
one of the operands (CRΨ(N−1)) is a constant
polynomial, the cost is md 2 CM +m(d−1) CM .
The total cost for Step 1 is therefore

C1 = md 2 M +
(
md 2 + 2m(d− 1)

)
CM. (12)

After step 1, Q is converted to CRΨ′(Q) =
(q′1, . . . , q

′
m) using Newton’s interpolation algo-

rithm whose cost is given by (9).
For Step 2, we require m polynomial multiplica-

tions to compute CRΨ′(A × B), plus m constant
polynomial multiplications (CRΨ′(N)). Instead of
performing the reduction twice, i.e., after each
multiplication, we only need to reduce their sum
AB+QN . We terminate Step 2 with the multiplica-
tion by Ψ−1 mod Ψ′, which requires only md CM
operations since Ψ−1 mod ψ′i belongs to Fp, for
i = 1, . . . ,m. Indeed, we have

Ψ−1 mod ψ′i =

 m∏
j=1

ψj

−1

mod ψ′i

=

 m∏
j=1

(ψj mod ψ′i)

−1

mod ψ′i

=

 m∏
j=1

(cj − c′i)

−1

mod p ∈ Fp.

The cost of Step 2 is thus

C2 = md 2 M +
(
md 2 +m(d− 1) +md

)
CM.

(13)
The last step of our multiplication algorithm con-

sists of the conversion of R from its CR represen-
tation modulo Ψ′ to its CR representation modulo
Ψ using Newton’s interpolation algorithm.

The total cost of Algorithm 2 is thus equal to

Cm,d = 2md 2 M

+
(
2md 2 + 3dm2 +md− 3m

)
CM. (14)

In Table I below, we illustrate the efficiency
of our algorithm for fields of small characteristic.
We give examples of possible decompositions m, d,
which lead to fewer multiplications in Fp than the
2k2 required by Algorithm 1. For each example, we
give the parameters m and d such that md ≥ k, and
there exists a prime p yielding a field Fpk of crypto-
graphic interest (for elliptic curve applications [11]).
For security reasons, we only consider extensions
of prime degree k. (See [12] for a recent attack
when k ≡ 0 mod 3 or 4.) We use l to denote the
corresponding key-size l =

⌊
log2(pk)

⌋
bits. Note

that p and m satisfy the condition 2m < p. For
simplicity in the comparisons, we further assume
that CM = M .

From Table I we remark that it is always possible
to define convenient pairs m, d for p ≥ 5. However,
in the case p = 5, we cannot consider more than
two binomials (m = 2 is the only option), and
Algorithm 1 always requires fewer multiplications
in the general case.4

For small p, it is reasonable to assume that
CM = M , since the arithmetic modulo p can
be implemented very efficiently; e.g. for hardware
implementations, using a small lookup table. Also,
when m is small, one can optimize the choice of the
ci’s to save some multiplications. For large p, how-
ever, one can reasonably consider that CM < M .
Efficient algorithms for multiplication by an integer
constant have been investigated [9] and can be used
in this context to further improvethe efficiency of
our technique.

4For m = 2 and md = k + 1, we have Cm,n = 2k2 +
11k + 3.



TABLE I
NUMBER OF MULTIPLICATIONS OBTAINED FOR VARIOUS

PARAMETERS m, d, WITH md ≥ k AND 2m < p, AND WHERE

p AND k ARE PRIMES SUCH THAT Fpk IS A FIELD OF

CRYPTOGRAPHIC INTEREST; I.E. OF ORDER ≥ 2160

p k l m d 2k2 Cm,d

5 71 164 2 36 10082 10866

7 59 165 3 20 6962 5391

11 47 162 5 10 4418 2785

4 12 2914

13 47 173 6 8 4418 2430

5 10 2785

4 12 2916

17 41 167 8 6 3362 2328

7 6 1911

6 7 1956

19 41 174 9 5 3362 2133

8 6 2328

7 6 1911

6 7 1956

23 37 167 8 5 2738 1776

7 6 1911

6 7 1956

5 8 1905

127 23 160 12 2 1058 1044

8 3 864

6 4 822

5 5 885

4 6 876

From Table I we notice that we get the best re-
sults when m and d are close. Indeed, if we assume
that m, d ≈ k1/2, then under the assumption that
CM = M , we obtain a subquadratic complexity:

Ck = 7k3/2 + k − 3k1/2 = O(k3/2). (15)

V. EXAMPLE

In the following example, we assume p = 7,
k = 13 (713 ≈ 236). Let A = 5X12 + 2X10 +
3X8 + 2X4 + 4X , and B = X9 + X8 + 2X5 +
4X3 + 2X2 + 1, be two polynomials in the field
F7[X]/(N), where N = X13 + 2X4 + 4X + 2 is
irreducible.

We consider the parameters m = 3, d = 5 and
the polynomials Ψ = (X3 + 1)(X3 + 2)(X3 + 3),

and Ψ′ = (X3 + 4)(X3 + 5)(X3 + 6). To simplify
the notations, we represent polynomials (of degree
at most 4) by their coefficients only (in F7), where
the right-most digit correspond to the coefficient of
degree 0. The precomputed values, expressed in CR
representations are

CRΨ(−N−1) = (15016, 65413, 64652)
CRΨ′(N) = (22402, 24042, 21042)

CRΨ′(Ψ−1) = (00001, 00002, 00005).

Note that Ψ−1 mod ψ′i ∈ Fp for i = 1, . . . , 3. We
express A,B in CR representation for both Ψ and
Ψ′. We have

CRΨ(A) = (24542, 21641, 25344)
CRΨ′(A) = (22344, 26641, 23542)
CRΨ(B) = (63206, 52204, 41202)
CRΨ′(B) = (30200, 26205, 15203).

And we compute

CRΨ(Q) = (32505, 02004, 36666)
CRΨ′(Q) = (50244, 65215, 60642)
CRΨ(R) = (43601, 15003, 50042)
CRΨ′(R) = (22655, 64435, 36152).

It is easy to check that the result is the CR represen-
tation of A×B ×Ψ−1 mod N = 3X12 + 2X11 +
2X10 + 3X9 + 5X8 +X7 + 6X6 + 4X5 +X3 +
4X2 + 4X + 3, modulo Ψ and Ψ′.

VI. CONCLUSIONS

In this paper, we have proposed a modified Mont-
gomery multiplication algorithm for finite fields,
where the operands are represented by their re-
mainders modulo a set of relatively prime bino-
mials of the form Xd + c, with c ∈ Fp. Our
algorithm takes advantage of the fact that Xd +
c1 mod (Xd + c2) = c1 − c2 ∈ Fp, and it requires
fewer multiplications in the ground field that its
classical counterpart. Indeed, if m, d ≈

√
k, we

can obtain a subquadratic complexity of O(k3/2)
for Montgomery multiplication.



ACKNOWLEDGMENTS

This work was done during L. Imbert leave of
absence at the university of Calgary, with the Centre
for Information Security and Cryptography (CISaC)
and the Advanced Technology Information Pro-
cessing Systems (ATIPS) Laboratory. It was partly
supported by NSERC Canada, under the strategic
grant number 73–2048, Novel implementation of
cryptographic algorithms on custom hardware plat-
forms; and by the French ministry of education and
research under the grant ACI Sécurité Informatique
2003, Opérateurs Cryptographiques et Arithmétique
Matérielle (OCAM).

REFERENCES

[1] V. S. Miller, “Uses of elliptic curves in cryptography,” in
Advances in Cryptology – CRYPTO ’85, ser. LNCS, H. C.
Williams, Ed., vol. 218. Springer-Verlag, 1986, pp. 417–
428.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, January 1987.

[3] National Institute of Standards and Technology, FIPS PUB
186-2: Digital Signature Standard (DSS). National Insti-
tute of Standards and Technology, Jan. 2000.

[4] IEEE, IEEE 1363-2000 Standard Specifications for Public-
Key Cryptography, 2000.

[5] P. L. Montgomery, “Modular multiplication without trial
division,” Mathematics of Computation, vol. 44, no. 170,
pp. 519–521, Apr. 1985.

[6] A. Menezes, P. C. Van Oorschot, and S. A. Vanstone,
Handbook of applied cryptography. CRC Press, 1997.

[7] Ç. K. Koç and T. Acar, “Montgomery multiplication in
GF (2k),” Designs, Codes and Cryptography, vol. 14,
no. 1, pp. 57–69, April 1998.

[8] J.-C. Bajard, L. Imbert, and C. Nègre, “Arithmetic op-
erations in finite fields of medium prime characteristic
for elliptic curve cryptography,” LIRMM – CNRS UMR
5506, 161 rue Ada, 34392 Montpellier cedex 5, France,
Research Report 05028, Mar. 2005, available electronically
at http://www.lirmm.fr/˜imbert.

[9] V. Lefèvre, “Multiplication by an integer constant,” INRIA,
Research Report 4192, May 2001.

[10] P. L. Montgomery, “Five, six, and seven-term karatsuba-
like formulae,” IEEE Transactions on Computers, vol. 54,
no. 3, pp. 362–369, Mar. 2005.

[11] D. Hankerson, A. Menezes, and S. Vanstone, Guide to
Elliptic Curve Cryptography. Springer-Verlag, 2004.

[12] P. Gaudry, “Index calculus for abelian varieties and the
elliptic curve discrete logarithm problem,” Oct. 2004,
preprint.


