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Abstract—Lattice based cryptography is claimed as a serious
candidate for post quantum cryptography, it recently became
an essential tool of modern cryptography. Nevertheless, if lattice
based cryptography has made theoretical progresses, its chances
to be adopted in practice are still low due to the cost of the
computation. If some approaches like RSA and ECC have been
strongly optimized - in particular their core arithmetic operations,
the modular multiplication and/or the modular exponentiation -
lattice based cryptography has not been arithmetically improved.
This paper proposes to fill the gap with a new approach using
Residue Number Systems, RNS, for one of the core arithmetic
operation of lattice based cryptography: namely solving the
Closest Vector Problem (CVP).
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I. INTRODUCTION

The cryptography based on lattices appeared at the begin-
ning of this century with initial propositions like GGH [12]
and NTRU [14].

In few years, due to some properties of the lattices, some
powerful cryptographic tools have been proposed for the
first time: fully homomorphic encryption, multi-linear map
and indistinguishability obfuscation [10]. Despite numerous
attacks against the historical propositions, countermeasure after
countermeasure, these systems are still available [8]. Even
after numerous evolutions, they stay based on some simple
proposals where the encryption is obtained by adding an
”error” to a vector of a lattice. This error represents the original
message, and the vector obtained the ciphered one. All the
security is based on the difficulty to reduce the public basis
of the lattice in a Lovàsz reduced basis in which the Babaı̈
algorithms can be performed [1].

Some recent approaches propose to use an oracle which
gives some approximated closest vectors [16], [11], [20], and
a Learning with Error method to find the closest vector.
Nevertheless, they are not still sufficiently efficient in practice.
Thus, an efficient computation of a closest vector remains a
real challenge. As the Residue Number System (RNS) has
been proved to be efficient for other cryptographic systems
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[13], [7], we suggest to study in this paper their use in lattice
cryptography by implementing in RNS the Babaı̈ Round-Off
CVP method.

II. ABOUT BABAÏ ROUND-OFF CVP

The main idea can be summarized in the following way.
We create a lattice of full-rank ` from a strongly reduced
basis given by a matrix G, and we construct another bad basis
(in terms of lattice basis reduction) H = UG, U being a
unimodular matrix. H can be in Hermite Normal Form [17].

The encryption mode [12] obeys the following scheme:
c = (m + kH) where m is the vector message composed of
zeros and ones (or of small values with respect to the Lovàsz
conditions), k is a vector such that c = (c1, 0, ..., 0) with
c1 huge, or c = (c1, c2, ..., c`), with small ci’s. The vector
kH belongs to the lattice, and is a closest vector of c. In
the following, we will consider that all the coefficients of
c are positive, which is possible modulo a translation via a
vector of the lattice. As the coefficients of m are small and
G is strongly orthogonal, the message m is found using the
Rounding Off algorithm of Babaı̈ [1]. This operation is given
by m = c −

⌊
cG−1

⌉
×G, where

⌊
cG−1

⌉
×G represents the

closest vector of the lattice. Since m is composed of small val-
ues, it is suggested to compute c−

⌊
cG−1

⌉
×G mod β where

β is a small number, reducing by this way the complexity
of the calculus. Nevertheless, though matrix G is an integer
matrix, its inverse G−1 is not, i.e., is rational. The operation⌊
cG−1

⌉
must be done sufficiently precisely for obtaining a

good rounding.

III. THE RNS APPROACH OF THE ROUNDING OFF BABAÏ
ALGORITHM

In this work, we propose for this evaluation to use RNS
systems which distribute the calculus on small values in a fully
parallel way for additions and multiplications [24], [23]. These
representations are based on the Chinese Remainder Theorem,
a number α is represented by its residues (α1, ..., αn) modulo
a set of coprimes (m1, ...,mn) called the RNS base. Hence,
we are able to represent all the values from 0 to M − 1 =∏n
i=1mi − 1.
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In this approach we use the modular reduction proposed by
P. Montgomery [18] and adapted to RNS [19], [15], [2], both
for the evaluation of

⌊
cG−1

⌉
×G, and for the final reduction

modβ.

Our first purpose is to compute the value
⌊
cG−1

⌉
in

RNS. For this, we will transform this calculus in complete
integer operation using that G′ = (detG) × G−1 is an
integer matrix when G is one integer matrix. Thus we have:⌊
cG′

detG

⌉
=
⌊
cG−1

⌉
.

In RNS, the division by detG is possible if it is an exact
one and if detG is co-prime with the RNS Base. In this case
we have,

cG′ − (cG′ mod detG)

detG
=

⌊
cG′

detG

⌋
.

As we want to compute
⌊
cG′

detG

⌉
, we will compute more

precisely
⌊
cG′

detG + 1
2v1

⌋
=
⌊
cG′

detG

⌉
, where v1 is the all-one

vector (i.e. v1 = (1, 1, ..., 1)).

If we develop this expression, we obtain:⌊
cG′

detG

⌉
=
⌊
cG′

detG + 1
2v1

⌋
=

[
2cG′+detG.v1−[(2cG′+detG.v1) mod (2 detG)]

2 detG

]
.

The most delicate operation is due to the modulo mod
(2 detG), which requires in RNS a particular attention. The
other operations can be directly implemented in RNS as is.

We note DG = (2detG).

A. Evaluation of [(2cG′ + (detG)v1) mod DG] in RNS

In this part, we consider the RNS bases B1 and B2 with

M1 =
∏
m∈B1

m and M2 =
∏
m∈B2

m. To compute a reduction of

the form a mod DG, the bases are selected such that |a|∞ <
M1×DG and 2DG < M2, assuming that DG is coprime with
the elements of B1 (which is generally the case, because detG
is frequently a prime number).

The modular reduction can be done in RNS using the
Montgomery algorithm [2]. The particularity of the approach
is that the reduced value is obtained multiplied by a factor
depending of the RNS base (in our case M−11 ). When some
values are fixed, G in our case, we can use precomputed
values to avoid this extra final factor M−11 . Thus, we let
denote by
G” = 2G′ ×M1 mod DG

(recall that G−1 is not integer, but G′ = (detG)G−1 is),
and v” = (M1 × detG)v1 mod DG.

The ”PreBabaı̈ROffrns” has two modes, the rns one which
gives the result on B1 and B2, and the one without option
which gives the result modulo β adapted to a cryptographic
context. This algorithm uses the Montgomery reduction in the
states 1 and 3 of the procedure. The state 1 computes q1
modulo M1 such that (a2 + DG × q2) gives a multiple of

M1, thus, in state 3, the division by M1 is equivalent to a
multiplication by its inverse. This last operation is possible
in the base B2, since M1 is coprime to M2. Thus, base
extensions are needed and correspond to states 2 and 4. Then,
we obtain the value r2 ≡ [(2cG′ + (detG)v1) mod DG], with
|r2|∞ < 2DG, which is converted in B1 or modulo β with
respect to the option.

Algorithm 1 PreBabaı̈ROff rns(option)
Input: a = c × G” + v”, a ∈ Zn given in the two bases B1

and B2, |a|∞ < M1 × DG, 2DG < M2, all the values
concerned by G are considered as precomputed.

Output: [(2cG′ + (detG)v1) mod DG] in B1 and B2 if (op-
tion = rns), else modβ.

1: q1 ← (−DG)
−1×a1 in B1 (in other words, the evaluation

is made modulo M1),
2: q2 ← q1 Extension1 from B1 to B2 of q1,
3: r2 ← (a2 +DG × q2)×M−11 in base B2,
hence r2 ≡ (2cG′ + (detG)v1) mod DG, with |r2|∞ < 2DG

4: Extension2 of r2 in B1 if rns else modulo β.

B. Analysis of the first extension

For Extension1 we need to extend q1 exactly. A first
solution could be to use an intermediate representation: Mixed
Radix System [23]. However it is costly to compute, be-
cause the transformation from RNS to MRS involves lots of
dependancies between intermediary results, which somehow
breaks the parallelization provided by RNS. So we can replace
steps 2 and 3 by an approach using extensions based on the
Chinese Remainder Theorem (CRT). Such extension is per-
formed as following: for a tuple of residues (x mod m)m∈B1

,
then x =

∑
m∈B1

∣∣∣(x mod m)×
∣∣M1

m

∣∣−1
m

∣∣∣
m
− αM1, where α ∈

[0, |B1|−1]. α can be computed in different ways. In particular,
it can be forgotten for first base extension [2] in algorithm
3. In this case, we propose a solution to reduce the final
result in [0, 2DG) (like for classical Montgomery reduction)
before applying second base extension. For that we use an
extra modulo m̂ to recover α.

(We recall that DG = (2 detG).)

Algorithm 2 Extension1Bis
Input: q1 in B1, a2 in B2 and am̂ = a mod m̂.
Output: r′2 ≡ aM−11 m̂−1 mod DG, r′2 < 2DG.

1: q2 ←
∑
m∈B1

∣∣∣∣∣q1,i
∣∣∣∣M1

mi

∣∣∣∣−1
mi

∣∣∣∣∣
mi

M1

mi
in B2,

qm̂ ←
∑
m∈B1

∣∣∣∣∣q1,i
∣∣∣∣M1

mi

∣∣∣∣−1
mi

∣∣∣∣∣
mi

M1

mi
mod m̂

2: r2 ← (a2 +DG × q2)×M−11 in B2 and
rm̂ ← (am̂ +DG × qm̂)×M−11 mod m̂,

3: q̂ ← (−DG)
−1rm̂ mod m̂

4: Extension of q̂ in B2 is just a duplication if m̂ is smaller
than all the elements of B2

5: r′2 ← (r2 +DG × q̂)× m̂−1 in base B2

In step 1, q2 = q1 + αM1, thus



r2 = (a2 +DG × q2)×M−11

= (a2 +DG × (q1 + αM1))×M−11

= (a2 +DG × q1)×M−11 + αDG

≡ am̂−1 mod DG.

Because size of base B1 has been chosen
such that a < M1 × DG, it is then clear that
(a+DG × q1)/M1 = (a2 +DG × q2)/M−11 modM2

= r2 < (2 + α)DG.
Hence we need to reduce it a second time. For that we use
the extra modulo m̂ and we apply a second Montgomery
reduction computing q̂, thus
r′2 ≡

(
a2 ×M−11

)
× m̂−1 mod DG with r′2 < 2DG when

m̂ > |B1|+ 1 ≥ 2 + α.

We replace M1 by M ′1 =M1×m̂. Hence, the precomputed
values become
G” = 2G′ ×M ′1 mod DG

and v” = (M ′1 × detG)v1 mod DG.

C. Analysis of the second extension

For the second base extension, we can use an extra modulo
m̂ with a Shenoy-Kumaresan approach [21]. But in this case,
we cannot extract any information about the comparison of
r′2 with DG. Thus, we obtain r′2 = (2cG′ + (detG)v1) mod
DG or [(2cG′+ (detG)v1) mod DG] +DG which is still not
satisfying for our purpose.

Hence, the second extension can be done in MRS which is
a positional number system. In this case, during the conversion,
a comparison with DG is possible and if necessary we subtract
DG.

D. Complete ”Round-Off” Closest Vector in RNS

Now, we come back to our problem which is to compute a
closest vector with round-off formula:

⌊
cG−1

⌉
×G. First we

give a new version of the PreBabaı̈ROff rns including the new
extension.

Algorithm 3 NewPreBabaı̈ROff rns(option)
Input: a = c × G” + v”, a ∈ Zn given in the bases B1, B2

and m̂, |a|∞ < M1 × DG, 2DG < M2, all the values
concerned by G are considered as precomputed.

Output: [(2cG′ + (detG)v1) mod DG] in B1 and B2 if (op-
tion = rns), else modβ.

1: q1 ← (−DG)
−1×a1 in B1 (in other words, the evaluation

is made modulo M1),
2: r′2 ← Extension1Bis(q1,B1,B2, m̂),
3: r̃2 ← r′2 conversion in mixed radix,
4: Comparison of r̃2 with (2 detG),
5: Extension of r̃2 in B1 if rns else modulo β,
6: Subtraction of DG if necessary.

NewPreBabaı̈ROff rns algorithm gives
⌊
cG−1

⌉
in bases

B1 and B2 or modulo β with respect to the option, with as
input a = c×G” + v” where G” = 2G′ ×M ′1 mod DG and
v” = (M ′1× detG)v1 mod DG. Thus we propose the follow-
ing procedure for computing the Closest Vector

⌊
cG−1

⌉
×G.

Algorithm 4 Babaı̈ROff rns(option)
Input: c ∈ Zn the ciphertext given in B1, B2 and m̂, all the

values concerned by G are considered as precomputed.
Output:

⌊
cG′

detG

⌉
, if (option = rns) then in the two RNS bases

B1 and B2, else modulo β (that is true for all the calculus
of this procedure).

1: a← c×G” + v” in B1, B2 and m̂,
2: b← NewPreBabaı̈ROff rns(a,B1,B2, m̂),
3: r ← (a− b)(2 detG)−1 in B1, B2 and m̂.

IV. OVERALL COMPLEXITY OF RNS ROUND-OFF CVP
METHOD

A. About the size of RNS bases B1 and B2
The main interest of RNS is that it allows to perform

computations on large integers independantly on residues
having a size which can be chosen and adapted to practical
considerations, e.g. in the case of implementation into some
embedded systems. A basic RNS product being composed of
independant modular products modulo each element of the
RNS base, these ones are chosen having a particuliar form
which guarantee efficient modular multiplications, e.g. 2t− ci
with ci < 2t/2 [6], [5]. Hence, the complexities of algorithms
are given in terms of numbers of elementary modular products.

In order to simplify analysis of algorithms and because it
provides more modularity for practical implementations, RNS
digits are considered having the same size in the two bases B1
and B2 required for RNS Montgomery reductions.

More precisely, since a = c × G” + v”, with G” and v”
reduced modulo DG, and because M1 must verify M1 >
|a|∞ /DG, then it sufficies to have M1 > ` × |c|∞ + 1.
Now, recalling that c = m + kH and that log(max |Hi,j |) ∈
O(log(detG)) (e.g. when H = HNF (G) with detG prime),
both sizes of B1 and B2 are identical, i.e. M1,M2 > DG. So
we will consider that |B1| = |B2| = k.

B. Complexity of Round-off step

a) Matrix multiplication approach for first extension:
Extension1Bis, based on CRT, can be seen as a matrix mul-
tiplication. Let’s denote q

(s)
i,j the j-th residue of qi for s-th

coefficient of vector a (i.e. i ∈ {1, 2}, j ∈ [1, k], s ∈ [1, `]),
m

(i)
j the j-th modulus of base Bi, Mi,j =

M1

m
(1)
i

mod m
(2)
j ,and

ξ
(s)
j =

∣∣∣q(s)1,jM
−1
1,j

∣∣∣
mj

. Then the first extension can be efficiently

reduced to the following matrix product:

 q
(1)
2,1 .. q

(1)
2,k

... ..
...

q
(`)
2,1 .. q

(`)
2,k

 =

 ξ
(1)
1 .. ξ

(1)
k

... ..
...

ξ
(`)
1 .. ξ

(`)
k

×( M1,1 .. M1,k

... ..
...

Mk,1 .. Mk,k

)

If k is chosen to be dividing `, i.e. ` = k × n, then the
product can be performed by using n optimised (and paralleliz-
able) Strassen’s like square matrix multiplications [22]. More
precisely, the complexity can be reduced to O(nk2+ε = `k1+ε)
multiplications (ε ∼ 0.8074 for Strassen’s technique), instead
of O(`k2) when ` standard CRT based extensions are done.



Other steps of Extension1Bis only require 4k` (resp. 3`)
multiplications in B2 (resp. modm̂).

b) Second extension: A bottleneck of classical Mont-
gomery reduction approach is that the obtained result is not
totally reduced. As seen before, it is still the case in RNS.
Hence a comparison between r′2 and DG must be performed
in order to correctly execute the rounding step of Babaı̈
CVP method, and to recover exaclty the original plaintext.
A solution is then to compute the coefficients of r′2 into
the MRS associated to base B2. This transformation needs
` × k(k−1)

2 multiplications for the whole vector r′2. Then, a
direct comparison between MRS coefficients of r′2 and DG is
possible, and a subtraction executed if necessary.

Associated to the use of Horner’s rule to compute the exact
result into B1 (resp. modβ), the second extension has a cost
of `× 3k(k−1)

2 (resp. `× (k+2)(k−1)
2 ) multiplications.

Comparing to first extension, we see that this MRS based
extension is a bottleneck for the RNS approach.

c) Complexity of algorithm 4: Steps 1 and 3 of the
Round-off algorithm 4 are just usual independant RNS op-
erations, each of them costing respectively (2k + 1)`2 and
(2k + 1)` multiplications.

The complexity of NewPreBabaı̈ROff rns algorithm is
determined by the necessity to get back to a positional number
system to perform a comparison. Although its complexity of
O(`k2) appears to be dominated by the one of vector-matrix
computations in step 1, these products can be performed in
a fully parallel way, contrary to MRS extensions which are
naturally sequential.

C. Complexity of full RNS Round-off CVP procedure

Because modulus β has been chosen such that 2×|m|∞ <
β, the round-off procedure just has to provide the value of
bcG−1e modulo β. Once we get it, it remains to multiply it to
G mod β and to subtract the product to the ciphertext in order
to recover the original plaintext m. This ultimate vector-matrix
product has then just a cost of `2 multiplications modβ.

Finally, we get an asymptotic complexity of O(k`2) ele-
mentary modular multiplications for a full decryption using
the proposed RNS method.

V. CONCLUSION

One interesting feature of this approach comes from the
formulae of the Extension1Bis which can be decomposed in
matrix products where some fast algorithms like the Strassen
one [22] can be used. The main drawback of the current
version is due to the necessity to compute exactly the result
of the NewPreBabaı̈ROff rns. The solution of using MRS is
not efficient, it would be more interesting to use a Shenoy-
Kumaresan approach where the formulae are similar to the
ones of Extension1Bis.
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