
Modular Multiplication in GF (pk) using
Lagrange Representation

Jean-Claude Bajard, Laurent Imbert, and Christophe Nègre

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
LIRMM – CNRS UMR 5506

161 rue Ada, 34392 Montpellier Cedex 5, France
{bajard,imbert,negre}@lirmm.fr

Abstract. In this paper we present a new hardware modular multiplica-
tion algorithm over the finite extension fields GF (pk) where p > 2k. We
use an alternate polynomial representation of the field elements and a La-
grange like interpolation technique. We describe our algorithm in terms
of matrix operations and point out some properties of the matrices that
can be used to improve the hardware design. The proposed algorithm is
highly parallelizable and seems well suited for hardware implementation
of elliptic curve cryptosystems.

Keywords: Finite fields, multiplication, cryptography, fast implementation.

1 Introduction

Cryptographic applications such as elliptic or hyperelliptic curves cryptosystems
(ECC, HECC) [1–3] and the Diffie-Hellman key exchange algorithm [4] require
arithmetic operations to be performed in finite fields. An efficient arithmetic in
these fields is then a major issue for lots of modern cryptographic applications [5].
Many studies have been proposed for the finite field GF (p), where p is a prime
number [6] or the Galois field GF (2k) [7–9]. In 2001, D. Bailey and C. Paar pro-
posed an efficient arithmetic in GF (pk) when p is a pseudo-Mersenne prime [10],
but although it could result in a wider choice of cryptosystems, arithmetic over
the more general finite extension fields GF (pk), with p > 2, has not been exten-
sively investigated yet. Moreover it has been proved that elliptic curves defined
over GF (pk) – where the curves verify the usual conditions of security – provide
at least the same level of security than the curves usually defined over GF (2k)
or GF (p).

This paper introduces a Montgomery like modular multiplication algorithm
in GF (pk) for p > 2k. Given the polynomials A(X) and B(X) of degree less
than k, and G(X) of degree k (we will give more details on G(X) in section 3),
our algorithm computes A(X) × B(X) × G(X)−1 mod N(X), where both the
operands and the result aregiven in an alternate representation.

In the classical polynomial representation, we consider the field elements of
GF (pk) as polynomials of degree less than k in GF (p)[X] and we represent the



field with respect to an irreducible polynomial N(X) of degree k over GF (p). Any
element A of GF (pk) is then represented using a polynomial A(X) of degree k−1
or less with coefficients in GF (p), i.e., A(X) = a0 +a1x+ · · ·+ak−1x

k−1, where
ai ∈ {0, . . . , p−1}. In this paper we consider an alternate solution which consists
of representing the polynomials with their values at k distinct points instead of
their k coefficients. As a result, if we choose k points (e1, e2, . . . , ek), we repre-
sent the polynomial A(X) with the sequence (A(e1), A(e2), . . . , A(ek)). Within
this representation addition, subtraction and multiplication are performed over
completely independent channels which is a great advantage from a chip design
viewpoint.

2 Montgomery Multiplication in GF (pk)

In 1985, Peter Montgomery proposed an integer reduction algorithm that can be
easily extended to modular multiplication of large integers [11]. This method has
recently been adapted to modular multiplication in GF (2k) (defined according
to the k-order polynomial Xk) [7] and extend easily to GF (pk), with p > 2.

As in [7], we represent the field GF (pk) with respect to the monic irre-
ducible polynomial N(X) and we consider the field elements as polynomials
of degree less than k in GF (p)[X]. If A(X) and B(X) are two elements of
GF (pk), Montgomery’s multiplication technique is used to compute A(X) ×
B(X)×X−k mod N(X). We successively evaluate:

Q(X) = −A(X) B(X)N(X)−1 mod Xk

R(X) = [A(X) B(X) + Q(X) N(X)]×X−k

2.1 Implementation

Let us denote

A(X) = a0 + a1X + a2X
2 + ... + ak−1X

k−1

B(X) = b0 + b1X + b2X
2 + ... + bk−1X

k−1

N(X) = n0 + n1X + n2X
2 + ... + nk−1X

k−1 + Xk

N−1(X) = n′
0 + n′

1X + n′
2X

2 + ... + n′
k−1X

k−1

The reduction modulo Xk can be accomplished by ignoring the terms of order
larger than or equal to k. Division by Xk simply consists of shifting the poly-
nomial to the right by k places. These operations are easily integrated in the
matrix operations and the computations are then decomposed as follow:

Q(X) = −


n′

0 0 ... 0 0
n′

1 n′
0 ... 0 0

...
n′

k−2 n′
k−3 ... n′

0 0
n′

k−1 n′
k−2 ... n′

1 n′
0




a0 0 ... 0 0
a1 a0 ... 0 0
...

ak−2 ak−3 ... a0 0
ak−1 ak−2 ... a1 a0




b0

b1

...
bk−2

bk−1

 .



The evaluation of R(x) then rewrites R(X) =

0 ak−1 . . . a2 a1

0 0 . . . a3 a2

...
0 0 . . . ak−1 ak−2

0 0 . . . 0 ak−1

0 0 . . . 0 0





b0

b1

...
bk−3

bk−2

bk−1


+



1 nk−1 . . . n2 n1

0 1 . . . n3 n2

...
0 0 . . . nk−1 nk−2

0 0 . . . 1 nk−1

0 0 . . . 0 1





q0

q1

...
qk−3

qk−2

qk−1


The last row ensures that R(X) is given with k coefficients. In terms of ele-
mentary operations over GF (p), the complexity of this method is: k2 + (k− 1)2

multiplications and (k− 1)2 + (k− 2)2 + k additions. Furthermore, we can note
that if p < 512, elementary operations over GF (p) can be implemented with a
lookup table.

3 Alternate polynomial representation

Thanks to Lagrange’s theorem, we can represent polynomials of degree less than
k with their values at k distinct points {e1, e2, . . . , ek}, i.e., if A(X) is a poly-
nomial of degree at most k − 1, we denote aei = A(ei) and we represent it with
the sequence (ae1, ae2, . . . , aek) (length k). Unlike the previous approach which
uses the polynomial G(X) = Xk, we define

G(X) = (X − e1)(X − e2) . . . (X − ek), (1)

where ei ∈ {0, 1, . . . , p− 1}. This clearly implies p > k. As we shall see further,
2k such distinct points are actually needed, which in turn implies p > 2k. The
following algorithm computes A(X)×B(X)×G−1(X) mod N(X) for p > 2k.

Algorithm 1
Step 1: Define the polynomial Q(X) of degree less than k such that:

Q(X) =
[
−A(X)×B(X)×N−1(X)

]
mod G(X),

in other words, we compute in parallel (in GF (p))

Q(x) =
[
−A(x)×B(x)×N−1(x)

]
for x ∈ {e1, e2, . . . , ek}.

Step 2: since [A(X)×B(X) + Q(X)×N(X)] is a multiple of G(X), we compute
R(X) (of degree less than k) such that

R(X) =
[
A(X) B(X) + Q(X) N(X)

]
×G−1(X)

In algorithm 1 it is important to note that it is impossible to evaluate
R(X) directly as mentioned in step 2. Since we only know the values of the



polynomials A(X), B(X), Q(X), N(X) and G(X) for X ∈ {e1, e2, . . . , ek}, it
is clear that the sequences representing [A(X)×B(X) + Q(X)×N(X)] and
G(X) are merely composed of 0. Thus the division by G(X), which actually
reduces to the multiplication by G−1(X), has no effect. We address this prob-
lem by using k extra values {e′1, e′2, . . . , e′k} where e′i 6= ej for all i, j, and by
computing [A(X)×B(X) + Q(X)×N(X)] and G(X) for those extra values.
In the modified algorithm 2, the operation in step 2 is then performed for
X ∈ {e′1, e′2, . . . , e′k}.

Algorithm 2
Step 1 Compute Q(X) = −A(x)×B(x)×N−1(x) for x ∈ {e1, e2, . . . , ek} (in parallel),
Step 2 Extend Q(X) for x ∈ {e′1, e′2, . . . , e′k} using Lagrange interpolation,
Step 3 Compute R(X) in {e′1, e′2, . . . , e′k}

R(X) =
[
A(X) B(X) + Q(X) N(X)

]
×G−1(X),

Step 4 Extend R(X) back in {e1, e2, . . . , ek} using Lagrange interpolation.

Steps 1 and 3 are fully parallel operations in GF (p). The complexity of
algorithm 2 mainly depends on the two polynomial interpolations (steps 2, 4).

3.1 Implementation

In step 1 we compute in GF (p) and in parallel for all i in {1, . . . , k}

qei = −aei × bei × n′ei,

where n′ei = N−1(ei).
Then in step 2, the extension is performed via Lagrange interpolation:

Q(X) =
k∑

i=1

qei

 k∏
j=1,j 6=i

X − ej

ei − ej

 (2)

If we denote ωt,i =
∏k

j=1,j 6=i

e′t − ej

ei − ej
, the extension of Q(X) in {e′1, e′2, . . . , e′k}

becomes 
qe′1
qe′2
...

qe′k−1

qe′k

 =


ω1,1 ω1,2 . . . ω1,k−1 ω1,k

ω2,1 ω2,2 . . . ω2,k−1 ω2,k

...
ωk−1,1 ωk−1,2 . . . ωk−1,k−1 ωk−1,k

ωk,1 ωk,2 . . . ωk,k−1 ωk,k




qe1

qe2

...
qek−1

qek

 (3)



Operations in step 3 are performed in parallel for i in {1, . . . , k}. We compute
in GF (p)

re′i = (ae′i ∗ be′i + qe′i ∗ ne′i) ∗ ζi

where

ζi =

 k∏
j=1

(e′i − ej)

−1

= [G(e′i)]
−1 mod p.

It is easy to remark that G(e′i) 6= 0 for i in {1, . . . , k}.
At the end of step 3, the polynomial R(X) of degree less than k is defined

by its k values in GF (p) for X ∈ {e′1, e′2, . . . , e′k}.
In step 4 we extend R(X) back in e. As in step 2 we define

ω′
t,i =

k∏
j=1,j 6=i

et − e′j
e′i − e′j

,

and we compute


re1

re2

...
rek−1

rek

 =


ω′

1,1 ω′
1,2 . . . ω′

1,k−1 ω′
1,k

ω′
2,1 ω′

2,2 . . . ω′
2,k−1 ω′

2,k
...

ω′
k−1,1 ω′

k−1,2 . . . ω′
k−1,k−1 ω′

k−1,k

ω′
k,1 ω′

k,2 . . . ω′
k,k−1 ω′

k,k




re′1
re′2
...

re′k−1

re′k

 (4)

Complexity In terms of elementary operations, the complexity of this method
is 2k2 multiplications by a constant and 2k(k − 1) additions in GF (p).

4 Example

Let us first define the constant parameters. We consider the finite field GF (235)
according to the irreducible polynomial of degree 5: N(x) = x5 + 2x + 1, the
two sets of points e = {2, 4, 6, 8, 10} and e′ = {3, 5, 7, 9, 11}, the interpolation
matrices needed in steps 2 and 4:

ω =


8 9 7 11 12
12 17 14 2 2
2 2 14 17 12
12 11 7 9 8
8 18 22 19 3

 and ω′ =


3 19 22 18 8
8 9 7 11 12
12 17 14 2 2
2 2 14 17 12
12 11 7 9 8

 ,

and the vector ζ = (16, 1, 22, 7, 12) used in step 3.



Given the two elements A(X) and B(X) of GF (235):

A(x) = 2x4 + x + 3 B(x) = x2 + 5x + 4,

we aim at computing R(X) = A(X)B(X)G−1(X) mod N(X) in the evaluated
form re = (R(e1), R(e2), . . . , R(ek)).

We evaluate A, B and N at each value of e and e′:

ae = (14, 13, 2, 15, 3) and ae′ = (7, 16, 5, 1, 17),

be = (18, 17, 1, 16, 16) and be′ = (5, 8, 19, 15, 19),

ne = (14, 21, 15, 10, 17) and ne′ = (20, 8, 9, 4, 5);

and we compute the vector

n′e = (5, 11, 20, 7, 19).

In step 1 of the algorithm we compute

qe = (5, 7, 6, 22, 8),

and we extend it in step 2 from e to e′ (eq. (3)):

qe′ = (0, 1, 3, 4, 4).

Now in step 3, we evaluate in parallel for each value of e′:

re′ = (8, 21, 16, 10, 22),

and we interpolate it back (eq. (4)) to obtain the final result in e:

re = (4, 3, 5, 3, 15).

It is easy to verify that the results re and re′ are correct by evaluating

R(X) = A(X)B(X)G−1(X) mod N(X) = 3X4 + 17X3 + 11X2 + 6X + 17

at each points of e and e′.

5 Discussions

5.1 Simplified architecture

A major advantage of this method is that the matrices in (3) and (4) do not
depend on the inputs. Thus, all the operations reduce to multiplications by
constants which significantly simplify the hardware implementation. Moreover,
in the example presented in section 4, we have detected symmetries between the
two matrices that can also contribute to a simplified architecture.



Lemma 1. Let us denote

ωi,j =
k∏

m=1,m 6=j

2i + 1− 2m

2j − 2m
and ω′

i,j =
k∏

m=1,m 6=j

(2i + 1− (2m + 1))
(2j + 1− (2m + 1))

, (5)

for i, j ∈ {1, . . . , k}. Then for every i, j ∈ {1, . . . , k} we have

ωi,j = ω′
k+1−i,k+1−j .

In other words equation (4) can be implemented with the same matrix than
eq. (3), by simply reversing the order of the elements of the vectors re and re′:

rek

rek−1

...
re2

re1

 =


ω1,1 ω1,2 . . . ω1,k−1 ω1,k

ω2,1 ω2,2 . . . ω2,k−1 ω2,k

...
ωk−1,1 ωk−1,2 . . . ωk−1,k−1 ωk−1,k

ωk,1 ωk,2 . . . ωk,k−1 ωk,k




re′k

re′k−1
...

re′2
re′1

 (6)

The proof of Lemma 1 is given in Appendix A.

Lemma 2. Under the same conditions than those of equations (5) in Lemma 1
; then, for all i ∈ {2, . . . , k}, j ∈ {1, . . . , k} we have the identity

ω′
i,j = ωi−1,j .

ω′
1,1 ω′

1,2 . . . ω′
1,k−1 ω′

1,k

ω′
2,1 ω′

2,2 . . . ω′
2,k−1 ω′

2,k
...

ω′
k−1,1 ω′

k−1,2 . . . ω′
k−1,k−1 ω′

k−1,k

ω′
k,1 ω′

k,2 . . . ω′
k,k−1 ω′

k,k

 =


ωk,k ωk,k−1 . . . ωk,2 ωk,1

ω1,1 ω1,2 . . . ω1,k−1 ω1,k

...
ωk−2,1 ωk−2,2 . . . ωk−2,k−1 ωk−2,k

ωk−1,1 ωk−1,2 . . . ωk−1,k−1 ωk−1,k


The proof of Lemma 2 is given in Appendix B.

Remarks These two lemmas point out symmetry properties of the matrices
that mainly depend on the choice made in the example for the points of e and
e′. The can be taken into account to improve the hardware architecture. Other
choice of points could be more interesting and could result in very attractive
chip design solutions. It is currently a work in progress in our team.

5.2 Cryptographic context

In ECC, the main operation is the addition of two points of an elliptic curve over
a finite field. Hardware implementation of elliptic curves cryptosystems thus re-
quires efficient operators for additions, multiplications and divisions. Since divi-
sion is usually a complex operation, we use homogeneous coordinates to bypass
this difficulty (only one division is needed at the very end of the algorithm).



Thus the only operations are addition and multiplication in GF (p). The cost
of an addition over GF (p) is no more than p Full-Adders. Actually we do not
have to reduce modulo p after each addition. We only subtract p from the result
of the last addition if it is greater than 2dlog2(p)e (we recall that p is odd). In
other words we just have to check one bit after each addition. The exact value
is only needed for the final result.

In ECC protocols, additions chains of points of an elliptic curve are needed.
In homogeneous coordinates, those operations consist in additions and multi-
plications over GF (pk). Only one division is needed at the end and it can be
performed in the Lagrange representation using the Fermat-Euler theorem which
states that for all non zero value x in GF (pk), then xpk−1 = 1. Hence we can
compute the inverse of x by computing xpk−2 in GF (pk).

It is also advantageous to use a polynomial equivalent to the Montgomery
notation during the computations. We consider the polynomials in the form
A′(X) = A(X)×G(X) mod N(X) instead of A(X). It is clear that adding two
polynomials given in this notation gives the result in the same notation, and
for the product, since Mont(A,B, N) = A(X)×B(X)×G−1(X) mod N(X), we
have Mont(A′, B′, N) = A′(X)×B′(X)×G−1(X) mod N(X) = A(X)×B(X)×
G(X) mod N(X).

6 Conclusion

Recent works from Bailey and Paar have shown that it is possible to obtain more
efficient software implementation over GF (pk) than over GF (2k) or GF (p). In
this article we have presented a new modular multiplication algorithm over the
finite extension field GF (pk), for p > 2k, which is highly parallelizable and well
adapted to hardware implementation. Our algorithm is particularly interesting
for ECC since it seems that there exists less nonsingular curves over GF (pk) than
over GF (2k). Finding ”good” curves for elliptic curve cryptography would then
be easier. Furthermore, under the condition ”k is a power of a prime number q >
11”, the primality condition on k required for the fields GF (2k) could be released
in the case GF (pk). This could result in a wider choice of curves than in the
case p = 2. This method can be extended to finite fields on the form GF (2nm),
where 2n > 2m. Fields of this form can be useful for the recent tripartite Diffie-
Hellamn key exchange algorithm [12] or the short signature scheme [13] which
require an efficient arithmetic over GF (pkl), where 6 < k 6 15 and l is a prime
number greater than 160. In this case p = 2n is no longer a prime number which
forces us to choose the values of e and e′ in GF (2n)∗.

References

1. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987)
203–209

2. Koblitz, N.: A Course in Number Theory and Cryptography. second edn. Volume
114 of Graduate texts in mathematics. Springer-Verlag (1994)



3. Koblitz, N.: Algebraic aspects of cryptography. Volume 3 of Algorithms and com-
putation in mathematics. Springer-Verlag (1998)

4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22 (1976) 644–654

5. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA
(1997)

6. Yanik, T., Savaş, E., Ç. K. Koç: Incomplete reduction in modular arithmetic. IEE
Proceedings: Computers and Digital Technique 149 (2002) 46–52

7. Ç. K. Koç, Acar, T.: Montgomery multiplication in GF(2k). Designs, Codes and
Cryptography 14 (1998) 57–69

8. Halbutoǧullari, A., Ç. K. Koç: Parallel multiplication in GF(2k) using polynomial
residue arithmetic. Designs, Codes and Cryptography 20 (2000) 155–173

9. Paar, C., Fleischmann, P., Roelse, P.: Efficient multiplier architectures for galois
fields GF(24n). IEEE Transactions on Computers 47 (1998) 162–170

10. Bailey, D., Paar, C.: ”efficient arithmetic in finite field extensions with application
in elliptic curve cryptography. Journal of Cryptology 14 (2001) 153–176

11. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44 (1985) 519–521

12. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: 4th International
Algorithmic Number Theory Symposium (ANTS-IV. Volume 1838 of Lecture Notes
in Computer Science., Springer-Verlag (2000) 385–393

13. Boneh, D., Shacham, H., Lynn, B.: Short signatures from the Weil pairing. In:
proceedings of Asiacrypt’01. Volume 2139 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 514–532



A Proof of Lemma 1

We are going to rearrange each part of the equality, to make appear the identity.

We first focus on the right part of the identity:

ω′
k+1−i,k+1−j =

∏k
m=1,m 6=k+1−j

(2(k + 1− i)− (2m + 1))
(2(k + 1− j) + 1− (2m + 1))

=
∏k

m=1,m 6=k+1−j

(−2i + 2(k + 1−m)− 1)
(−2j + 1 + 2(k + 1−m)− 1)

Here we have just changed the place of k + 1 in each term of the product.
Next just by simplifying each fraction by −1, and factorizing all the 2 in the
denominators, we get:

ω′
k+1−i,k+1−j = 21−k

∏k
m=1,m 6=k+1−j

(2i− 2(k + 1−m) + 1)
(j − (k + 1−m))

= 21−k
∏k

m=1,m 6=j

(2i + 1− 2m)
(j −m)

Here we have changed the indices m← k + 1−m.

We now do the same procedure with the left term.

ωi,j =
∏

m=1,m 6=j

2i + 1− 2m

2j − 2m

We factorize the 2 in the denominators:

ωi,j = 21−k
∏

m=1,m 6=j

(
2i + 1− 2m

j −m
)

We can then conclude that the new expressions of ωi,j and ω′
k+1−i,k+1−j are

the same.

B Proof of Lemma 2

Here again, this is proved with only simple manipulations on the coefficients.
Let us begin with the expression of ωi−1,j

ωi−1,j =
∏k

m=1,m6=j

2(i− 1) + 1− 2m

2j − 2m

=
∏k

m=1,m6=j

2i− 1− 2m

2j + 1− 1− 2m



Here we have just used the equalities 2(i−1)+1 = 2i−1 in the numerators and
0 = 1− 1 in the denominators. So rearranging, each factor of the product, gives:

ωi−1,j =
∏k

m=1,m6=j

2i− (2m + 1)
((2j + 1)− (2m + 1))

= ω′
i,j


