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Abstract— This paper deals with a new approach for Infinite
Impulse Response (IIR) Filter based on specific structure and
arithmetic.
The ρ-Direct Form II transposed, introduced by G. Li [1], is an
numerically efficient structure for FIR or IIR filters. Compared to
classical direct forms it uses more computations but less bits are
necessary for the same precision. These properties made it well
conditioned for fixed point arithmetic and its implementations are
economical and numerically efficient comparing to other forms.
In other hand, Residue Number Systems (RNS) offer an interest-
ing parallelism where operations are made on small values. RNS
are well known for improving the performances of DSP filters.
We compare our RNS approach to fixed point implementations
of DFII and ρ-DFIIt.

I. INTRODUCTION

The use of residue number systems (RNS) [4] in digital
signal processing has widely been studied [2]. The carry free
and parallelism properties of this number system make it
adapted to digital signal processing applications, where most
of computations are additions and multiplications. Thus, many
finite impulse response filter designs (FIR) using RNS have
been proposed [5], [3].

However, infinite impulse response (IIR) filters are more
representative of classical signal processing and are widely
used in control applications. They are generally smaller but
require to scale intermediate values during the processing.
Equivalent forms of IIR filter having different precision re-
quirements can be designed [1], [8].

In this paper a comparison of two forms of recursive filter
and their implementation using fixed point arithmetic and
residue number system is presented. We describe in section
II the two forms chosen for this comparison. The residue
numbers system and details on the scaling operation are
developed in section III. The implementation of an example
is detailed in section IV.

II. ρ DIRECT FORM II TRANSPOSED

An IIR filter is defined by its transfer function

h : z 7→ b0 + b1z
−1 + . . .+ bn−1z

−n+1 + bnz
−n

1 + a1z−1 + . . .+ an−1z−n+1 + anz−n
(1)

that describes its signal processing characteristics (specially
the argument and the magnitude of

∣∣h (ejω)∣∣ with ω ∈ [0, 2π])
and the input-output relationship, since Y(z) = h(z)U(z),
where Y and U are the Z-transform of the output y(k) and
input u(k), respectively. The z−1 operator describes the time-
shift operator (delay).

Transposed in time-domain, the output of such a filter is
computed from the input by the following equation (called
Direct Form I (DFI)) :

y(k) =
n∑
i=0

biu(k − i)−
n∑
i=1

aiy(k − i) (2)

But some other algorithms (or realizations) can also be used.
State-space filters and their cascade and parallel decomposi-
tions are often used.
It is very interesting to notice that the Finite Word-Length
(FWL) effects are strongly dependent on the realization cho-
sen. Some criteria have been developed to evaluate the round-
off noise power [6] and how much the transfer function and the
pole are modified by the quantization of the coefficients [7],
[8]. The optimal realization problem consists then in finding
the realization that minimize these FWL effects.

Li and Hao [9], [10], [1] have presented a new sparse
structure called rho-Direct Form II transposed (ρDFIIt). This
is a generalization of the transposed direct-form II structure
where the conventional time-shift operation (x(k)→ x(k+1))
is changed in new operators ρ. It is a sparse realization (with
3n + 1 parameters when n is the order of the controller),
leading so to an economic (few computations) implementation
that could be very numerically efficient. As we will see later,
this realization has n extra degrees of freedom that can be
used to find an optimal realization.

Let us define

ρi : z 7→ z − γi
∆i

, and %i : z 7→
i∏

j=1

ρj(z), 1 ≤ i ≤ n (3)

where (γi)1≤i≤n and (∆i > 0)1≤i≤n are two sets of constants.
The idea behind the ρDFIIt is to reparametrized the

transfer function with (αi)1≤i≤n and (βi)0≤i≤n as follows:

h(z) =
β0 + β1%

−1
1 (z) + . . .+ βn−1%

−1
n−1(z) + βn%

−1
n (z)

1 + α1%
−1
1 (z) + . . .+ αn−1%

−1
n−1(z) + αn%

−1
n (z)

(4)
and to use a classical transposed Direct Form II (see Figure 1),
where each operator ρ−1

i is implemented as shown in Figure
2 (the

(
%−1
i

)
are obtained by cascading the

(
ρ−1
i

)
). The (αi)

and (βi) can be directly computed from the (ai), (bi), (γi)
and (∆i) (see [9] for details).

The (γi)1≤i≤n and (∆i)1≤i≤n are parameters that can be
freely chosen. They are used to minimize the L2 transfer
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Fig. 1. Generalized ρ Direct Form II
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Fig. 2. Realization of operator ρ−1
i

function sensitivity and the roundoff noise gain [9], [8] and
greatly improve the overall numerical robustness.

III. RESIDUE NUMBER SYSTEM IMPLEMENTATION

A. Introduction to RNS

A Residue Number System is defined by a base of co-prime
numbers {m1, ...,mn}, and allows to represent integers lower

than M =
n∏
i=1

mi with their residues modulo mi. Thus, A <

M is represented by (a1, ..., an) with, ai = |A|mi = A mod
mi.

In these systems, operations like additions or multiplications
are modular operations independently performed on each mod-
ulus (also called channel), and the result is given modulo M .
Thus, calculus are distributed on small values and computed
in parallel. Summation of products, as in DSP filters, are
welcome for this numeration system.

However, the magnitude and the parity of a RNS number
can not be obtained easily. As a consequence, general division
and scaling remain costly operations compared to additions
and multiplications: a conversion, or a partial conversion into a
radix system is generally necessary. The conversion from RNS
to binary uses the Chinese Remainder Theorem reconstruction
(close to Lagrange interpolation), or the Mixed Radix System
(MRS) which looks like Newton interpolation. We depict here
the MRS version used in this paper. In this algorithm, the
digits ζi of a mixed radix number AMRS are computed from
the residues ai of a RNS number A and where the modular
inverse of mi modulo mj is noted m−1

i mod mj .
8>>>>>>>>>>>>><>>>>>>>>>>>>>:

ζ1 = a1

ζ2 = (a2 − ζ1) m−1
1 mod m2

ζ3 =
“
(a3 − ζ1) m−1

1 − ζ2
”
m
−1
2 mod m3

.

.

.

ζn =
“
. . .

“
(an − ζ1) m−1

1 − ζ2
”
m
−1
2 − · · · − ζn−1

”
m
−1
n−1 mod mn.

(5)

We just have to evaluate A in the wished radix system with
the Horner’s scheme :
A = (. . . ((ζnmn−1 + ζn−1) mn−2 + · · ·+ ζ3) m2 + ζ2) m1 + ζ1. (6)

B. Scaling and fixed-point representation in RNS

In this paper, we deal with DSP filter based on fixed point
notation (Algorithms 2 and 1), using RNS arithmetic. The
computations are performed using integer with scaling func-
tion for maintaining the fixed position of the dot. Additions
and multiplications are directly performed in RNS. The impact
of the scaling in RNS can be soften by choosing an RNS base
simplifying this operation. Thus, we consider bases (where
elements are co-prime) of the form: B := (2k ± ci, i = 1..n)
[11] and an auxiliary element m0 = 2k. We assume that the
precision required for the accumulation register is lower than
M =

∏n
i=1mi. The ci are selected such that the mixed radix

conversion is done only with few shift and add operations.
Scaling: Let consider the RNS number X =

(x1, · · · , xn) and the integer scaling factor T = 2t. We want
to compute Y = bXT c, which is equivalent to : Y = X−|X|T

T
As the exact division by an integer T is performed RNS by
multiplying by its modular inverse |T |−1

M , we compute:

|Y |M =
∣∣(X − |X|T )× |T |−1

M

∣∣
M

(7)

The value of |X|T is obtained, for each channel of the residue
system, directly from the auxiliary residue modulo m0 for
t < k. Hence, if T < mi and t < k, we have:

|X|T =
∣∣|X|m0

∣∣
T

=
∣∣|X|T ∣∣mi (8)

However, as computing equation (7) is not possible for m0,
the modular inverse of 2t modulo 2k does not exist. Thus, the
construction of |Y |m0 requires a partial conversion using the
MRS scheme.

Finally, the scaling operation A >> t for t ≤ k, is
performed as follow :

1) r ← a0 mod 2t

2) for i = 1 to n do ai ← (ai − r)× (2−t mod mi)
3) MR conversion (ζ1, ζ2, ..., ζn)← (a1, a2, ..., an)
4) a0 ← ((ζnmn−1 + ...+ ζ3)m2 + ζ2)m1 + ζ1 mod 2k

IV. EXAMPLE

We are considering a 6th-order Butterworth filter,
which transfer function is given by the matlab command
butter(6,0.125) (see eq. 9).

h(z) =
10−5(2.883z6 + 17.30z5 + 43.24z4 + 57.65z3 + 43.24z2 + 17.30z + 2.883)

z6 − 4.485z5 + 8.529z4 − 8.779z3 + 5.148z2 − 1.628z + 0.2166
(9)

We also consider two different realizations, the Direct Form
I, that directly uses the transfer function coefficients and the
ρDFIIt, presented in section II, which parameters (γi) and
(∆i) have been optimized to minimize the Finite Wordlength
effects [8].

In order to be implemented, the coefficients should be
replaced by their fixed-point approximations. The figure 3
exhibits the difference between the transfer function h and
its fixed-point version h† in function of the coefficients’
wordlength. It is interesting to notice that the ρDFIIt form
requires at least 5 bit-coefficients to approximate the ideal
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Fig. 3. Relative difference between the ideal transfer function and the fixed-
point implemented transfer function

transfer function, whereas 15 bit-coefficients are required in
Direct Form I (Fig. ??).

A. Implementation

In order to simplify both modular operations on each
channel and the conversion, the residue base {m0 = 2k,m1 =
2k−1,m2 = 2k+1} is used here. Thus for the reconstruction
after the scaling using the MRS scheme is :

x0 =
∣∣∣x2 +

∣∣(x1 − x2)× 2k−1
∣∣
2k−1

× (2k + 1)
∣∣∣
2k

(10)

Let note X2 = (x1 − x2), and split the binary representation
of this value in to sets X2,0 and X2,1 so that :

X2 = 2×X2,1 +X2,0

Equation (10) can be rewritten as follow :

x0 =
∣∣x2 +X2,0 × 2k−1 +X2,1

∣∣
2k

(11)

The two structures have both been implemented on FPGA,
using fixed-point arithmetic and RNS. The designs have
been described in VHDL, targeting the Xilinx Virtex4 FPGA
familly. The designs have been synthetized, placed and routed
using the Xilinx ISE design suite. For the RNS implementa-
tions, we used the modular adders described in [12].

Direct Form I

This realization is given by the fixed-point algorithm 2, with
18-bit coefficients, 18-bit variables and 36-bit additions. The
constant multiplications are performed by shifts and additions
[13], [14]. The same multiplication scheme is used in fixed
point and RNS implementations. RNS version uses the base
{4096, 4095, 4097}, with k = 12.

ρDirect Form II transposed

This realization for fixed point requires only 5-bit coeffi-
cients, 10-bit variables and 15-bit additions. The fixed-point
algorithm is given by algorithm 1. The RNS version uses the
base {32, 31, 33}, with k = 5. Because the size of the moduli
is small, we implemented the multiplications with lookup-
tables.

B. Results

The delay and area of the implemented designs are summa-
rized in table I. Firstly, it appears that despite more additions
and multiplications, both the RNS and fixed point ρDFIIt
outperform the DFI realization with the same arithmetic. This
gain is due to the small size of the operands in the ρDFIIt
algorithm. This small size allows to choose a small RNS base
and thus to tabulate the constant multipliers, reducing the size
of the RNS implementation by 13%.

Secondly, the RNS designs appear to be larger and slower
than fixed point designs. We observe that the FPGA tech-
nology gives little benefit to RNS operators. Indeed, in this
technology, the fastest and smallest adders are ripple carry
adders. More preciselly, Xilinx architecture provides a fast
carry propagation mechanism which makes this kind of adder
efficient.

As a consequence, splitting adders into three smaller adders
working in parallel gives no reduction on the overall size,
making RNS adders larger than binary adders. Furthermore,
the carry propagation logic is so fast, that the size of the input
size has a reduced impact on the delay. For instance, the delay
of a 5-bit adder is 6.6ns while it is 7.1ns for a 15-bit adder.
Thus, the gain expected on the delay by reducing the operand
size with RNS arithemtic is quite null.

Finally, the scaling operation in RNS has a cost similar to
a RNS addition. However, it has an important impact on the
size and the delay of the RNS designs.

delay (ns) area (slices)

DFI fixed-point 20.61 1071
RNS 54.76 3405

ρDFIIt
fixed-point 16.37 206
RNS tables 16.63 936

TABLE I
DELAY AND SIZE

C. Remark

It is also possible to consider the following four elements
base [15]:

B := (2k−1, 2k+1, 2k−2k−r−1, 2k−2k−r+1) and m0 = 2k

(12)
For example, when k = 5 and r = 2, we obtain B :=

(31, 33, 23, 25), with M = 588225 > 219 and m0 = 25. The
inverses of the moduli relatively the others and the inverses of
some power of two allow multiplications reduced to at most
two additions (Table II). Note that 1..1 = 10..0(−1). This
RNS base seems to be suitable for the Algorithm 2.

Then, for k = 3, we can consider the RNS base B =
(5, 9, 7, 11) with M = 3465 > 211 and m0 = 23. Here clearly
look-up tables are welcome. With this kind of implementation
we can expect an interesting gain, both in terms of time and
area. This approach will be developed in detail in further
works.



m1 m2 m3 m4

(m1)
−1 10000 11 10101

(m2)
−1 10000 111 10110

(m3)
−1 11011 10111 1100

(m4)
−1 11011 100 1100

(21)−1 10000 10001 1100 1101
(22)−1 1000 11001 110 10011
(23)−1 100 11101 11 10110
(24)−1 10 11111 1101 1011
(25)−1 1 100000 10010 10010

TABLE II
BINARY REPRESENTATION OF THE INVERSES

V. DISCUSSION

The ρDirect Form II transposed which gives smaller and
faster filter designs in fixed point arithmetic, is also very inter-
esting in RNS. Our first experimentations with non optimized
operators, give some hopeful results concerning the delay (Tab.
I). About the area some improvements are expected, such
as an implementation with four moduli that should be more
appropriate.

If we consider the RNS implementation of FIR [3], we
note that the use of very small moduli seems to be a good
strategy. We observe that FIR does not need scaling operations
as for IIR. In RNS the impact of this operation is very
important. It may be interesting to find some scaling methods
for residue bases having more moduli, so that some part of
the computations may be tabulated.

Actually, the FPGA technology seems not really appropriate
for RNS implementations of IIR, compared to binary designs.
We are confident that CMOS technology may give more
interesting results.
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Input: u(k): 10-bit integer
Output: y(k): 10-bit integer
Data: x(k): array [1..6] of 10-bit integers
Data: Acc: 15-bit integer
begin

// Intermediate variables
// States
Acc ← (x1(k) ∗ −15) >> 3;
Acc ← Acc + x2(k) << 2;
Acc ← Acc + x1(k) ∗ 14;
Acc ← Acc + ((u(k) ∗ 10) >> 12);
x1(k + 1) ← Acc >> 4;
Acc ← (x1(k) ∗ −10);
Acc ← Acc + (x3(k) << 3);
Acc ← Acc + (x2(k) ∗ 13);
Acc ← Acc + ((u(k) ∗ 11) >> 8);
x2(k + 1) ← Acc >> 4;
Acc ← (x1(k) ∗ −15) >> 4;
Acc ← Acc + (x4(k) << 3);
Acc ← Acc + (x3(k) ∗ 12);
Acc ← Acc + ((u(k) ∗ 12) >> 6);
x3(k + 1) ← Acc >> 4;
Acc ← (x1(k) ∗ −12) >> 3;
Acc ← Acc + (x5(k) << 2);
Acc ← Acc + (x4(k) ∗ 12);
Acc ← Acc + (u(k) >> 1);
x4(k + 1) ← Acc >> 4;
Acc ← (x1(k) ∗ −9) >> 4;
Acc ← Acc + (x6(k) << 1);
Acc ← Acc + (x5(k) ∗ 11);
Acc ← Acc + ((u(k) ∗ 11) >> 3);
x5(k + 1) ← Acc >> 4;
Acc ← (x1(k) ∗ −15) >> 5;
Acc ← Acc + (x6(k) ∗ 12);
Acc ← Acc + ((u(k) ∗ 13) >> 2);
x6(k + 1) ← Acc >> 4;
// Outputs
y(k) ← x1(k);

end

Algorithm 1: ρDFIIt: Fixed-point algorithm

Input: u(k): 18-bit integer input
Output: y(k): 18-bit integer output
Data: x(k): array [1..12] of 18-bit integers
Data: T : array [1..2] of 18-bit integers
Data: Acc: 36 bits integer
begin

// Intermediate variables
Acc ← (x7(k) ∗ 123806) >> 5;
Acc ← Acc + ((x8(k) ∗ 92855) >> 2);
Acc ← Acc + ((x9(k) ∗ 116068) >> 1);
Acc ← Acc + (x10(k) ∗ 77379);
Acc ← Acc + ((x11(k) ∗ 116068) >> 1);
Acc ← Acc + ((x12(k) ∗ 92855) >> 2);
Acc ← Acc + ((u(k) ∗ 123806) >> 5);
T1 ← Acc >> 18;
Acc ← (x1(k) ∗ −113552) >> 6;
Acc ← Acc + ((x2(k) ∗ 106674) >> 3);
Acc ← Acc + ((x3(k) ∗ −84339) >> 1);
Acc ← Acc + (x4(k) ∗ 71918);
Acc ← Acc + (x5(k) ∗ −69870);
Acc ← Acc + ((x6(k) ∗ 73475) >> 1);
T2 ← Acc >> 13;
// States
x1(k + 1) ← x2(k); x2(k + 1) ← x3(k);
x3(k + 1) ← x4(k); x4(k + 1) ← x5(k);
x5(k + 1) ← x6(k);
Acc ← T1 ;
Acc ← Acc + (T2 << 10);
x6(k + 1) ← Acc >> 10;
x7(k + 1) ← x8(k); x8(k + 1) ← x9(k);
x9(k + 1) ← x10(k); x10(k + 1) ← x11(k);
x11(k + 1) ← x12(k); x12(k + 1) ← u(k);
// Outputs
y(k) ← x6(k + 1);

end

Algorithm 2: Direct Form I: Fixed-point algorithm


