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Abstract

This paper deals with the computation of elementary functions. We propose an
efficient approach which combines shift-and-add and polynomial methods. It takes
advantages of both, since some very simple computations (additions and shifts) re-
duce the complexity of the polynomial evaluation (i.e, reduce the number of multi-
plications). The proposed algorithm is more efficient in comparison with polynomial
and shift-and-add methods, considered separately.

1 Introduction

In order to compute elementary functions, one can choose algorithms from different classes
such as shift-and-add algorithms [11][12], polynomial approximations [6], and methods
based on the arithmetic-geometric mean [5]. The last one is used when a very large
precision is needed (e.g., several thousand digits).

Shift-and-add algorithms were developed for hardware implementation since each it-
eration uses simple operations (addition and multiplication by a power of the radix).
Polynomial approximations methods have been the basis of software libraries, but the use
of tables (memory) makes these algorithms attractive for hardware implementation [4]. In
this paper, we propose a method which combines these two approaches to take advantage
of both approaches.

In Section 1 we review the BKM algorithm [3] which belongs to the shift-and-add class
(like CORDIC [11, 12| and additive/multiplicative normalization [7, 8]). This algorithm
is very attractive since it is well adapted to redundant number system. In such systems,
additions could be done in constant time. Polynomials methods are discussed in 2.2.
For high precision these methods may require very high degree polynomials. With a
use of tables to reduce the interval of computation, the degree of the polynomial can be
reduced [9)].
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In Section 3, we introduce a new algorithm which combines both methods. We com-
pute the first digits of the result using BKM, and then the remaining digits are computed
with a polynomial approximation using an efficient evaluation scheme. The complexity
of the algorithm depends on the degree of the polynomial, and therefore on the number
of BKM iterations. Experimental results are discussed in Section 4 for exponentials and
logarithms using a precision of 128 bits.

2 Previous methods

2.1 Shift-and-add algorithms

The BKM algorithm, belongs to the class of shift-and-add methods such as used by Briggs
to build the first table of logarithms and CORDIC [11, 12]. BKM allows the computation
of the complex logarithm and exponential functions, and thus it can be used to compute
the real elementary functions such as sin, cos, arctan, In, and exp. Unlike CORDIC, it
has no scaling factor and, therefore, it allows the use of redundant number system without
penalty. The BKM algorithm is based on the following iterations:

Enet = En (14 dp2™) 0
Loir = Ly —In(1 4+ d,2™")
with a complex digit d, = d!, +id’, and d,d!, = —1,0,1

It operates in two modes: E-mode for the exponential, and L-mode for the logarithm:
e E-mode : Find a sequence {d, } such that L, — 0. Then E, — Eje™.
e L-mode : Find a sequence {d,, } such that E,, — 1. Then L, — L; + In(E)).

If Fy and L, are correctly selected, n steps of iteration (1) produce n significant digits
of the result. Convergence domains for these two modes are given by equations (2) and (3).
Proofs are given in [3, 2.

Lye{L=L"+iL" —0829 < L" < 0.868,—0.749 < L’ < 0.749}, (2)
- 2 .2
Ele{E:ET+ZEZ,O.64<ET<1.4,—E<EZ<g}, (3)

Argument reductions consist of a simple translation for the E-mode which gives a final
product, and a shift and add operation for the L-mode which gives a final sum. Figure 1
illustrates a computation in the E-mode. Note a linear convergence of the L-part. The
method that we propose takes advantage of this decrease.

2



k| EL El L Li
1 || 1.0000000000 0.0000000000 || 0.5100000000 0.2900000000
2 | 1.5000000000 0.0000000000 | 0.1045348919  0.2900000000
3 | 1.8750000000 0.3750000000 || -0.1382190160  0.0926044402
4 | 1.6406250000 0.3281250000 || -0.0046876234  0.0926044402
5 | 1.6201171875 0.4306640625 || -0.0066369436  0.0301856302
6 | 1.6066589355 0.4812927246 | -0.0071249866 -0.0010542033
7 | 1.6066589355 0.4812927246 || -0.0071249866 -0.0010542033
8 | 1.5941069126 0.4775326252 | 0.0007181909 -0.0010542033
9 | 1.5941069126 0.4775326252 | 0.0007181909 -0.0010542033
27 || 1.5957550946 0.4761937329 || -0.0000000053 -0.0000000049
28 || 1.5957550827 0.4761937294 | 0.0000000022 -0.0000000049
29 || 1.5957550904 0.4761937252 || -0.0000000015 -0.0000000011
30 | 1.5957550874 0.4761937243 | 0.0000000003 -0.0000000011
31 | 1.5957550894 0.4761937233 | -0.0000000006 -0.0000000002
32 | 1.5957550886 0.4761937231 | -0.0000000001 -0.0000000002
33 | 1.5957550884 0.4761937226 | 0.0000000001  0.0000000000
34 | 1.5957550886 0.4761937226 | -0.0000000000  0.0000000000

Figure 1: Evaluation of exp(0.51 + ¢0.29) to 10 decimal digits with 34 BKM iterations.

2.2 Polynomial approximations

Another class of function evaluation methods is based on polynomial approximations. The
well-known methods such as Taylor, Chebyshev and Minimax are used to approximate
elementary functions on an interval by polynomials [10].
For instance, the degree n Taylor approximation of the exponential function is:
2 .T3 "

exp(a:):1+x+§+€+-~-+ﬁ (4)

InJrl

1
(n+1)! T

For a given precision p, we evaluate the polynomial so that the maximum error is
less than 27P. The degree of the polynomial depends on the approximation method
(e.g. Taylor or minimax), and especially on the interval range. Using these methods in
a rather large domain requires polynomials of large degree, and, therefore, has a long
computational delay. A common way to reduce this delay is to transform the original
interval to a smaller one.

where the error for |z| <1 is less than



3 Proposed algorithm: BKM + Polynomial

The main idea here is to reduce the interval in which a polynomial is evaluated. A direct
table look-up requires the size of the table which is of the same order as the interval
reduction. For example, to transform the interval [0, 1] to an interval [0, 57"], a table of
(™ entries is needed.

We propose to reduce the domain interval by performing several BKM iterations. In
this case, the size of the required table is equivalent to the log(size) of the direct table
look-up on the original interval.

We have shown previously that the proposed method is efficient for very large numbers
(several thousand bits) in the E-mode [1]. Figure 2 illustrates the differences in compu-
tational delay between the three methods: (i) using mupad package, (ii) a table look-up
(2% entries) with a polynomial method, and (iii) our method with the number of BKM
iterations corresponding to (1/16) of the precision.

In Section 4 we discuss the performance of the proposed method in evaluating expo-
nentials and logarithms to a 128-bit precision.
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Figure 2: Computation of the real exponential



3.1 The exponential evaluation (using the E-mode)

If L; = z and E; = 1, after n steps of BKM iterations, we obtain L, i, E,,; and the
sequence of digits dy, ... ,d, such that

eXp(Z) = En+1eXp(Ln+1) (5)
where

Ly = Z—Zm(udkﬂ) (6)

Eop = H1+dk2 (7)

We compute the real part Re(exp(z)) and the imaginary part Im(exp(z)) of exp(z) as
follows:

Re(exp(2)) = exp(Lyyy) x (B x cos(Li) — By x sin(L ;) (8)

Im(exp(z)) = exp(LY.y) x (B, x cos(LY,,)+ EX, | xsin(L¥,,)) 9)

where exp(LZ ), sin(LY ) and cos(LY ) are evaluated with polynomial approximations.
Note that

w

’Li"‘[’%‘ < _27717 vn

[\]

so that the exponential can be approximated by

2 n

T T
Tn — 1 _ o« .. —_— 10
([B) +x+ 5 + + o ( )
.Z'CH—I
such that [exp(z) = To(@)| < =y —

3.1.1 Error Analysis

In the E-mode of BKM F is initialized to 1 and the log(p) — 1 first iterations do not
generate any error. Thus F,,; is obtained with a relative error such that:

BEpy1 = By (14 277598 with 65 = log(n — log(p) + 1) (11)
As for L, 1, L; = 2z, and we obtain

L1 = Loy + 277790 with 67, = log(n) (12)



Note that e*¢ = e*e€ and if |¢] < 1 then |(e€ — 1)| < |e|(e — 1).
In the polynomial part, since we use Horner scheme with an argument less than 0.5,
we obtain an error independent of the degree:

exp(Lnt1) = exp(Lny1)(1+"277) (13)
exp(Lps1) (1 + (e = 1)27774) (1 + ¢"27p)
Considering the last complex product, we obtain:
exp(z) = eXp(Lns1) X Eppq x (1+"277) (14)
= exp(Lns1)Epi1 (14 c27778) (1 4 ¢ (e — 1)27PT00) (1 + ¢"27P)
= exp(Lnt1)Enia(1+ k27p+6L)

For example, when n = 8, |k| < 2* . Compared to a direct polynomial method, the
increase in the error is at most of §;, = log(n) bits.

3.1.2 Computation Time

To evaluate the polynomial for 128 bits of precision, the Horner scheme is sufficient. We
have shown in [1| that the Smith scheme is more efficient for larger precision. There-
fore, the time cost for evaluating a polynomial of degree d(n) is d(n) additions and d(n)
multiplications. We obtain a total time as:

(6n +2d(n) + 2)A(p) + (2d(n) + 6) M (p), (15)

where n is the number of BKM iterations, p is the number of bits used, d(n) is the degree
of the polynomial, and where A(p) and M (p) are the delay of a p-bits addition and a
p-bits multiplication.

The interval reduction with the BKM iterations requires a table of 7n entries of p-bits
numbers, compared a table of 22"*! entries of p-bits numbers needed to obtain the same
reduction with a standard table lookup.

3.2 The logarithm evaluation (using the L-mode)

Let z be a complex number in the convergence domain of the L-mode of BKM. If we use
as initial values Fy = z, L1 = 0, then after n iteration of BKM we get L, .1, F,11 and
the sequence dy, . ..d, such that:

In(z) = Ly +1In(Ey) (16)
with
Ly = —» In(1+d27") (17)
k=1

Eno = Eix [J+d27%)

k=1



Since In(z) is a complex number, we have:
T 1 €T
Re(In(z)) = Ly 4+ 5 ln(EnJrl2 + EzHZ) (18)

Ey
Im(In(z)) = LY., + arctan (ELH)

T
n+1

Y
We now use polynomial approximations to compute In(EZ, 2+ EY. ;) and arctan <%)
n+1

Since polynomials are computed on reduced intervals, we have for 0.5 < F; < 1.5, n > 4,
|EF — 1] < 1.5 x 27" and |EY| < 1.5 x 27", Therefore

By P+ By =1 <3 x27!
Bua 27"
E? -

n+1

The polynomials used for In and arctan are:

IN@) = Sy s (19)
e .T2k 1
ATG) = S (20)

1’2k

k=0

3.2.1 Error Analysis

In the L-mode of BKM, L, is initialized to 0. During the first iterations, this value can
stay null. Consequently L, is obtained with a relative error such that

L1 = Lpya (14 ¢27P700) with 67, = log(n) (21)
E, is initialized to z, and as we compute the value 2"(FE, — 1), we obtain
Epp1 —1=(Epy — 1)1+ 277598 with 65 = log(n) (22)

Note that the function z — In(1+ 2) is Lip 2 (satisfies the Lipschitz condition of order 2)
if 1/2 <z <2. Then

In(Ep1) = In(1+4 (Eppy — 1)) +2027PH8(E, . — 1) (23)
1
= In(E,1)(1 —4d27P8)  as i\EnH — 1| < |In(Eh11)|



Observing the polynomial part, we have

In(z) = Lny +In(Eyp) (24)
= Ly (1+c277990) 1 In(E,11)(1 +¢"277) (25)
= Lpy(14+c27P70) 4 In(E, 1) (1 — 4¢27PP08) (1 + '27F)

= (Lpy1 4+ In(E, ) (1 + k27PHr)
L

= In(2)(1 4 k27PF°

)
)
It can be assumed that |k| < 2°.

3.2.2 Computation Time

Let d(n) be the degree of the polynomial necessary to achieve the precision of p. This
degree is the same for In and arctan.

din) = max{i e N; (1-27")2"(i+1) < 2°} (26)

Table 2 gives the values of d(n) for a precision of 128 bits.

The evaluation of the degree d(n) Taylor polynomial for In requires d(n) — 1 additions
and d(n) multiplications, and for arctan it requires {@_‘ multiplications and [ ”)—‘ -1

additions. Hence, the total time is

<6n +d(n) + [@w + 3) A(p) + (d(n) + [@w + 2) M(p) + D(p), (27)

where D(p) is the delay of a p-bits number division.

The tables needed for the BKM iterations are the same as for the exponential algo-
rithm. In order to compare it with a standard lookup table reduction to the same interval,
we use the formula

z = L2+ 227" (28)

2, 27"
ln(l + Z) = ln(l + th—n) +In (1 + m)

where Z; a Gauss number, and 2, € [—1, 1] +i[—1,1]. Thus, in(1+ Z,27") and T 73
t

are precomputed and we need a table of 22"*2 real values of 128 bits.

4 Simulation results for 128-bits precision

The Figure 3 shows the computation time for exponential as a function of the number
of BKM iterations. The minimum computation delay is obtained with 8 BKM iterations
and a degree 12 polynomial.



35

T " T T T T T
+  exponential
++++
++
4
W
30 + T
+
+
W
n
n
4
++
4 25 | + b
c ++
S T
® +
= o
3 +
E 20} W g
4
L
4
4
+ ++
+ ++++
15 | . 4
+ ++++
+
++++++++++
10 1 1 1 1 1 1
0 10 20 30 40 50 60 70

number of BKM iteration

Figure 3: Delay for computing 100 000 exponential with 128 bits of precision.

If the number n of BKM iterations increases past 0, the cost of the BKM part increases
linearly, but the degree of the polynomial (and the number of multiplication) decreases
faster. As n increases, there are three distinct situations:

e The degree decreases by more than 2 (n = 0 to 4 and 7), and the delay of compu-
tation decrease sharply.

e The degree of polynomial decreases by 1 (n = 5, 6 and 9 to 11), then the cost
increases by one BKM iteration and but decreases by two multiplications (one for
the real part of the polynomial, one for the imaginary part). Thus, the global time
decreases only slightly.

e The degree doesn’t change (for example, for n = 8 to 9,or 31 to 41). In this case
the increase in the delay is due to the extra BKM iterations.

The figure 4 shows the computation time for the complex logarithm using n BKM
iterations. The behavior in this case is similar to the exponential. In both cases, the
minimum delay is obtain for n = 8. In Figure 5 and 6 we plotted on a log scale the
computation delay as a function of the table (memory) size. We observe that for the
exponential and logarithm, we need a 2!! entries table to be faster than our algorithm
using 8 step of BKM and only 57 precomputed values. Therefore, our algorithm is also
efficient in reducing the size of the table.



‘ n degree H n degree H n degree H n degree H n degree H n  degree ‘
0 34 6 15 12 9 18 7 e e e
1 28 7 14 13 9 19 7 30 5 62
2 24 8 12 14 8 20 6 31 4 63
3 21 9 12 15 8
4 18 10 11 16 8 23 6 41 4 127
5 16 11 10 17 7 24 5 42 3 128
Table 1: Degree of the polynomial for the exponential function
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Figure 4: Delay for computing 100 000 logarithm with 128 bits of precision.
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Figure 5: The delay vs. the size of memory in evaluating exponential.
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1 123 7 18 13 10 ;
2 62 8 16 14 9 20 7 31 5 63 3
3 41 9 14 15 9 21 6 32 4 64 2
4 31 10 13 16 8
5 25 11 12 17 8 25 6 42 4 127 2
6 21 12 11 18 7 26 5 43 3 128 1
Table 2: Degree of the polynomial for the logarithm function
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Figure 6: The delay vs. the size of memory in evaluating logarithm.

5 Summary

We have presented a new approach for the evaluation of elementary functions which
combines shift-and-add (BKM) and polynomial approximations methods. Compared with
classical table-based methods and polynomial approximations, our approach uses very
small tables and requires the evaluation of low degree polynomials.
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