
Some Improvement on RNS Montgomery Modular
Multiplication

Jean-Claude Bajarda, Laurent-Stéphane Didierb,
Peter Kornerupc and Fabien Ricoa

a LIRMM, 161 Rue Ada, 34392 Montpellier Cedex 5

b Department of Computer Science, Université de Bretagne Occidentale,
Avenue Le Gorgeu, BP 809, 29285 Brest Cedex, France

c Department of Mathematics and Computer Science, Odense University,
Campusvej 55, DK-5230 Odense M, Denmark

ABSTRACT

In Residue Number Systems (RNS), an integer X is represented by its residues {x0,...,xn−1} modulo a base of
relatively prime numbers {m0,...,mn−1}. Thus a large number can be represented as a set of small integers.
Addition and multiplication can be easily parallelized, there is no carry propagation. The time is reduced
to the evaluation of these operations with small numbers. This representation is useful in cryptography and
digital signal processing.

Furthermore, in these two domains, modular multiplication (A × B mod N) is frequently used. So, in
1998, we have presented in IEEE journal of transactions on computers,20 a new modular multiplication
algorithm in RNS. This algorithm is based on the Montgomery algorithm, using the associated Mixed Radix
representation, for the weighted digits. It was the first algorithm of this type.

In this paper, we present two remarks. First, if we develop the different expressions due to the algorithm,
we obtain some mathematical simplifications that allow us to suppress some Mixed Radix occurrence in the
basic iteration simply with a new initialization of our variables. Thus, in this new version, the complexity of
each basic iteration, becomes equivalent to two products of small integers instead of three.

The second remark is that, most of the time, modular multiplications are done with the same modulo
N. We can precompute some values and reduce the complexity of each basic iteration to one multiplication
of two small integers. Thus, the basic iteration is three time faster, and the global computation, due to the
initialization, is 8/5 time faster than the original version.

Sometime after the last basic iteration a Mixed Radix conversion can be needed. Classical parallel
methods are linear. We propose an logarithmic parallel algorithm for this translation from RNS to Mixed
Radix. For this, we use a result that comes from an RNS division algorithm, we published in Journal of
VLSI signal processing systems 1998.3 We obtain in a logarithmic time an approximation of the Mixed radix
representation. The correct representation is then established in a logarithmic time too.

Keywords: Modular Multiplication, Montgomery, Residue Number System, Mixed Radix

1. INTRODUCTION

Modular multiplication with very large numbers is used in many cryptosystems.13,5,10 Different algorithms
have been proposed in the literature.2,8,19,17,16,11 Most of them use redundant radix number systems and
Montgomery’s modular multiplication.9 Recently, using the properties of Residue Number Systems, a
modular multiplication algorithm based on the Montgomery’s algorithm has been proposed.20

A limitation of this algorithm is that an operand has to be expressed in Mixed Radix System, while the
others are expressed in RNS. We present in this paper improvements of this algorithm which make all the
operands to be expressed in RNS. Furthermore, the step amount for computing the modular multiplication
is appreciably reduced.

The final step of the algorithm presented in [20] requires a comparison which can be improved using the
principle described in [3]. A generalisation of this method is given in this paper.

Section 2 introduce the notations and the concepts used in the paper. The RNS Montgomery’s algorithm
is shortly introduced in section 3 and its improvements are described in section 4. Finally a new conversion
algorithm generalizing the method of [3] is given in section 5.

2. RESIDUE NUMBER SYSTEM AND MIXED RADIX SYSTEM

Residue number system (RNS) is not similar to positional number system where each digit is related to
a specified weight.15,7,18 This property enables that additions and multiplications are very fast in those
systems. The RNS systems are defined as follow:

• The vector {m1,m2, · · · ,mn} forms a set of moduli, called the RNS-base Bn, where the mi’s are
relatively prime.

• M is the value of the product
∏n
i=1mi.

• The set {x1, · · · , xn} is the RNS representation of X, an integer less than M , where

xi = |X|mi
= X mod mi

Any integer X less than M has one and only one RNS-representation thank to the Chinese Remainder
Theorem. Addition and multiplication modulo M can be implemented in parallel in linear space O(n) and
performed in one single step, by defining +

RNS
and ×

RNS
as component-wise operations:

A+
RNS

B ∼ |aj + bj |mj
, for j ∈ {1, · · · , n}

A×
RNS

B ∼ |aj × bj |mj , for j ∈ {1, · · · , n}.

The Mixed Radix System (MRS) is a weighted positional number representation which can be associated
with a RNS sharing the same base of moduli. Assuming that (x′1, · · · , x′n), 0 ≤ x′i < mi is the MRS
representation of X (X < M), then

X = x′1 + x′2m1 + x′3m2m1 + · · ·+ x′nm1 · · ·mn−1. (1)

Thus, the weight associated to a position is the product of the previous weight by a new radix.

Conversion from RNS into MRS representation is often used for comparison of RNS numbers, but the
MRS system is not well suited for computations.

3. RNS MONTGOMERY MODULAR MULTIPLICATION

In [20] an RNS modular multiplication algorithm is presented. This algorithm is inspired from the original
Montgomery modular multiplication9 where one reduction is performed at each iteration of the multiplication.
The advantage of this algorithm is that it maintains during the computation all the numerical values less
than 2N . Furthermore, the only needed operations are additions and multiplications by a digit. It computes
S = AB × β−k mod N using standard radix β arithmetic. We obtain AB mod N using the same algorithm
with as inputs, the previous result and β2k.

Noticing that at each iteration of this algorithm, qi is computed so that S + ai×B+ qi×N is a multiple
of β, the division by β corresponds to a shift. The result obtained is the integer value S = AB+QN

βk+1 where

Q =
∑k−1
i=0 qiβ

i.

Since the RNS is not a radix representation, the main problem in adapting the algorithm to RNS arithmetic
is to compute Q from the least significant digits of the variables. This difficulty is avoided with the use of a
mixed radix system associated (with the same set of moduli).

Algorithm 1 (RNS Modular Multiplication).

Function: RNS Modular Multiplication

Stimulus: A residue base {m1,m2, · · · ,mn}, where M =
∏n
i=1mi

A modulus N expressed in RNS with GCD(N,M)=1, and satisfying

0 ≤ N <
M

3 maxi∈{1,···,n}(mi)

Integer A given in MRS

A =
n∑
i=1

a′i

i−1∏
j=1

mj

Integer B given in RNS

Response: An integer R < 2N expressed in RNS, such that:
R ≡ ABM−1 mod N

Method: R← 0
For i = 1 to n do

q′i ← (ri + a′i × bi)× (mi − ni)−1
i mod mi

R← R+
RNS

a′i ×RNS
B +

RNS
q′i ×RNS

N
R← R÷

RNS
mi

End

At each step a MRS digit of q′i of a number Q is computed and a new value of R using q′i and a′i is
determined in RNS. At each step R is computed so that it is a multiple of mi. The moduli are relatively
prime numbers. Dividing R by mi is equivalent to multiplying each residue of R by the modular inverse of
mi. But this division cannot be computed for the ith residue.

One solution is, as R is obtained in a reduced base (the standard base with mi excluded) to reconstruct
the value xi using the Shenoy-Kumaresan method.14 This linear time method can be pipelined easily on a
ring of processors.20

Another solution is to extend the modular system with an auxiliary base B̃
ñ

= {m̃1, m̃2, · · · , m̃ñ
}. In this

system the RNS and MRS representations of an integer X are:

XRNS = {x̃1, x̃2, · · · , x̃ñ} and XMRS = {x̃′1, x̃′2, · · · , x̃′ñ}

The intermediate value R is expressed both in Bn and B̃
ñ
. Thus, R is correctly represented in the tail

of the main base and in the auxiliary base. After the n steps of the algorithm, the final value of R is only
expressed in the extended base B̃

ñ
.

Algorithm 2.

Function: RNS Modular Multiplication Listed

Stimulus: A residue base {m1,m2, · · · ,mn}, where M =
∏n
i=1mi

A residue base {m̃1, m̃2, · · · , m̃ñ}, where M̃ =
∏ñ
i=1 m̃i

A modulus N expressed in RNS in the two bases, with GCD(N,M)=1,
and satisfying 0 ≤ N < 2M, 2M̃

Integer A given in MRS in Bn
Integer B given in RNS in the two RNS bases

Response: An integer R < 2N expressed in RNS, such that:
R ≡ ABM−1 mod N

Method: R← 0
For i = 1 to n do

q′i ← (ri + a′i × bi)× (mi − ni)−1
i mod mi

In parallel for each j > i
rj ←− (rj + a′i ∗ bj + q′i ∗ nj)× (mi)−1

mj
mod mj

In parallel for each j

r̃j ←− (r̃j + a′i ∗ b̃j + q′i ∗ ñj)× (mi)−1
m̃j

mod m̃j

End

The modular multiplication algorithm computes ABM−1 mod N in RNS, the result being obtained in
the auxiliary base B̃

ñ
. In order to eliminate the extra factor M−1, it is possible to use the same algorithm

from the auxiliary base to the base Bn. The previously computed result R = ABM−1 mod N takes the place
of the operand A and the constant MM̃ mod N takes place of B.

In this algorithm, the conversion of operand A and the extension of operand B into an extended base
require n additions and n multiplications steps. At each iteration, the processor i computing the digit q′i
performs two multiplications and one addition while the 2n− i others perform three multiplications and two
additions (see figure 1, the first version).

XXX
XXX

XXX
XXX

HH
HH

HH

H
HH

H
HH

XXX
XXX

Z
Z
Z

Z
Z
Z

Z
Z

Z
Z

Z
Z

RNS base Bm RNS base Bm̃

RNS Ext
A

RNS Ext
B n ∗ 1

n ∗ 1

RNS Mult Mod
RNS Mult Red

R

RNS ExtR

n ∗ 1

n ∗ 1

RNS Mult Red
R’ n ∗ 1RNS Mult ModR’

R

RNS base Bm RNS base Bm̃

RNS Ext
A

RNS Ext
B

RNS Mult Mod
RNS Mult Red

R R

RNS Mult ModR’

RNS Ext
R

RNS Mult Red
R’

RNS base Bm RNS base Bm̃

RNS Ext

R R

RNS Ext
R

RNS Mult Red
R’

A B
RNS to MRS

RNS Mult Red RNS Mult Mod

RNS Mult Mod

R’

original version in 8n version with precomputation in 5 ∗ n

n ∗ 3

n ∗ 1

n ∗ 3

n ∗ 1 n ∗ 1

n ∗ 1

n ∗ 2

n ∗ 1

n ∗ 2

version with new initializationin 7n

Figure 1. Representation of the computation of the different versions on a bus of processors (n+ñ processors)

This algorithm can easily be implemented on parallel architectures. In [20], implementations on a bus(with

auxiliary base) and on a ring (with Shenoy-Kumaresan) of processors are presented, where space and time
complexities are linear. The scheduling of several RNS modular multiplications on such architecture makes
possible the computation of modular exponent for large values using relatively small residues. Thus, it is
possible to perform computations for cryptographic systems with standard processors more easily.

4. IMPROVEMENTS OF THE ALGORITHM

4.1. First remark

It is possible to initialize the computation of R with the RNS product of A by B. We accumulate in residues
rj and r̃j , the products a′i ∗ bj × (mi)−1

mj
mod mj and a′i ∗ b̃j × (mi)−1

m̃j
mod m̃j . In other words, after the last

iteration the value accumulated in the residue rj is:

(
∑j−1
i=1 (a′i

∏i−1
k=1mk)) ∗ bj × (

∏j−1
i=1 mi)−1

mj
mod mj

= A mod mj × bj × (
∏j−1
i=1 mi)−1

mj
mod mj

= ajbj × (
∏j−1
i=1 mi)−1

mj
mod mj

Note that
∑j−1
i=1 (a′i

∏i−1
k=1mk) is the operand A expressed in MRS and (

∏j−1
i=1 mi)−1

mj
mod mj is the extra

factor accumulated at each iteration. Similarly the residue r̃j in the auxiliary basis is:

(
∑n
i=1(a′i

∏i−1
k=1mk)) ∗ bj × (

∏n
i=1mi)−1

m̃j
mod m̃j

= A mod m̃j × bj × (
∏n
i=1mi)−1

m̃j
mod m̃j

= ãj b̃j × (
∏n
i=1mi)−1

m̃j
mod m̃j

Thus, it is possible to initialize the residues of the accumulated value R with ai ∗ bi mod mi and ãi ∗
b̃i mod m̃i . This leads to the algorithm:

Algorithm 3 (RNS Modular Multiplication With First Remark).

Function: RNS Modular Multiplication Modif1

Stimulus: A residue base {m1,m2, · · · ,mn}, where M =
∏n
i=1mi

A modulus N expressed in RNS with GCD(N,M)=1, 0 ≤ N < 2M, 2M̃

Integer A and B given in RNS, AB < MN, M̃N

Response: An integer R < 2N expressed in RNS, such that:
R ≡ ABM−1 mod N

Method: In parallel for each i
ri ←− ai ∗ bi mod mi

r̃i ←− ãi ∗ b̃i mod m̃i

For i = 1 to n do
q′i ←− (ri)(mi − ni)−1

i mod mi

In parallel for each j > i
rj ←− (rj + q′i ∗ nj)× (mi)−1

mj
mod mj

In parallel for each j
r̃j ←− (r̃j + q′i ∗ ñj)× (mi)−1

m̃j
mod m̃j

End

The main gain of this improvement is that we don’t use the MRS the presentation of the operand A.
The product AB is made in one step during the initialization. Thus we save one multiplication and one
addition in the main iteration (see the second version figure 1). Furthermore, the computation of the value
q′i is simplified. But the representation of A must be extended to the auxiliary RNS base.

4.2. Second remark

It possible to improve again the previous algorithm. Indeed, considering the residues rj and r̃j , we have after
the last step:

rj = ai ∗ bi
j−1∏
k=1

(mk)−1
mj

+ q1 ∗ nj
j−1∏
k=1

(mk)−1
mj

+ ...

...+ qt ∗ nj
j−1∏
k=t

(mk)−1
mj

+ ...+ qj−1 ∗ nj ∗ (mj−1)−1
mj

q′j = rj ∗ (mj − nj)−1
j

and

r̃j = ãi ∗ b̃i
n∏
k=1

(mk)−1
m̃j

+ q1 ∗ ñj
n∏
k=1

(mk)−1
m̃j

+ ...

...+ qt ∗ ñj
n∏
k=t

(mk)−1
m̃j

+ ...+ qn ∗ ñj ∗ (mn)−1
m̃j

We remark that the values (mk)−1
mj

and (mn)−1
m̃j

are related only to the main and the auxiliary modular
basis and are consequently constant values. Considering that the operand N is rather unchanging in the
most common application of modular multiplication, we can assume that N is a constant that can be stored
in look-up table.

Thus, it is possible to precalculate the following values:

cj,0 =
∏j−1
k=1(mk)−1

mj
∗ (mj − nj)−1

j mod mj

. . .

cj,t = nj
∏j−1
k=t(mk)−1

mj
∗ (mj − nj)−1

j mod mj

. . .
cj,j−1 = nj ∗ (mj−1)−1

mj
∗ (mj − nj)−1

j mod mj


c̃j,0 =

∏n
k=1(mk)−1

m̃j
mod m̃j

. . .
c̃j,t = ñj

∏n
k=t(mk)−1

m̃j
mod m̃j

. . .
c̃j,n = ñj(mn)−1

m̃j
mod m̃j

This leads to the following algorithm.

Algorithm 4 (RNS Modular Multiplication With Second Remark).

Function: RNS Modular Multiplication Modif2

Stimulus: A residue base {m1,m2, · · · ,mn}, where M =
∏n
i=1mi

A modulus N expressed in RNS with GCD(N,M)=1, 0 ≤ N < 2M, 2M̃

Integer A and B given in RNS in Bn and B̃
ñ

Response: An integer R < 2N expressed in RNS, such that:
R ≡ ABM−1 mod N

Method: In parallel for each i
ri ←− ai ∗ bi ∗ ci,0 mod mi

r̃i ←− ãi ∗ b̃i ∗ c̃i,0 mod m̃i

For i = 1 to n do
q′i ←− ri
In parallel for each j > i

rj ←− (rj + q′i ∗ cj,i) mod mj

In parallel for each j
r̃j ←− (r̃j + q′i ∗ c̃j,i) mod m̃j

End

The constants cj,0 and c̃j,0 are included in the initialization of the residues of R. Consequently, no
addition and no multiplication are needed for the computation of q′i. The main iteration is reduced only to
one multiplication and one addition.

We can remark that, in this version (figure 1) that the reduction part of the multiplication (RNS Mult Red)
can be done always in the same RNS base, the auxiliary base for example. Thus the number of precomputed
value can be reduced by half.

4.3. Complements

All those remarks are also available for the implementation proposed in [20] using the reconstruction of
Shenoy-Kumaresan. This kind of algorithms can be also useful for a sequential implementation. In [12] the
author proposed an implementation to boost a crypto-processor close to the third version proposed here.

5. A NEW CONVERSION ALGORITHM

In [3], we proposed to compute an approximation of an RNS number in order to perform a division. In this
section we propose a generalization of this method which enable us to compute an approximation of each
MRS digit of a given RNS number. By this way, we can do a base extension in order to recover the lost
moduli (after a division by mi) or for a base extension (from Bn to B̃

ñ
) or exact comparisons (for example

the comparison between R and N at the end of the RNS modular multiplication algorithm).

5.1. Computing the approximation of one digit

We suppose in this section that ∀i, mi ≥ 4. We note :

M i =
i∏

k=1

mi M i
k =

M i

mk
Xi = X (mod M i)

Xi is the number represented in the reduced base (m1, ...,mi) by the i first RNS digits ofX = {x1, · · · , xn}.
We want to compute (x′1, · · · , x′n) the standard mixed radix representation associated to Bn, such that:

X = x′1 + x′2m1 + · · ·+ x′nm1 · · ·mn−1.

Standard MRS conversion computes the least significant digits first [7]. We want to compute the digits
in every order using the Chinese remainder theorem and the values Xi = {x1, · · · , xi}. By definition (1) of
the MRS, we have for each i, 1 ≤ i ≤ n:

Xi = x′1 + x′2m1 + · · ·+ x′im1 · · ·mi−1.

The most significant MRS digit of Xi is also the ith MRS digit of X. Thus, if we are able to find this
digit, we can compute every MRS digit of X in the same time.

So, considering the formula of the demonstration of the Chinese Remainder Theorem [7] applied to Xi,
we obtain:

Xi =
i∑

k=1

∣∣∣xk ∣∣M i
k

∣∣−1

mk

∣∣∣
mk

M i
k (mod M i)

Thus,

Xi

M i
= frac

(
i∑

k=1

∣∣∣xk ∣∣M i
k

∣∣−1

mk

∣∣∣
mk

1
mk

)
(2)

and x′i =
⌊
mi ×

Xi

M i

⌋
(3)

As the floating point like notation in [3], we don’t compute the exact value of Xi

Mi which require a large
precision, but an approximation with p digits, p being an integer close to log(mi). The value of p will be
given in the following.

Our goal is to obtain the value of x′i. In other words, we want to obtain mi × Xi

Mi with an error less than
1
4 . Thus it will be possible to know x′i up to one. To assume this precision, we need to compute Xi

Mi with an
error less than 2−dlogmie−2.

We note Rpi the value obtained from the sum
∑i
k=1

∣∣∣xk |Mk|−1
mk

∣∣∣
mk

1
mk

computed by a p digits adder taking

into account the p most significant digits of the fractional part. The values xk×
|Mk|−1

mk

mk
are similarly obtained

on p digits from a multiplication by a p-digits approximated value of
|Mk|−1

mk

mk
.

Thus for p large enough, we will obtained Rpi or 1 − Rpi close to Xi

Mi . As we use a rounding to zero, we
obtain:

0 ≤ Xi

Mi − (Rpi or 1−Rpi) ≤ 2−p+dlog(i)e (4)

In equation (4), we consider two cases. The specific case 1−Rpi takes into account the fact that Xi

Mi could
be close to zero. As we are rounding to zero, Rpi could be close to 1 since the integer part is not considered.
The regular case Rpi is straightforward.

Supposing that p ≥ dlog(i)e+ dlog(mi)e+ 2, we obtain two cases:

0 ≤ mi
X
Mi −miR

p
i ≤ 1

4
or

0 ≤ mi
X
Mi − (miR

p
i + 1−mi) ≤ 1

4

(5)

The last inequation corresponds to the specific case of inequation (4). Using this, we obtain an approxi-
mation x̃′i (don’t confused with auxiliary base) of the number x′i. Indeed:

x′i =


x̃′i
or∣∣∣x̃′i + 1

∣∣∣
mi

-�

...

...

...

...

...

...

...

0 1
ε

0 1 0 1mn−1 − 1x′n−1 =

x̃′n + 1x′n = x̃′n

mn

mnR
p
n + εmnR

p
n

mnR
p
n

Figure 2. The approximate value of x′n

Furthermore we know that if frac (miR
p
i) is in [0, 3

4] then x′i = x̃′i. Else the value of x′i depend on the
value of x′i−1 (see figure 2).

As frac (Rpi) ∈ [34 , 1] involves mi
Xi

Mi ∈ [x̃′i + 3
4 , x̃
′
i + 1 + 1

4], we have:

either or
x′i = x̃′i =⇒ mi

Xi

Mi ∈ [x̃′i + 3
4 , x̃
′
i + 1[x′i = x̃′i + 1 =⇒ mi

Xi

Mi ∈ [x̃′i + 1, x̃′i + 1
4]

=⇒
⌊

3mi−1
4

⌋
≤ x′i−1 ≤ mi−1 − 1 =⇒ 0 ≤ x′i−1 ≤

⌊mi−1
4

⌋
=⇒

⌊
3mi−1

4

⌋
− 1 ≤ x̃′i−1 ≤ mi−1 − 1 =⇒ 0 ≤ x̃′i−1 ≤

⌊mi−1
4

⌋
or x̃′i−1 = mi−1 − 1

Unfortunately, we may not be able to compute the value of x′i from x̃′i and x̃′i−1. This characterization
depends of the value x′i−1. Thus, if we know the value of x′i−1 or if x̃′i−1 6= mi−1− 1, then we know the value
of x′i. In the other case, if we know the value of x′i−2 or if x̃′i−2 6= mi−2 − 1, then we know the value of x′i
and x′i−1, etc.

This method leads to two conversions from RNS to MRS. The first method computes all the values
(Rpi)1≤i≤n in parallel using O(n2) floating point adders and multipliers. The result may be obtained trough
O(log(n)) steps. The second method needs only O(n) adders and multipliers. It gives the result after
O(n log(n)) steps. Those two algorithms are explain in [1].

Since our multiplication algorithm need exact comparisons and base extensions, we will detail this two
operations.

5.2. Comparison

Let consider two RNS numbers X and Y :

X = {x1, x2, · · · , xn} Y = {y1, y2, · · · , yn}

We compute the approximate MRS digits x̃′n, ỹ′n, x̃′n−1, ỹ′n−1, · · ·, x̃′1, ỹ′1 ordered from most to least
significant. The algorithm to compare Xi and Y i is the following:

• If we know both x′i and y′i then

– if x′i = y′i then return Xi−1 < Y i−1

– else return x′i < y′i

• elseif we know x′i and not y′i then

– if ỹ′i = mi − 1 we must compute the exact MRS digit y′i in order to continue

– elseif x′i = ỹ′i or ỹ′i + 1 we must compute the exact MRS digit y′i in order to continue

– else return x′i < ỹ′i.

• elseif we know y′i and not x′i then

– if x̃′i = mi − 1 we must compute the exact MRS digit x′i in order to continue

– if x̃′i = y′i or y′i − 1 we must compute the exact MRS digit x′i in order to continue

– else return x̃′i < y′i.

• elseif we don’t know both x′i and y′i

– if x̃′i = mi − 1 or ỹ′i = mi − 1 or |x̃′i − ỹ′i| ≤ 1 then we must compute the exact MRS digits x′i and
y′i in order to continue

– else return x̃′i < ỹ′i.

The worst case of this algorithm is when X = Y , all the exact mixed radix digits of X and Y must be
generated. In this case the algorithm needs to do O(n2) operations. But generally, to compare Xi and Y i,
we only need to have the two most significant digits x̃′i and ỹ′i. The other approximated digits is only needed
if we have to compute the exact MRS digits or if we want to do the comparison Xi−1 < Y i−1. This means
that at each step we will have to compute the next approximated digits (x̃′i−1 and ỹ′i−1) only if x̃′i = mi − 1
or ỹ′i = mi − 1 or x̃′i = ỹ′i ± 1.

5.3. Base extension

Suppose that we have an incomplete representation6 of X (0 ≤ X ≤ Mn

2) X = {x1, · · · , xn−1, •}. The
problem is to recover the last residue.

Let Y be the number represented by {x1, · · · , xn−1, 0}, we have Y = X + kMn such that xn = mn− kMn

(mod mn). And the mixed radix representation of Y is :

Y = x′1 + x′2M
1 + · · ·+ x′n−1M

n−2 + kMn.

If we compute

Rpn(Y) =
n−1∑
k=1

∣∣∣xk |Mk|−1
mk

∣∣∣
mk

Mk and Apn(Y) = mnR
p
n

with p ≥ dlog(i)e + dlog(mi)e + 2, we obtain ỹ′n such that ỹ′n = k or k − 1. In this case we can know
directly the exact value of k. Indeed, if frac (Apn) ∈ [0, 3

4 [then mi
Y
M ∈ [ỹ′n, ỹ′n + 1[and k = ỹ′n. If

frac (Apn) ∈ [34 , 1] then mi
Y
M ∈ [ỹ′n − 1

4 , ỹ
′
n + 1 + 1

4 [. But, mi
Y
M ∈ [ỹ′n − 1

4 , ỹ
′
n + 1[is not possible because this

mean 3
4 ≤ mi

Y
M − k = X

Mn
≤ 1 and we have supposed that 0 ≤ X ≤ Mn

2 . With n − 1 multiplications and
m− 2 additions, we can compute k and so xn = mn − kM (mod mn).

This algorithm is very close to the Shenoy and Kumaresan one [14]. Their algorithm needs a redundant
modulus (which means than 0 ≤ X ≤ Mn

2) and they use the Chinese Remainder Theorem to extend the base.
Our algorithm uses larger operators (on p digits such that p ≥ dlog(n)e + dmaxi(log(mi))e + 2) but need
only n multiplications and n additions to found x (mod mn). The Shenoy and Kumaresan algorithm needs
2n multiplications and 2n additions to compute the same value with smaller operator (only dmaxi(log(mi))e
digits).

6. CONCLUSION

This improvement makes the algorithm suited for Digital Signal Processors which are designed to perform
multiplication-accumulations very fast.

REFERENCES
1. J-C. Bajard and F. Rico. How to improve division in residue number systems. In IMACS, 2000.
2. E.F. Brickell. A Survey of Hardware Implementations of RSA. In Gilles Brassard, editor, Advances in

Cryptology - CRYPTO ’89, pages 368–370. Springer-Verlag, 1990.
3. J.-C. Bajard, L.-S. Didier, and J.-M. Muller. A new euclidian division algorithm for residue number

systems. Journal of VLSI Signal Processing, 19(2):167-178, July 1998.
4. S.E. Eldridge and C. D. Walter. Hardware implementation of Montgomery’s modular multiplication

algorithm. IEEE Transaction on Computers, 42(6):693–699, June 1993.
5. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.

In Advances in Cryptology - Proceedings of Crypto’86, pages 186–194, 1986.
6. D. Gamberger. Incompletely specified numbers in the residue number system - definition and applications.

In M. D. Ercegovac and E. Swartzlander, editors, 9th IEEE Symposium on Computer Arithmetic, pages
210–215, Santa Monica, U.S.A, 1989. IEEE Computer Society Press.

7. D.E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley,
2 edition, 1981.

8. P. Kornerup. High-radix modular multiplication for cryptosystems. In G. Jullien M.J Irwin, E. Swartz-
lander, editors, 11th IEEE Symposium on Computer Arithmetic, pages 277–283, Windsor, Canada, 1993.
IEEE Computer Society Press.

9. P. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44(170):519–
521, April 1985.

10. S. Micali and A. Shamir. An improvement of the Fiat-Shamir identification and signature scheme. In
Advances in Cryptology - Proceedings of Crypto’88, pages 244–247, 1988.

11. H. Orup. Simplifying Quotient Determination in High-Radix Modular Multiplication. In S. Knowles
and W. H. McAllister, editors, Proc. 12th IEEE Symposium on Computer Arithmetic. IEEE Computer
Society, 1995.

12. P. Paillier. Low-cost double-size modular exponentiation or how to stretch your cryptoprocessor. In
H. Imai and Y. Zheng, editors, Second International Workshop on Practice and Theory in Public Key
Cryptography, PKC’99, pages 223-234. Springer Verlag, 1999.

13. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

14. A. P. Shenoy and R. Kumaresan. Fast base extension using a redundant modulus in RNS. IEEE
Transactions on Computer, 38(2):292–296, 1989.

15. N. Szabo and R. I. Tanaka. Residue Arithmetic and its application to Computer Technology. McGraw-Hill,
1967.

16. M. Shand and J. Vuillemin. Fast Implementations of RSA Cryptography. In M.J. Irwin E. Swartzlander
and G. Jullien, editors, Proc. 11th IEEE Symposium on Computer Arithmetic, pages 252–259. IEEE
Computer Society, 1993.

17. N. Takagi. Modular Multiplication Algorithm with Triangle Addition. In M.J. Irwin, E. Swartzlander
and G. Jullien, editors, Proc. 11th IEEE Symposium on Computer Arithmetic, pages 272–276. IEEE
Computer Society, 1993.

18. F.J. Taylor. Residue Arithmetic: A Tutorial with Examples. COMPUTER, pages 50–62, May 1984.
19. C.D. Walter. Systolic Modular Multiplication. IEEE Transactions on Computers, C-42(3):376–378,

March 1993.
20. J.-C. Bajard, L.-S. Didier, and P. Kornerup, “An RNS montgomery modular multiplication algorithm,”

IEEE Transaction on Computers 47(7), pp. 766–776, 1998.

