Useful Representation Systems for Cryptographic Implementations

The French Connection

Jean Claude Bajard and Thomas Plantard

LIP6 CNRS-UPMC Sorbonne Universités
University of Wollongong

Outline

Residue Sytems
Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base

Conclusions
UPmC

Residue Sytems

Residue Sytems
Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base

Conclusions
UPmC

Residue Sytems

Residue Sytems

Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations（ECC kP）
Addition Chains
Double base
Conclusions
UPMC

Residue Number System

Svoboda-Valach'57, Garner'59, Szabo-Tanaka'67, (CRT) Ch'in Chiu-Shao 1247

RNS Base

- A set of coprime numbers $\left(m_{1}, \ldots, m_{k}\right)$, with $M=\prod_{i=1}^{k} m_{i}$

Representation in RNS

- A represented by its residues $\left(a_{1}, \ldots, a_{k}\right)$ with $a_{i}=|A|_{m_{i}}$

Operations

- Full parallel operations $(\bmod M)$ with $M=\prod_{i=1}^{k} m_{i}$

$$
\left(\left|a_{1} \circ b_{1}\right|_{m_{1}}, \ldots,\left|a_{n} \circ b_{n}\right|_{m_{n}}\right) \rightarrow A \circ B(\bmod M)
$$

Residue Number System: example

RNS Base:
$\mathcal{B}=(3,7,13,19) \quad M=5187$
Representations:

$$
\begin{array}{lll}
X=147 & & Y=31 \\
X_{R N S}= & (0,0,4,14) & Y_{R N S}= \\
(1,3,5,12) & Z_{R N S}=(1,5,7,10)
\end{array}
$$

Operations:

$$
\left.\begin{array}{rlccc}
X_{R N S}+_{R N S} Y_{R N S} & =\left(|0+1|_{3},\right. & |0+3|_{7}, & |4+5|_{13}, & \left.|14+12|_{19}\right) \\
& =(1, & 3, & 9, & 7
\end{array}\right)
$$

$$
\left.\begin{array}{lccc}
=(0, & 0, & 7, & 16
\end{array}\right)
$$

Residue Sytems

Residue Sytems
Residue Number System
Polynomial Residue Representations
Modular Reduction
Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base
Conclusions
UPmC

Lagrange representations in $G F\left(p^{k}\right)$ with $k \leq p$
B ．－Imbert－Negre 2006 ieeeTC

Extension of a finite field
Elements of $G F\left(p^{k}\right)$ ：$G F(p)$ polynomials of degree lower than k ．
Lagrange representation
－is defined by k different points $e_{1}, \ldots e_{k}$ in $G F(p) .(k \leq p$.
－A polynomial $A(X)=\alpha_{0}+\alpha_{1} X+\ldots+\alpha_{k-1} X^{k-1}$ over $G F(p)$ is given in Lagrange representation by：

$$
\left(a_{1}=A\left(e_{1}\right), \ldots, a_{k}=A\left(e_{k}\right)\right)
$$

－Remark：$a_{i}=A\left(e_{i}\right)=A(X) \bmod \left(X-e_{i}\right)$ ．
Operations
are made independently on each $A\left(e_{i}\right)$ modulo $m_{i}(X)$ $m_{i}(X)=\left(X-e_{i}\right)($ as for FFT or Tom－Cook or Karatsuba $)$ ．

Example

Finite Field

－$G F\left(23^{5}\right)$ defined by an irreducible polynomial $I:=x^{5}+2 x+1$
－Let A and B be two elements of $G F\left(23^{5}\right)$ in polynomial forms：$A:=2 x^{4}+x+3$ and $B:=x^{2}+5 x+4$

Lagrange representation

－We consider $G F\left(23^{5}\right)$ and the two sets of points：

$$
\mathrm{e}=(2,4,6,8,10) \text { and } \mathrm{e}^{\prime}=(3,5,7,9,11)
$$

－Then，elements are defined by：

$$
\begin{aligned}
& A_{e}=(14,13,2,15,3) \text { or } A_{e^{\prime}}=(7,16,5,1,17) \\
& B_{e}=(18,17,1,16,16) \text { or } B_{e^{\prime}}=(5,8,19,15,19)
\end{aligned}
$$

I⿴囗十⿰⿺乚一匕⿱㇒日⿱一土儿，SORBONNE UNIVERSITÉS

Trinomial residues in $G F\left(2^{n}\right)$

B.-Imbert-Jullien $2005_{\text {ARITH17 }}$

Finite Field

Elements of $G F\left(2^{n}\right)$ are considered as $G F(2)$ polynomials of degree lower than n.

Trinomial representation

- is defined by a set of k coprime trinomials

$$
m_{i}(X)=X^{d}+X^{t_{i}}+1, \text { with } k \times d \geq n,
$$

- an element $A(X)$ is represented by $\left(a_{1}(X), \ldots a_{k}(X)\right)$ with $a_{i}(X)=A(X) \bmod m_{i}(X)$.
- This representation is equivalent to RNS.

Operations

are made independently on each $a_{i}(X)$ modulo $m_{i}(X)$

Trinomial residues

Example in $G F\left(2^{n}\right)$

We consider $d=16$ and $k=3$, thus $n \leq 48$:

- base $1=\left(x^{16}+1, x^{16}+x+1, x^{16}+x^{2}+1\right)$
- $A:=x^{18}+1 \quad B:=x^{23}+1$
- $A_{\text {basel }}:=\left(x^{2}+1, x^{3}+x^{2}+1, x^{4}+x^{2}+1\right)$ $B_{\text {base1 }}:=\left(x^{7}+1, x^{8}+x^{7}+1, x^{9}+x^{7}+1\right)$
$A B_{\text {basel }}:=\left(x^{9}+x^{2}+x^{7}+1, x^{11}+x^{3}+x^{9}+x^{2}+x^{8}+x^{7}+1, x^{13}+x^{4}+x^{2}+x^{7}+1\right)$
$A \times B:=x^{41}+x^{23}+x^{18}+1$

Residue Systems

Advantages

- Efficient Addition and Multiplication.
- Parallelization (GPU, multicore, ...).
- Small moduli.
- Side-Channel: Error Correction, Randomisation.

Drawbacks

- M smooth, not useful for Cryptography.
- Problems: modular reduction, euclidean division, comparison.
- Tool: Base conversion.

Residue Sytems

Residue Sytems
Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base
Conclusions

Residue version of Montgomery Reduction

Montgomery 1985, Posh and Posh 1995, B.-Didier-Kornerup 1997

Residue Montgomery algorithm

1. $Q=-\left(A p^{-1}\right) \bmod M$ (calculus in base M)
2. Extension of the representation of Q to the base M^{\prime}
3. $R=(A+Q p) \times M^{-1}$ (calculus in base M^{\prime})
4. Extension of the representation of R to the base M

Remarks
$R \equiv A \times M^{-1} \bmod p$ with $R<2 p$
Auxiliary bases M^{\prime}, M^{\prime} and M coprime (exact product, and existence of $\left.M^{-1}\right), p<M, M^{\prime}\left(\operatorname{ordeg} I(X) \leq \operatorname{deg} M(X), \operatorname{deg} M^{\prime}(X)\right)$

Montgomery notation
$A^{\prime}=A \times M \bmod p$ and $\operatorname{Montg}\left(A^{\prime} \times B^{\prime}, M, M^{\prime}, p\right) \equiv(A \times B) \times M(\bmod p)$

Extension of Residue System Bases

- The extensions are similar to the polynomial interpolations.
- We consider $\left(a_{1}, \ldots, a_{k}\right)$ the residue representation of A in base M.
- The Lagrange interpolation gives

$$
\sum_{i=1}^{k}\left|a_{i} \times\left[\frac{M}{m_{i}}\right]_{m_{i}}^{-1}\right|_{m_{i}} \times \frac{M}{m_{i}}=A+\alpha M
$$

One has $\alpha=0$ for polynomials. For integers α can be, according to the cases, neglected or computed.

Extension in RNS Montgomery

B. - Didier - Kornerup 2001, Shenoy - Kumaresan 1989, Posh - Posh 1995, Kawamura Koike - Sano - Shimbo 2000

- The extension of Q from M to M^{\prime} does not need to be exact, Q is multiplied by p
- The second extension of R from M^{\prime} to M must be exact. Hence α must be determined
- an extra modulo can be used

$$
\alpha=\left|\left|\left|\sum_{i=1}^{k}\right| a_{i} \times\left[\frac{M}{m_{i}}\right]_{m_{i}}^{-1}\right|_{m_{i}} \times \frac{M}{m_{i}}\right|_{m_{\text {extra }}}-\left.a_{\text {extra }}\right|_{m_{\text {extra }}} \times\left. M^{-1}\right|_{m_{\text {extra }}}
$$

- or we use the integer part of $\sum_{i=1}^{k}\left|a_{i} \times\left[\frac{M}{m_{i}}\right]_{m_{i}}^{-1}\right|_{m_{i}} \times \frac{1}{m_{i}}$

Exact Extension of Residue System Bases

Newton interpolation, H.L. Garner 1958, B. - Kaihara - Plantard 2009

We first translate in an intermediate representation Mixed Radix Systems (MRS):

$$
\left\{\begin{array}{l}
\zeta_{1}=a_{1} \\
\zeta_{2}=\left(a_{2}-\zeta_{1}\right) m_{1}^{-1} \bmod m_{2} \\
\zeta_{3}=\left(\left(a_{3}-\zeta_{1}\right) m_{1}^{-1}-\zeta_{2}\right) m_{2}^{-1} \bmod m_{3} \\
\vdots \\
\zeta_{n}=\left(\ldots\left(\left(a_{n}-\zeta_{1}\right) m_{1}^{-1}-\zeta_{2}\right) m_{2}^{-1}-\cdots-\zeta_{n-1}\right) m_{n-1}^{-1} \bmod m_{n}
\end{array}\right.
$$

We evaluate A, with Horner's rule, as

$$
A=\left(\ldots\left(\left(\zeta_{n} m_{n-1}+\zeta_{n-1}\right) m_{n-2}+\cdots+\zeta_{3}\right) m_{2}+\zeta_{2}\right) m_{1}+\zeta_{1} .
$$

Some conclusions about RNS
 B. - Duquesne - Ercegovac - Meloni 2006, Szerwinski - Güneysu 2008, Guillermin 2010, Antão - B. - Sousa 2010

- RNS is well adapted to parallel architectures (GPU, Multicore,...).
- Modular reductions stay costly.
- For ECC or Pairing it is possible to reduce the number of modular reductions since $A \times B+C \times D$ needs only one reduction.
- As for the interpolation, the choice of the bases is important. Does there exist an FFT like approach for RNS?

Modular Positional Arithmetics

Residue Sytems

Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases
Exponent representations (ECC kP)
Addition Chains
Double base
Conclusions

Modular Positional Arithmetics

```
Residue Sytems
Residue Number System
Polynomial Residue Representations
Modular Reduction
```

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base

Conclusions

Positional Number Systems and Modular Operations

- Number system: $\operatorname{radix} \beta$ and a set of digits $\{0, \ldots, \beta-1\}$.
- We denote by p the modulo, with $p<\beta^{n}$

$$
\beta^{n} \equiv \varepsilon(\bmod p), \text { with } \varepsilon=\sum_{i=0}^{n-1} \varepsilon_{i} \beta^{i}, \varepsilon_{i} \in\{0, \ldots, \beta-1\}
$$

- A modular operation (ex.: modular multiplication)

1. Polynomial operation: $W(X)=A(X) \times B(X)$
2. Polynomial reduction: $V(X)=W(X) \bmod \left(X^{n}-\varepsilon(X)\right)$

- Pseudo-Mersenne properties for the reduction.
- The coefficients of $V(X)$ can be larger than $\beta-1$ the maximal digit.

3. Coefficient reduction: $M(X)=\operatorname{Reductcoeff}(V(X))$

IA IA SORBONNE UNIVERSITĖS

Modular Reduction with pseudo-Mersenne numbers
$p=\beta^{n}-\varepsilon$ avec $0 \leq \varepsilon<\beta^{n / 2}$

- In this kind of reduction we have two products by ε
- ε very small, for example $\varepsilon<\beta$, for having a product by a digit
- ε very sparse (most of the digits are equal to zero) then the product is replaced by some shift-and-adds.
- There are only very few such Pseudo-Mersenne numbers.
- The question is: Is it possible to have a number system where p is a Pseudo-Mersenne number?

Modular Arithmetic Adapted Bases

Th. Plantard PhD 2005

The main idea

- Representation of A :

$$
A=\sum_{i=0}^{n-1} a_{i} \gamma^{i} \bmod p, \text { with } a_{i} \in\{0, \ldots, \rho-1\} \text { and } p<\rho^{n} .
$$

- γ can be huge, but ρ is small (redundancy).
- (p, n, γ, ρ) defines the MAAB system.

Modular reduction

- For the polynomial reduction: $\gamma^{n} \equiv \varepsilon(\bmod p)$ with ε small.
- For the coefficient reduction different approaches.

Modular Arithmetic Adapted Bases

B. - Imbert - Plantard $2004_{S A C}$

First approach (find P and γ)

- The construction of the system giving some features: $n=8$, and $\rho=2^{32}$ with $p<\rho^{8}$ determine the size of the problem.
- The property $\gamma^{8} \equiv 2(\bmod p)$ for the polynomial reduction.
- The coefficient reduction is given by $2^{32} \equiv \gamma^{5}+1(\bmod p)$

Thus $V=2^{32} V_{1}+V_{0}=2^{32} l d \cdot V_{1}+V_{0} \equiv M \cdot V_{1}+V_{0}(\bmod p)$ with
$M=\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1\end{array}\right) \equiv\left(\begin{array}{cccccccc}2^{32} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2^{32} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2^{32} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2^{32} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2^{32} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2^{32} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2^{32} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2^{32}\end{array}\right)(\bmod p)$
CISS

Modular Arithmetic Adapted Bases

B. - Imbert - Plantard $20044_{S A C}$

Remarks and construction

- $2^{32} l d-M=0 \bmod p$ defines a lattice.
- p divides $\operatorname{det}\left(2^{32} / d-M\right)$, a factorization gives:
$p=115792089021636622262124715160334756877804245386980633020041035952359812890593$
which corresponds to the expected size.
- The value of γ is deduced as a solution of $\operatorname{gcd}\left(X^{8}-2,2^{32}-X^{5}-1\right)$ modulo p :
$\gamma=14474011127704577782765589395224532314179217058921488395049827733759590399996$
- Generally, M is found with coefficients lower than $2^{k / 2}$, which means that three rounds are sufficient.

Modular Arithmetic Adapted Bases

B. - Imbert - Plantard $2005_{\text {ARITH }}$

Second approach (find ρ and γ)
Consider the modulo $p=53$, and $n=7$ for the digit size, $p<\rho^{7}$, and we expect a small value for ρ like $\rho=2$.
We look for a radix with Pseudo-Mersenne property, we find $\gamma=14$, such that $\gamma^{7} \equiv 2(\bmod p)$.
We consider the carry propagation lattice modulo p

$$
L=\left(\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5} \\
V_{6} \\
V_{7}
\end{array}\right)=\left(\begin{array}{ccccccc}
-14 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -14 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -14 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -14 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -14 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -14 & 1 \\
53 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Modular Arithmetic Adapted Bases

B. - Imbert - Plantard $2005_{\text {ARITH }}$

Remarks and construction

- This lattice L admits as short vector

$$
(1,1,0,0,0,0,1)=V_{6}+14 * V_{5}+14^{2} * V_{4}+14^{3} * V_{3}+14^{4} * V_{2}+\left(14^{5}+1\right) * V_{1}+142067 . V_{7}
$$

- With $\gamma^{7} \equiv 2(\bmod p)$, we construct a sublattice L^{\prime}.

$$
\Rightarrow L^{\prime}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 1 \\
2 & 0 & 0 & 0 & 0 & 2 & 1
\end{array}\right)
$$

- Hence, ρ can be chosen equal to 2 .
- Coefficient reduction becomes a closest vector problem.

IBA SORBONNE UNIVERSITÉS

Modular Arithmetic Adapted Bases

Conclusions

- First approach: efficient coefficient reduction but reduced choice of moduli.
- Second approach: we can choose the moduli but complexity of the coefficient reduction.

UPmC

Modular Positional Arithmetics

Residue Sytems

Residue Number System
Polynomial Residue Representations
Modular Reduction
Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
 Addition Chains
 Double base

Conclusions
UPMC

Ostrowski Bases

Continued Fraction Expansion of $\frac{a}{m}$

- $\frac{a}{m}=k_{0}+\frac{1}{k_{1}+\frac{1}{k_{2}+\frac{1}{k_{3}+\ldots}}} \quad$ et $\quad \frac{p_{i}}{q_{i}}=k_{0}+\frac{1}{k_{1}+\frac{1}{k_{2}+\ldots \frac{1}{k_{i}}}}$
- $\theta_{i}=a q_{i}-m p_{i}$
- Recursive computation

$$
\begin{array}{llll}
q_{i+2} & =k_{i+2} q_{i+1}+q_{i} & q_{0}=1 & q_{-1}=0 \\
\theta_{i+2} & =k_{i+2} \theta_{i+1}+\theta_{i} & \theta_{0}=a-m k_{0} & \\
\theta_{-1}=-m
\end{array}
$$

Ostrowski representations base $\left(q_{i}\right)$ and base $\left(\theta_{i}\right)$

$$
\begin{aligned}
b & =\sum_{i=0}^{n-1} b_{i} q_{i}, \quad \text { with } b_{0}<k_{1}, 0 \leq b_{i} \leq k_{i+1}, b_{i}=0 \text { if } b_{i+1}=k_{i+2} \\
x & =\sum_{i=0}^{n-1} x_{i} \theta_{i}, \quad \text { with } x_{0}<k_{1}, 0 \leq x_{i} \leq k_{i+1}, x_{i}=0 \text { if } x_{i+1}=k_{i+2}
\end{aligned}
$$

Ostrowski Bases

Example

Continued Fraction Expansion of $\frac{3238}{7741}$

- $\frac{3238}{7741}=[0 ; 2,2,1,1,3,1,2,4,1,2,3]$
- Ostrowski base (q)

$$
B_{q}:=[1,2,5,7,12,43,55,153,667,820,2307]
$$

- Consider $b=6000$ in Ostrowski representation

$$
b_{B_{q}}:=[0,1,0,1,0,1,1,3,0,1,2]
$$

- $x:=[1,0,1,0,3,0,2,0,1,0,3]$ represents 7740 the largest value

Ostrowski Bases

Example

Continued Fraction Expansion of $\frac{3238}{7741}$

- θ base

$$
B_{\theta}:=[3238,-1265,708,-557,151,-104,47,-10,7,-3,1]
$$

- Decreases and Alternates
- $x:=[1,0,1,0,3,0,2,0,1,0,3]$ represents 4503 the largest value
- $y:=[0,2,0,1,0,1,0,4,0,2,0]$ represents -3237 the smallest value
- Remark: $x-y=7740$

Ostrowski Bases and Multiplication

M. Gouicem PhD 2013

Computation of $a \times b \bmod m$

1. Evaluation of q_{i} and θ_{i} from $\frac{a}{m}$.
2. Representation of b in the Ostrowski base $\left(q_{i}\right)$.

$$
b=\sum_{i=0}^{n-1} b_{i} q_{i}, \quad \text { with } b_{0}<k_{1}, 0 \leq b_{i} \leq k_{i+1}, b_{i}=0 \text { if } b_{i+1}=k_{i+2}
$$

3. Return $R=\sum_{i=0}^{n-1} b_{i} \theta_{i}=a \cdot b \bmod m$, with $(-m<R<m)$

Proof: $\sum_{i=0}^{n-1} b_{i} \theta_{i}=\sum_{i=0}^{n-1} b_{i}\left(a q_{i}-m p_{i}\right)=a \sum_{i=0}^{n-1} b_{i} q_{i}+\alpha m$

Ostrowski Bases

Example

Multiplication of $3238 \times 6000(\bmod 7741)$

- $\frac{3238}{7741}=(0,2,2,1,1,3,1,2,4,1,2,3)$
$B_{q}:=[1,2,5,7,12,43,55,153,667,820,2307]$
$B_{\theta}:=[3238,-1265,708,-557,151,-104,47,-10,7,-3,1]$
- Consider $b=6000$ in Ostrowski representation $b_{B_{q}}:=[0,1,0,1,0,1,1,3,0,1,2]$
- We obtain in θ base

$$
\begin{aligned}
& (1 *(-1265)+1 *(-557)+1 *(-104)+1 * 47+3 *(-10)+1 *(-3)+2 * 1) \\
& =(-1910) \equiv 5831 \equiv 3238 \times 6000 \bmod 7741
\end{aligned}
$$

Ostrowski Bases

M. Gouicem PhD 2013

Conclusions

- Quadratic complexity in the size of the modulo.
- Division: the θ representation provides the division in Ostrowski representation.
- Allow to perform inversion, multiplication and division with the same circuit.
- Multiplications and/or divisions by the same number a becomes efficient

Exponent representations (ECC kP)

Residue Sytems

Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base
Conclusions
UPmc

Exponent representations (ECC kP)

Residue Sytems

Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base
Conclusions
uPmc

Addition Chains: Fibonacci - Zeckendorf

Representation of Zeckendorf - 1972 (1939)

- Fibonacci Series: $F_{n+2}=F_{n+1}+F_{n}$, with $F_{0}=0$ and $F_{1}=1$ $1,2,3,5,8,13,21,34,55, \ldots$
- Representation with $q_{i}=F_{i+2}$

$$
b=\sum_{i=1}^{n-1} b_{i} q_{i}, \quad \text { with } b_{i} \in\{0,1\}, b_{i}=0 \text { if } b_{i+1}=1
$$

Remarks

- It is the Ostrowski representation using the continued fraction expansion of the golden ratio.
- Example: $k:=1117=[0,1,0,1,0,0,0,1,0,1,0,0,0,0,1]_{\mathcal{Z}}=$ $F_{3}+F_{5}+F_{9}+F_{11}+F_{16}=2+5+34+89+987$

Addition Chains: Fibonacci - Zeckendorf

$k P$ with an efficient $P+Q$.

- Algorithm:

1. Decomposition in the Fibonacci representation
2. Recursive computing with respect to the decomposition

- Example: Evaluation right to left of 1117.P using $[0,1,0,1,0,0,0,1,0,1,0,0,0,0,1]_{z}$ with 18 Additions

1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	
1	1	2	3	5	8										
					9	14	23								
							24	38	62	100	162				
											163	263	426		
												427	690	1117	

Addition Chains: Fibonacci - Zeckendorf

E. B. Burger et al. 2012ActaAr.

Properties

- Length: k such that $F_{k} \leq n<F_{k+1}$
- Ratio of ones: $\frac{\psi(k)}{k} \rightarrow \frac{5-\sqrt{5}}{10}=0.2763$

Pros and cons

- Advantage: only additions
- Drawback: more digits than in binary: ratio $=\frac{\ln 2}{\ln \varphi} \sim 1.44$ with $\varphi=\frac{1+\sqrt{(5)}}{2}$
- Tool: Greedy Algorithm

Euclidean Addition Chains

N. Meloni PhD 2007, Herbaut-Liardet-Meloni-Teglia-Veron 2010InDOCRYPT

Definition

A Euclidean addition chain (EAC) of length s for an integer k is a sequence $\left(c_{i}\right)_{i=1 \ldots s}$ with $c_{i} \in\{0,1\}$.
The computation of k is obtained from the sequence $\left(v_{i}, u_{i}\right)_{i=0 . . s}$
$v_{0}=1, u_{0}=2$
$\left(u_{i}, v_{i}\right)=\left(v_{i-1}+u_{i-1}, v_{i-1}\right)$ if $c_{i}=1$ (small step),
$\left(u_{i}, v_{i}\right)=\left(v_{i-1}+u_{i-1}, u_{i-1}\right)$ if $c_{i}=0$ (big step).
Then we denote $\chi(c)=v_{s}+u_{s}=k$.
Properties

- Euclidean algorithm scheme
- $\chi\left(0_{n}\right)=F_{n+4}, \chi\left(1_{n}\right)=n+3$

Euclidean Addition Chains

N. Meloni PhD 2007, Herbaut-Liardet-Meloni-Teglia-Veron 2010Indocrypt

Example

We can find shortest chains for 1117 with 15 additions:
[1117, 648], [648, 469], [469, 179],
[290, 179], [179, 111], [111, 68], [68, 43], [43, 25], [25, 18], [18, 7], $[11,7],[7,4],[4,3],[3,1]$,
$[2,1],[1,1]$
$\chi(01000100000010)=1117$
Construction of keys
How to construct a set of keys with efficient EAC representations?

Exponent representations (ECC kP)

Residue Sytems

Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base
Conclusions
UPmC

Double base

Dimitrov-Jullien-Miller 1999 ${ }_{\text {ieeeTC }}$, Dimitrov-Imbert-Mishra 2005ASIACRYPT

Double Base

- Representation: $X=\sum x_{i, j} 2^{i} 3^{j}, \quad x_{i, j} \in\{0,1\}$
- Example: $127=1111111_{b}=2^{3} 3^{2}+2^{1} 3^{3}+2^{0} 3^{0}=72+54+1$
$k P$ with $2 P$ and $3 P$

1. Decomposition in double base, find a path.
2. Return $2^{i_{0}} 3^{j_{0}} P+2^{i_{1}} 3^{j_{1}} P+2^{i_{2}} 3^{j_{2}} P+\ldots$

Advantages and Drawbacks

- Sparse representation
- Redundancy and optimal representation

Double base

Berthé - Imbert 2009 ${ }_{\text {DMTCS }}$, Tijdeman 1974 CompMath

Construction

- How to find the nearest $2^{a} 3^{b}$ to a given number N ?
- Then a greedy algorithm can be used.
- Number of non-zero digits is in $O(\log N / \log \log N)$

Method

- We minimize: $a * \ln 2+b * \ln 3-\ln N$ or $a \log _{3} 2+b-\log _{3} N$
- Considering the fractional part we have $\left(a \log _{3} 2-\log _{3} N\right) \bmod 1$

Double base

Berthé - Imbert 2009 ${ }_{\text {DMTCS }}$
Method using Ostrowski

- We consider the continued fraction expansion of $\log _{3} 2$ $[0 ; 1,1,1,2,2,3,1,5,2,23,2, \ldots]$
- The Ostrowski bases are constructed
- $\theta_{i}=q_{i} * \log _{3} 2-p_{i}$
- Recursive computation

$$
\begin{array}{llll}
q_{i+2} & =k_{i+2} q_{i+1}+q_{i} & q_{0}=1 & q_{-1}=0 \\
\theta_{i+2} & =k_{i+2} \theta_{i+1}+\theta_{i} & \theta_{0}=\log _{3} 2-k_{0} & \theta_{-1}=-1
\end{array}
$$

- a is found in two steps
- Representation of $\log _{3} N$ mod 1 in θ base:

$$
\left(\log _{3} N\right) \bmod 1=\sum_{i=0}^{n-1} n_{i} \theta_{i}
$$

- We have $a=\sum_{i=0}^{n-1} n_{i} q_{i}$

Double base

Berthé - Imbert 2009 DMTCS

Example for $N=2000$

- We consider the continued fraction expansion of $\log _{3} 2$:
[$0 ; 1,1,1,2,2$]
and the bases: $B_{q}=[1,1,2,3,8,19]$
$B_{\theta}=[0.63,-0.369,0.26,-.1,0.047,-0.012]$
- we consider $T=\left(\log _{3} N-\left\lfloor\log _{3} N\right\rfloor\right)=0.918639575$
- $T_{\theta}=[1,0,1,0,0,0]=0.8927892604$
- In the base $B_{q}:[0,0,1,0,0,0]=3=a$
- Then $\left\lfloor\log _{3}\left(N / 2^{3}\right)\right\rfloor=5=b$
- We verify that:

$2^{1} 3^{6}$	$2^{3} 3^{5}$	$2^{4} 3^{4}$	$2^{6} 3^{3}$	$2^{7} 3^{2}$	$2^{9} 3^{1}$	$2^{10} 3^{0}$
1458	1944	1296	1728	1152	1536	1024

Conclusions

Residue Sytems
Residue Number System
Polynomial Residue Representations
Modular Reduction

Modular Positional Arithmetics
Modular Arithmetic Adapted Bases
Ostrowski Bases

Exponent representations (ECC kP)
Addition Chains
Double base

Conclusions
UPmC

Tools and open problems

Residue Systems

- Chinese Remainder Theorem, Polynomial interpolations
- Find good bases (base extension)

Modular Positional representations

- Lattice reduction, Shortest vector, Closest vector
- Continued Fraction Expansion, Ostrowski representation

Exponent representation

- Fibonacci series, Zeckendorf, Euclid algorithm
- Shortest addition chains, Ostrowski approximation

