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Introduction

The revolutionary work on knot invariants presented by Jones in the 1980s supposed a revolution
in knot theory, revealing a new class of invariants called quantum invariants, which revealed the
existence of interactions never before explored between low-dimensional topology and certain hith-
erto exotic algebraic structures such as Hopf algebras. These connections have since given rise to
a large number of interesting results and constructions in different branches of mathematics and
physics, such as quantum mechanics, statistical mechanics, quantum group theory or the theory
of Lie algebras. In this report we review three constructions that have arisen in this context: the
category of ribbon graphs, the oriented-framed skein category and the category of chord diagrams.

The category Riby of ribbon graphs over a ribbon category V and, in particular, the subcategory
of tangles, provides an appropriate algebraic structure for a family of low-dimensional topological
objects, the tangles, that generalise knots providing a suitable environment for a systematic study
of topological invariants. It is a category whose morphisms are isotopy classes of a certain type of
surfaces and which is universal among ribbon categories. Specifically, for any ribbon category V),
there is a uniquely determined functor

F : Riby —» V,

which connects the topological structure of ribbon graphs with the algebraic properties of the cate-
gories with the same name. The existence of this connection has interesting immediate consequences
since it allows us to obtain topological properties from the algebra by constructing invariants but
also, in the other way round, it allows us to deduce algebraic results from the topology of the
surfaces.

The second of the categories we will be interested in, the oriented-framed skein category OS(z,t),
is directly connected to quantum groups. Quantum groups were introduced between 1983 and 1985
by Drinfeld and Jimbo, giving a precise mathematical formulation to the work of some physicists on
the Yang Baxter equation. Roughly speaking, they can be described as uniparametric deformations
of the enveloping algebra of semisimple Lie algebras. These algebras can be described in terms of
generators and relations. By modifying these relations in an appropriate way through the intro-
duction of a parameter ¢, it is possible to obtain new objects, which include the classical objects
as a particular case (by taking ¢ = 1 we recover the initial enveloping algebra) and which possess
interesting properties. One of these properties is the fact that their category of representations has a
ribbon category structure and can therefore be used in the study of topological invariants. Although
their combinatorial description is complicated, quantum groups admit a graphical representation
through diagrams that can be organised into a certain category, which turns out to be equivalent
to the quotient of the linearisation of the tangle category by certain skein relations.

The third object to be described is the category of chord diagrams, which has its origin in the
Vassiliev invariants of knots. These invariants were introduced around 1989 by Vassiliev and brought
out once again the deep connection between the theory of invariants of knots, Lie theory and
quantum theory. Vassiliev’s idea was to use singular knots with a finite number of self-intersections
to describe certain subspaces of linear combinations of knots. Using this description, a Vassiliev
invariant of degree n can be defined non-constructively as an invariant which cancels out in the
subspace represented by the singular knots with > m self-intersections. The introduction of singular
knots produces a filtration in the space of linear combinations of isotopy classes of knots which is
compatible with the filtration of the vector space of all Vassiliev invariants and whose study is
sufficient for the understanding of all finite type invariants. It quickly follows that the invariant of
degree m of a knot with m double points depend only on the combinatorics of the self-intersection
points of singular knots. This combinatorics can be easily described in terms of diagrams on the circle
constructed by adding a series of chords connecting two points whose image is a self-intersection
point. In particular, each Vassiliev invariant produces a function on the space of linear combinations



of chords diagrams which descends to the quotient A of this vector space modulo the so-called one-
term and four-term relations. The main result of Vassiliev’s theory states that the Vassiliev vector
space of invariants is isomorphic, as a filtered vector space, to the graded dual of A, where the
graduation comes from the number of chords. The proof of this result consists in the construction
of a certain invariant, the Kontsevich integral, which is universal in the sense that it captures all
finite type invariants and also all quantum invariants. The chord diagrams can be organised into
a category CD, which will be the object of study in the third section, that admits a structure of
symmetric infinitesimal category. The theory developed by Drinfeld shows that any such category
can be deformed into a larger category CD® which can be equipped with a ribbon structure using
the so-called Drinfeld associators. The universal property of the tangle category then establishes
the existence of a functor
F : Ribepe — CD?

which turns out to be a generalisation of the Kontsevich invariant.

It follows from all this discussion that there are two ways to produce ribbon categories. The first,
through the category of representations of quantum groups, is explicit but unnatural. The second
construction, based on the existence of Drinfeld associators, is less explicit but more general and
conceptually clearer. It turns out that there is indeed a connection between both. Using again the
theory of Drinfeld associators, it is possible to obtain a ribbon category Rep®G from the category of
representations of a certain class of group G. In the same way that the category of representations
of the associated quantum group, Rep,G is closely related to a quotient of the (ribbon) category of
tangles, it is possible to construct a functor F : CD® — Rep®G with the property that any invariant
constructed using the universal property of the category of tangles over Rep®G is obtained by
specialising an invariant F' : Rib,pe — CD®. Finally, a fundamental theorem in quantum algebra
states the existence of an equivalence of ribbon categories

Rep,G ~ Rep?G,

which establishes the link between the three categories we are going to study.



1 The category of ribbon graphs

The discovery of the Jones polynomial in 1984 radically transformed the study of knot invariants, as
it revealed the existence of previously unexplored relationships between objects of low-dimensional
topology and certain abstract algebraic structures, relatively exotic until then. However, the set of
knots in R3 is too narrow to define interesting structures to exploit these interconnections. One way
to solve this difficulty is to consider the knots as part of a larger, well-structured object on which
sophisticated algebraic techniques can be properly applied. In particular, knots are a specific case
of a wider family of topological objects, the ribbon graphs, which can be organised into a category
defined from their elementary topological properties. It turns out that this category provides the
natural environment in which to explore the connections between low-dimensional topology and
certain interesting algebraic structures: it possesses a universal property that intimately connects
it to the ribbon categories. This connection can be exploited in two directions: on the one hand, it
produces a machinery for generating topological invariants; on the other hand, it allows one to use
surface topology to produce algebraic results, for example through the graph calculus on monoidal
categories that we will discuss in more detail later.

1.1 Ribbon categories

First of all, we introduce the algebraic background on which the rest of the constructions presented
in this report will be based. This is provided by the strict monoidal categories, which constitute
the most elementary natural example of “categories with additional structure”. Roughly speaking,
they are categories with a tensor product. When, in addition, they are equipped with braiding,
twist and duality, they give rise to particularly interesting objects in the construction of certain
topological invariants: the ribbon categories. The definition of these categories has been inspired,
to a large extent, by the Hopf algebras, which we briefly discuss in the appendix.

1.1.1 Strict monoidal categories. A tensor product in a category V is a covariant (bi)functor
®:V xV — V. In particular, we have the following identities

(fofH®(god)=(f®g)o(f®Y),
idy @ idw = idvgw,

whenever they make sense.

Definition 1.1.1. A strict monoidal category is a category V endowed with a tensor product and
a distinguished object 1 € V, called the unit object, such that

URV)@W=U(VeW), Vl=V, 1V =V,

for all objects U, V, W and all morphisms f, g, h in V.

Strict monoidal categories are a particular case of (not necessarily strict) monoidal categories. The
general definition and main properties of these categories are given in the appendix.
A first example of strict monoidal category is provided by the category of tangles, that we will treat

in further detail in the next section:

Example 1.1.2 (A first definition of a category of tangles). An unoriented tangle is the image of a
piecewise smooth embedding f : (Sl)un L [0,1]9™ — R2 x [0, 1] such that boundary point maps to
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boundary points and interior points maps to interior points. Points lying in R? x {0} are the inputs
of the tangle and those lying in R? x {1} are the outputs.

Figure 1: A tangle with 5 inputs and 3 outputs.

For any p,q = 0, let Tp7q be the set of all tangles which have p inputs and ¢ outputs, all of them
lying in R x {0} x {£1}. Let T}, ; be the set of isotopy classes of elements of prq such that during the
isotopy the inputs and outputs stay in R x {0} x {1} and are not allowed to meet each other. We
can define a canonical multiplication map 7}, 4 x Ty, — T}, by concatenating two representatives
of the isotopy classes such that the outputs of the first one coincides with the inputs of the second
one, and rescaling.

Figure 2: Concatenation of two tangles t1 € Ty 4 and t3 € T}y 9.

We define now the category of unoriented tangles up to isotopy as the category 7 whose objects are
nonnegative integers and, for every p,q € N, Hom7(p, q) = T, 4. The composition is given by the
concatenation of tangles that we have defined above and, for each p € N, the identity id, € T}, is the
tangle consisting of p vertical segments. This category admits the following structure of monoidal
category: for each p,q e N, set p® ¢q == p+ ¢ and, for each pair of tangles t1 € T}, 4, t2 € T} 5, t1 @ 12
is the class of isotopy of the union of two representatives of ¢; and 9 in such a way that every
input/output of the first tangle is to the left of every input/output of the second one, as illustrated
in the following picture. We will discuss the details of this construction in later sections.

=

Figure 3: Tensor product of two tangles.



1.1.2 Presentation of a strict monoidal category by generators and relations. One of
the most efficient ways to describe a group is by generators and relations. A similar formalism
works for strict monoidal categories, as we will see in this subsection.

Let V be a strict monoidal category and F a family of morphisms in V. We define words in the
alphabet F inductively in the following way:

e A word of rank 1 is a symbol f € F or a symbol idy where V is an object of V. For a word
a of rank 1, we denote {(a) the morphism in V represented by a. The only subword of such a
word is the word itself.

e Suppose that words of rank < n has been already defined and that for every such a word a, we
have a morphism {a) in V and a collection of subwords. Then, the words of rank < n + 1 are
defined to be the symbols of the form aob, with a, b of rank < n and source((b)) = target({a)),
and a®b, where a, b are words of rank < n. We set {aob) := (ayo(by and (a®b) = {a)®(b).
By a subword of a o b or a ® b we mean the word itself or a subword of a or b.

Let {cj,d;}jes be a family of words in the alphabet F such that {c;) = {(d;), for all j € J. We say
that a and b are equivalent in the alphabet F if there exists a finite sequence a = ag,a1...,ar = b
such that, for each ¢ = 0,...k — 1, a;41 is obtained from a; replacing a subword with another
subword such that either for some j € J these subwords are ¢; and dj, or the are the two sides of
one of the following relations:

(fegloh~fo(goh), (M)
Joidgy ~ f, idyypof ~f, (M2)
idy oidy ~ idy, (M3)
(f®9)®h~ fR(g®h), (M4)
di®f~f, [f®id1~ [, (Mb5)

idy ®idy ~ idvew, (M6)

(f@g) o (f'®d)~(fof)®(gog), (M7)
where V, W are objects of V, f, ', g, ¢, h are elements of F and s(f) := source(f), t(f) = target(f).

We write a ~ b if the words a and b are equivalent and we say that (F : ¢; = dj,j € J)is a
presentation of V by generators and relations if

(i) F generates V, i.e., each morphism of V is equal to {a) for some word a in the alphabet F,
(ii) for any words a and b in the alphabet F, the equality (a) = (b) holds if and only if a is
equivalent to b modulo the relations {c; = d;};eJ.

The following three lemmas will be useful in latter sections. We suppose that F is a collection of
morphisms in a strict monoidal category V. By equivalence of words, we mean equivalence modulo
de empty set of relations.

Lemma 1.1.3. If f1, fo,..., fn € F and the composition fj o foo---o f, is defined, then for any
objects V,W € V, we have

(idy ® fi®idw) oo (idy ® fr, ®idw) ~idy ® (fr oo frn) ®idy.

Proof. For n = 2, we have

(idy ® fi®idw) o (idv ® fo ®@idw) ~ [(idy ® f1) o (idy ® f2)] ® (idw o idw)
~ (idv o) idv) ) (fl o f2) X (ldW o ldw) ~idy ® (f1 o f2) ®idyy.

The general case then directly follows by induction. |



Lemma 1.1.4. If f : X —» U and g : V — W are morphisms from F then the words (f ® idy ) o
(idx ® g) and (idy ® g) o (f ®idy) are equivalent.

Proof. We have

(f®idw) o (idx ®g) ~ (foidx) ®(dwoyg) ~ f®g
~(idyof)®(goidy) ~ (idy ® g) o (f ®idy).
[ |

Lemma 1.1.5. Every word in the alphabet F is equivalent either to a word idy where V is an
object of V, or to a word of the form

(idy; ® f1 ®idw,) o (idy, ® fo @idws,) o - -+ o (idy, @ fir, ®idw,),
where k > 1, f; e F and V4,..., Vi, Wq,..., W are objects of V.

Proof. By induction on the rank. The result is obvious for words of rank 1: if f € F, then
f ~id1 ® f ®id;. Assume that the result is true for words of rank < n and let a be a word of rank
<n+ 1. Then either a = b® c or a = b o ¢, where b and ¢ are certain words of rank < n. By the
induction hypothesis, we may assume that b and ¢ are words of the form of the lemma.

The case a = b o ¢ is obvious. Suppose that a = b ® ¢ and neither b nor ¢ are of the form idy. Let
b="bio---obpand c = cjo---0¢;, where all b; and ¢; are words of the form idy ® f ®idw . Set
S = source(b) and T' = target(ci). Then

a=b®c~bo(idg) ® (idr)* o ¢ ~ (by ®idr) 0--- 0 (b ®idr) o (idg ® ¢1) 0 - - - o (ids ® ;).

Thus, a has the desired form. The cases where b = idy and/or ¢ = idyy are treated similarly. [ |

1.1.3 Strict braided monoidal categories. A braiding in a monoidal category V is a natural
family of isomorphisms
c={eyw : VOW ->WQRV : V,IWeV}
such that
cuyvew = (idv ® cuw) o (cuy ®@idw),
cugv,w = (cuw ®idy) o (idy ® cv,w),
for all objects U,V, W € V. In particular, taking V = W = 1 in the first identity, one has

CU71 = (idl ® CU71®1) (¢] (CU71, ®id1) = CU71 o CU,l-

Hence, cy,1 = idy, and applying the same argument to the second equality, we also get ¢1,y = idy,
for all object U in V. Any braiding satisfies the Yang-Baxzter identity:

(cvw ®idy) o (idy @ cyw) o (cu,y ®idw) = (idw ® cy,v) o (cuw ®idy) o (idy ® cvw),
for all U, V, W € V. This is proven algebraically in the appendix for an arbitrary monoidal category.

Definition 1.1.6. A strict braided monoidal category is a strict monoidal category V endowed with
a braiding.

If the braiding verifies
cw,v o cyw = idygw,
for all objects V, W, we say that it is symmetric. Finally, it is straightforward to prove (cf. appendix)

that the reverse braiding
Cy,w = C‘;%V

is also a braiding.



1.1.4 Duality in strict monoidal categories. We now introduce the notion of duality in a
strict monoidal category. To motivate this definition consider the category Vecﬂ{ of finite dimensional

vector spaces. Each V' € Vecﬂ{: has a dual V* € Vec]{: . Fix a basis {v;}; and let {v'}; be its dual
basis. We have natural isomorphisms

ev VIRV -5k, v'®u; *—><Ui,Uz'>
v k- VRV, 1o v,

where (, ) is the duality pairing. It is then straightforward to check that the following compositions
are equal to the identity:

V 6v®idv V ® V* ® V idv@QVv ‘/7

idy % @0y evy ®idy,
E—— E—

Vv VFVeV* V.

We can generalize theses objects and maps in the following way:

Definition 1.1.7. Let V be a strict monoidal category and V € V an object. A right dual to V is
an object V* € V with two morphisms

by :1 -V V*,
dy :V*QV —1,

such that the compositions

b id idy ®d
v ®idy idy ®dy

174 VRV*eV V,

idv* ®bV dV®idv*
—_— —_—

v VF@VeVv* V.

are equal to idy and idy*, respectively. These requirements are called rigidity axioms.

1.1.5 Twists. A twist in a strict monoidal category V is a natural family of isomorphisms
0={0y:V >V :VeV}
such that, for any two objects V, W €V, we have
Ovew = cwy ocyw o (By ® ).
Using the naturality of the braiding, we may also write

Ovew = cwy o By ®60w)occyw = (v @ 0w ) o cy,w o cw,y .

We have seen that in a strict monoidal category c;,1 = idy, so we have
01 =bi1g1 =01 ®601 = (01 ®idy) o (idg ® 1) = 01 061,

Thus ;1 = idy by the invertivility of 6;.



1.1.6 Definition of ribbon category. We are now ready to give the definition of a ribbon
category. One of the most important features about this constructions is that it allows a consistent
theory of traces and dimensions, as we will see in latter sections.

Definition 1.1.8. A ribbon category is a monoidal category V equipped with a braiding c, a twist
c and a duality (*,b,d) verifying the following compatibility axiom:

(0v ®idy«) o by = (idy @ Oy+) o by,

for all Ve V.

1.2 Ribbon graphs and operator invariants

Roughly speaking, ribbon graphs are compact surfaces in R? that can be obtained by gluing to-
gether three elementary pieces: bands, annuli and coupons. Labelling theses pieces by objects
and morphisms of a ribbon category V, ribbon graphs can be turned into a category Riby which
topologically encodes the algebraic properties of V.

1.2.1 Ribbon graphs and their diagrams. The first step in the construction of Riby consists
in giving formal definitions of the elementary pieces that we mentioned above and using then to
construct ribbon graphs. A band is a homeomorphic image of the square [0,1] x [0,1] in R?. The
image of the segment {1/2} x [0, 1] is called the core of the band and the images of [0, 1] x {0} and
[0,1] x {1} are its basis. We will say that the band is directed if its core carries an orientation. An
annulus is a homeomorphic image of the cylinder S! x [0, 1] in R3. The core of the annulus is the
image of S! x {1/2}. The annulus is said to be directed if its core is oriented. A coupon is a band
with a distinguished base, called the bottom base of the coupon. The opposite based is said to be
the top one.

Figure 4: Directed band and directed annulus.

Definition 1.2.1. Let &, be two non-negative integers. A (k,[)-ribbon graph is an oriented surface
Q2 embedded in R? x [0, 1] and decomposed into an union of bands, annuli and coupons such that

(i) € intersects the planes R? x {0} and R? x {1} along the segments
{[i — 1/10,i + 1/10] x {0} x {0} : i=1,...,k}

and
{[7 —1/10,5 + 1/10] x {0} x {1} : 7 =1,...,1},

which are the bases of certain bands of 2. In the points of theses segments, the orientation of
Q is determined by the pair of vectors (1,0,0) and (0,0,1) tangent to €;

(ii) other bases of bands lie on the bases of coupons; otherwise, bands, annuli and coupons are
disjoint;

(iii) the bands and annuli of €2 are directed.



We will consider ribbon graphs up to isotopy. Precisely, by isotopy of ribbon graphs, we mean an
isotopy in the strip R? x [0, 1] constant on the boundary intervals and preserving the splitting into
annuli, bands and coupons as well as the directions of bands and coupons and the orientation of
the surface. By rotating an annulus around its core by the angle of m we get the same annulus with
the opposite orientation, so the orientations of annuli are then superfluous. On the other hand, the
orientation of bands and coupons determine a “preferred side” of the surface 2.

Ribbon graphs allow a more manageable representation in terms of diagrams, which can be con-
structed as follows. Using isotopy, we can always deform a ribbon graph in such a way that coupons
and bans are parallel to the plane R x {0} x R and the projections of the cores in this plane are in
generic position, i.e., there are finitely many intersections, each intersection point has exactly two
preimages and the two tangent vectors are linearly independent. In the addition, we require that top
bases of coupons are represented on top of bottom bases. We will then say that the ribbon graph is
in generic position. Projecting bands and annuli onto their cores and R? x [0, 1] onto R x {0} x R,
and labelling each intersection by X or < , we obtain a representation of the ribbon graph by a
diagram which determines it up to isotopy.

N NUPS
//@ /(/O

P S

Figure 5: A ribbon graph and its diagram.

The only ambiguity comes from the fact that bands may be twisted several times along its cores.
However, both positive and negative twists in a band are isotopic to curls which go parallel to the
plane, as shown in Figure 6.

2
©)
2
@
u
Q)
2
©)

Figure 6: Twisted bands are isotopic to cursl.

1.2.2 The category of v-coloured ribbon graphs. Let now V a strict monoidal category with
duality. Labelling bands and annuli by objects and coupons by morphism of V, we will construct
the category Riby which will be key in latter sections to matching the topology of ribbon graphs
with the algebra of ribbon categories. Precisely, a ribbon graph is said to be coloured if each band
and each annulus of the graph is equipped with an object of V. This object is called the colour of
the band or annulus.

Let Q be a coloured ribbon graph. Let ) be a coupon of 2 and let Vi,...,V,, be the colours of

10



the bands incident to the bottom base of (), enumerated in the order induced by the orientation
of () restricted to (). Let W1,..., W, be the colours of the bands intersecting the top base of @,
encountered in the order induced by the opposite orientation of (). For each ¢ = 1,...,m, define ¢;
by
o { +1, if the band coloured by V; is directed “out” of @,
‘| —1, otherwise.

Similarly,

b —1, if the band coloured by W; is directed “out” of @,
71 +1, otherwise.

A colour of the coupon (Q is an arbitrary morphism
f:V51®---®V;,im _)lel®”.®W’gn7

where we set V1 := V and V! := V*, for every object V of V. A ribbon graph is v-coloured over
V if it is coloured and coupons are provided with colours as above. Again, we will consider colored
ribbon graphs up to isotopy. By isotopy of coloured (resp. v-coloured) ribbon graphs, we will mean
colour-preserving isotopy. We are now ready to define the category Riby.

Definition 1.2.2. The category Riby of v-colored ribbon graphs is the category defined by the
following data:

e Objects: finite sequences ((V1,e1),..., (Vin,em)), where Vi,...,V,, are objects of V, and
€1y...,Em € {+1,—1}.

e Morphisms: given two sequences 7,7’ as above, a morphism f : 7 — 7’ is a v-coloured ribbon
graph such that n and 7 are the sequences of colours and directions of those bands meeting the
bottom and top boundary intervals, respectively, with € = 1 corresponding to the downwards
direction and € = —1 corresponding to the upwards direction of the bands.

Composition of morphisms is obtained is obtained by stacking one ribbon graph on the other, i.e.,

f

fog= , and the identity morphisms are represented by ribbon graphs which have no annuli

and no coupons, and consists of untwisted vertical bands.

This category is endowed with an structure of strict monoidal category by defining the tensor
product on objects by juxtaposition and the tensor product of two morphisms f and g by placing
a v-coloured graph representing f to the left of a v-coloured ribbon graph representing g.

1.2.3 Presentation of Riby by generators and relations. An important subcategory of
Riby is provided by ribbon tangles. A ribbon tangle is a ribbon graph containing no coupons.
The category of v-coloured ribbon tangles is thus the subcategory of Riby with the same objects
and whose morphisms are ribbon graphs containing no coupons. Diagrams representing morphisms
in this category are called tangle diagrams. These diagrams consist basically of oriented strands
connecting different points of R x {0} x {0, 1}.

The isotopy invariance allows us to deform the diagrams to obtain other equivalent diagrams, for
example by bending or stretching one of the strands. There are, however, a number of pathological
situations that cannot be solved using isotopy. First of all, remember that each strand represents
a band in the ribbon graph, so loops cannot be eliminated by simply stretching the strand (this
would produce a twist in the corresponding band). On the other hand, if the two ends of a strand
are at the same height, it is inevitable that the strand will have a “maximum” or a “minimum”.
Finally, two strands cannot intersect, so crossings between them cannot be resolved by an isotopy

11



that leaves the endpoints fixed. Around one of these pathological points, the tangle diagrams “look
like” one of the morphisms in the following list:

ly= ; Tv==T ;o= ;Qy = ;
v 174 \)V %4
IR NN SIYS

“H
KK

We will see that, in effect, any tangle diagram can be obtained by composition and tensor product
of morphisms from this list.

Given a tangle diagram D, we call height function of D the restriction wp of the projection m :
R x [0,1] — [0,1], (z,y) — v, to D. The extremal points of 7p and the crossing points of D are
the singular points of the diagram. A generic tangle diagram is a tangle diagram such that:

(i) the set of the extremal points of 7p and the set of crossing points of D are disjoint;
(ii) there is a finite number of singular points;
(iii) the heights of two different singular points are different;
(iv) mp is non-degenerate in all extremal points.

With this definition we exclude points of the following nature:

Figure 7: Examples of “pathological” point in tangle diagrams.

Since we are considering diagrams up to isotopy, it is clear that every tangle diagram is equivalent to
a generic one, obtained applying a small deformation on it. Let D be such a generic diagram. The
number of singular points is finite and they lie at different heights, so we can take a partition 0 =
xo,1,...,2, = 1 of the unit interval such that there is at most one singular point in R x [z;_1, 2],
foreach i = 1,...r. Cutting the strip Rx [0, 1] along the lines Rx {z;}, i = 0,...r, we can decompose
the tangle diagram into a composition of tangle diagrams containing at most one singular point, as
the following picture suggests:

12



Figure 8: Decomposition of a generic tangle diagram.

Taking into account that generic points are either crossings or extremal points, it is now straight-
forward to see that every block in the previous decomposition is obtained as a finite tensor product
of some of the morphisms that we listed at the beginning of the paragraph (except ¢y and ¢f,).

The general case of ribbon graphs, eventually with some coupons, can be treated in a similar
way. Isolating coupons as we have just done with singular points, we can decompose any diagram
representing a ribbon graph into simpler pieces containing at most one coupon or one singular
point. An elementary ribbon graph is a ribbon graph consisting of one coupon and a set of unlinked
untwisted vertical bands incident to this coupon.

L
T

Figure 9: Elementary ribbon graph.

The discussion above shows that the list of elementary morphisms together with elementary ribbon
graphs provides with a full set of generators. Moreover, some of them are superfluous, since they
can obtained by composition and tensorization of the rest. Indeed, we have the following equalities:

Yy = % ®80/V) © Z\J/r',v oV,

Ny = nvoZyyo(pv®1v),
Yow = (nv® lw ® 1v) o (Tv X7y ® 1v) o (Tv ® lw ®uy),
Tvw = (nv® tw ® Tv) o (Tv ®Yiry® 1v) o (Tv ® tw ®uv),

where v € {—1, +1}. The right-hand side of the above relations is represented in Figure 10 for v = 1.
A similar graphical argument works for the other cases.

13



§ 4 B[

Figure 10: Graphical representation of the decomposition of Uy, Ny, YJW and T‘J/r W

All in all, we have proven the following lemma:

Lemma 1.2.3. The coloured ribbon tangles

/
XUw Zyws v, vy Vv, Ny

where V, W runs over objects of V and v runs over {+1, —1} generate the category of ribbon tangles.
The same ribbon tangles together with all elementary v-coloured ribbon graphs generate Riby. W

Recall from paragraph 1.1.2 that a presentation by generators and relations for a monoidal category
V consists of a collection F of morphisms together with a family of relations such that any morphisms
of V can be written as a word in the elements of F (cf. subsection 1.1.2 for a precise definition of
word) and two words represent the same morphism if and only if they are connected by a finite
string of words obtained by substituting one letter by another one which is equivalent modulo the
relations.

We center again on the subcategory of ribbon tangles. We claim that the following is a list of
fundamental relations for the tangles from lemma 1.2.3:

(tw ®Xgy) o (XGw® lv) o (lv @Xif ) = (X{y® lv) o (lv @X ) o (XFy® lw),  (R1)
lv= Uy ®v) o (uv® lv), (R2)
tv=(nv® 1v) o (Tv ®uv), (R3)

X‘;,W = (XI-JI_ﬁV)_l7 (R4)

oy = (pv) ", (R5)

Xyw o (lv ®pw) = (pw® lv) o X{w, (R6)

Zyw = [(0W® Wwtw)o (tw Xy p® Tw) o (Tw ® v @UW)]_ ; (R7)
(ev)? = (nv® lv) o (Ty ®X ) o (Z,® lv) o (Uv® lv). (R8)

In the proof of lemma 1.2.3, we gave an explicit method to assign a word to a given ribbon tangle.
Indeed, if D is a tangle diagram with no singular points, we can associate to D the word a(D) = idy,
for some object of V. On the other hand, if D has n > 1 singular points, we take n — 1 horizontal
lines in R x [0,1] in such a way that there is exactly one singular point between two consecutive
lines. This singular point is a crossing or an extremal point of the hight function, so the graph
locally looks like one of the preferred diagrams that we presented at the beginning of this section.
Strands not containing this point are isotopic to vertical lines. Hence, the part of the diagram lying
between two adjacent horizontal lines is a morphism of Riby, of the form idy ® f ®idy,, where V., W
are objects and f is represented by one of the aforementioned morphisms. Writing f in terms of
the generators presented in lemma 1.2.3, we get a word representing the part of the diagram lying
between two lines. We assign to the diagram D the composition a(D) of these n words written

14



down from the left to the right in the order of decreasing height. It is clear that the corresponding
morphism {a(D)) in Riby is the isotopy class of D.

In order to prove that the set of relations listed above is a fundamental set of relations, we shall
show that two words in the generators from lemma 1.2.3 representing isotopic ribbon tangles are
equivalent modulo these relations. The theory of ribbon tangles widely generalizes the theory of
framed knots and links. The following well-known theorem of knot theory characterizes isotopy of
framed links in terms of transformations of link diagrams:

Theorem 1.2.4 (Reidemeister’s theorem). Two link diagrams in R? represent isotopic framed links
in R? if and only if they may be related by an ambient isotopy of the plane and a finite sequence of
moves (g, {22, Q23 of the same type as those represented in picture 11. |

| 0 \ 4 \/ L
A1 &l %,

| ( A

Figure 11: Reidemeister moves.

The proof of Reidemeister’s theorem involves examining how a certain deformation on an arc of a
link changes its diagram. This argument is entirely local to arcs of the link. In particular, it does not
depend on the fact that those arcs are part of a circle or an interval, so the theorem extends to the
setting of tangles. The same works when we introduce colours and directions, so the Reidemeister’s
theorem gives a method to check whether two ribbon tangles are isotopic or not by inspecting their
diagrams.

The proof that (R1) - (R8) is a fundamental set of relations comes now to show that, under
transformations of a tangle diagram consisting of Reidemeister moves and/or ambient isotopies
of R x [0, 1] constant on the boundary of the strip, the word associated with the diagram is replaced
by an equivalent one.

The Reidemeister move (2. Considering directions, we have the following eight oriented versions

of the second Reidemeister move 25:
4
é ) é
v
A A A
v

Figure 12

<>
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. . . \ /
where, in each diagram, we let € and 7 be different elements of { K, X}

Given two diagrams D and D’ such that D’ is obtained from D by an application of one of these
moves, we shall show that a(D) ~ a(D’). Note that Reidemeister moves of type 2y involve only
two consecutive singular points, so they modify only two consecutive blocks in the decomposition
of R x [0, 1] into horizontal bands that we use to compute words. These two blocks are of the form
idy ® f ®idy and idy ® g ®idyy, where f, g € {X(’}’Q7 Yoo 2t Thg + v=0, 1}, for some objects
U,V,W and ). We have then to show that

(idy ® f ®idw) o (idy ® ¢ ®idw) ~ idy ® idy ® idg ® idw .
However, lemma 1.1.3 allows us to write
(idv ®Rf® idw) o (idv ®a® idw) ~idy ® (f o g) ®idw,

which reduces the problem to prove that fog ~ idy ®idg, i.e., we can suppose, without loss of
generality, that D and D’ are the simple diagrams represented in Figure 12.

We examine the first three cases where ¢ = X and n = X The rest can be treated in an
analogous way. For the first graph, we directly have from (R4) that

Xiw o Xypy ~ Xiw o (X)) ™! = idwev =lwlv .

In the second case, the resulting graph for our choice of w and 1 is Z;,;, o YVT/V. It follows from the
proof of lemma 1.2.3 that the related word is

Zyw o (nw® lv ® tw) o (tw ®Xy 1 ® tw) o (tw ® Ly ®uw),

which is equivalent to Ty | V by (R7). The third diagram is Y|}, o Z;,,, and the same argument
works. The ideas for the fourth diagram are the same, but the computations are tedious since they
involve longer words. A pictorial argument for this case is given in [8, section 1.4.4.].

We give some ideas of the proof for Reidmeister moves of type €23 and ambient isotopies. For further
details and a complete proof refer again to [8, sections 1.4.5. to 1.4.6.].

The Reidemeister move ()3. The third Reidemeister move involves three strands and captures
the idea that when one of them goes over or under the other two, we can move it to both sides of
the crossings without changing the isotopy type of the ribbon tangle represented by the diagram.
This move is represented schematically in Figure 13 where each symbol A, B, C' stands for one of
the crossings Xy, Y71y, Zv . Ty yy, Where v € {—1,+1} and V, W are objects of V.

Figure 13

We will say that a triple (A4, B,C) is compatible if one of the strands goes over or under the other
two and the directions and colours of A, B, C' are induced by a choice of colour and orientation for
each strand. Example of triples which are not compatible are given if figure 14.
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Tyy
Figure 14: Non compatible triples.

For each compatible triple (A4, B, ('), we may replace the crossing points in Figure 13 by the cor-
responding graphical representation of A, B,C, giving rise to two tangle diagrams D(A, B,C)
and D'(A, B,C). We will say that a compatible triple is good if a(D(A, B,C)) is equivalent to
a(D'(A, B,C)). Hence, proving that a Reidmeister move of type Q3 produces an equivalent word
comes to prove that all compatible triples are good. We will only address here the case where A, B
and C are of type X” to give an idea of how that can be proven.

Consider first the involution A — A in the set of crossings {XVy, Yy, 2V, TV} defined by
symmetry on the vertical axis, as shown in the following picture:

/ \

Figure 15: Symmetry on crossings.

Note that the diagrams of the form Ao A and A o A are exactly those concerned by the second
Reidemeister move. Composing D(A, B,C) and D'(A, B,C) from above by C' ® | and from below
by |®C and applying a move of type s, we get D'(B, A,C) and D(B, A, C), respectively, as shown
in Figure 16.

Q

Figure 16: D(A, B,C) ~ D'(B, A, 0).

The preceding argument shows that if (A, B, C) is a compatible triple, then (B, A, C) is compatible
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too. Moreover, if (A, B, () is good, we have
a(D'(B,A,C)) ~a(CQJ)oa(D(A,B,C))oa(|®C)
~a(C®|)oa(D'(4,B,C))oa(|®C) =a(D(B,AC)),
i.e., the triple (B, A, C) is also good. The same argument can be applied to show that the compati-

bility and goodness of (B, A, C) imply those of (A, B, C), and we can prove similarly that (A, B, C)
is good if and only if (A, C, B).

Now consider the case where A, B, C' are crossings of type X”, with v = +1. Replacing if necessary
(A,B,C) by (A,C,B) or (B,A,C) we may always suppose that the signs v of the first and the
third element of the triple coincide. This forces the second element of the triple to have also the
same sign. If this common sign is v = +1, we have

a(D(4,B,0)) = (lv ®Xyy) o (X p® lv) o (lw ®X{ )
~ (XY p® lw) o (v ®Xppp) o (Xypy® lu) = a (D'(4, B, C)),
where the equivalence between the two words follows from (R1). Otherwise, v = —1, and we get
a(D(A, B,C)) = (ly ®@Xjy) © (Xi70® lv) o (lw ®X77)
~ (o ®X ) o (Xgw® lv) o (lw X))~

-1
O = i 1 3|

~ [(X\JZW@) ) o (lv ®Xw) o (Xjy® iw)]_l
~ (X p® lw) o (lv ®Xpy1) o (X, ® lv) = a(D'(4, B, C)),

where the first and the fourth equivalence are a consequence of (R4), the second one is trivial and
the third one is given by (R1).

The rest of the cases are trickier, but the details are given in [8].

Ambient isotopies. As mentioned before, we consider ambient isotopies of R x [0, 1] constant
on the boundary. We can think of such an isotopy as a continuous deformation of the tangle
diagram keeping the endpoints of every strand fixed. We have to show that two generic diagrams
connected by such a transformations are represented by equivalent words. These deformations of
tangle diagrams will affect singular points so, at a given instant of time, a situation may arise in
which two singular points are “instantaneously” at the same height, a crossing “instantaneously”
coincides with an extremal point of the height function or new singular points are generated or
annihilated when bending or stretching a strand. Thus, isotopic generic diagrams may be obtained
from each other by a finite sequence of the following transformations:

(A1) an isotopy in the class of generic diagrams;

(A2) an isotopy interchanging the order of two singular points with respect to the height function;
(A3) birth or annihilation of a pair of local extrema;

(A4) isotopies shown in Figure 17.

-y 0

Figure 17
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Transformations of type (A1) do not modify the configuration of the set of singular points so they
do not change the word at all. The result for transformations of type (A2) is a direct consequence
of lemma 1.1.4. The argument for transformations of type (A3) depends on the orientation of the
strands. The simplest case is represented in Figure 18, which is nothing but the graphical analogous
of (R3).

Figure 18

The rest of transformations of type (A3) and transformations of type (A4) involve Reidemeister
moves and some sophisticated transformations of diagrams which are better explained graphically.
The details are given in [8, section 1.4.6.]

The Reidemeister move 2. We finally treat the first transformation depicted in Figure 11. In
this case, we have to show that

a(pv) o aley) = a(p o ¢y) ~ idy,

a(py) o a(ev) = alp o py) ~ idy.
We have

( )
— (w® 1) (1v ©X7y) o ([av et zfy o uv]@ i)

~ (nv® lv) o (v ®XYy) o (v ®pL® Lv) o (Zy1® lv) o (Uv® lv)
~ Jo (v @ (Xiy o (¢h® 1)) o (Ziy® l) o (v® L)
~ yo (v @ (v ) e Xiy)) o (Z5y® ) o (Lv® Lv)
~ (V@ lv) o (Tv ® lv ®¢y) o (Ty ®X ) o (Z§y® Lv) o (Lv® lv)
~ @y o (mv® ly) o (Ty X ) o (Z,® lv) o (Lv® Lv)

~ @y opy o gy

~ PV,

where the first equality holds by definition of a; the second one by the decomposition of Uy, given
in the proof of lemma 1.2.3; the first equivalence follows from (M3) and (M7); the second one from
(MT); the third one is a combination of (R4), (R5) and (R6); the fourth one is a consequence of (M3)
and (M7); the fifth one can be obtained from (M5) and (MT7); and the two last are a consequence
of (R8) and (R5), respectively.

Applying the same arguments one shows that

a(@y) ~ ¢y o (nv® lv) o (Tv ®Xyy) o (Zy1® Lv) o (Uv® lv).

Representing graphically the right-hand side of the last equation and applying the Reidemeister
move 2o and an ambient isotopy, we get
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/

/ / . /
~pyoa = py oldy ~ py.

V |4

a(py) ~ ¢y oa

The claim now follows straightforward from the previous computations and (R5).

We summarize the all the information presented above in the following lemma:

Lemma 1.2.5. Relations (R1)-(R8) form a complete set of relations between the generators of the
category of coloured ribbon tangles presented in lemma 1.2.3. |

To generalize this result to the category Riby, we need to introduce new relations involving elemen-
tary ribbon graphs. The idea is the same as in the case of ribbon tangles: we describe an isotopy of
ribbon graph through a finite sequence of transformations connecting their respective ribbon graphs
and we show that these transformations translates into an equivalence between the associated words
modulo the desired relations.

Let Q and Q' be two ribbon graphs and let D and D’ be two diagrams representing them. Coupons
are then parallel to a vertical plane in such representations. In the course of the isotopy, they
move as solid rectangles so, in particular, they describe a loop in SO(3). We may visualize this by
thinking of every coupon as having three ortogonal axis attached to its center; the position of these
axis will change as we deform € into €', so that at each time they represent the element of SO(3)
(the rotation taking the initial reference system into the reference system at time t). Since the
coupons are in generic position in both D and D’, the final configuration of the axis coincides with
the initial one so, indeed, we have a loop in SO(3) with base point the identity. All such loops may
be deformed into SO(2) (cf. remark 1.2.7), which implies that we may deform the initial isotopy
into a another isotopy between Q and €’ that keeps all coupons parallel to the plane. Moreover,
since the fundamental group of SO(2) is generated by a 27-rotation, we may relate 2 and ' by a
composition of isotopies of the following two types: (i) isotopies keeping the bases of all coupons
horizontal and (ii) isotopies rotating a coupon in the plane by the angle of 27.

Now suppose that D and D’ are two diagrams representing graphs connected by an isotopy of the
first type. In the regions where no coupon is present, diagrams are modified as in the case of tangle
diagrams, while in a neighbourhood of a coupon the only possible changes are to push a strand
of diagram under or over the coupon, as shown in Figure 19. Hence, isotopies of type (i) may be
presented as compositions of the following transformations:

1. ambient isotopies of the strip R x [0, 1] constant at the boundary,
2. Reidemeister moves €)g, (29 and (g,
3. pushing a strand of the diagram over or under a coupon.

Figure 19

Note that in Figure 19 we have represented only the case where the strand in question is oriented
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downwards. This is general enough, since the case where it is oriented upwards can be obtained
by combining ambient isotopies, Reidemeister moves and the case represented above. This can be
done as in Figure 20.

ambient isotopy | ) |
) e

downwards case | Qo ambient isotopy

— — —

Figure 20

On the other hand, suppose that D and D’ are connected by an isotopy rotating a coupon by the
angle of 27, as shown in the following diagram:

[H@

Figure 21

But we can push the strands incident to the top (bottom) face over (under) the coupon as follows:
J J\
| — =
—
Figure 22

As the picture suggests, he result of this movement is an elementary coupon with a full right-hand
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twist of the bunch of the top bands and a left-hand twist of the bunch of the bottom bands. All
in all, isotopies rotating a coupon may be presented at the level of diagrams as a composition of
isotopies keeping the bases horizontal and movements relating the following two graphs:

>

. ——

< Ltwist )

Figure 23

This discussion together with the arguments given for the case of tangle diagrams imply the following
result:

Lemma 1.2.6. Relations (R1)-(R8) together with the relations presented in Figure 20 and Figure
23 form a complete set of relations between the generators of the category Riby listed in lemma
1.2.3. [

Remark 1.2.7. In the previous description of isotopies of ribbon graphs, we claimed that any loop
in SO(3) with basepoint the identity may be deformed into a loop in SO(2). Indeed, any element
of SO(3) is represented by a point of the ball B.(0) = {(z,y,2) € R® : 22 +y? + 22 = 72}, The
direction of the vector pointing from the origin gives the axis of the rotation and the length of
this vector gives its angle. In particular, the identity map is represented by the origin. Moreover,
antipodal points gives raise to the same element of SO(3) so we have an homeomorphism

SO(3) = Bx(0)/~ ~ RP3,

where ~ is the equivalence relation whose classes are pairs of antipodal points. On the other hand,
SO(2) can be identified with the subset of SO(3) obtained by fixing one direction, i.e., SO(2) the
projection of one diameter on B;(0), and it is clear that every loop based at the origin can be
deformed into a loop contained in this diameter.

1.2.4 The Reshetikhin-Turaev functor. In the first subsection, we introduced the concept
of ribbon categories based on the elementary “blocks” that make up its structure: braiding, twist
and duality. On the other hand, all the work we have done so far in the second subsection has
resulted in a decomposition of the elements of the ribbon graph category through their presentation
by generators and relations. Let us now see how we can relate these two decompositions, through
the construction of a functor F' : Riby — V that matches the topology of ribbon graphs with the
algebraic properties of monoidal categories.

Theorem 1.2.8. Let V be a strict monoidal category with braiding c, twist 8, and compatible
duality (#,b,d). There exists a unique covariant functor F' : Riby — V preserving tensor product

and satisfying the following conditions:
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(i) F((V,+1)) =V and F ((V,-1)) = V*;
(ii) for any objects V,W €V, we have

F (X‘JZW) =cyw, Flev)=~0v, F(uy)=by, F(ny)=dy;

(iii) for any elementary v-coloured ribbon graph I', F(T') = f, where f is the colour of the only
coupon of T'.

We call the morphism F(2) the operator invariant of Q.

Proof. We start noting that, since F' is a covariant functor, we have

Fv) =idv, F(1v) =idve, F( § ) = Flyo F@),

for any two composable v-coloured ribbon graphs € and . On the other hand, we recall that a
complete set of generators for Riby is given by the morphisms

/
X\V/,Wv Z\V/,Wa v, Py, Yv, NV,

where v € {+1,—1} and V,W runs over the objects of V, together with elementary v-coloured
ribbon graphs. If a functor F' as in the theorem exists, then its image over the generators is
uniquely determined by conditions (ii) and (iii), relations (R4), (R5) and (R7), and the fact that F'
preserves the tensor product. This implies the uniqueness.

To prove the existence of F' we have to show that any two words representing a given morphism
are sent to the same object by F, which is equivalent to prove that F' preserves the relations from
lemma 1.2.6.

Applying F' to both sides of (R1) we recover the Yang-Baxter equation for strict monoidal categories
that we introduced in paragraph 1.1.3. The images of (R2) and (R3) are nothing but the rigidity
axioms of duality (cf. definition 1.1.7) and that of (R6) follows from the naturality braiding. We
impose relations (R4), (R5) and (R7) to get the images of ¢}, Xy yp .. Z‘;W and Zyy,, for any
objects V, W of V.

In order to check relation (R8), let us express F(Z ;) and F(Z;;,) in a more suitable way.
Consider the following commutative diagram:

Vvl W yeoweowr VO oy e ws
idvl CV,W@W*\L idW@CV’W*J,
V1@V 2O e wtr@V — —— WQW*QV.

Commutativity of the left square follows from the naturality of the braiding and the fact that
cy,1 = idy. Commutativity of the right square follows from the definition of braiding. Thus,

bW ® ldV = (ldW ® wa*) o (CV,W ® ldw*) o) (ldV ® bw)

Multiplying the left-hand side of this equation by idy+ and composing with dy ® idy+ ® idy, we
have

(dw ®idw+ ®idy) o (idw* ® bw @ idy)
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by the properties of the tensor product and the rigidity axioms of duality. Doing the same thing on
the right-hand side, we get

= Cy,w* © [(dW ® idV ® idv*) o (idw* ® Cv,\w ® idw*) o (idw* ® idV ® bw)]

A similar argument applied to the diagram

—

W*@V@W%V@W*@W V1=V
idypx ®cv,wl Cv,w*®wl idvl

shows that the expression in brackets in the last equation is c‘_/lw* But the inverse of that bracket
is exactly the image by F' of the right-hand side of (R8) with v = —1, which coincides with F(Zy, )
by construction. All in all, we have that F' (Z\ZW) = cy,w+. Applying this to the reverse braiding,
we get F(Z‘?W) = c;Vl*’V.

We are now ready to check (R8). Let V be an object of V. We have to show that
9\2/ = (dV ® idv) o (idv* ® vav) o (C;/,lk’v ® idv) o (bv ® idv)
holds. Using the naturality of the twist and the fact that 67 = idy, we have
bV = bV o (91 = 9V®V* o bV = CyxV OCyy* O (0\/ ® 9\/*) o b\/.

The compatibility axiom of § implies that (®60y+)oby = (03 ®idy+)oby, so the preceding equality
reads
(0‘2/ ® ldv*) oby = C;/IV* o C‘;i v by.

Multiplying the left-hand side from the right by idy, and composing with idy ® dy we have

(idv®dy) o ((6f ®idy+) o by) ®idy
= (idy ® dy) o (7 @ idy+ ®idy) o (by ®idy)
= (idy 0 6%) ® (dy o (idy* ®idy)) o (by ®idy)
(GV oidy) ® (idy o dy) o (by ®idy)
=07 o (idy ®@dy) o (by ®idy) = 67
Doing the same on the right-hand side and using the explicit computation of CVV* that we found

in the previous paragraph, one gets the right-hand side of the relation (RS). EXphClt computations
are omitted since they are quite tedious but similar to what we have just done.

Let’s now verify the relation in V obtained from the relation in Figure 19. First, note that we
may suppose that all the bands intersecting the coupon are directed downwards. Indeed, if one of
these bands is directed upwards we may replace its color by the corresponding dual and change the
direction of the core. We get like this a new ribbon graph whose image by F' is the same as the
initial one, so it gives rise to the same relation in V.

Every crossing in Figure 19 corresponds to a ribbon generator Xy y;,. We treat first the case v = 1.
Let f: U1 ®---®U, > V1 ®:--® V,, be the colour of the coupon and let W be the color of the
long band. Applying F' to the ribbon graph results in the following equality:
(idy, ® - ®idy, , ®cwyy,) oo (ewy, ®idy, ® - - - ®idy,) o (idw ® f)
= (f®idw) o (idy, ® - ®idy,,_, @ cw,y,,) © - o (ewp, ®idy, ® -~ ®idy,,).
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Now the axioms for the braiding in strict monoidal categories exactly say that the following two
v-coloured graphs correspond to the same morphism in V:

\K\v . %

w Vi Vi w Vi® Vi

Figure 24

Applying it repeatedly to both sides of the relation in Figure 19, one finds that the corresponding
relation in V is equivalent to

wvig-eV, © (idw @ f) = (f ®idw) © cw,t,@--@Un
which holds by the naturality of c.
The case v = 1 is proven by the same argument applied to the reverse braiding.

Finally, we check the relation in V arising from Figure 23. Denote by r(V1, ..., V},) the full right-hand
twist appearing in that relation and let us prove by induction that

F(r(Vi,..., Vo)) = g ova-

If n = 1, then (V1) = ¢y, and F(r(V1)) = F(py,) = 6y,. Assume the result for n > 2. Set
V=Vi®  --®V,_1 and W =V, and note that

r(Vi,..., Vo) = XITKV o X‘;W o(r(Vi,..., Vo)) ®1(Vy)) .
Applying F' to this equality, we get

F (T(Vl, ey Vn)) = CW,V ¢} CV,W O (F(’I“(Vl, ceey anl)) @F(T(Vn)))
=cwy ocyw o (By ®Ow)
= Ovew = eV,

where the second equality holds by the induction hypothesis and the third one by the axioms of the
twist. Applying the same argument to the left-hand twist (U, ..., Uy,)), we get that

F UL, ...,Un)) = b5ls..ou,.-

Supposing as above that all the bands are directed downwards, the identity in ) corresponding to
the relation in Figure 23 has the form

ig-ov, © f ©05g.qu, = I
This identity follows directly from the naturality of twist in V. |
Corollary 1.2.9. The functor F' has the following properties:
F(Xyw) =cpv, FW) = cpbye, F(Yyy) = cvsw),
F(Z{w) = e F(Zyw = cvaws,
F(szw) = Cyx W, F(Tﬁw) = Cﬁ}*,V*vF(‘P%/) = 9;17

where V, W are objects of V.
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Proof. Some cases have already been treated in the proof of the previous theorem. The rest are
similar. |

The functor Reshetikhin-Turaev functor may be regarded from several viewpoints. Firstly, it yields
to isotopy invariants of v-coloured ribbon graphs. By definition, the morphisms of Riby, are isotopy
classes of ribbon graphs so two graphs Q and Q' representing the same isotopy class will verify
F(Q) = F(). Secondly, it elucidates the important the role of ribbon categories in the construction
of isotopy invariants. Finally, it renders rigorous the graphical calculus in ribbon categories that we
explain below.

1.3 From topology to algebra: graphical calculus in ribbon categories

The formalism introduced in the previous section provides a very powerful tool for producing identi-
ties in ribbon categories. The idea should now be clear: we can represent each morphism in a strict
monoidal category V by the diagram of a ribbon graph which is in its preimage by F. Applying
transformations on such a diagram which do not alter the isotopy class of the corresponding graph,
and using F' to descend back to the category V), we obtain a new algebraic expression which is
associated to the same isotopy class and which must therefore be equal to the initial expression. We
will apply this technique to prove some properties about the quantum trace and dimension, that
we will define later in this section.

1.3.1 Basic rules of graphical calculus. Let us develop this ideas further. Let )V be a ribbon
category. We use the symbol = to indicate that two diagrams represent ribbon graphs produce the
same arrow in V. We can represent a morphism f : U — V in V by the diagram

lv

7

Figure 25

Using the composition in Riby, we get the following equivalent representations for the composition
of two morphisms f: U > W andg: W -V in V

lv
lv

g
gof p—

f
lU

Vo

Figure 26

A morphism f: U1 ® - ®U,, > V1 ®---®V, is represented by
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lvl lvn
lUl lUm

Figure 27

and the tensor product of two morphisms f ® g by

Vll lvz lvl lVQ

feg| = | f g
Ull le l Ui l Us
Figure 28

The identity arrow of V' will be represented by a vertical arrow |y directed downwards. Using the
isotopy invariance, one gets

Figure 29

which is nothing but a graphical expression of the identity
f®g=(foid)®(idoyg) = (ido f) ® (g0 id).

The braiding and each inverse are represented by

-1
cuy Cuyv

Figure 30

for each pair of objects U,V € V, so we obviously have
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Figure 31

and we can expressed pictorially the naturality of the braiding as

vU

\

%\;%ﬂ

U

V/

Figure 32

where f : U — U’ and g : V — V' are morphisms in V. As for duality, the identity map of V'
will represented by a vertical arrow 1y pointing upwards and coloured by V. The duality maps are
given by

vty
) d =
by v

) v (I v

Figure 33 Figure 34

Finally, the rigidity axioms are represented by

P 14
\% dy 4 \4
A .
— —= — 14 =
— v = —
Y
14 1% by
by v %4 %

Figure 35 Figure 36

The following result, that we prove using graphical calculus, allows us to identify canonically V' and
Vi
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Corollary 1.3.1. For any object V of V, the object V** is canonically isomorphic to V.

Proof. Let = (n,;® Ty+) o (ly ®byx) and ' == (dy+ ®idy) o (Ty* ®uy,) be the v-coloured
ribbon graphs corresponding to the following diagrams:

Figure 37

Note that F(Q2) € Homy(V,V**) and F() € Homy(V** V). The following graphical argument
shows that F(Q) o F(Q) = idy:

|4
id
V*
F(Q)oF() =— =
id

\%4
id .
Y V*
id

vV u vV vv

Figure 38

The first and the last equalities come from the functoriality of F'; in the second one, we deform
the ribbon graph by isotopy; for the third one, we change the direction of the band between the
two coupons and recolour it by V*, and we delete the coupons coloured by the identity. A similar
argument shows that F(Q2) o F() = idy«, so F(Q) is an isomorphism between V and V**. [ |

Using this identification and the definition of Riby and the functor F', we can write
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N P LA

PR

Figure 39

for every morphism f: U* — V*.

1.3.2 More results on duality. We use the rules of graphical calculus that we have just
described to prove some more properties of duality that will be useful in latter sections. The
following result shows that duality is compatible with the tensor product:

Corollary 1.3.2. For any objects V, W of V, the objects W* ® V* and (V ® W)* are canonically
isomorphic.

Proof. It suffices to note that the operator invariants associated to the following v-coloured ribbon
graphs are mutually inverse:

w %4
Vew

idvew

idvew

w |4 Vew

Figure 40

If V is a strict monoidal category, then Endy (1) is a commutative monoid. Indeed, for any f, g €
Endy(1),
fog=(f®id1)o(id1®g) =f®g=([di®g)o(f®id1) =go f.

We then have:
Corollary 1.3.3. The morphisms by : 1 — 1* and dy : 1* — 1 are mutually inverse isomorphisms.

Proof. By the previous corollary and the properties of the unit object, we have
1"=1"®1>21"®1"™ > (1*®1)" =1" >~ 1.
On the other hand, by the axioms of duality,

(idv ®dy) o (by ®idy) = idy,
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for every object V' of V. In particular, taking V = 1, we have dj o by = id;. Finally, this equality
and the previous remark imply that, for any isomorphism g : 1 — 1%,

(9_1 © bl) o(diog)=(diog)o (9_1 °© bl) =diob1 = dy.
Composing with g to the left and with g~! to the right, we get by o dy = idj«. [ |

Let f: U — V be a morphism in a monoidal category with duality. The transpose f* : V* — U*
is defined by
f* = (dv ®idy=) o (idy* ® f ®idy=) o (idy= ® by).

It can be depicted as follows:

Figure 41

It follows from the definition that the transpose of an isomorphism is an isomorphism.

Proposition 1.3.4. If f : V — W and g : U — V are morphisms in a monoidal category with
duality, then we have (f o g)* = g* o f* and (idy)* = idy« for any object V.

Proof. Using the graphical calculus we have

1% U
U
vl *
gof = f g - . = (foy)
w
w
Figure 42
Then,
(idv)* o f* = (foidy)* = f*
and
g* o (idy)* = (idv 0 9)* = g%,
i.e., (ldv)* = idv*. |

1.3.3 Quantum trace and dimension By analogy with vector spaces, we now introduce the
concepts of trace and dimension in ribbon categories. Recall that if V is a finite dimensional vector
space with basis {v;};e; and if {v'};er is the dual basis, the trace of an endomorphism f:V — V' is
given by
te(f) = D 0" (f(v) = Djevy (v @ f(v) = Y jevy o (idv+ @ f)(v @ vy)
i i

i

(2

= €evVy O (ldv* ®f) (ZUZ ®Ul> = evy O (f@ldv*) OTyy* O 5‘/(1),
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where we use the same notations as in paragraph 1.1.7 and we set 7y y = (v' @ ;) = v; ® v*. This
motivates the following definition:

Definition 1.3.5. For any object V' and any endomorphism f : V' — V in a ribbon category V, we
define the quantum trace of f as the element

tr(f) = dy ocyyx o ((Bv o f) @idyx) o by
of the monoid Endy(1).

It follows directly from theorem 1.2.8 that the quantum trace is the operator inavariant of the ribbon
graphs represented in the following figure:

Figure 43

Note that if V = W1 ®---®W,, and f = F(Q), for some v-coloured ribbon graph €2, we may replace
the band coloured by f in the previous diagram by a bunch of n bands coloured by Wy,..., Wy,
respectively, and the coupon coloured by f by the ribbon graph 2. This substitutions do not change
the associated operator invariant, so we have

tr(F(Q)) —

Figure 44

The ribbon graph on the right-hand side of the last equality is the v- coloured ribbon (0, 0)-graph
obtained by closing the free ends of . In particular, taking Q = XITV,V o X‘; W we get

tr(ewyocvw) —— @ = @
|4

Figure 45
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We collect the main properties of the trace in the following lemma:
Lemma 1.3.6. 1. For any morphisms f: V — W, g: W — V, we have tr(f o g) = tr(go f).

2. For any endomorphisms f, g of objects of V, we have tr(f ® g) = tr(f) o tr(g).
3. For any morphism k: 1 — 1, we have tr(k) = k.

Proof. By the isotopy invariance of F', we have

\4
[N &)
tr(fog) = =|7] v g =tr(go f)
w
Figure 46

which proves the first assertion. The second one follows from the following argument:

o i ‘[@

Figure 47

Finally, we prove the last one algebraically. Indeed, for any k € Endy(1), we have

tr(k) =dyo(koidy) oby
= (ld]_ @ dl) O (k} @ ld]_ @ ldl*) o (ld]_ ® b]_)
=k ® (d1 o (id1 ®idyx) 0 b1)
= k@dlobl =k®1d1 = :IC,
where the first equality holds by the definition of trace and the fact that 61 = c¢1,v = cy1 = idy,

the fourth is the result of corollary 1.3.3 and the rest are clear. |

Coming back to the case of vector spaces, the following equality holds for any finite dimensional
vector space V:
tr(idy) = dim(V).

This generalizes now in a natural way to the case of ribbon categories.

Definition 1.3.7. The quantum dimension of an object V of a ribbon category V is the morphis

dim(V) = tr(idy ) € Endy(V).
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It follows straightforward from the discussion above that dim(V') is the operator invariant of the
following v-coloured ribbon graph

dim(V) = 14

Figure 48

This graph is isotopic to the same graph with the opposite direction, which means that, for any
object V of V, we have
dim(V) = dim(V'™).

The main properties of the dimension are collected in the following result, which is a direct corollary
of lemma 1.3.6:

Corollary 1.3.8. 1. Isomorphic objects have equal dimensions.
2. For any objects V, W, we have dim(V ® W) = dim(V') o dim (V).
3. dim(1) = id;.

Proof. If g : V' — W is an isomorphism, then we have
dim(V) = tr(idy) = tr(¢g o g) = tr(g o g71) = tr(idy) = dim(W).

The other two points are two particular cases of points 2 and 3 from lemma 1.3.6. |

2 The oriented skein category and its connection to Rep U,(gl,)

The formalism developed in the previous section highlights the existence of connections between
objects of a topological nature and algebraic objects with a given structure. The axiomatisation of
ribbon categories is largely motivated by the discovery of Hopf algebras, which are bialgebras with
additional structure that allows their category of representations to be endowed with a well-defined
tensor product. In particular, this category of representations is a linear category, in the sense
that each set of morphisms has a linear structure inherited from the structure of the underlying
algebra. Thus, giving a linear structure to the category of tangles previously described will allow
us to further study the connections of this category with the representations of an important class
of Hopf algebras, the quantum groups, defined from deformations in classical algebraic structures
defined by generators and relations.

2.1 Definition and first properties

2.1.1 The category of framed tangles. Let V), be the trivial monoidal category generated by
just one object # and one morphism idy : * — *. We define the category FOT of framed oriented
tangles to be the subcategory of Riby,, whose objects are finite strings on + = (*, +) and — = (x, —)
and whose morphisms are isotopy classes of ribbon graphs containing no coupons.
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In order to simplify the exposition, we adapt to this particular case the notation that we used to
describe Riby. The tensor product in FOT is given by concatenation so we will usually omit the
sign ® and just write objects as words in (+,—), e.g., ++—+— =+ R+ ® —® + ® —. We will
use bold type to refer to these words. If a,b € (+,—), a ribbon graph representing a morphism
f :a — b will be called an (a, b)-ribbon. Note that id, =| and id_ =1.

Lemma 1.2.6 gives a description of FOT in terms of generators and relations. We restate this result

omitting the colouring of morphisms, as there is only one possibility:

Lemma 2.1.1. The category FOT is generated by the objects +, — and the morphisms
Xt X, Z%, 27, n, U, o, ¢,
subject to the relations
(1®XT) e (XT®])o (1 ®X") = (X®])o(l ®XT) o (X'® ), (R1)’

=1 ®n)o(u® ), (
T=("®1)o (1 ®u), (
X™ =X, (
¢ =, (R5)’
X"o(l®p) = (p® )0 XY, wve{+l,—-1}, (
7V =[("®@1®No(1®X '@ No(1®leu)] ", ve{+l, -1}, (
' =(n® 1) o (1 ®XF)o(Z7® )0 (U |). (

The category FOT may be endowed with the structure of a ribbon category in a natural way.
Indeed, to define the braiding cap : a®@b — b®a, where a = a; ---a; and b = by - - - b, we take a

bunch of k strands oriented as ay, ..., ag, respectively, and place it from above across a bunch of [
vertical strands oriented as aj, ..., a;, respectively (see figure 49). The right dual of a = a; -- - a;, is
a* = aj ---af, where +* = —, with duality maps d, : a*®a — 1 and b, : 1 — a®a™ defined as in

the second and the third diagrams in figure 49. Finally, the twist is represented by the last diagram
in the same figure. It is straightforward to check that this construction verify all the axioms in the
definition of ribbon category.

Figure 49: cap, da and b,.
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2.1.2 The oriented skein category OS(z,t). Let k be a commutative ground ring and fix
parameters z,t € k*. The k-linearisation of FOT is the category whose objects are the same as
FOT and whose morphisms are k-linear combinations of morphisms in FOT .

Definition 2.1.2. The extended oriented skein category (53‘(2, t) is the quotient of the k-linearisation
of FOT by the following two relations:

KXl .
0- ™

This relations are called the Conway skein relation and the twist relation, respectively.

The relations in the above definition are local in ribbon graphs, i.e., two morphisms are equivalent
if one can be obtained from the other by substituting locally in the graph one side of the equalities
for the other and keeping the rest of the diagrams unchanged. Algebraically, they can be written as

XT-X"=z(l®l), (S)
p=t]. (T)

Relation (R5)’ implies that ¢ is invertible of inverse ¢’, so (T) is equivalent to
o=t (T)

We then have

Ol =06 GX=0]-df= el

This motivates the following definition:

Definition 2.1.3. The oriented skein category OS(z,t) is the quotient of the k-linearisation of
FOT by the relations (S), (T) and

OO

Note that (D) fixes the quantum dimension of the unique object * € Vy of the underlying trivial
monoidal category. On the other hand, the ribbon structure of FOT induces a ribbon structure
on the oriented skein category OS(z,t) and using lemma 2.1.1 we can give the following efficient
monoidal representation:

Theorem 2.1.4. The oriented skein category OS(z,t) is isomorphic to the strict k-linear monoidal
category C generated by objects E and F' and morphisms

S EQE—->EQFE, T:EQF—-FQLE, C:1-EQF, D:FQE-1,
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subject to the following relations:

5% = 28 +idp ®idg; (0S1)

(S®idg) o (idp ® S) o (S®idg) = ([dp® S) o (S®idg) o (idg ® S); (0S2)
(idg ® D) o (C ®idp) = idg; (0S3)

(D®idp) o (idr ® C) = idp; (O54)
T7!'=(DRidp®idp) o (idr ® S®idp) o (idr ®idg ® C); (085)
tDoToC = ° _Ztl idy. (0S6)

Remark 2.1.5. The description of a k-linear monoidal category in terms of generators and relations
is analogous to the case of a monoidal category (cf. paragraph 1.1.2) with the particularity that
morphisms are now expressed as k-linear combinations of finite tensor products and compositions
of generators, and relations also involve k-linear combinations of morphisms.

We will now prove that an explicit k-linear monoidal functor giving an isomorphism between the
category C of the theorem and OS(z,t) is given by

Ew+, Fr—, SH\‘/\‘, TH:\/\, C o\ D \.

If we denote this functor by ®, we can describe it algebraically by

To check that ® is well-defined we have to verify that the relations (OS1)-(0S6) hold in OS(z,t).
Indeed, by the Conway skein relation, we have

(XY =Xto(z(l®@)N+X)=2XT+|®,

so (OS1) holds in OS(z,t). Applying ® to (0S2), (0S3), (0S4) and (OS5) we recover directly the
relations (R1)’, (R2)’, (R3)" and (R7)". Finally, we check (OS6) graphically:

§eomef)-H-0

Figure 51

The leftmost element is exactly ® (tD o T o C'). The first, the second and the last equalities follow
from the isotopy invariance of morphisms and the third one is the twist relation (T). Finally, the
rightmost element is dim(x), so we have the result by (D).

Proof of theorem 2.1.4. We construct an strict k-linear monoidal functor ¥ : OS(z,t) — C which is
the inverse of ®. Note that we already have a presentation of OS(z,t) by generators and relations:
this is given by the generators and relations of FOT (cf. lemma 2.1.1) together with the relations
(S), (T) and (D). Therefore, to define a k-linear monoidal functor ¥ : OS(z,t) — C it suffices to
choose the images of these generators and take the unique strict k-linear monoidal extension to
OS(z,t). The values of ¥ on objects are forced by those of ®, so we have

U(+)=FE and ¥(-)=F
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By the same reason, there is only one possible choice for each of the generators X+, Z~, U and n.
This is given by

V(X)) =5 W(z7)=T, ¥(u)=C and ¥(n)=D.

On the other hand, the skein relation (S) forces
V(X)) =0 (X")—20(|®|)=5-2(dp®idg),
and the twist relations (S) and (S)’ yield to
U(p)=tidg and V(o) =t"idg.

It remains to define the value of ¥ (Z7). In OS(z,t) we have

K=K XX
PSARN

6
:X+ Z\f\:y\+ztay\

Figure 52

where the first equality is trivial, the second one is a consequence of the isotopy invariance of
morphisms, in the third one we apply the skein relation (S) and in the last one we use the twist
relation (T) twice. The rightmost term is Z~ + 2t? (Z~ o U o n o Z~), which forces

U (ZT)=T+2t>(ToCoDoT).

Let us verify that U is well defined by checking that (R1)’-(R8)" hold in C. First we note that (OS1)
implies

(S - Z(id]_:; ®1dE)) oS=S8o (S - Z(idE ®1dE)) = 52 — 28 = idE ®idE,
so (R4)" holds. Applying ¥ to (R1)’, (R2)" and (R3)" we get (0S2), (0S3) and (OS4). (R5)" is clear
by construction of ¥ and to check (R6)" we just note that V(| ®¢) =t idg ®idg = ¥(¢® |), so

U (XY) o W(l ®p) =t (XY) = ¥(p® |) o ¥ (X").

For v = —1, the relation (R7)’ is just the version in OS(z,t) of (0S5), so there is nothing to check.
Consider the case where v = 1. Applying ¥ to the expression in square brackets in (R7)’, we get

V(@@ (1®X ®1Ne(1®leu))
— (Didp®idr)o (idp ® (S — 2(idp ®idg)) Qidr) o (Idr @ idp ® C)
— (Didg®idr) o (idr ® S®idr) o (Idr @idg ® C)
— 2(D®idp ®idr) o (idr ®idr ®idg idr) o (Idr @ idg ® C)
=T —2D®C)=T"'—2(31d; ®C) o (D®idy) = T~ — 2(C o D),
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where the first equality in the last line comes from (OS5) and the rest are clear. We have to prove
that this is the two-sided inverse of ¥ (ZT) =T + 2t*(T o C o D o T). Indeed,
(T_l —2(CoD))o (T +2t*(ToCoDo T))
—idp ®idp + 2t>(CoDoT) —2(CoDoT)—2**(CoDoToCoDoT)
zidE®idF+zt2(CoDoT) —2(CoDoT) —ZtQ(CODOT) +2(CoDoT)
=idg ®idp,
where the second equality is a consequence of (OS6) applied to the last term. The other computation
is analogous. We check now (R8)’. To do so, we claim that
(D®idg) o (idp®S) = (idp ® D) o (T ®idg). (%)
Applying ¥ to the right-hand side of the equality one gets t? idg. Doing the same to the left-hand
side and applying (x) and (OS8), we have
(DRidg) o (idp ® S) o [(T + 2t*(ToCoDo oT)) ®idg] o (C@idg)
(idg®D)o (T7'@idg) o [(T+ 2t*(ToCoDoT))Qidg| o (C®idg)
(idg® D)o [(C+ 2t*(CoDoToC)) Qidg]
([de®@D)o (1+t(t—t ")) (C®idg) = t* idp.
fi

The equality ()

(ide® D)o (T7' ®@idg)
= (idg ®D) o [(D®idg) o (idr ® S)) ®idr ®idg] o (idr ®idp ® C ®idg)
=[(D®idg) o (idp®S)) ® D] o (idp ®idp ® C ®idg)
= (D®idg) o (idrp ® S) o (idr ®idp ®idp ® D) o (idr ®idp ® C ®idg)
— (D®idg)o (idrp®S).

Finally, (D) translates into (OS8) by ¥

ollows easily from (OS5) and the properties of the tensor product. Indeed,

To conclude, we have to prove that ¥ is the two-side inverse functor of ®. By construction, W o ® =
Id¢ and it is straightforward to verify that, in fact, ® o ¥ = Idpg(. - |

2.2 Connection to Rep U,(gl,)

2.2.1 Definition of U,(gl,) and natural representations. Let k be a field of characteristic
0 and ¢ € k*. Fix n € N and assume that ¢ is not a root of unity. By definition, the algebra U,(gl,,)
is generated by elements ei,fl,d],d] Li=1,...,n—1,j=1,2,...,n, subject to the relations

didj = djd;, did;' = d;Nd; =1,
diejdi_l = qéij_(si’j“ej, d'fjd._1 = q—5i,j+5i,y‘+1fj’
did; Y —d7 iy
eif] f]el = i H—ql_ q_l ‘ ,
eiej = ejei, fifi=fifi, li—jl<2
e?eiil - (q + q_l)eieiilei + eiileg =0,
[ fier = (q+ @) fifisrfi + fisr f7 = 0.

This algebra becomes a Hopf algebra (cf. appendix) with the comultiplication A : Ug(gl,) —
Uq(gl,,) ® Uy(gl,,) defined on generators by

Ale)) =di 'di1@ei+6,®1, A(fi) =1Q f; + f; @did;}}, A(dF') =di' @df.
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The antipode S : Uy(gl,,) — Ugy(gl,,) is defined by

S(e;) = —did; N es,  S(fi) = —fid; 'divr,  S(d;) =d;?,

1

and the counit € : Uy(gl,,) — k is given by

6(62') = 0, 8(]‘;) = O, E(dl) =1.

We define the natural representations V* on basis {v;" : 1 <4 < n} and V™ on basis {v; : 1<
i < n} to be the Uy(gl,)-modules determined by the following actions of the generators of Uy(gl,,),

respectively:
+ ot 040,
i+10 dzvj =q ;Uj )

eiv; =0ijviyy,  fivy =dip v, divg =g )

ei'U;_ = ;41,0 fw;r = iV
Set Rep Uy (gl,,) for the category of finite-dimensional representations of U,(gl,,) that are isomorphic
to finite direct sums of summands of the modules obtained by tensor products of V¥ and V.

2.2.2 A connection between OS(z,t) and Rep U,y(gl,). Set z = ¢ — ¢~!. The category
Rep U,(gl,,) admits the structure on a ribbon Ab-category (cf. appendix A.2), so theorem 1.2.8
ensures the existence of a non-trivial functor F' : FOT — Rep Uy(gl,). On the other hand, we
have seen that the oriented skein category OS(z,t) is also a ribbon Ab-category obtained from the
linearisation of FOT. The questions then arises as to the existence of a functor I' : OS(z,t) —
Rep U,(gl,,) transporting the ribbon Ab-structure of OS(z,t) to Rep Uy,(gl,,). We construct such a
functor using theorem 2.1.4.

Let E, F,S,T,C, D be the set of generators from theorem 2.1.4. We will freely identify this genera-
tors with their images in OS(z,t) given by the functor ® of the previous paragraph. Set I'(+) = VT
and I'(—) = V. The objects + and — are dual in OS(z,t), so let us identify V'~ with the dual of
V*. To do so, we have to fix a non-degenerate bilinear pairing

(ot VIRVT -k
Recall from section A.2 that the action of Uy(gl,,) as a Hopf algebra in (V*)* is defined by
(up)(v") = p(S(u)v™)
for any u € Uy(gl,,), p € (VT)*,vT € V. Hence, in order to get a well-defined morphism
VoS ((VHE v =)

of Uy(gl,,)-modules, the pairing has to be compatible with the U,-module structure of (V*)*. Pre-

cisely, if we set p,- : VT >k, v"— @, (v"):= (vt v7), we must have

<S(’LL)U+,’U_> = Pu- (S(U)U+) = (U<Pv—)(v+) = Puv- (U+) = <U+,UU_>,

for all uw € Uy(gl,,), vt € VT and v~ € V. There is a unique (up to scalars) non-degenerate bilinear
pairing {-, -) satisfying this condition, given by (v;,v;) = (—1)’¢"d;;. The associated evaluation and
coevaluation maps are

VieV-,

ev: V- VT — k, coev: k
1 Z?Zl(—l)Jq_Jv;f Qv .

v @u = (=1)'¢"dy,

Then, defining

T <m> =ev and T (U) = coev,

the relations (OS3) and (OS4) from theorem 2.1.4 are automatically satisfied.
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Next we choose a candidate for the image of .S. This has to be an isomorphism which is a solution of
the Yang-Baxter equation (OS2) and satisfies (OS1). For our choice of z = ¢ — ¢!, this is satisfied
by the isomorphism R: VT @Vt - VT ® V' given by

v ®uf, ifi <j,
R(v ®v;.r) = qv;r R}, if i = 7,

vf @uvf + (g —q¢ v ®@vf, ifi>j.

The value of I'(T") can be obtained by applying I" to (OS5). Using this, the expression of N~ and
U~ in terms of the generators of FOT and the relations (T) and (OS6), one can check that the
images of "~ and U™ by I are

[(n7)=ev and T'(u7) = coev,

where

VoV,

ev': VITV- — k coev' : Kk
1 Z?:I(—l)]qj_n_lv; ®v;-r.

y —>
U;r ® U; > (_1)iqn+1_i5ij, >
Equally, one verifies that dimension relation (D) imposes ¢ = ¢". More details on this are given in
[1, section 3]. We have proved the following result:

Theorem 2.2.1. Let k be a field of characteristic zero and ¢ € k*. Set z = ¢ — ¢~ and t = ¢",

for n € N. There exists a k-linear monoidal functor I' : OS(z,t) — Rep U,(gl,,) sending + — V¥,
—+— V7~ and

AN
— R, m — ev, — coev, f\ — ev’, — coev’.
X r L

2.2.3 Some consequences. We can use the last result to prove some properties of the oriented
skein category OS(z,t). We consider here an arbitrary commutative ground ring k and z,¢ € k*.

Let a,b € (+, —) be objects of OS(z,t) such that x (resp. z’) letters of a and y (resp. y') letters of
b are equal to + (resp. —). It is clear that the set Hompg(, ¢ (a, b) is zero unless r == x+y' = 2" +y,
so let us assume that this is the case. Our first aim is to prove that the k-module Homps, 4 (a, b) is
isomorphic to Homps. 1 (+@7 +@m). Intuitively, we will construct an isomorphism that stretches
all the strands pointing upwards and folds them by passing each of their ends through one side of
the graph. Formally, let b : +® — b ® +® be the unique morphism that consists of y’ nested
rightwards cups on top of y vertical downwards strands. Let a : +® @ a — +®7 the unique
morphism consisting of z’ nested leftwards cups on top of z vertical downwards strands. These
morphisms correspond to the top and bottom blocks in picture 53, respectively. Then, the linear
map
0: Hompg(.(a,b) — Homog(%t)(—k@r, +®)
/ — (1% @) (% @ f® %) (a®|®).

has an obvious two-sided inverse, obtained by stretching and folding in the opposite direction the
ends of the strands pointing downwards.
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Figure 53

Fix now r € N and let us study in more detail the set Homog(z,t)(—i-@T, +®r). The generators of
these set are isotopy classes of ribbon diagrams whose strands go from R x {0} x {1} to R x {0} x {0}.
Take a representative of such a generator. If any of its strands is twisted, we may apply the relation
(T) to write it as a ribbon diagram containing no twists multiplied by a certain power of ¢. By
the isotopy invariance of morphisms, we can stretch all these strands so that we obtain a ribbon
diagram where the z coordinate of every strand is strictly decreasing. This is better explained by
the following picture:

LA AR

Figure 54

Moreover, by recursively applying the skein relation (S) to every negative crossing, we can change
this morphism by a k-linear combination of morphisms of Homps. ) (+©7, +®) whose crossings are
all positive. We can describe these morphisms using the symmetric group &, in the following way:
to permutation m € &, of {1,...,r}, we associate the ribbon diagram &, € Hom(gg(z,t)(+®"", +®7)
with a vertical strictly descending strand going from (7,0,1) to (7 (7),0,0), for each i € {1,...,r}
in such a way that all crossings are positive. The previous discussion shows that, in fact, the set
{&r}res, provides a set of r! generators for Homos(z7t)(+®7", +®) as a k-module. Recall that every
permutation can be written as a composition of transpositions so we would like to transport this
decomposition to Homos(z7t)(+®r, +®) in order to get a more reduced set of generators of this
space as a k-algebra. Nevertheless, the relations defining &, are too restrictive, since 02 = idg, , for
any transposition o € &, and this relation does not hold in Hompg, 4 (+®", +®"). Indeed, for such
a transposition, &, has the form | ® - ® | ®XT® | ® - ® |, so the relation (OS1) from theorem
2.1.4 implies that &2 = 2&,+ |®". For this condition to be verified we should rather work in a
suitable deformation of the group algebra k[&,]. This is provided by the ITwahori-Hecke algebra.

Definition 2.2.2. The Iwahori-Hecke algebra H,(k;z) is the unitary associative k-algebra with
r — 1 generators o1,...,0._1 subject to the relations

oio; = 005, |i—j| =2,

0i0i+10; = 0i410i0i+1, t=1,...,n—2,
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UZ~2=ZO‘i+1, 1=1,...,n—1.

When the context is clear we will simply denote this algebra by H,. It is a well-known fact that
it has rank r!, with basis {w},eg, defined by letting w be the word in generators o; arising from
a reduced expression for w. It is now clear from the discussion above that we have a surjective
morphism of algebras
e Hy — Hom(’)S(z,t)("_@rv +®r)
g — o

In fact, we have more than that:
Lemma 2.2.3. The map ¢ is an isomorphism of k-algebras.

Proof. In the course of the proof we will vary the ground ring k, so we will denote OS(z,t) by
OS8(z,t)kx. Consider first the case where k = Z[z,z‘l,t,t_l]. For any n = r, let I' : OS(q
qil,q")Q(q) — Rep Uy(gl,) be the functor from theorem 2.2.1. Let w : OS(2,t)z[. .1 141
O0S(q—q 1, q")q(q) the obvious strict Z-linear monoidal functor sending z — g — g !, t— q". Now
take a linear relation

—

D) Anlz)r =0,

TeS,

with A\;(z,t) € Z [z, 271t til]. Applying w and I" to the last expression, one gets

D Alg—q 7 q"T(&) = 0.

eSS,

It follows from theorem 2.2.1 and the definition of &, that I'({;) is a composition of morphisms of
the form idy+ ® - ®idy+ ® RQidy+ ® - - - ®idy+ (see figure 55). Thus, an easy induction on the
length of an irreducible decomposition of m on the generators gives

L) (1@ ®vp) = Vr1(1) ®Vr-1(2) @+ @ V1)

Since n > r, this elements are linearly independent in V', which implies that A;(¢ — ¢~ *,¢") = 0
for all 7 € &, and, since this is true for infinitely many values of n, we get that A(z,t) = 0.
Hence, {&{:}res, is a basis of Homos(z7t)Z[z,z_1,t,t_l](+®T’ +®7) so this has rank r!. Then, ¢, is an
isomorphism.

The general case where k is an arbitrary commutative ring and z,t € k> follows from the following
observation. Viewing k as a Z [z, 2Lt til]—module so z and t act via Z and ¢, there is an obvious
strict k-linear monoidal functor

OS(z, Z)k — 0S8 (z, t)Z[z,zfl,t,tfl] ®Z[z,z*1,t,t*1] k

sending each generator & to the same generator tensored by 1i. Since the set {{; ® lk}res, is
linearly independent, so is {{r}res, in OS(z,t)k, which proves the result.

] A X
Y N\) = ¥ \I
[NA VX

Figure 55
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Let a,b € (+,—) and r == x + ¢ = 2/ + y as above. Using the isomorphism 6 constructed at the
beginning of the paragraph, we have:

Theorem 2.2.4. The morphism space Homps. 1 (a,b) is a free k-module of rank r!. |

3 Chord diagrams and the Kontsevich’s theorem

In this section, we describe the category of string diagrams. This category admits an infinitesimal
symmetric category structure, so it can be deformed, using Drinfeld’s theory of associates which
we will discuss briefly, giving rise to a ribbon category whose structure is related to the category
of tangles. The origin of the string diagrams is to be found in the combinatorial description of the
finite degree invariants, or Vassiliev invariants, which we describe below.

3.1 Vassiliev invariants of links

3.1.1 Vassiliev invariants of unframed knots. Let us start by recalling that an oriented
knot is an oriented embedding of the circle S! in R3, i.e., it is a three-dimensional copy of the circle
containing no self-intersections. If we allow self-intersections to occur in a finite number, we have
a weaker notion of knot, which we will refer to as singular knot. Precisely, a singular knot is an
immersion of an oriented copy of S! in R3, where we impose all the self-intersections to be double
points with transversal branches and we assume that they are in finite number. There is a natural
notion of isotopy of singular knots, taking double points to double points. For a fixed field k, we
denote by K (resp. S) the vector space of k-linear combinations of isotopy classes of oriented knots
(resp. regular knots). Clearly, K c S.

We can describe singular oriented knots using planar diagrams. Double points will be represented

There are two ways to desingularise a double point, yielding two singular oriented knots with one
double point less. We will represent these two options by

K+:\/\ and K_:x.

Let us define D as the quotient of S by the ideal generated by the relations of the form

where the three knots involved are identical outside the neighbourhood represented in the diagram.
By recursively applying the relation (V) to every double point, we can associate an element of K to
each singular knot K € §. This extends by linearity to a map

S—K

which induces a isomorphism

D = K.
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Hence, the vector space D is nothing but a different representation of D which allows us to talk
about knots with double points in . In particular, if 1C,, denotes the vector space generated by
isotopy classes of oriented knots with > m points, we get a filtration

KoKgoKioKyo---.

Note that applying (V) to a double point of a knot K € K,,, we have a linear combination of two
knots in K,,—1 so, indeed, Ky, is linearly generated by the isotopy classes of oriented knots with
exactly m + 1 double points.

Any invariant of oriented knots P of oriented knots taking values in k gives rise to a k-linear
map 0 : K — k and, the other way round, any such linear map induces an invariant of oriented
knots. These invariants are called Vassiliev invariants and it follows that they are in bijection with
Homy (K, k). The set V of all Vassiliev invariants inherits an structure of k linear space from k.

Definition 3.1.1. A knot invariant 6 is a Vassiliev invariant of degree m if the induced map
0 : K — k factors through K,,, that is,
Ok, = 0.

We denote by V,, the vector space of all Vassiliev invariant of degree m.

If 0 is a Vassiliev invariant of degree m, then it is also a Vassiliev invariant of degree n for each
n > m, since K,, © IC,,. Hence, the filtration of X induces a filtration

VocVic V- V.

The space Vy of Vassiliev invariants of degree 0 is easy to describe. If 6 € Vp, then its value is zero
for every knot containing a double point. In particular, applying € to the Vassiliev relation (V), we
get O(K ) = 6(K_), so changing a single crossing does not alter the value of 6. Since every knot can
be turned into the trivial knot by a finite sequence of crossing changes, it follows that a Vassiliev
invariant of degree 0 is a constant function on the set of knots. By exactly the same argument,
Vassiliev invariants are constant over the sets of knots with one single point that differs in a finite
number of crossing changes. However, all theses knots can be turned into

but the positive and the negative desingularisations of this knot are both isotopic, so (V) implies
that the value of the invariant on this knot is 0. All in all, every Vassiliev invariant of degree 1 is a
Vassiliev invariant of degree 0.

3.1.2 Emergence of chord diagrams. There is a natural way to extend any Vassiliev invariant
6 : K — k to an invariant § : S — k of singular knots: if K is such a knot, then we define 0(K)
to be the value of # on the knot obtained by desingularising K using (V). It is clear that if 6 has
degree m, then 6 is zero on the subspace S,,41 of S spanned by the isotopy classes of singular knots
with exactly m + 1 double points. Conversely, by a previous observation, the canonical projection
S — D =~ K maps Sy41 onto Ky, so any map 0 : S — V verifying 05,,.. = 0 factors through
KC giving rise to a Vassiliev invariant 6 :  — V. To clarify the exposition, we will use a bar to
distinguish singular knots K € S from knots K € K.
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If K, and K_ are two singular knots in S,, which differ by a single crossing change and isotopy,
then there exists a knot K € S,;,+1 whose projection in K equals the projection of Ky — K_, hence

0=0(K) = 0(Ky) - 0(K-),

for every Vassiliev invariant 6 of degree m. Applying the same argument recursively, one shows
that, indeed, (K) = 0(K), for all K,K’ € S, differing by a finite number of crossing changes.
Moreover, up to isotopy and a finite number of crossing changes, every singular knot is determined
by the cyclic order of its double points, so we have shown the following.

Proposition 3.1.2. Vassiliev invariants depend only upon the cyclic order of the singular points
of a singular knot. |

All the combinatorial information about double points can be encoded in a more convenient way as
diagram over the circle, that we construct in the following way. Let K : S' — R? be a singular knot
with m double points. For any double point, consider the segment connecting its two preimages
and label arbitrarily the m segments obtained by the elements of a finite set of m elements, for
instance, {1,...,m}. The diagram so obtained is called chord diagram of degree m and it is defined
up to orientation preserving diffeomorphism of the circle. Fixing a basepoint * in S! whose image
is not a double point, one can associate a finite sequence of labels to each chord diagram by going
across the circle from *, following the orientation and recording the labels of the preimages of the
double points in the order that we encounter them. For instance, the sequence corresponding to
the diagram in figure 56 is (1,4, 2, 3,4, 3,1, 2). If we choose a different basepoint, the corresponding
sequence is a circular permutation of the initial one, while a different labelling of the chords turns
into a relabelling of the element of the sequence. Since the combinatorics of chords diagrams do
not depend on these choices, we say that two diagrams are equivalent if, possibly after relabelling
the chords, they determine the same circular sequences.

Figure 56

If C denote the vector space of k-linear combinations of equivalence classes of chord diagrams and C,,
is the subspace generated by equivalence classes of chord diagrams of degree m, we have constructed
a map

Om : Sm — Cim-

Pairwise identification of the extremal points of the chords of a diagram produces a (not uniquely
defined) singular knot whose associated chord diagram is the starting one, so ¢, is indeed surjective.
Moreover, the discussion above shows that, if 6 is a Vassiliev invariant of degree m and K, K’ € S,,,,
then ¢y, (K) = ¢(K') implies §(K) = (K'), i.e., the value of a degree m Vassiliev invariant of
a singular knot with exactly m singular points depends only on the chord diagram of the singular
knot. Thus, we can define a unique map wy : C,, — k such that

Sy —2"s Con
X [l
K
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is a commutative diagram. We call wy the symbol of € and it induces a linear map

am i Vi — C = Homg(Cp, k)
0 - wy.

One easily shows that ker(ay,) = V-1, so a,, factors through V,,/V,,—1 yielding an injective
morphism
Qp Vm/Vm_1 i C:;
[6] —  wy.

3.1.3 The Vassiliev-Kontsevich theorem. It turns out that every element w in the image of
Qyy, satisfies the one-term relations (1T)

Figure 57

and the four-term relations (47T)

Figure 58

where the bold arcs represents regions where there are no ends of chords except for those that are
represented. There may be chords with ends on the dotted sections and these chords may intersect
the ones shown in the figures. A function on chord diagrams satisfying these two relations is called a
weight system and the Kontsevich’s theorem states that they are equivalent to Vassiliev invariants:

Theorem 3.1.3 (Kontsevich’s theorem). The map
Qp * Vm/vm—l e Wm)

where W, is the vector space of k-linear combinations of weight systems of degree m, is a vector
space isomorphism. [ |

We will prove a more general result in the following subsections. The importance of this theorem
stems for the fact that we have the following isomorphisms

Vin = Vm/mel @ mel/meQ ® T @ VI/VO @® VO
ﬁm i Qm, Qm—1 ai [o%)
ng = Wi S Win—1 @® T @ Wi @ WO

which establish the equivalence of Vassiliev invariants and weight systems.
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3.2 The categories 7 of singular tangles and A of chord diagrams

We introduce in this subsection two categories that generalize the vector space of linear combinations
of isotopy classes of regular knots and the vector space of linear combinations of chord diagrams
that we mentioned in the previous subsection. These two categories admit a filtration giving rise to
a categorical version of the Kontsevich’s theorem that we prove in the last subsection.

3.2.1 The category of singular tangles. Recall from section 2 that we have a category FOT
whose objects are finite strings on + and — and whose morphisms are framed oriented tangles. For
a given commutative ring k, denote by 7 (k) the k-linearisation of FOT. Following the ideas of the
previous subsection, we will extend this category by allowing intersections between different bands
of a given tangle.

Definition 3.2.1. A singular framed oriented tangle is defined in the same way as an ordinary
framed oriented tangle (cf. definition 1.2.1 and paragraph 1.2.3) excepts that we replace the word
“embedding” by “immersion”, the possible singularities being a finite number of double points
occurring in R? x (0, 1) and such that the framing of the two bands intersecting in any double point
is the same. There is an obvious notion of isotopy of singular framed oriented tangles, carrying
double points onto double points.

We are now ready to define a category 79 (k) which will play the role of the vector space S of
singular knots discussed above.

Definition 3.2.2. The category 7°"9(k) of singular framed tangles is the category defined by:

e Objects: words on + and —;
e Morphisms: k-linear combinations of singular framed oriented tangles (with the usual com-
patibility conditions for the direction of bands) modulo the skein relation

KA X ®

Note that 7579 (k) is just a different presentation of 7 (k) (both categories are isomorphic) and the
interest of introducing 7°"9 (k) comes from the fact that it allows to construct a filtration of 7 (k)
by identifying certain linear combinations of tangles with singular tangles, in the same way that
we did with K and S. Specifically, let 7,,(k) be the category whose objects are the same as T (k)
(or T5™9(k) or T) and whose set of morphisms Homr, (s,s’), for given objects s, s, is the quotient
of the k-module Homsing (k) (s, s") by the submodule generated by the singular tangles with > m
points. Then, there is a canonical projection py, : T, — Tm—1 that is the identity on objects. It
gives rise to a projective system of categories

= T(k) = Tin(k) — -+ = To(k),

which is analogous to the filtration of K by the KC,,. We denote by T(]k) its projective limit. The
map that is the identity on objects and sends a singular tangle to its class in T, (k) is a functor
T519 (k) — Tp(k), which induces functors

T — T5"(k) — T (k).

Finally, we note that the category of singular framed tangles has an structure of ribbon category,
induced by the ribbon structure of FOT.
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3.2.2 The category of chord diagrams. We now introduce the second of the categories
involved in the categorical generalisation of Kontsevich’s theorem: the category of chord diagrams.

A (k,1)-curve T" is a compact oriented 1-manifold (i.e. a disjoint union of a finite number of oriented
intervals and circles) such that each connected component is equipped with an element of Z/27Z,
called the residue, and such that the boundary oI' is decomposed as a disjoint union of two totally
ordered sets U and V verifying that card(U) = k and card(V) = [. The elements of U are called
inputs of I' and the elements of V' are the outputs. By a homeomorphism of (k,[)-curves, we mean
an orientation preserving homemorphism that respects the residue, the splitting of the boundary
into inputs and outputs and the order of U and V.

Let I be a (k,l)-curve. For each 1 < i < k, we set ¢; = +1 if the interval containing the ith is

oriented towards this input and ¢; = —1 otherwise. On the other hand, for each 1 < j < [, we set
n; = —1 if the interval containing the jth output is oriented towards it, and n; = +1 otherwise.
The sequence (g1, ...,¢eg) is the source of T and (11, ...,n;) is the output.

Definition 3.2.3. A chord diagram on a (k,l)-curve I' is a finite (possibly empty) set of pairs
of points on I'\dT', all points being distinct. By a homeomorphism of chord diagrams we mean a
homeomorphism of the underlying curves preserving the distinguished pairs of points.

In figures, we draw curves lying inside a horizontal strip, with the k inputs lying on the bottom
boundary line with the order increasing from left to right and the [ outputs are represented on the
top line with the same order. We draw a dashed line called a chord between the two points of a
distinguished pair.

+ =

+ - =

Figure 59: A chord diagram.

Consider now a chord diagram C' and choose three points a, b, c € C' such that none of them belongs
to any distinguished pair. Let o/, b, ¢’ three points obtained by slightly pushing a, b, ¢ following the
orientation of the corresponding strand. Then, we can construct four different chord diagrams from
C by adding two chords in the following way:

1. (4 is the diagram obtained by adding the pairs of distinguished points {a,b} and {d’, c};
2. (45 is the diagram obtained by adding the pairs of distinguished points {a, c} and {a’, b};
3. (3 is the diagram obtained by adding the pairs of distinguished points {a, b} and {¥', c};
4. (4 is the diagram obtained by adding the pairs of distinguished points {a, b’} and {b, c}.

For example, one possibility for the chord diagram of the figure 59 is represented in the following
picture:
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Figure 60

Definition 3.2.4. The category A(k) of chords diagrams is defined by:

e Objects: words on + and —;
e Morphisms: k-linear combinations of homeomorphism classes of chord diagrams modulo the
four term relation

Ci1—Cy+C3—-Cy =0. (4T)

The identity morphism is represented by chordless diagrams consisting of intervals with residue zero
such that, for each interval, one boundary point is an input and the other is an output with the
same numbering. The composition C’ o C of two morphisms C, C’ is obtained by gluing C' with C’
along the (unique) order-preserving homemorphism of the set of inputs of D’ onto the set of outputs
of D. The residue r € Z/27Z of each connected component D of the composition is given by

r = ZT(%’) + Zr(ﬁj) + Z r(a, o) + Z r(Bj, Bir),
i J

i<i! j<j'

where «; (resp. ;) are the components of C' (resp. C’) contained in D, and r(a;, o) = 0 if
a; and a; can be embedded in the horizontal strip, the order of their bottom and top endpoints
being preserved, without intersecting each other, and r(c;, o) = 1 otherwise (see figure 61). Note
that this formula only involves sums and does not mix components coming from different chords
diagrams, so the composition is indeed associative. Also note that the composition of a digram with
m chords and a diagram with n chords is a diagram with m + n chords.
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(i, ar) =1

(@i, ar) =0
Figure 61

We can construct a projective system for A(k) as we did for 7(k). To do so, let A,,(k) be
the category obtained by factoring out the morphisms of A(k) by the k-submodule generated
by homemorphism classes of chord diagrams with > m chords. There is a canonical projection
Pm : Am(kK) = Ap—1(Kk) that is the identity on objects. Thus, we have

The category A(k) has an obvious structure of strict braided monoidal category with duality. The
tensor product of two objects is just the concatenation. The tensor product of two diagrams D, D’ is
defined by the disjoint union in such a way that the inputs (resp. outputs) of D precede the inputs
(resp. outputs) of D’. This extends by k-linearity to a tensor product for arbitrary morphism in
A(k). The unit object is the empty word. As for the duality, the dual of a sequence s = (e1,...,¢ex)
is the sequence s* = (—¢g,...,—¢e1). The duality maps b,d and the braiding o are represented by
the same chordless diagrams as in FOT (see figure 49) with residues equal to zero. Moreover, o is
a symimetry.

3.3 Infinitesimal symmetric categories.

We now study a property of some symmetric categories, namely the existence of an infinitesimal
braiding, allowing to define a ribbon structure on (a deformation of) them. To do so, we sketch some
ideas of the theory of associators developped by Drinfeld. We will see in the following subsection
that the category A(k) of chord diagrams described in the previous one is, indeed, an infinitesimal
symmetric category.

3.3.1 Infinitesimal braidings. Here, we fix a field k of characteristic 0 and we suppose that
all categories are k-linear. Recall that a symmetric braided category is a braided monoidal category
whose braiding c is a symmetry, i.e., e,y o cy,w = idygw, for all objects V, W.

Remark 3.3.1. The definition of infinitesimal braiding easy generalizes to the case of general
monoidal categories, not necessarily strict. Indeed, it is enough to introduce the associativity
isomorphisms and their inverses in the axioms in order to make them coherent.
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Definition 3.3.2. Let S be a strict symmetric k-linear monoidal category. An infinitesimal braiding
is a natural family of endomorphisms

t= {tV,W VW — V®W}V,W7
such that
cyw otvw = tw,v o cv,w,
trvew = try ®idw + (cpv ®idw) o (idy @ tyw) o (cuv ®idw),

for all objects U, V,W. We call an infinitesimal symmetric category a symmetric category together
with an infinitesimal braiding.

The interest of this definition lies in the fact that we can construct a strict ribbon category S[[h]]**"
out of an infinitesimal symmetric category S. We will use this strict ribbon category will be a source
of some interesting invariants via the theorem 1.2.8. Before giving this construction, we need the
concept of a Drinfeld associator.

3.3.2 Drinfeld associators. The notion of Hopf algebra that we introduced in paragraph A.2
is a particular case of a more general algebraic structure, the bialgebras. A bialgebra over a field k
is an algebra A equipped with two algebra morphisms A: A —> A® A and € : A — k such that

(A®ida)ocA=(1da®A)oA and (e®idg)oA=(ida®e)o A =ida.

As we noticed in remark A.2.5, the tensor product of vector spaces induces a monoidal structure
in the category of representations of a bialgebra. Drinfeld noticed that, in fact, we do not need to
require the comultiplication to be coassociative.

Definition 3.3.3. Let A be an algebra equipped with a comultiplication A : A > A® A and a
counit € : A — k. We say that A is a quasi-bialgebra if the tensor product of the category of vector
spaces induces a monoidal structure in the category Rep(A) of A-modules.

Drinfield proved that this definition is equivalent to the existence of an invertible element ® in
A® AR A and invertible elements [, € A such that, for all a € A,

(ida ® A)(A(a) = @ (A ®ida)(A(a))) 7,
(e ®ida)(Ala)) =1al, (ida®e)(A(a)) =r 'ar,
(ida ®ida @ A)(P)(A®idg @ida)(P) = Posa(ids @ A ®ida) (D) P13,
(d®e®id)(®) =r@17,

where @193 = P ® 14 and Pogy =14 P. When =1, 14 ® 14 and [ = r = 14 we recover the
usual definition of a bialgebra.

The element ® above is called an associator. The existence of such an element is not trivial. Using
differential equations introduced by Knizhnik and Zamolodchikov in the context of conformal field
theory, Drinfeld constructed explicitly an associator for the power series algebra of the enveloping
algebra U(g) of a semi-simple Lie algebra g. This construction is complicated, but we recover here
some of the notions introduced by Drinfeld that we will use in the sequel.

Definition 3.3.4. Let n > 1 be a integer. The Drinfeld-Kohno algebra is the algebra U(t,,)
generated by the symbols ¢; ;, for all 7,5 € {1,...,n} distinct, and subject to the relations

(DK1) ti; = tji;

52



(DKQ) [ti]’, tir + tjk] = 0;
(DK3) [tij,tkl] =0,

where i, j, k, [ are distinct integers and [f,g] = fg —gf.

Definition 3.3.5. A formal series ®(A, B) in two non-commuting variables A and B is called a
Drinfeld series if it is a solution of the following system of four equations:

®(0,0) = 1
‘P(tm, tog + 7524)‘13(7513 + ta3, 7534) D (to3,t34)P(t12 + 13, toa + t3a)P(t12,t23)  (in U(Y)),
exp (3(t13 + t23)) = ®(t13, t12) eXp (§t13) D(t1s, t23) " exp (Ftas) B(t12,t23) (in U(t3)),

exp (3(t13 + t12)) = P(tas, t13) " exp (5t13) P(t12, t13) exp (5taz) (12, t23) ™" (in U(ts)).

This is the original definition given by Drinfeld but Furusho proved later on that the two last
equation can be derived from the second one [3]. Using the holonomy of the Knizhnik-Zamolodchikov
conection, Drinfeld first constructs a particular associator ¥z for k = C and next he deduces the
existence of associators for any field of characteristic zero [2]. This associator has the form

1
+ ﬂ[A’ B] + infinite sum of iterated commutators in A,B of length >2.

Drinfield also showed non constructively the existence of an associator with rational coefficients.

Virz(A,B) =1

3.3.3 Formal integration of infinitesimal symmetric categories. Suppose that Q c k.
Let ® be a Drinfield series. Given an infinitesimal symmetric category S with symmetry o and
infinitesimal braiding ¢, we define S[[A]] to be the category whose objects are the same as S and
whose set of morphisms Homg(y(V, W) consists of formal series >, fnh" where fo, f1, fo, ... are
morphisms from V' to W in S. The composition in S[[A]] extends the composition in S and the
multiplication of formal series. The identity of V' in S[[%]] is the constant formal series idy .

Theorem 3.3.6. There exists a unique structure of braided tensor category on S[[#]] such that
the tensor product on objects and the unit are the same as in S, the tensor product of morphisms
extends k[[/]]-linearly the tensor product in S, the associativity isomorphism « is given by

apyvw = (tuy, tv,w),

and the braiding c is given by

1 1
Cy,w = OV, © exp ihtuw = exp ihtwy oCoVW-

Proof. The uniqueness is clear as the tensor product in S[[#]] is determined by the one in S. The
pentagon axiom for o and the hexagon axioms for ¢ then follows from the equations defining a
Drinfeld series. |

In the case when the infinitesimal symmetric category S has a duality (x, b(‘)/,d[‘)/), we define the
Casimir operator to be the natural family of morphisms defined by

Cy = — (idv ® (d), o ty+v)) o (b) ®idy).
Then, it follows from the definition of infinitesimal braiding that it satisfies the equation
1 . .
tvw = 3 (Cvew — Cy ®@idy —idy ® Cwy) .

Now recall from paragraph A.1.3 that every monoidal category is monoidal equivalent to a strict
monoidal category. Let S[[h]]**" the strict braided tensor category associated to S[[A]] following
the procedure of the aforementioned paragraph.

53



Theorem 3.3.7. The strict braided tensor category S[[h]]*" is a ribbon category with twist given

by
Oy = exp (;BCV>

and with left duality defined as follows: for any object V' the dual object V* is the same as in the
category S; the structure maps by and dy are defined by

by =b) and dy =dj o (A ®idy)
where Ay is the automorphism of V* defined by
Ay = (dg/ ®idv*) od (tv*y,tvy*) o (idv* ® b[‘)/) .
Proof. The axioms for the duality follow from a computation from the definition of Drinfeld operator.

The axioms for the twists are a consequence of the relation between the infinitesimal braiding and
the Casimir operator given above. |

3.4 The ribbon structure of A(k) and the Kontsevhich theorem

3.4.1 Infinitesimal braiding. We provide now A(k) with an infinitesimal braiding. For a
nonempty sequence s = (€1, ...,e,) and any pair (i, j) of distinct integers between 1 and n, denote

by Ts” the chord diagram obtained from the identity by adding a single chord between the 7th and

jth intervals and let 5’ : s — s be the morphism in A(k) represented by e;e;Ts".

Figure 62

Lemma 3.4.1. For distinct integers i,j,k,l = 1,...,r the following relations hold in A(k):
N LN L )

where [f,g] = fog—go f.

Proof. The first relation holds by definition. The second one follows from the fact that the chord

diagrams representing 99 o tf’l and té’”l oth are homeomorphic when 1, j, k,[ are distinct integers.
Finally, the third one follows directly from the four-term relation. |

We can use these morphisms to construct an infinitesimal braiding in the following way. For
nonempty sequences s, s’ € (+, —), we define an endomorphism ts ¢ of s® s by

ror
g
ts,s’ = Z Z tl;, ]7
i=1j=1
where r and " are the lengths of s and s’. Set
ts,@ = t@,s = t@,@ = 0.

This family of morphisms defines an infinitesimal braiding in A(k) (see [5] for the details), so we
have:
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Proposition 3.4.2. The category A(k) with the infinitesimal braiding (¢s s )s s is a strict infinites-
imal category with duality. |

3.4.2 The prounipotent completion 7 (k). Let C be an k-linear braided category and let I
be the ideal of C generated by the morphisms of the form

cw,v o cy,w — idvew,

for all objects V,W. We call I the augmentation ideal of C. Given an integer m > 0, we define
I *1 as the ideal generated by morphisms of the form fi *- - - % f,,, where * is either the composition
or the tensor product of morphisms and at least m + 1 morphisms among the f;’s belong to I.
The categories C/I™*!, m = 0,1,2,..., whose objects are the same as the objects of C and whose
morphisms are given by

Homg pm+1 (V, W) = Home (V, W) /I (V, W),

where I(V, W) is the set of morphisms from V to W in I"™*!, form a projective system. Its limit is
called the prounipotent completion of C.

Theorem 3.4.3. The category 7 (k) is isomorphic to the prounipotent completion of 7 (k).

Proof. Tt is enough to show that, for all m > 0, we have T,,(k) = T (k)/I™"!, where I is the
augmentation ideal of T (k).

We note that 7,,(k) = T (k)/D,,, where D,, is the ideal of T°"9(k) generated by the singular
tangles with > m double points. But, since every morphism in 7579 (k) is a linear combination of
morphisms in 7, there exists an ideal DY, in 7T (k) such that 7,,(k) = 7 (k)/DY,. Hence, it suffices
to show that 1™+ = DO .

By construction of 759, DY is generated by morphisms whose algebraic expressions contain > m
occurrences of ¢(4) (4) — c(jrl) (4)° But

—1 —1 2 .
() ) = S ) ~ e m)

which implies that DY, < 1™,

On the other hand, the axioms in the definition of braiding imply that I™*! is additively generated
by morphisms in whose algebraic expressions the terms cy ;oc, ¢ —idsy appear more than m times,
where s and s” are length-1 sequences of +, —. Each such term belong to D8 ,s0 DY ™l A

3.4.3 The Kontsevich’s theorem. Suppose Q c k. Using the fact that A(k) is an infinitesimal
symmetric category, we can apply the results from the subsection 3.3 with a Drinfeld associator ® to
get a k-linear strict ribbon category A(k)[[%]]*!" whose objects are finite sequences of finite sequences
of + and —. We modify slightly this ribbon structure in the following way. For any object s in
A(K)[[R]]**", consider the morphism idi_[  obtained from the identity by setting all residues equal
to 1 and let
Yo = idpy, + > OR'.
>0

The morphism 75 commutes with all morphisms in A(k)[[2]]*"" and 72 = id,. Moreover,

Ys@s' = Vs ® Vsl Vst = Vs
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so by composing by the twist, we get a new twist in A(k)[[%]]*"". We denote the resulting ribbon
category by A(k)[[h]]fyﬁ. By the universal property of the category of ribbon graphs, there exists a
functor Z : T — A(k)[[R]]S"" preserving the tensor product ans satisfying the following conditions:

Z((1) = (), Z((=) = (=),

1 1
Z (e(),(+)) = (), (4) © xP <2ht<+>,<+>> = exp <2ﬁt<+>,<+>> ©0(+),(+):
Z (b)) = b,

1 1
Z(0+)) = exp <2h0<+>> ©(+) = (+) O EXP <2h0<+>> :

where the morphisms appearing in the left-hand side of the equalities are the braiding, the duality
morphism and the twist in the category T; o is the braiding in A(k) and C' is the Casimir operator

in A(k)[[2]]3". We extend Z by k linearity and we consider the ideal of A(k)[[A]]5" consisting of
all morphisms »; - fmA™ such that fo =0 and f is a linear combination of chord diagrams with

at least one cord.

Let I be the augmentation ideal of T (k). We already noted in the proof of Theorem 3.4.3 that I is

generated by ¢(1) (4) — c(jrl)’ (+)° The image of this element by Z is

1 1
-1
Z (0<+),<+> () T C<+>,(+)) =0(4),(+) ° [GXP <2m<+>,<+>) —exp <—2ﬁt(+>,(+>)]

= h0(+),(+) @) t(+),(+) mod hz.

Since (4, (4) © t(4),(+) has one chord, Z(I) = J and Z induces a diagram

T(k)/1m+1 L A[[h]]itr/!]m-i-l

l l (%)

T(k)/I7 22 A(K)[[A])3 /TP

which is commutative for all p < m + 1. On the other hand, we have an inclusion

K Alk) — AK)[[R]]5"

v

which send each sequence (e1,...,&,) in A(k) to the sequence of 1-length sequences ((€1),...,(er))
in A(k)[[1]]5"" and such that

K (Z AZ-DZ) = > ADih" P,

where the D; s are chord diagrams and n(D;) is the number of chords of D;. In particular, if D
is a diagram with more than k > m chords, then x(D) = Dh*F € J™*! so the functor s induces a
functor

Kom = Am (k) — AK)[[R]]3" /™,

which is injective in objects and morphisms, so we may identify A,,(k) as a subcategory of the
quotient category A(k)[[R]]3"/J™ .

Lemma 3.4.4. For any integer m > 0, the image of the functor Z™ lies in the subcategory A,, (k)
of A(k)[[h]]ff’”/Jm“.
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Proof. This is clear for objects. For morphisms, note that Z™ is defined on the reductions modulo
R™*! of the morphisms byy, disys O(hts g ®idgr, hids @ty o), O(4),(+) © €XD (%ht(ﬂ’(ﬂ) and 7y(4) o
exp (%hC(H), which are all in the image of £, since 5 ¢ and C(,) are sums of chord diagrams with
exactly one chord. |

Proposition 3.4.5. For any integer m > 0, the functor Z™ is an isomorphism from the category
T (k)/I"™*1 to the subcategory A (k) of A(k)[[R]]3"/J™ 1.

We will show that, in fact, this functor is an isomorphism. Before doing this, let us introduce some
terminology. If T"is a framed singular tangle, by recursively applying the Vassiliev relation to every
double point, we get a nonsingular tangle 7" which we represent by a planar diagram. Let C' < T’
be any component of T”, we define the residue of C’ by counting the number of self-intersections of
C’ and by taking the residue modulo 2, which does not depend on the choice of the diagram. By
definition, the residue of any component of C' of T is the residue of the corresponding connected
component in any desingularization. On the other hand, generalizing the ideas that we explained
in the first subsection, we can associate a singular tangle T" to each chord diagram D by embedding
it in R? x [0, 1] and by replacing each cord by a double point and a crossing, as in Figure 63, and
such that each component of T has the same residue as the corresponding component of D. We call
T a realization of D. If D has p chords, then any realization of D has p singular points.

----- -]

Figure 63

Proposition 3.4.6. For any integer m > 0, the functor Z™ is an isomorphism from the category
T (k)/I"™*! to the subcategory A, (k) of A(k)[[R]]5"/J™ 1.

Proof. We have to show that Z™ induces a bijection Homy ) pm+1(s, 8") — Hom 4, 1) (s, s"), for any
pair (s,s’) of objects of T. By (*x), we have the following diagram of k-modules

Home(y /ym+1 (s, 8") ., Hom 4, (1) (s,5")

! |

-1
Homr ) /v (s,s) NN HomApfl(k)(s, s")

where vertical arrows are clearly surjective, for all p < m. Let TP be the kernel of the left vertical
morphism and AP be the kernel of the right vertical one. We have filtrations

(=T crrcr™lc...cT = Hom ) /pm+1(s, 5")

and
(0} =A"TlcAmc A te...c A’ = Hom 4, 1) (s, 5")

compatible with Z™. Tt is then enough to prove that Z™ induces an isomorphism from 7?/TP*! to
AP /APFL for all p < m.

Observe that AP/AP*! is the submodule of AP  Hom 4, ()(s, s") generated by all chord diagrams
with exactly p chords. By a previous observation, a realization of such a diagram has p points,
so it is an element of TP, whose class module TP*! is independent of the realization. It induces
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a well-defined surjective k-linear map Y : AP/AP™t — TP/TP+1 wwhich is a right inverse for Z™ :
TP/TPHL — AP/APTL (see [5] for the details). Hence, Z™ is an isomorphism. [ ]

The Kontsevich’s theorem now follows directly:

Theorem 3.4.7. [Kontsevich] If Q < k, then for m = 0,1,2,..., there is an isomorphism of
categories

T (k) = A, (k)
such that

EN
=
I
p
g

=

P
G
lle
PN
:

G

commutes for all m =0,1,2,.... [ |
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A Appendix

A.1 Monoidal categories
A.1.1 Definition and some examples. A monoidal category is a category V with the following
additional data:

(i) a covariant bifunctor ® : V x V — V), called the tensor product;
(ii) a natural family of isomorphisms

a={agvw: UQV)QW S UQ (VW) : UV,W eV},

called the associativity isomorphisms;
(iii) a unit object 1 € V and natural isomorphisms

A={1®V SV : VeV

and
p={V®1L>V : VeV}

called unit isomorphisms, satisfying the following properties:
(a) Pentagon axiom. For any Vi,..., Vs € V, the following diagram is commutative:

(M®V:2)®@V3)®V,

(V2@ Vs)Vy V1@ V) ® (Vs ® Vy)

la1,23,4 a1,2,34l

id1®as
Vi@ ((Va® Vs) @ Vi) Bazia Vi@ (Va® (Vs ® Vi)

(b) Triangle axiom. For any V, W € V), the following diagram is commutative:

(V1®1)® Vs - Vi®1e )

Vi@V

Monoidal categories are ubiquitous, as the following examples suggest:

Example A.1.1. The category Set of sets is a monoidal category, where the tensor product is the
Cartesian product and the unit object is a one element set. This examples can be generalized by
taking the category of sets with some structure (groups, topological spaces...).

Example A.1.2. Any additive category is a monoidal category: ® is given by the direct sum @
and, hence, the zero object is a unit object.

Example A.1.3. If R is a commutative unital ring, the categories R-Mod and R-mod of R-
modules and R-modules of finite type are monoidal categories. The tensor product is the tensor
product of modules over R and the ring R is the unit object. In particular, the category of (finite
dimensional) vector spaces is a monoidal category.

Example A.1.4. Let G be a group k be a field. The category Repy(G) of representations of G
over k is a monoidal category. If (V,py) and (W, py) are two representations of G, their tensor
product is the representation (V®W, py ®pw ). The unit object is given by the trivial representation
(k,idg). Similarly, if g is a Lie algebra over k, the category Repy(g) of its representations over k
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can be endowed with a structure of monoidal category. The tensor product of two representations
(V,pv) and (W, pw) is the representation (V ® W, pygw ), where

pvew = pv Qidw +idy ® pw.

The unit object is a one dimensional representation with the zero action of g.

A.1.2 Monoidal functors and equivalences of monoidal categories. Let V, W be two
monoidal categories. A monoidal functor is a triple (F, ¢, ) where F' : V — W is a functor,
¢ : 1)y — F(1y) is an isomorphism and

p={pvv: FU)QFV)—>FUQ®V) : UVeV}

is a family of natural isomorphisms such that the diagrams

(FU)@ F(V) @ FW) "m0 @ (F(V) @ F(W))

l‘/’U,V@idF(W) J/idF(U)®<PV,W
FU®V)®F(W) FU)QF(V®W)
lWU®V,W J/‘PU,V@W
F(ay,v,w)
F(UQV)®W) y FU® (VOW)),
1@ F(U) — 59 p(u) F) @1 — 2 p)
lqﬁ@idF(U) TF(/\U) a‘nd lidF(U)®¢ TF(pU)
FOQFU) —2Y 4 FAQU) FU)®F1) —22 L FU®1).

commute for all objects U, V,W € V.

A natural monoidal transformation n : (F, ¢, ) = (G, ¢, ¢") between monoidal functors is a natural
transformation n : F' = G such that the following diagrams are commutative, for each pair of objects
UVeV:

F(1) FUOQFV) —2Y 5 FU®YV)
¢
1 / m and nu@nv eV
RN .
G(1) GU)QGV) —2X 5 GU V).

Finally, a monoidal equivalence between monoidal categories is a monoidal functor ' : ¥V — W such
that there exist a monoidal functor G : W — V and natural monoidal isomorphisms 7 : idyy = FG
and € : GF = idy.

Example A.1.5. A class of example of monoidal functors is given by forgetful functors, i.e., functors
from a certain category of sets with additional structure (such as groups, vector spaces, topological
spaces...) mapping each object to the underlying set and every morphism to the corresponding
set-theoretical one. Such functors have an obvious monoidal structure.
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A.1.3 Strictification of monoidal categories. Monoidal categories are much easier to ma-
nipulate in the particular case where the associativity and unit constraints are all identities. Recall
that a monoidal category V is strict if the associativity and unit isomorphisms are all identities of
the category, i.e., we have

UV)@W=U®V@W)), 19V =V and V®1l=V,

for all U,V,W € V. In that case, the pentagon and the triangle axiom become trivial. We will see
that in practice one may always assume that monoidal categories are strict. Let us begin with one
example:

Example A.1.6. Let Vecy the category whose objects are nonnegative integers and Hom(m,n) =
Mat,, xn(k), with composition given by the product of matrices. We define the tensor product of
two objects m,n € N as m ®n := mn and that of two morphisms f : m — n, g : p — ¢q as the
Kronecker product f®g. This endows Vecy with a structure of strict monoidal category. Moreover,
we have a natural inclusion Vecy < Vecy which assigns to each n € N the k-vector space k™ and
to each matrix f : m — n the morphism k™ — k™ whose matrix in the canonical basis is precisely
f. This functor is clearly monoidal, fully faithful and essentially surjective, so it is an equivalence
of monoidal categories.

The situation of the previous example is in fact general: starting from a arbitrary monoidal category
V, we can always construct a strict monoidal category which is monoidal equivalent to V. This is
done as follows. Let Sy be the class of all finite sequences S = (V, ..., Vj) of objects of V. We call
the integer k the length of the sequence. By convention, the length of the empty sequence is 0. If
S=W,...,Vy)and S" = (Viy1,. .., Vktn) are nonempty sequences of Sy, we set

S*S/ = (‘/ia"'7Vk7Vk+1a"'7Vk+n)‘

We also agree that S« @ = S5 = @ % S, for every S € Sy. To any sequence S € Sy, we assign an
object F'(S) of V defined inductively by

Fl@)=1, F(V)) =V, F(E=(V))=FS)®V.

We then define the category of finite sequences of V as the category V5 whose objects are the
elements of Sy and whose morphisms are given by

Homyser (S, S") = Homy (F(S), F(S")),

where the identities and compositions are taken from V.
Proposition A.1.7. The categories V*" and V are equivalent.

Proof. The map F previously defined extends to a functor F : V" — V) which is the identity on
morphisms, hence fully faithful. Moreover, V' = F((V')) for every object V' € V, which implies the
essential surjectivity of F'. Thus, F' is an equivalence of categories. |

A quasi-inverse of the functor F' above is explicitly given by the functor G : V — V" defined by
G(V) = (V) on objects and by the identity on morphisms. Indeed, we have F'G = idy and we have
a natural isomorphism 0 : GF = idystr, where

05 :=idpg) : GF(S) = S.
This is well-defined because

Homypeir (GF(S), S) = Homy(FGF(S), ) = Homy(F(S), F(S)).
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We now equip V5" with the structure of a strict monoidal category. The tensor product of two
objects S and S’ is defined to be the concatenation S * S’. In order to define the tensor product of
two morphisms, we first construct a natural isomorphism

ps.s  F(S)@F(S) — F(S* 5
for any pair objects S, S’ € V*¥". We do so by induction on the length of the sequence S’. First, we
set
Yo,5 = Aps) and  @sg = pr(s)-
Next,
ps,v) = idps)gy : F(S)@V — F(S)®@V = F(5 = (V)).

Finally, if ¢g ¢ has been already constructed for some S,5" € Vs, ¥s,5'%(v) is defined by the
following commutative diagram:

F(S)® F(S'+ (V) —=0, P(S + (S % (V)
H H

FS)®(F(S"Y®V) F((S=5") = (V))
la;}S),F(S’),V ' H

(F(S)@F(S) @V — 2V | pis«sev.

That is,
ps,5a(v) = (95,5 ®idv) 0 Ay wien v

Using this natural isomorphism, we define the tensor product of two morphisms as follows. Let
f:8S - Tandg:S — T be two morphisms in V. By definition of the category of finite
sequences, f € Homy (F(S), F(T)) and g € Homy (F(S"), F(T")). We then define f *g € Homys:r (S *
S".T +T") = Homy(F(S *S"), F(T =« T")) by the following commutative square:

—1

F(S#S) —25_, P(S)® F(S)

lf *g lf@g

It is now straightforward to prove that V! is a strict monoidal category:

Proposition A.1.8. Equipped with #, the category of finite sequences V*'" is a strict monoidal
category. The unit element is the empty sequence.
Proof. By construction of *,
ids *idg = ps.5 0 (ids ®idgr) © pg'g = idgas,
for every S,S" € VS, Similarly, for f: S - T,g: T - R, f': 8" - T and ¢ : T" — R/, we have
(fog)x(f'og)=errol(fog)®(f og)lopssy
=prro(f®f)o(d®J)o @Eigf
= [SDR,R' o(f®f)o @%}p] ° [SOT,T' o(d®g)o 80§iq/]
=(f=f)olg=g),

which shows that * is a functor. This functor is strictly associative by construction. ]
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We finish our discussion about strict monoidal categories showing that V" is, indeed, monoidal
equivalent to V. We firs prove two technical lemmas.

Lemma A.1.9. Let V be an arbitrary monoidal category. The triangles

1V)eW 25 10 (Ve W) Ve el ™ ve (Wel)
and
AV@lde/ % m lldv®pw
Vew Vew
commute for any pair of objects V,W € V.
Proof. Consider the diagram
UR1V)®
W \
U1 V)eW U®AV)eW
idy )®idw
\ (%U@\V ®1dW
URV)W
RV
PU(@ldVy7 ~ \
+ idy®@Av®idw) +
UR®1)®(VeW) idy®@Avew (1V)W)
\ m
1o (Vew)) :

where we dropped the subscripts of a to simplify the notation. The outer hexagon is commutative
by the pentagon axiom, the two middle squares by naturality of «, and the top square and the lower
left triangle by the triangle axiom. As a consequence, the lower right triangle is also commutative.
Setting U = 1, we get
id;1 ® (A\v ®idw) = id1 ® (Avgw © a).
Applying the naturality of the unit isomorphisms to both sides of this equality, we have
Av ®idw = Avgw © a,

which shows the commutativity of the first triangle in the statement of lemma. A similar proof
shows the commutativity of the second one. |

Lemma A.1.10. If S,5,S” are objects on V", we have

ps.srx57 0 (ids ® s 57) © sy, F(s7),F(s7) = Psxs,s7 © (ps,sr @idgn).

Proof. We prove the lemma by induction on the length of S”. If S = &, we have
ps,5 0 (ids ® wsr.5) © ap(s), F(s)1
= ps,50 0 (Ids ® pp(s1)) © Ap(s),F(s),1
= 8,5 C PF(S)QF(S')
= pr(s«s’) © (ps,s ®id1)
= Psx5,0 © (P55 @ 1).
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The first and third equality are by definition, the second one by the previous lemma, and the third
one by naturality of p.

Let V be an object of V and let us prove that the equality of the lemma for S,5’, S” implies the
equality for S,5", 8" « (V). Indeed,

$8,5"x5"x(V) © (ids ® SOS/,SN*(V)) O Qp(8),F(S"),F(S"%(V))

=(ps,5x57 ®idy) o Oé}%s),F(Sl*su)’V o (ids ® pgr, 57 @idy)
o (id® aI;%S’LF(S”),V) © QF(S),F(8"),F(S")®V

=(ps,5s7 ®idy) o (ids ® s, ®idv) © O (g) pisn@r(sm.v
o (ids ® gy psm).v) © R(8),F(S),F(S@V

=(ps,5x57 @idy) o (ids ® ps 57 ®idy )
o (ap(s),p(s1).F(s7) ®1AV)(g)g (s p(sm).v

=(psxs,57 @idy) o a;‘(lg*sl),F(S//),V o (s, ®idgr ®idy)

=Psxsr 57x(v) © (8,5 @ 1dgry(v))-

The first and last equalities follows from the definition of ¢, the second and fifth ones from the
naturality of the associativity isomorphism, the third one by the pentagon axiom, and the fourth
one by induction hypothesis. |

Theorem A.1.11. The categories V and V*!" are monoidal equivalent.

Proof. We have already proven that V and V5" are equivalent and we have shown an explicit
equivalence of categories F'. We claim that (F,idy, ¢) is a monoidal functor from V5" to V. Indeed,
the preceding lemma is a reformulation of the first condition in the definition of monoidal functor,
while the other two follow from the definition of gz and ¢z 5. A direct but tedious computation
shows that (G,id1,id) is also a monoidal functor. Finally, the natural isomorphism 6 defined above
is a natural tensor isomorphism. |

Remark A.1.12. In the proof given in this subsection, we need to abandon the original category V
in order to construct a new different category V" which is strict. If V is, for example, the category
of vector spaces, V5" is an strict category which is monidal equivalent to V but contains no vector
space. In the particular case of categories of sets with additional structure, it is possible to make
an alternative construction keeping the original category but redefining the tensor product, namely
replacing the product of two objects by an isomorphic copy, which turns the initial category into a
strict monoidal category. Details of this construction can be found in [7].

A.1.4 MacLane’s coherence theorem In a monodial category, one can form n-fold products
of any finite sequence of objects Vi,...,V,. Such a product can be obtained by adding parenthesis to
the expression V1 ®---®V,, in a consistent way. For n = 3, the associativity axiom allows to identify
the objects (V4 ® V2) ® V3 and V1 ® (Vo ® V3) up to a canonical isomorphism. For n > 3, one may
use a chain of associativity isomorphism in order to identify up to isomorphism two parenthesized
products of Xq,...,X,, n = 3, but one problem arises: this identification is not canonical in the
sense there exist everal combinations of the associativity isomorphism giving rise to some a priori
different isomorphisms between two given objects. This is solved for n = 4 by the pentagon axiom,
which states that the two possible identifications are the same. It holds true in the general case, as
the following theorem states.

Theorem A.1.13 (MacLane’s Coherence Theorem). Let V be a monoidal category and Vi ..., V,, €
V. Let Pp, P, be two parenthesized products of Vi,...,V, (in this order) with arbitrary insertions
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of unit objects 1. Let f,g: P — P> be two isomorphisms obtained by composing associativity and
unit isomorphism and their inverses possibly tensored with identity morphisms. Then f = g.

Proof. Let (F, ¢, ) : V — V' be a monoidal equivalence between V and a strict monoidal category V'.
Let Ppi, Ppo the parenthesizations of F(V1),..., F(V,) corresponding to P; and P, respectively.
Since V*!" is strict, we have For instance, if P, = (V1 ® V2) ® (V3 ® (V4 ® V5)), then Pr; =
(FVI®@FV2)® (FV3® (FVy® FVs)). Using monoidality, we will construct natural morphism vy, vo
such that the diagrams

F(f) F(g)

F(Pl) — F(PQ) F(Pl) — F(PQ)
v Vo and 1z Vo
N N

Ppi ———— Ppa Ppi ———— Ppa

are commutative. Hence, F(f) = F(g) and, by faithfulness of F', f = g.

We construct vy inductively (the construction of vy is identical). Write Py = S ® T', where S is
a parenthesization of V1 ® --- ® V; and T is a parenthesization of V11 ® --- ® V,, with arbitrary
intersections of unit objects, for some 0 < i < n (if i = 0, S is by convention a product of unit
objects and the same holds for 7" if i = n). If S,T # 1, then we have a morphism

Yo F(S®T) = F(Py) — Ppy = F(S) ® F(T)

and we construct inductively vg : F(S) — Spand vy : F(T) — Tp. We then set vy = (1/1®1/2)o<p§1f.
On the other hand, if P, =1® 7T, we take v == (¢ @ vr) 0 goIlT, and similarly when T = 1.

Once we have defined v and vs it remains to show that the diagrams above are commutative. We
check it by induction for F(f). Remember that f is a composition of associativity morphisms,
unit morphisms and tensor of those with identity maps. Suppose that the outermost map in that
composition is an associativity isomorphism, i.e., f = «o fy, for some fy (we dropped the subscripts
of « for simplicity). We then have a commutative diagram

Fr P, P(S®T)®Q) —— 2 F(S®(T®Q))
v(pil vwil
F(S®T)® F(Q) FS®F(T®Q)
v ¢~ '@id id®p~!
(F(S)® F(T))® F(Q) —— F(S)® (F(T)® F(Q))
V(l/s®l/T)®l/z V”S@(”T@”Q )
Pr— D ($r®TH®Qr —* s Sp® (Tr®QF),

where the left square commute by induction hypothesis, the top right one by definition of monoidal
functor and the bottom right one by naturality of a. The cases where the outermost map is an unit
isomorphism or a tensor product are similar. |

MacLane’s coherence theorem justifies the following alternative definition of monoidal category
which is usually found in some references:

Definition A.1.14. A monoidal category is a category V endowed with
(i) a bifunctor ® : V x V — V;
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(ii) a natural isomorphism
a={agvw : (UQV)QW U (VW) : UV,WeV}
(ili) a wnit object 1 € V and natural isomorphism
A={1V SV : VeV}

and
p={V®1>V : VeV

satisfying the following commutativity axiom: if P; and P» are two parenthesizations of V1 ®---®V,
with arbitrary insertions of copies of the unit object, then all the isomorphisms v : P, — P, obtained
from «, A, p and the identities by composition and tensoring are equal.

A.1.5 Braided monoidal categories. A braided monoidal category is a pair consisting of a
monoidal category V and a natural family of isomorphisms

CI{CVJ/VZV@W;W@V : V,WGV},

called braiding, such that the diagrams

U(VeWw) —YY . (VoW)QU
QW WU
UQV)eW Ve WeU)
VeU)eWw —X2 L ve(UeW)
and
1 Uev)ew — o WeUeV)
O‘V \“_W,U;V
UQ (VW) WRU)QV
idy®cv,w CU,WW
U@WRV) —U™  (UeWw)®V

commutes for all objects U, V., W € V. A braided monoidal category is symmetric if

cw,v o cyw = idygw,
for all objects V, W € V.

Let (V,¢) be a braided monoidal category. We define the reverse braiding on V by
— '_ —1
Cvw = Gy

Proposition A.1.15. The reverse braiding is a braiding.
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Proof. The braiding axioms for ¢, applied to W, U, V', read
ayy,w ° cwuev © awyy = (idy @ ew,y) o agw,y o (ecwy ®idy),

-1 -1 . —1 .
Qyw,u CCWRUV © Ay yy = (ew,v ®idy) o Qv © (idw ® cuv ).

Taking inverses in both sides of the last equality and applying the definition of reverse braiding, we
get the braiding axioms for ¢. [ |

The following proposition exhibits the relationship between the brading and the unit isomorphisms
in a braided monoidal category:

Proposition A.1.16. For any object V' of a braided tensor category with unit 1, we have
>\V °Cva =pv, pvoCLv = )\V and c1,v = 0‘711

Proof. Consider the diagram

(V@l)@W*)V@ 1W) — 1W)RV
Wiw ldv®)\w l/\w®lN
c@idy VW ——— s WV R/MWRV)

Ay ®id
va®WT AW@VT /

1RV)OW —25 1 (VeW) L% 19 (WeV)

where we dropped the subscripts of a and ¢ to simplify the notation. The outside heptagon is
commutative by definition of the braiding, the top square by the naturality of ¢, the bottom square
by the naturality of A, the upper left triangle by the triangle axiom and the lower left and right
triangles by lemma A.1.9. Thus, the right triangle commutes, i.e.,

pv ®idw = (Ay ocy1) ®idwy.

Taking W = 1 and applying the naturality of p, we get

pv = Ay ocya,

which is the first equality to be proved. Replacing ¢ by its inverse and using the second axiom of the
definition of braiding, one can the second one in a similar way. Finally, the last one is a combination
of the other two. [ ]

One of the main properties of a braided tensor category is given by the following theorem:

Theorem A.1.17. Let U, V, W be objects in a braided tensor category. Then, we have the following
commutative diagram:
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URV)eW

ay,v,w
cy,v®idw

(VeU)W U®(VeWw)
ay uUw idU®CV,W
VeUW) UQ(W®V)
idy®cu,w Oé{;ylwy
Ve (WeU) UW)®V
a;’lw’U CU,W®idV
Vew)eU WRU)eV
CV’W®idU aw,u,v
WRV)®U WeUeV)
aw, v, U
\ MCU,V
WV eU)

Proof. The previous dodecaedron can be obtained by gluing together the following diagrams:

(VU)W URV)eW
ay,v,w
%W \
V®(U®W) U®(V®W)
idy®cu,w idy®cv,w
VRe(WRU) UQ(W®V)
a‘_,YIW’U CVRU,W cCUQV,Ww O‘E,lw,v
VeW)®U UQW)®V
cy,w®idy cu,w®idy
WeV)eU WeU)®V
aw,v,u
\ AV
WeWVeU), WRU®V)

and

VU)W ¢+——— (UQV)W

cy,v@idw
lCV®U,W lCU®V,W .
W®(V®U) W W®(U®V)

The first two diagrams are commutative by the definition of braiding and the last one by naturality
of c. m

The relation stated in the previous theorem is known as Yang-Bazter equation.

Many examples of monoidal categories from A.1 admit a natural braiding:
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Example A.1.18. The categories Set, Veck, Repy(G), Repy(g) and R — Mod admit a braiding
being the transposition of factors.

A monoidal functor (F,¢,¢) between two monoidal categories V, W is braided if the following
diagram commutes

W
F(V),F(W)
%

FV)® F(W) FW)® F(V)

j F(cv ) j

V,W

FVQW) —————— F(W®YV)

for all VW e V.

A.2 Hopf algebras and categories of representations

Hopf algebras are bialgebras endowed with additional structure that allows a ribbon category struc-
ture to be defined in their category of representations, providing a variety of examples on which to
apply the results and constructions of the previous sections.

A.2.1 Definition and some examples Let A be an algebra with unit 14 over a field k.
Assume that A is provided with multiplicative k-linear homomorphisms A : A — A®? .= A®, A
and € : A — k, called the comultiplication and counit respectively, and a k-linear homomorphism
s: A — A, called the antipode. Tt is understood that A(14) = 14 ® 14 and that e(14) = 14.

Definition A.2.1. We say that (A, A, e,s) is a Hopf algebra if these homomorphisms satisfy, to-
gether with the algebra multiplication m : A® A — A, the following properties:

(H1) (ida®A)o A = (A®ida) o A;
(H2) mo(s®idg)o A =mo(idg®s)oA =¢c-1y;
(H3) (e®ida)o A = (ida®e)o A =ida.

In the first axiom, we identify AQ (AR A) = (AR A)®A via (a®b)®c =a® (b®c). In the third
one, we identify A = AQrk=k® Aviaa=a®1=1R®a.

For every element a € A, A(a) is a finite linear combination of pure tensors a = . a; ® a’. We
formally rewrite this sum as

Ala) = ,a0) @ ag).
(a)
This is known as Sweedler’s sigma notation.

It can be shown from the axioms that the antipode s is an antiautomorphism of both the algebra
and the coalgebra structure in A. Precisely, this means that

mo(s@s):somoPA:A®2—>A,

and
Pio(s®s)oA=Aos:A— A®?

where P4 denotes the flip A9? — A®2 a®b — b®a. It also follows from the axioms that s(1a) =14
andeos=¢:4—k.
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We can define a Hopf algebra structure in the linear dual A* := Homy(A, k). The multiplication,
comultiplication and antipode in A* are dual to the comultiplication, multiplication and antipode
in A, respectively. The roles of the unit and counit in A* are played by the counit of A and the
homomorphism A* — k, y — y(14).

Example A.2.2. 1. The group algebra k[G] of a group G is a Hopf algebra. The homomorphisms

A, e, s are defined on the additive generators g € G by the formulas A(g) = ¢® g, ¢(g9) = 1 and
1

s(g) =9
2. Let G be a finite group. We define a Hopf algebra A as follows. As a k-module, A is generated
by the set {d4}4ec, where d, is defined to be the map

1, ifh=g,
5g(h){ 0, otherwise.

The multiplication is induced by the multiplication on the ground field k. The comultiplication, the
antipode and the counit are defined by

]-7 = €eaq,
A(dg) = Z O0n ®0p-1g,  5(9) = dg-1,6(g) = { 0 gtherwise
heG 7 ’

where eq is the unit element of G. This Hopf algebra is dual to k[G].

3. The universal enveloping algebra of a Lie algebra g is a Hopf algebra, with A(¢g) = ¢g®1+1®g,
e(g) = 0, and s(g) = —g.

A.2.2 Category of representations. Let A be a Hopf algebra over a field k. By an A-module
of fine rank we mean a left A-module whose underlying k-vector space is finite dimensional.

Definition A.2.3. We define the category of representations of A, Rep(A), as the category whose
objects are A-modules of finite rank and whose morphisms are A-linear homomorphisms.

The axioms (H1) and (H3) allows to define an associative product in Rep(A) which turns this
category into a monoidal category. For objects V, W of Rep(A), set VR W =V ®x W, where the
action of A is obtained from the obvious product action of A%? in V @, W via de comultiplication,
ie,forae A,

alv@w) = Z a)yv @ a@)yw.
(a)

The field k also carries an structure of A-module, induced by the comultiplication, i.e., (a,k) —
e(a)k. Axioms (H1) and (H3) imply that the canonical isomorphisms U® (V@ W) = (U®V)®
W,V 2k®A =~ ARk are A-linear, so the product is associative up to isomorphism in the
category Rep(A). Finally, the tensor product of two morphisms is the standard tensor product of
homomorphisms. With this definitions Rep(A) is a monoidal category. Moreover, for any A-modules
V, W, Hompep( A (V,W) is an abelian additive group with the usual addition of homomorphisms,
and the composition and the tensor products of morphisms are bilinear, so Rep(A) is in fact a
monoidal Ab-category, in the sense of the following definition:

Definition A.2.4. A category C is said to be an Ab-category if for any pair of objects V., W the
set Home (V, W) is an additive abelian group and the composition of morphisms is bilinear. In the
case where C is a monoidal category, we will also require the tensor product to be bilinear.

Remark A.2.5. We did not use the axiom (H2) to construct the monoidal structure of Rep(A)
so, indeed, it would be enough to consider a more general algebraic structure with no antipode in
order to get a monoidal category of representations. Nevertheless, we need the antipode to endow
Rep(A) with the structure of a ribbon category.
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Using the antipode s, we can also provide Rep(A) with a duality. For any object V' of Rep(A), set
V* = Homg (V, k), where the action of A is defined by the formula (ay)(z) = y(s(a)x). The duality
homomorphism dy is just the evaluation pairing V*®V — k, (y,z) — y(x). Set

by =Fdy :k=k* > (V*QV)*=V*QV*=VQV*

where dy : ¢ — @ ody is the transpose of dyy and we use the standard identification V** = V.
We then have, for any k € k, by (k) = kby (1) = kdy, where dy is the coevaluation map. This map

expands as ‘
0 = Z v; @ v,
i

where {v;}; is an arbitrary basis of V and {v'}; is its dual basis.
Lemma A.2.6. The category Rep(A) is a monoidal Ab-category with duality.

Proof. We have to show that dy and by are A-linear and satisfy the compatibility axioms of duality.
Let {v;}; be a k-basis of V' and let {v'}; be its dual basis. Then we have

(idv &® dv)O(bV X idv)(vj) = (idv X dv)(&v ® Q}j)

Zw@vi@vj) =D i ®v(v) = v,

= (idy ® dy)

R

and, similarly,

(dv @ idy+)o(idy+ ® by)(v)) = (dy @ idy+)(v/ @ dy)
= (dv ®idy+) (Zvj(@vi@vi) =Y W) ®v' =1,

for every j, which proves the compatibility of duality.

On the other hand, for any a € A and any ¢, j we have

dy Za v ®a ) Za a(z)vg = UZ (5(6‘( ))a(Z)UJ)
(a) “)
= vi S(Q)’UJ mO 5®1dA) OA( )] )
(
= vi(g( dv(v ®UJ

where the first equality follows from the linearity and the definition of dy, the second one from de
dual A-module structure, the third one is by Z-linearity of v*, the fourth one is an application of
(H2) and the rest are clear. This proves that dy is A-linear.

It remains to show that by is too. For a € A, denote the homomorphism V' — V| x — az, by p(a).
Note that p(14) = id4. We have to show that ady = e(a)dy. We have

ady = A(a)dy = Z(a(l) ®14)(1a®a())dy = Z(P(au)) Qidyx)(idy @ *p(s(a(2))(0v)
(a) (a)

—Z 1) @idv+)(plag) ®idy+)(0v) = | p [ Y aq)s(ae) |®@idy« | (6v),
(a)
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where the first, second and fourth equalities are given by algebra structure of A%®? and the definition
of p; and the third one comes from the identity

(idv ® f*)(6v) = (f ®idy=)(dv),
which is easily proven choosing a basis. Finally, (H2) ensures that >}, ag)s(a@)) = (a)la. [ |

Remark A.2.7. The category Rep(A) is monoidal, but not strict monoidal. However, we can apply
the constructions of paragraph A.1.3 to pass from Rep(A) to an equivalent strict monoidal category.

A.2.3 Quasitriangular Hopf algebras and universal R-matrices. We formulate now nat-
ural conditions on a Hopf algebra which ensures the existence of a braiding in its representation
category.

Let (A, A, e, s) be a Hopf algebra over a field k. For a € A, set
A'(a) = Pa(A(a)) = Y a@) ®aq),
(a)
where P4 denotes the flip in A®2. For any R = Zj a; ®bj e A®? et

Ry :R®1A:Zaj®/8j®1A Ro3 = 1A®R=21A®Oéj®5j>

J J

and
Ri3 = (ida ® Pa)(Ri2) = (P4 ®ida)(Re3) = Z a; ® 14 ® Bj.
J

Note that ng, R13, R23 € A®3.
Definition A.2.8. Let R € A%®? be a invertible element. We say that (A, R) is a quasitriangular

Hopf algebra if, for any a € A, the following conditions are satisfied:

(QH1) A'(a) = RA(a)R™;
(QH2) (ida ® A)(R) = RizR12;
(QH3) (A®ida)(R) = Ri3Ras.

Note that on the right-hand sides of these formulas we use multiplications in A®? and A®3 induced
by the one in A. The element R € A®? satisfying this conditions is called a universal R-matriz of

A.

Remark A.2.9. A direct computation using (QH1)-(QH3) shows that the universal R-matrix of a
Hopf algebra satisfies the so called Yang-Baxter equation (cf. definition ?7)

RiaR13R23 = RogR13R12.

A solution of this equation is called an R-matrix.

Let (A, R) be a quasitriangular Hopf algebra. For any objects V,W of Rep(A), we define an
isomorphism cy,w : VW — WV by

cvw(v®@w) = Pyw (Rv®@w)) = Eﬁjw ® a;v,
J
where R = Zj a;@Bjand Py : VW — WV is the flip v@w — w®wv. Its inverse is defined
by
c(/}W(w®v) =R ' (v®uw).
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Lemma A.2.10. The family of isomorphisms ¢ = {cyw : VW — W ® V}yw is a braiding in
Rep(A).

Proof. First we prove that cy is a morphism in Rep(A). Indeed, for ae A and ve V,we W, we
have
cyw(a(v®@w)) = Pyw(RA(a)(v®@w))
= Pyw(A'(a)R(v @ w))
= A(a)Pvw (R(v @ w))
=acyw(v@uw),

where the firs equality is the definition of ¢, the second one comes from (QH1), the third one by the
definition of A’ and the last one by the definition of the A-module structure in V@ W.

Let us verify that ¢ satisfies the compatibility axioms of braidings, i.e.,
cuyvew = (idv @ cuw) o (cuy ®idw),

cogvw = (cuw ®idy) o (idy ® cy.w).

We check the first equality; the second one is proven in a similar way. For any a e U@V Q W, we
have

(idy @ cuw) o (cuv ®idw) (o) = (idy ® cuw)(Pi2(Ri2ar)) = Pag(Ra3(Pi2(Ri20v))),

where Py and Pp3 are the flips u®@v®@w — v @ u®@w and u® w @ v, respectively. Denote by P 23
the permutation homomorphism

URQVRW — VWU,
URXURW — vRQWR u.

The, setting a = © ® v ® w, we have

Po3(Ro3(Pra(Ri2ar))) = Po3 <R23 (Z 5jv®04ju®w>>

J

= Z bj'l} ® bkw ® Apa;Uu = P1’23(R13R120z).
7,k

On the other hand, it follows from the definition of cyygw, the action of A in V@ W and (QH2)
that

covew (@) = Puvew (Ru®@v®w) = Puvew (Z aju®bj(v® w))

= Y A (v®w) ® aju = Prog ((ida ® A)(R)a) = Pios(RisRisey),
J

which proves the assertion. |

Remark A.2.11. In the other way round, it is easy to prove that the existence of a braiding in
Rep(A) implies the existence of an invertible element R € A®? satisfying (QH1)-(QH3) and this
is not a trivial fact. There is a general method, due to Drinfeld, producing quasitriangular Hopf
algebras. This method is called the double construction and, starting from a Hopf algebra A over a
field, it produces the structure of a quasitriangular Hopf algebra in the vector space AQ A*. Further
details can be found in [6].
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A.2.4 Ribbon Hopf algebras. We formulate now natural conditions on a quasitriangular Hopf
algebra which ensure the existence of a twist in the representation category.

Definition A.2.12. A ribbon Hopf algebra is a triple (A, R, v) consisting of a quasitriangular Hopf
algebra (A, R) and an invertible element v of the center of A such that

(RH1) A(v) = Pa(R)R(v®w);
(RH2) s(v) = .

The element v is called the universal twist of A.
For an object V of Rep(A), we define the twist y : V' — V to be the multiplication by v € A.

Lemma A.2.13. Let (A, R,v) a ribbon Hopf algebra. The family of homomorphisms {fy : V —
Vv is a twist in the braided monoidal category Rep(A). This twist is compatible with duality.

Proof. Since v is a central element of A, fy is a homomorphism in Rep(A) and, since v is invertible,
it is an isomorphism. For any A-modules U, W and for any u ® w € U ® W we have

eww o cow(u®w) = Py (RPyw (R(u@w)) = ) arBiu® Brogw = Pa(R)R(u®w),
ik

where R = )| ; @j ® Bj as usual. Note that, by definition of the tensor product in Rep(A), Ougw is
the multiplication by A(u). Thus, (RH1) and the previous computation imply that

Ovew (u@w) = A(v)(u@w) = PA(R)R(v Q@ v)(u®w) = cwu o cuw © (v @ Ow)(u @ w),
which shows that 6 is a twist in Rep(A).

It remains to prove that it is compatible with duality, i.e., (fy ®idy+)oby = (idy ® y+) o by. This
is equivalente to (v ® v~1)dy = dy. (RH2) implies that for any v € V, y € V*, we have (vy)(x) =
y(s(v)z) = y(vx). Now, for any dual basis {e;}; and {e'};, the basis {ve;}; and {€’ o p(v™1)};, where
p(v™1) is the multiplication by v~!, are also dual, so

(v® v*1)5v = Zvei v el = by,
by the independence of dy on the choice of basis. |
We have proven the following theorem:

Theorem A.2.14. For any ribbon Hopf algebra, the category Rep(A) is a ribbon Ab-category.
|
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