COMBINATORIAL LEFSCHETZ THEOREMS BEYOND POSITIVITY
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ABSTRACT. Consider a simplicial complex that allows for an embedding into R%. How
many faces of dimension 4/2 or higher can it have? How dense can they be?

This basic question goes back to Descartes’ "Lost Theorem" and Euler’s work on poly-
hedra. It is related to Lefschetz theorems for models of cohomology rings of toric vari-
eties, namely Stanley’s face rings of triangulated spheres. Contrary to other proofs of
combinatorial Lefschetz theorems, such as those by Karu [Kar04] and Elias-Williamson
[EW14], we can no longer rely on notions of positivity.

Using the embedding problem above, and other fundamental combinatorial prob-
lems, we introduce a version of the Kahler package beyond positivity, allowing us to
prove the hard Lefschetz theorem for toric varieties (and beyond) even when the ample
cone is empty.

A particular focus lies on replacing the Hodge-Riemann relations by a non-degeneracy
relation at torus-invariant subspaces, allowing us to state and prove a generalization of
theorems of Hall and Laman in the setting of toric varieties and, more generally, the face
rings of Hochster, Reisner and Stanley. This has several applications to quantitative and
combinatorial topology, among them the following:

(1) We fully characterize the possible face numbers of simplicial rational homology
spheres, resolving the g-conjecture of McMullen in full generality and generalizing
Stanley’s earlier proof for simplicial polytopes. The underlying algebraic results
also verify a conjecture of Kiihnel: if M is a triangulated (d — 1)-manifold on n
vertices (allowing for non-orientability and boundary), then

(?)bjl(M) - <jd1>bd_j(M) < (”_djj_1> for1 <<

(2) We prove that for a simplicial complex that embeds sufficiently tamely into R??,

TR

the number of d-dimensional simplices exceeds the number of (d — 1)-dimensional
simplices by a factor of at most d + 2. This generalizes a result going back to
Descartes and Euler, and resolves the Griinbaum-Kalai-Sarkaria conjecture.
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1. INTRODUCTION

1.1. The approach via Hodge theory. The hard Lefschetz theorem, in almost all cases
that we know, is connected to rigid algebro-geometric properties. Most often, it comes
with a notion of an ample class, which not only induces the Lefschetz theorem but the
induced bilinear form satisfies the Hodge-Riemann relations as well, which give us finer
information about its signature (see [Laz04, Voi02]).

Even in the few cases that we have the hard Lefschetz without the Hodge-Riemann re-
lations, they are often at least conjecturally present in some form, as for instance in the
case of Grothendieck’s standard conjectures and Deligne’s proof of the hard Lefschetz
standard conjecture, see [Del80]. This connection is deep and while we understand Lef-
schetz theorems even for singular varieties, to this day, we have no way to understand
the Lefschetz theorem without such a rigid atmosphere for it to live in. In particular,
while there are a few cases of the Lefschetz theorem applying beyond cases explica-
ble by classical algebraic geometry, see for instance [Kar04, EW14, AHK18], having no
positivity is a different kind of animal all-together.

The goal of this paper is to provide a different criterion for varieties to satisfy the hard
Lefschetz property that goes beyond positivity, and abandons the Hodge-Riemann re-
lations entirely (but not the associated bilinear form); instead of finding Lefschetz ele-
ments in the ample cone of a variety, we give general position criteria for an element in
the first cohomology group to be Lefschetz. The price we pay for this achievement is
that the variety itself has to be sufficiently "generic".

1.2. Beyond positivity and the Hall-Laman relations. We therefore turn to toric vari-
eties, which allow for a sensible notion of genericity without sacrificing all properties
of the variety, most importantly, without changing its Betti vector. Specifically, we con-
sider varieties with a fixed equivariant cohomology ring, and allow variation over the
Artinian reduction, that is, the variation over the torus action. The main result can be
summarized as follows:

Theorem 1. Consider a PL (d — 1)-sphere X, and the associated graded commutative face
ring R[X]. Then there exists an open dense subset of the Artinian reductions X of R[X| and an
open dense subset & C A1 (X), where A (X)) € R, such that for every k < d/2, we have:

(1) Generic Lefschetz property: For every o/ (X)) € R and every { € &, we have an isomor-
phism
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(2) Hall-Laman relations: The Hodge-Riemann bilinear form
Qup: d*(X) x d*X) — JYYX)=R
a b —  deg(abldi=?)

is nondegenerate when restricted to any squarefree monomial ideal in of (X)), as well as the
annihilator of any squarefree monomial ideal.

For future reference, and as used in the main theorem, we shall say generic if we mean
generic in the strongest sense: the properties are satisfied for an open, dense subset of
the allowed space of configurations. We shall extend this result to homology spheres
and homology manifolds in later sections, but for cleanness of the presentation restrict
to the case of PL spheres first. In particular, we do not rely on the Pachner theorem for
our proof. We refer to [HMM " 13] for a survey of the Lefschetz property.

1.3. Genericity of the Poincaré pairing. A critical auxiliary result on the way is the
following genericity criterion for the Poincaré pairing.

Theorem II (Biased Poincaré duality). Consider a PL (d — 1)-sphere X, and the associated
graded commutative ring R[X]. Then there exists an open dense subset of the Artinian reduc-
tions R of R[X] such that for every k < d/2 the perfect pairing
dE(E) x TR — YD) =R
a b b— deg(ab)

is non-degenerate in the first factor when restricted to any squarefree monomial ideal .7 .

We shall see that biased Poincaré duality and the Hall-Laman relations are not related
to regularity of toric varieties, but rather a generic property of the same. In particu-
lar, even smooth varieties do not satisfy these refining properties in general (see Exam-
ple 5.7), but another variety with the same equivariant cohomology does. Our approach
to the Lefschetz theorem is therefore somewhat transversal to the classical proofs of the
Lefschetz theorem.

Biased Poincaré duality can perhaps be visualized most easily via the following geomet-
ric metaphor: every element z in .7 pairs with some element y in &/9~%(%). We wish
to modify y to an element ¢’ € .7 4=k 5o that

deg(zy') = deg(xy) # 0.

Ideally, one could attempt to achieve this by pushing along a Lefschetz pencil, or a suit-
able Morse function as used by Andreotti and Frankel [AF59, Mil63], indicating that
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the question may be associated to the Lefschetz theorem on the simplicial complex as-
sociated to R[Y]/.7. We will forgo the geometric intuition, and work with the Lefschetz
theorem directly.

1.4. Why genericity? Limits of positivity. To a discrete geometer as well as an alge-
braic geometer, the reason we need to come up with the Hall-Laman relations and the
generic Lefschetz theorem lies in the limited availability of positivity in this context.

To a discrete geometer, this is most familiar under the name of convexity, appearing
in the Lefschetz theorem and in particular McMullen’s proof in the form of the theory
of mixed volumes of convex bodies. To an algebraic geometer, it comes in the form of
Kéhler structures that smooth projective varieties enjoy.

And indeed, aside from more exotic combinatorial constructions where the Lefschetz
theorem holds for more trivial combinatorial reasons (see also our discussion of Laman’s
theorem), the first part of Theorem I is known mainly in the case when X' is combina-
torially equivalent to the boundary of a polytope, in which case we can conclude the
Lefschetz theorem from the hard Lefschetz theorem for rationally smooth toric vari-
eties [BBDG18] or using the specialized approach of McMullen [McM93]. This allows
us to treat all spheres of dimension two and lower by Steinitz” theorem.

Unfortunately, already in dimension three PL spheres rarely generate fans, not to even
speak of fans that support an ample class [Alo86, GP86, Kal88, PZ04, Rud58].

And what is more, we shall extend the hard Lefschetz theorem even to general homol-
ogy spheres and then further to closed orientable manifolds in Section 9, which are
beyond any reach of the only combinatorial program available, the program via local
moves (see Section 4.2).

The generic Lefschetz theorem is the classical version conjectured usually in connec-
tion to the g-conjecture, see also [Swal4]. The Hall-Laman relations instead replace the
Hodge-Riemann relations in their role towards the Lefschetz theorem for ample classes.
We will motivate their name when we discuss the Griinbaum-Kalai-Sarkaria conjecture
in Section 4.

1.5. Key ideas. The proof relies on several new techniques towards measuring and ex-
ploiting genericity in intersection rings, in particular with regard to the Poincaré pairing.
The key ideas can be summarized as follows:

(1) To replace the classical signature conditions on the Hodge-Riemann bilinear form,
we introduce biased pairings, and the Hall-Laman relations of the Lefschetz theo-
rem above that posits the Hodge-Riemann form restricts well to certain ideals. We
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introduce it in Section 5. We also discuss an extensive theory around this relation,
which will be justified later.

(2) Section 6 provides the critical perturbation lemma that details how one obtains the
Lefschetz theorems from properties of the pairing, by inductively constructing a
partial Lefschetz element, relying on generic linear combination of a new variable (a
degree one element corresponding to a vertex) with the already constructed partial
element. We keep track that the element satisfies the appropriate algebraic condition
for partial Lefschetz elements: the transversal prime property. This also ensures
that once all variables are used in the construction, the resulting partial Lefschetz
element is, in fact, a full Lefschetz element.

It applies immediately to prove the Lefschetz theorem for nicely decomposable
spheres (those with sufficiently nice orders on their vertices/variables).

(3) Section 7 introduces the notions of railways in manifolds, allowing us to do surgery
on a manifold to simplify the objects we need to prove the Lefschetz theorem on.
Specifically, we take a detour, and demonstrate how to replace a sphere that is not
nicely decomposable, with a manifold that is. Here, two of the previous steps be-
come important: We have to explore how the iterative program behaves on nicely
decomposable manifolds. And we have to justify the transition step from a sphere
to a different manifold. This justifies the considerable work undertaken in Section 5.

1.6. Applications to toric varieties and combinatorics. The Lefschetz theorem is there-
fore as announced valid for generic Artinian reductions. In particular, the more algebro-
geometrically inclined reader may consult the following corollary for easier visualiza-
tion, obtained from Theorem I as open dense Artinian reductions can be chosen ratio-
nally.

Corollary IIL. Consider § a complete simplicial fan in R%. Then, after perturbing the rays of
§ to a suitable rational fan §', the Chow ring of the toric variety X satisfies the hard Lefschetz
property with respect to a generic Picard divisor, while the equivariant Chow ring remains un-
changed from Xz to Xz

Moreover, we can find such a perturbation in a way that the Hodge-Riemann pairing with
respect to this generic Picard divisor is non-degenerate when restricted to the ideal in the Chow
ring generated by any open subset, that is, any order filter, of the torus-orbit stratification.

Notably, the requirement that there exists an ample class has vanished from the assump-
tions. The second part, the Hall-Laman relations, are more than a bonus to this fact, but
play a similarly crucial role to the generic Lefschetz theorem as the Hodge-Riemann
relations play for the proof of the classical hard Lefschetz theorem.
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Consequences of Theorem I are legion, too many to collect them all here individually.
Among them are the following that we explain briefly. Many of results in algebraic and
geometric combinatorics, somewhat dissatisfyingly, were only able to be established
conditioned on Theorem I(1). In several cases, where these implications are overly com-
plicated and intransparent, we use the simpler and cleaner techniques developed here
to derive the results.

(1) McMullen’s g-conjecture, see [McM71]: Chief among the applications of Theorem I(1)
is the characterization of face vectors of triangulated manifolds, following and re-
solving the ingenious g-conjecture of McMullen.

In particular, Theorem I(1) proves that the set of f-vectors, that is, the number
of vertices, edges, two-dimensional faces etc. of a PL sphere is also the f-vector of
a simplicial polytope. This is achieved by realizing, using that theorem, that the
f-vector is but a linear transformation of the primitive Betti numbers

gi(X) = dimﬂz(z)/@di—l(z)

of &/*(X). This implication was first observed by Stanley, who then used the hard
Lefschetz theorem for rationally smooth toric varieties to demonstrate the g-conjecture
in the case of spheres arising as boundaries of simplicial polytopes [Sta80]. These
Betti numbers are then characterized as being the Betti vectors of commutative
graded algebras generated in degree one, the constructive side being provided by
Billera and Lee [BL80]. The later generalizations of Theorem I found in Section 9
extend this to characterize the f-vectors of rational homology spheres. We refer to
Stanley’s aforementioned work that discusses the g-conjecture, and its relation to
the Lefschetz theorem in detail.

Going beyond spheres, Theorem I(1) provides necessary conditions on the pos-
sible face vectors of triangulations of a fixed rational homology manifold M, see
also [KN16, Swal4] for details. In particular, it also applies to bound the complexity
of triangulated (closed) manifolds, and resolves a conjecture of Kiihnel [Kiih95]: If
M is a triangulated (d — 1)-dimensional closed rational homology manifold on n
vertices, then in terms of its reduced rational Betti numbers b..(M ), we have

(C”_ 1)bj_1(M) < (”_d” - 1) for1<j<d
J J 2
see also [KN16, Section 4.3] and [Mur15]. This extends to orientable manifolds with
boundary. In that case, we have

(j)bjl(M) + <ji1)bd—j(M) < (n_d;.rj_1> for1 <j<

N Q.
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As the previous conditional derivation is needlessly technical, we provide a simple
proof of the implication in Section 4.

Complexity measures for connectivity: Given a (simplicial rational homology) sphere ¥
of dimension d — 1, and a nonnegative integer £ less than d, one can measure the
"complexity" of the triangulation in dimension k — 1 in several ways. One especially
fruitful invariant for this complexity is Hj,_; (2w ) for W a subset of vertices 20 of
X and E|W the induced subcomplex on W. For a numerical measure, one often uses
either the 1-norm

(Dr—1,1m = Y, be—1(Zjw)

wcx)
|Wl=m

or the co-norm
[(X) k1,00 = max bp_1(Zjw).
wcx()

Following [MNO3] and using Theorem I(1) (and its generalization Theorem 9.1), it
follows that |(X)|;—1,1,m is maximized by the Billera-Lee polytopes among all tri-
angulated spheres with the same f-vector. This answers a question of Codenotti,
Santos and Spreer [CSS18].

Moreover, it follows from [Adil7, Section 6] and Theorem I(1) that for k < d/2, we
have a tight bound

[(Z)k=1,00 < g(X),

where g5, denotes the k-th primitive Betti number of &/ (X'). The case of arbitrary k
is treated by exploiting Alexander duality in the sphere X. In addition, there exists
asubset& c ¥,

&< (k4 1D)grg1 +(d+1—Fk)ge)(2)

such that by_1(Xwug) =0forall W C X (0). Hence, nontrivial homology classes in
Hj,_1(Xw) are not only boundaries in X, but one can find them to be boundaries of
chains with at most

((k+Dgrs1 + (d+1—k)gr) (L)

additional vertices. By adapting [Adil7, Section 6] to manifolds, one can show
above results still apply to measure the complexity of triangulated manifolds M,
but now measuring not the induced homology of subcomplexes, but the kernel of

Hy1(Myy) — Hy_1(M).

Griinbaum-Kalai-Sarkaria conjecture, see [Gr70]: The probably most widely studied
application is to a conjecture of Griinbaum, Kalai and Sarkaria: As Kalai observed
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in [Kal91, Section 7], Theorem I(1) implies that if A is a simplicial complex of dimen-
sion d that allows a PL embedding into R?? then

fa(4) < (d+2)fa-1(4). (1)

We will give a simpler, self-contained proof of this implication in Section 4.6. Kalai
also observed that this bound is essentially sharp, only differing to constructions in
an additive error depending only on d, see also Remark 4.9.

The case d = 1 (when A is a simple graph) is a consequence of what is now called
Euler’s formula, postulated first by Descartes and Euler [Des21, Eul58], though the
first formal proof by modern standards seems to be due to Legendre [Leg94]. They
did not however seem to make the connection to Inequality (1).

However, already for d = 2, only little improvement was known over the trivial
bound of f2(A) < fo(A)f1(A): Dey [Dey93] proved that

fa(A) < cfy T ),

a bound that stood essentially uncontested for 25 years. Parsa [Par18] recently im-
proved this to
d+l———
fa(4) < Cfy > (4)
but the topological techniques employed are seemingly limited in potential, see also
Gundert’s Diplomarbeit [Gun09] for an excellent survey.

Due to this, several algebraic techniques towards the Griinbaum-Kalai-Sarkaria
conjecture were proposed, most notably the proposal of Kalai and Sarkaria using
algebraic shifting [KalO1, Section 5.2]. Unfortunately, a proof of this program was
elusive, though Theorem I(1) vindicates their approach by verifying their program,
as Kalai noticed in the same manuscript.

Our Inequality (1) implies the stronger and optimal

fud) < (@+2) (f O(f))
This has various consequences in discrete geometry (see also [Wagl3, Section 3]).
For instance, if I" is a simplicial complex and I" — R?? is a PL map, then we have
for the number of pairwise intersections of d-simplices, the d-th crossing number
crq(I), the inequality

fa ()
(d+3)H2 £ H(T)
if fq(I") > (d+3) fa—1(I"), obtaining therefore a generalization of the influential cross-
ing lemma of Ajtai, Chvatal, Leighton, Newborn and Szemerédi [ACNSS82, Lei83].

Crd(F) >
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Compare this also Gundert’s work on the subject [Gun13], who relied on strong ad-
ditional assumptions on the spectrum of the the Laplacian of I" and deep work of
Fox, Gromov, Lafforgue, Naor and Pach [FGL*12].

Remark 1.1 (Limits of the techniques: topological pathologies). Is the restriction to
PL embeddings and PL maps in the previous discussion necessary, or do the results
hold for arbitrary topological maps? The answer is open. Our techniques apply
slightly beyond the PL case, but not to the general topological case yet. We need to
be able to extend the image of such a map to a strongly regular CW decomposition
of the underlying sphere. This is often possible, but not always. Specifically, we
prove the Griinbaum-Kalai-Sarkaria conjecture for simplicial complexes A which
are embeddable as a subcomplex into a triangulated rational homology sphere of di-
mension 2d, and more generally embeddings as subcomplexes into 2d-dimensional
triangulated (orientable rational homology) manifolds M, where we obtain a bound

Fal4) < (d+2)faa(2) + <2dj 1>bd<M>.

This is a larger class of embeddings, but still not all, see for instance [DV09, Rus69].
The case of arbitrary topological embeddings therefore remains open.

1.7. Future directions. Even more interesting, the generic Lefschetz theorem raises sev-
eral questions.

o One can equivalently ask whether polyhedral spheres satisfy the analogue of the Lef-
schetz property as well, provided an appropriate construction of intersection coho-
mology for this case. Unfortunately, realizing the associated intersection cohomology
in the abstract case seems to require extra ingredients.

o Are there analogues of the generic Lefschetz theorem in classical algebraic geometry?
Is there a geometric proof? This could use theory of Kéhler currents, but clearly re-
quires more beyond that as Section 4.4 demonstrates. Arbitrary algebraic cycles can
be deformed in various ways, of course, but lose much of their properties in the tran-
sition. Does a generic fibre say anything about the Lefschetz property at the limit?

o There are other interesting spaces that could, generically, behave like algebraic vari-
eties with respect to the Lefschetz theorems, for instance quotients of real reductive
groups G by a maximal compact K and a "generic" cocompact I', offering a route to
some of Venkatesh’s conjectures in the area [Ven17].

o Another possible area of interest and source of interesting deformations could be
Hrushovski’s theory of Frobenius automorphisms and difference varieties [Hru04],
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but for this a cohomology theory remains to be developed. See also [Giall] for recent
developments concerning intersection theory of difference varieties.

o A crucial part of our approach lies in the fact that the underlying cohomology rings
are commutative and generated in degree one. As we shall see, not all such Goren-
stein rings satisfy the Lefschetz property, but perhaps generic ones? The answer is
easily shown to be yes without qualification [Wat87] but we are interested in fixing
certain interesting invariants, such as the equivariant cohomology. On the other hand,
Boij has constructed "generic" Gorenstein algebras that do not even have unimodal
Betti numbers [Boi99]. We lack an interesting conjecture in this area.
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2. MAP FOR THE PAPER

We recommend going through the paper in a linear fashion. The reason is that we need
and develop a number of new concepts that are used again and again, chiefly our notion
of biased pairings and Hall-Laman relations that replaces the Hodge-Riemann relations.
Unlike other works, where therefore many concepts are, perhaps, in some way familiar
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from other contexts, and an expert could skip and jump around to get an intuition, the
same is tricky to achieve here.

o Section 3 introduces some of the basics for the rings we use, inspired from Chow
rings of toric varieties, and recalls some classical facts. Unfortunately, the previous
treatments, in particular concerning triangulated manifolds, are often insufficiently
general and insufficiently precise, so we develop a new method to overhaul much of
the area. The important, if basic, concept is the partition complex (Section 3.7) and the
relation to simplicial chains via the Ishida complex (Section 3.9), which gives us a close
understanding of the Poincaré pairing in face rings and its relation to the cohomology
of the manifold.

o Section 4 will recall a basic classical case of a generic Lefschetz theorem, and its rela-
tions to an expansive numerical property of ideals in face rings. While not formally
needed for the proof of the main result, it provides critical intuition and motivation
for what is to come. The section also proves some consequences of the Lefschetz prop-
erty, such as the Griinbaum-Kalai-Sarkaria conjecture (Section 4.6) and a collection of
conjectures of Kiihnel (Section 4.7).

o Section 5 is the most critical, and introduces a property that seems to be without
precedent: the biased pairing property (Section 5.2). Essentially, we argue that in the
setting beyond positivity, where we have no control over signature, it becomes uni-
versally important to understand the Poincaré pairing on ideals. The property has
several uses throughout. The key in this section is to establish a characterization theo-
rem for biased pairings. We do so gently, and in increasing generality, starting from the
basic case that relates it to the Lefschetz property for spheres (Proposition 5.6).

The stronger, most general version, characterizes the biased pairing property in terms
of a Lefschetz type property for general hypersurfaces (Section 5.8 and Theorem 5.15). Here,
it is not immediately clear that what we just now called a Lefschetz type property is
indeed a Lefschetz type property, and we will have to take it on faith until we prove so
later. A priori, it connects primitive elements to the simplicial homology of a manifold
the hypersurface is boundary to. Let us call it ambient Lefschetz for now.

The important observation here is that via this detour, we have established an im-
portant reformulation: Lefschetz for spheres is equivalent to biased pairing is equivalent to
ambient Lefschetz for a different hypersurfaces. This is important, as we now have a new
statement to prove, though it is not clear yet how it might help.

o Section 6 discards ambient Lefschetz for a while, and asks how we can at all prove
Lefschetz type properties. What we want is to understand the multiplication with a
generic element in the face ring. This seems unachievable at first.



12

KARIM ADIPRASITO

So instead, we take a multiplication in the ring we understand, the one by a prime
divisor resp. a variable in the face ring. Now inductively add more variables in
a generic combination to understand the multiplication with a more general linear
form. Ideally, the kernel of multiplication with a generic combination (of variables) is the in-
tersection of the kernels; this is the property we call transversality of primes (Section 6.3).
If we prove it, we are done, for the intersection of kernels of all the variables is 0 by
Poincaré duality.

To actually prove the transversal prime property, we employ a perturbation lemma
(Section 6.1) that goes back to Kronecker: to guarantee the generic combination of two
linear maps has minimal kernel, we give a simple transversality criterion. We shall
illustrate this lemma by establishing the hard Lefschetz theorem for derived subdivi-
sions of shellable spheres, or more generally the class of L-decomposable spheres, in
a slight variation on the concept of vertex decomposable spheres defined by Billera
and Provan (Section 6.5).

More importantly, we shall see in detail how the transversality criterion for the pertur-

bation lemma is nothing but biased pairing in pullbacks to prime divisors, and argue how
it is critical for us to identify this pullback accurately. We are able to so provided we
have a "nice” decomposition of the manifold we want to prove the Lefschetz type prop-
erty on. Unfortunately, most triangulated manifolds, or even spheres, are not nicely
decomposed. This is where the reformulation comes in.
Section 7 puts this observation together with the "reformulation" of the Lefschetz
property in the preceding Section 5: we show that there is a "nicely" decomposable
hypersurface that we can work on, and on which we now have to prove ambient
Lefschetz, instead of proving the Lefschetz on the original manifold.

Here, "nicely” decomposable hypersurface is made formal in the definition and construc-
tion of railways (Section 7.1). One helpful observation is that we can restrict to proving
the middle Lefschetz property, the Lefschetz isomorphism from degree k — 1 to k in
a sphere of even dimension 2k — 2 (Section 7.4). This is one key ingredient for the
railway construction as it enables us to use geometric general position principles.
Section 8 finally puts things together, proving ambient Lefschetz for railways. We
have almost everything in place, the only thing missing is to explain that ambient Lef-
schetz is actually a Lefschetz type property. We do this by relating the face ring with
simplicial homology using the Ishida and partition complexes, which is the culminat-
ing achievement of Section 8.3.

Finally, we extend the Lefschetz theorem from intersection rings of spheres to arbi-
trary manifolds in Section 9, and discuss the case of homology manifolds. For clean-
ness of the presentation, we choose to delay this aspect to the end.
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The proof introduces several new ideas, and the development of techniques requires
some space. To help the reader, we offer some intermediate results along the way to
mark milestones of what we have learned up to that point. These avocations provided
in this paper are weaker than the final results but offer some helpful camp and reju-
venation for the reader, and in some cases already offer substantial improvement on
previous results.

Additionally, every section starts with a small reminder of what is done in the section,
and what is necessary to remember from previous sections to understand what is going
on. In general, the paper is built linearly, and even if the reader might be tempted to
skip certain sections because he may think he knows a certain part, he is not encour-
aged to skip, as we need to redevelop several classical results in higher precision and

transparency.
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3. BASIC NOTIONS

We set up some of the basic objects, and refer to [Lee96, Sta96] for a more comprehen-
sive introduction. While many of these notions have their origin in toric geometry, we
immediately define them in a more general combinatorial setting, with the additional
benefit of selfcontainment, and refer the interested reader to [CLS11] for the more clas-
sical algebrao-geometric aspects. Starting with Section 3.7, we investigate the Poincaré
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pairing and socles, substantially simplifying, generalizing and cleaning up earlier re-
search in the area.

3.1. Face rings and stress spaces. If A is an abstract simplicial complex on groundset
[n] ={1,---,n},let In = (x*: supp (a) ¢ A) denote the nonface ideal in R[x], where
R[x] = Rz, --,2,]. As a general convention, all our simplicial complexes (unless
they are relative) have the empty set as a face. This also means that homology and
cohomology of simplicial complexes is naturally always reduced.

Let R*[A] = R[x]/Ia denote the face ring of A. A collection of linear forms © =
(01, --,0;) in the polynomial ring R[x] is a partial linear system of parameters if

dimKrull R* [A]/@R*[A] = dimKrull R* [A} — l,

for dimg,,n the Krull dimension. If | = dimg,, R*[A] = dim A + 1, then © is simply a
linear system of parameters, and the corresponding quotient R*[A]/OR*[A] is called a
Artinian reduction of R*[4].

The dual action of R*[x] acting on itself by multiplication is the action of the polynomial
ring on its dual R, [x] by partial differentials, where naturally every variable in a poly-
nomial p = p(x) is replaced with a corresponding partial differential p(d/ax). In details,
we define the stress space of A as

R.A] = ker[Ly: Ru[x] — R.[x]
and by minding also the linear system of parameters

R.[A;0] = ker [O : R, [A] — R,[x]]. (2)
The elements of this space are called stresses; the spaces themselves are very familiar in

toric geometry and coincide simply with the top homology groups of the Ishida com-
plex [Ish87, Oda91], see Section 3.9.

Note that R, [A; ©] and the quotient
R*[A;0] = R*[A]/OR*[A4]

are isomorphic as graded vector spaces, and are naturally dual to each other [Wei58]:
The dual ¢(d/ax) of a linear form ¢ = ¢(x) acts on the linear stress space, and therefore
defines an action

R*[A; 0] x R.[A;0] — R,[A;0].
We will often call this the Weil duality to distinguish it from other forms of duality
present in this paper.
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3.2. The relative case. A relative simplicial complex ¥ = (A, I') is a pair of simplicial
complexes A, I'with I' C A. If ¥ = (A, I') is a relative simplicial complex, then we can
define the relative face module

R = Ir/p,
and its reduction R*[¥]/OR*[¥].
It is not hard to modify this definition to obtain a definition of relative stress spaces by

R, [¥] = coker [R,[I'] — R,[A]]
and
R [¥;0] = ker [O : R, [¥] — R,[¥]].
This will be occasionally useful. We obtain a pairing
R*[¥] x R, [¥] — R,[A]

This restricts to a perfect pairing

RF[@, O] x Ri[¥, 0] — Rg[4] = R.

3.3. Coordinates and properness. Observe finally that © induces a map A®) — R!
by associating to the vertices of A the coordinates Vo = (vi,---,v,) € R where
Vax = ©. Hence, as is standard to do when considering stress spaces, we identify a
pair (4; ©) with a geometric simplicial complex, that is, a simplicial complex with a
map of the vertices to R'. The differentials given by V 4 are therefore VAV, where V is
the gradient.

Conversely, the canonical stress spaces and reduced face rings, respectively, of a geo-
metric simplicial complex are those induced by the linear system of parameters given
by the geometric realization. The stress space or face ring of a geometric simplicial
complex is considered with respect to its natural system of parameters induced by the
coordinates.

A geometric simplicial complex in R? is proper if the image of every k-face, with k < d,
linearly spans a subspace of dimension k + 1. A sequence of linear forms is a (par-
tial) linear system of parameters if the associated coordinatization is proper (this is an
easy exercise, see for instance [Lee96, Section 4]). For the results of our paper, we al-
ways think of every simplicial complex as geometric and proper, that is, as coming
with a proper coordinatization in a vector space over R, and shall generally assume
(d — 1)-dimensional complexes to be realized in R? unless otherwise stated, so that the
associated collection of coordinatizing linear forms is a linear system of parameters.
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We are most interested in the cases when the coordinates give rise to an Artinian re-
duction, that is, the coordinates induce a linear system of parameters, justifying our
notation. All geometric simplicial complexes are therefore assumed to be proper. For
geometric simplicial complexes, we shall use the notation

A (V) = R,¥; Vyx] resp. A*(¥) = R*[¥; Vyx]

3.4. Conewise polynomials. Itis occasionally useful to remember an alternative model
for face rings: the ring of conewise polynomials , see for instance [BBFK02, Bri97]. An
(abstract) simplicial cone complex C' is a polyhedral complex, that is, a collection of
geometric polyhedra, identified along isometries of their faces, that consists of simpli-
cial cones that are joined at the cone-point. The algebra of conewise polynomials 2(C')
is the algebra of continuous functions C' — R that are polynomial on each cone, together
with pointwise multiplication.

A proper realization of a cone complex is amap C' — R thatis an isometry on every face,
and takes the conepoint to the origin. It defines a (geometric) simplicial complex A by
choosing vertices along each ray of the (properly realized) cone complex, and joining
them to a simplex if the corresponding rays lie in a common cone. Vice versa, every
simplicial complex generates an abstract cone complex, and every geometric simplicial
(n — 1)-complex in R”, n > d generates a properly realized cone complex, by taking
cones over faces.

~Y

It is an easy exercise to see that R[A] = 2(C) :

This is achieved by sending an indeterminate z, corresponding to the vertex v to the
conewise linear function that vanishes on the conepoint and on every ray of C except
for the one corresponding to v, where it takes value 1 on v itself. As both algebras are
generated in degree one, this determines the desired isomorphism. Notice that in the
realized case the linear system of parameters has a particularly nice image: it consists
of the restrictions of global linear functions.

3.5. Minkowski weights. We close with a useful notion related to simplicial stresses:
The space of squarefree coefficients of &/, (¥) is also called the space of Minkowski
weights [FS97], denoted by ./ (V).
Proposition 3.1 (cf. [Lee96]). Consider a relative simplicial d-complex W in RY. Then

p: (W) — M(P),

the map restricting a stress to its squarefree terms, is injective (and therefore an isomorphism,).
Moreover, My, (¥) is the space of weights on (k—1)-faces that satisfy the Minkowski balancing



BEYOND POSITIVITY 17

condition: for every (k — 2)-face T of ¥,

Z c(0)vy\r = 0 mod span (7),

er(kfl)
oDT

that is, the sum on the left-hand side lies in the linear span of T.

Here, we use &/, (¥) to denote the stress space of the geometric simplicial complex ¥ as
convened upon, and v to denote the i-dimensional faces of ¥. The action of the face
ring on stress spaces extends to Minkowski weights.

3.6. The cone lemmas. A crucial ingredient for the inductive structure is given by pull-
backs to prime divisors. Recall that the star and link of a face ¢ in A are the subcom-
plexes

st A = {r:37" D1, 0 C7' € A} and lk, A = {r\oc:0C 1€ A}

For geometric simplicial complexes A, we shall think of the star of a face as a geometric
subcomplex of A, and the link of a face o as the geometric simplicial complex obtained
by the orthogonal projection to span(c)~ (though any linear projection with o generat-
ing its kernel works just as well). Let us denote the deletion of o by A — ¢, the maximal
subcomplex of A that does not contain o. Let

stg A == (sty A,ste A —0).
We have the following two elementary lemmas.
Lemma 3.2 (Cone lemma I, see [Lee96, Thm. 7] or [TWO00]). For any vertex v € A, where
A is a geometric simplicial complex in R, and any integer k, we have an isomorphism
.kaakvA) = dk(stv A)
Lemma 3.3 (Cone lemma II, see [Adil7, Lem. 3.3]). In the situation of the first cone lemma
we have a natural isomorphism
Tyt ,Qik+1(stf) A) — ,ka.(stv A)

where x,, acts as partial differential d/dx,.

3.7. Partition of unity and Poincaré duality. There is another fact that provides a good
intuition to what we do, hidden in the following derivation of Poincaré duality. Instead
of the approach via local cohomology usually taking, we instead take a much simpler,
cleaner and more general approach, by introducing the concept of the partition complex.
We refer to [AY20] to a more basic introduction to the subject.
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Recall that a simplicial complex A of dimension d — 1 is Cohen-Macaulay if the link
of a k — 1-dimensional face carries reduced (rational) homology only in dimension d —
1 — k. Following a theorem of Hochster [Sta96, Section I1.4], this is equivalent to the
following statement: Consider the face ring R*[A] and any linear system of parameters
©. Consider the associated Koszul complex K°*(0).

Then A is Cohen-Macaulay if and only if R*[A] ® K*(O) carries homology only in final
nontrivial component, where the homology is precisely &/*(A, ©).

We now can state:

Lemma 3.4 (Partition of unity). Consider a Cohen—Macaulay (d—1)-complex A in RY. Then,
for every k < d, we have a surjection

@ i (sty A) —» AR (A).
veA0)

Recall here that -(9 denotes the set of i-dimensional faces of a simplicial complex.

Proof. We may equivalently prove an injection
dF(A) — P LF(stu Q) 3)
veA0)
for k < d.

Let © denote the coordinate ideal of parameters for A. For the proof, we consider the
Koszul complex K* := K*(0) and the chain complex P* = P*(A) defined as
0 — RA] — P Rstyd] — -+ — P R[strA] — 0
veA0) FeAld=1)
with a natural choice of maps for the boundary operator: the choice of signs can be
intuited easily once we realize that the degree zero component is naturally the Cech
complex of A covered by the interiors of stars st, A [ES52].

With this, we obtain a chain complex as desired. In positive degree, we simply have an
inclusion-exclusion of monomials, so the complex is exact. Let 2* = 9*(A) denote the
complex
0 — d*(A) — P d*(stwd) — -+ — P *(stpd) — 0.
veA) FeAld-1)

Consider the double complex K* ® 2* and the associated total complex Tot®, that is,
the complex on summands Tot’ = @, 4= K " ® P We compute the homology of the
total complex by examining the two filtrations of the double complex.



BEYOND POSITIVITY 19

In the direction of the Koszul complex, the double complex is exact except for the final
homology group (which is the Artinian reduction). Using this at all the proper vertices,
we obtain that for H"(Tot®) is simply H"(2*), or specifically for n = d, the kernel of
the map (3).

Now, we need another observation: All spaces involved have another grading, the grad-
ing according to degree of polynomials. To not clutter notation, we shall specify the
degree in words. For the following analysis, it is useful to remember the stratification
along this degree: Consider the double complex in direction of . This is exact in pos-
itive degree, so that only the degree 0 component of the homology in degree 0 survives.
Keeping in mind that the Koszul complexes increases the degree, it follows that
HH(*) = HN(Tot®) = (1) (k).

where (+5) denotes a shift in degree by j. Hence, we see that H4(2*) = (H4~1(A))(—d),
which is nontrivial only in degree d. But the degree k component of H%(9*) is isomor-
phic to the kernel of the Map (3), as desired. 0

An important corollary (and equivalent restatement for spheres) of this fact is Poincaré
duality for simplicial homology spheres, [Sta96, Gra84], proved initially using tech-
niques from commutative algebra; note though that the preceding statement is more
general in that it applies beyond the case of spheres to Cohen-Macaulay complexes
that do not have a fundamental class.

Theorem 3.5. Let X be a (d — 1)-dimensional simplicial homology sphere in RY. Then o/*(X)
is a Poincaré duality algebra.

For this, we first notice:

Lemma 3.6. In any closed, rational, orientable manifold M of dimension d — 1 in RY we have
an injection

A" (stgM) — A (M)
for any vertex v of M.

Proof. This follows immediately from Schenzel’s calculations [Sch82, Section 4.1 and
Lemma 6.3.4] on the kernel of

R*[M]/<917 N/ e R*[M]/(Hh o Ok )

Apply his calculations to the short exact sequence

0 — R*[styM] — R*[M] — R*[M —v] — 0,
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computing the Artinian reduction using the above facts and by exploiting that the in-
clusion of manifolds
M-v — M

induces an surjection in cohomology

H*(M) —» H*(M —v). 0

Proof of Theorem 3.5. It suffices to observe that the annihilator of the irrelevant ideal in
a* (X)) is concentrated in degree d. But then partition of unity implies for all £ < d an
injection
dHX) — P dsteX) = P I (stox) — P L)
veX(0) vex(0) veM(©)
where the middle map is induced by the second cone lemma for each vertex v of ¥. [

3.8. Manifolds and socles. We will simply write manifolds to mean orientable (over Q),
closed, connected combinatorial (also known as PL) manifolds. If an object satisfies all
these conditions except closedness, we will call it a manifold with boundary. Sometimes
we will also consider rational homology manifolds, and make clear that the result ex-
tends immediately to this case. We will denote this by the adjective "rational".

For instance, rational spheres will be rational homology manifolds that are rational ho-
mology equivalent to the standard spheres. A combinatorial rational homology sphere
is a combinatorial manifold rationally homology equivalent to the standard sphere.

A PL sphere finally is a sphere PL homeomorphic to the standard sphere. This is the
classical definition that may be more familiar. For us, it is enough to ensure that the link
of every face is homeomorphic to a sphere of the appropriate dimension. Modulo the
smooth Poincaré conjecture in dimension 4, these two notions are equivalent, but for us
either notion works. Balls are distinguished analogously.

For triangulated rational spheres, we will be interested mostly in the intersection rings &/,
as the above section shows that this results in Poincaré duality algebras already. For ra-
tional manifolds, we will have to go beyond that because of our desire to work strongly
with the Poincaré pairing. For a simplicial (d — 1)-manifold M that is realized in R¢,

Soc(M) C o™ (M)
shall denote the annihilator of the irrelevant ideal in ¢/*(M ), also known as the socle

of @/*(M). If M is closed, orientable and connected, then Soc? is generated by one
element, the fundamental class. We will therefore denote by Soc® (M) the restriction of
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Soc(M) to degrees < d — 1. We call this the interior socle. Note that with this definition,
we have immediately

Lemma 3.7. For closed (d — 1)-manifolds M in R? we have
Soc(M) = HY(P*(M))

Proof. This is immediate from Lemma 3.6, as in the proof of Theorem 3.5. ]

We have the following useful observation:

Proposition 3.8. For a closed triangulated (d — 1)-dimensional rational manifold M in R¢,

ﬂ*(M)/&OO(M)

is a Poincaré duality algebra. Equivalently, it satisfies partition of unity as stated above, that is,

d*(M>/(§?OGO(M) — @ .QY*(StUM).
veM(0)

This was observed in [NS09a], though it seems to have been folklore before their writeup.
We shall reprove this fact in a much cleaner way momentarily, but move on for a second.

While this fact on its own is interesting, trying to prove partition of unity for o/*(M)
reveals an even more remarkable fact, as it reveals that the socles can be naturally iden-
tified using the spectral sequence coming from the two filtrations of the double complex
in the proof of Lemma 3.4 above. Computing the second page of both filtrations (i.e.,
the total complex), and using the fact that stars of nontrivial faces are Cohen-Macaulay,
we obtain:

Proposition 3.9. For a triangulated (d — 1)-dimensional rational manifold M (possibly with
boundary) in RY, we have an exact sequence

0 — (H YD) — a* ) — @ dF (st M). 4)
veM(0)

More generally, the degree (k—i)-component of H4~%(9*(M)) is isomorphic to (H*~1) ) (M).

Proof. The proof is virtually identical to the proof of Lemma 3.4: The fact that 9*
is exact in positive degree is untouched, so the computation in that direction of the
double complex is untouched. In the direction of the Koszul complex, notice that the
R*[stoM] x K*(©) has homology concentrated in the last component for every non-
empty face 0. Hence, we obtain H"(Tot®*) = H™(%*) for every n < d. O
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Here, we allow M to be a manifold with boundary, and also a manifold relative to its
boundary.

Some historical remarks: The use of the partition complex, and basic versions of Propo-
sition 3.9, can be traced back to Kalai [Kal87], see also [Gro86, Section 2.4], though of
course if we see it in context of Cech complexes the history of course becomes much
richer.

Novik-Swartz [NS09b] proved a much weaker statement, the numerical consequences
of Proposition 3.9, using more intransparent methods, and were hence unable to write
down the isomorphisms involved. It should be remarked that in general, for manifolds
with or without boundary, the kernel of
d*(M) — @ o*(st, M)
veM(©®)

coincides with the so-called >-module of [MNY17], though this calculation can be a lit-
tle intransparent. The isomorphism to this module follows immediately by examining
our computation of the double complex, or the fact that their X-module is a quotient of
A*(M) that injects into @, ;0 Z*(st, M), and has codimension (H’“_l)(Z) (M) in the
former.

Finally, let us note that all the remarks we discussed above, as well as Proposition 3.9,
apply for so-called Buchsbaum complexes. These are those simplicial complexes of
dimension d — 1 in which all links of vertices are Cohen-Macaulay of dimension d — 2.

3.9. The combinatorial Ishida complex and the map hom. It is possible to refine the
understanding of this isomorphism as follows: we note that the map is given in terms
of an elementary map of weighted simplicial homology.

To this end, it is useful to recall the combinatorial Ishida complex of Tay and White-
ley [Ish80, TWO0O0]. For a vector space V, let us denote the j-th exterior power by NV.
If o is an i-tensor, then multiplication with it in the exterior algebra induces a natural
map

J J+i

AV = AV
Consider a geometric complex A in V, and a non-negative integer £ < dim V/, we then
define the stress complex (or combinatorial Ishida complex) I, k] as

0—- P /\Ov/keror_> D Alv/kem'_)”'

geAk=1) TEAKk=2)
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where we identify o with its |o|-tensor and
Jclo] = Z cx[o\x].
z€a(0)
The top cohomology of this complex is isomorphic to &/;(A) [Oda91]. Moreover, this
homology provides a natural interpretation of stresses as simplicial cycles. For instance,
we obtain immediately that for a complex A in R¥, the complex I,[k] naturally defines a
simplicial homology theory, with a boundary operator perturbed by a weighting from
the standard one, so we have a natural map
hom : .ka(A) = Zk_l(A; R) — Hk—l (A; R).
Naturally, if A is realized in RI¥, then we obtain a natural map as composition

hom : i(A) — (Ze_)F(AR) — (H_1)(D)(A;R). 5)

We now have two maps from stresses/face rings to simplicial homology/cohomology,
one provided by the Ishida complex and the other by Proposition 3.9 and the partition
complex and it is natural to ask how they relate. The answer is simple: as the Cech
complex inducing the map to homology in the partition complex is exactly the Cech
complex associated to the simplicial homology given by the Ishida complex. Hence, the
map hom is exactly the map inducing Isomorphism (4).

As a general rule, we will use
* — A (M
B (M) = (M) / ker®[o/* (M) — @perro 4*(stoM)]
to denote the reduction of &/*(M) of a manifold M (possibly with boundary), where

ker® | (M) = @) o*(st,M)| = (HY)(P*(M))
veM ()

is the restriction of H%(9%*(M)), to elements of degree at most dim M.

With this notation, we obtain also immediately the following version of Lemma 3.6.

Corollary 3.10. In any closed rational manifold M of dimension d — 1 in R, we have an
injection

A*(styM) — B*(M)
for any vertex v of M.

Hence, we also obtain a new proof of Propositon 3.8.
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Proof. Consider the following commutative diagram:

0 —— (HYH(P*(M —v)) —— o*(M —v) —— B* (M —v) —— 0

l [ T

0 —— (HY°(&*(M)) ——— *(M) ——— B*(M) —— 0
0 ———— J*(stgM) ——— A*(stoM) —— 0

The horizontal sequences are exact by definition. It follows from Proposition 3.9 that
the left top vertical map is an isomorphism. Hence, the first two vertical sequences are
exact, and by the snake lemma, so is then the third, as desired. O

We denote by %, (M) the corresponding subspace of the stress space &/, (M ). Note that
for closed manifolds, Lemma 3.7 implies that %*(M) is the quotient of &/* (M) by its
interior socle.

We will generally define either define the Weil primal or the Weil dual of a space if the
definition of the other is clear, and use both.

Similar results apply to manifolds with boundary.

3.10. Manifolds with boundary. The results above extend to manifolds with boundary,
with a twist. By replacing Schenzel’s results with the appropriate relative version in
[AS16], we obtain

Corollary 3.11. In any rational manifold M of dimension d — 1 in R with boundary OM, let
M° = (M, 0M). We have an injection

A (st2M°) — B*(M°)

for any vertex v of M.

We then obtain, by using Proposition 3.9:

Proposition 3.12. Given a rational manifold M of dimension d — 1 (possibly with boundary),
there is a perfect pairing

BE(M) x BITRMO) — BY(M°) = R
where M° = (M,0M).

It is now tempting to say: This is the Poincaré pairing of a manifold with boundary. And
formulate, immediately, a Lefschetz conjecture for manifolds like this. This is foolish. In
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fact, as we shall see, every embedding of M into a (pseudo)manifold induces a different
Poincaré pairing on different quotients of &/ (/). However, if we also want to restrict
to quotients of o/*(M°), the question becomes canonical: %*(M) resp. B*(M°) are the
unique quotients of &/* (M) resp. &/*(M°) that induce a Poincaré pairing with respect
to the fundamental class %¢(M°). The associate Lefschetz property is the existence of
an element ¢ in &/* (M) such that

,éd—2k

BE(M°) —— BTF (M)
is an isomorphism.

Moreover, we get Lefschetz theorems for these conditions as well: these are exactly the
Hall-Laman relations for manifolds.

4. THE GRUNBAUM-KALAI-SARKARIA CONJECTURE AND LAMAN’S THEOREM

The Griinbaum-Kalai-Sarkaria conjecture is not only solved by our work, but it also
provides critical intuition towards our research, which is why we reserve a special sec-
tion towards it here. It also gives the opportunity to introduce some important ideas
and notions, specifically certain ideals in the intersection rings and obstructions to the
Lefschetz property.

4.1. Laman’s theorem. We discuss now the "original" generic Lefschetz theorem, known
as Laman’s rigidity criterion for planar graphs. Recall that a Laman graph is a graph G
on n vertices and 2n — 3 edges such that every subgraph on z vertices has at most 2z — 3
edges.

Theorem 4.1 (Laman, [Lam70]). Consider a Laman graph G. Then a generic realization of G
in R? with straight edges is infinitesimally rigid, that is, every infinitesimal deformation of G
that preserves edge-lengths in the first order is a restriction of a global isometry.

Let us restate Laman’s theorem, using the work of [Lee96], in another form more famil-

iar to us:

Theorem 4.2. For any generic embedding of a Laman graph G into R?, we have an isomorphism
d'(G) = #*(G),

where ¢ denotes any generic element of /1 (G). Conversely, any graph on v vertices and 2v — 3
edges admits such an embedding if and only if it is a Laman graph.
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In the latter form, Laman’s rigidity theorem looks suspiciously like a Lefschetz theorem.
Its proof follows a very nice idea; we call it the "decomposition principle", named after
the decomposition theorem for maps between algebraic varieties [BBDG18].

Proof Sketch. Every Laman graph can be shown to be obtained from a single edge by
the Henneberg moves. One connects two distinct two vertices of a graph, the other
connects three vertices, two of which are joined by an edge, and deletes the same edge.
From the algebraic viewpoint, it is useful to place that new vertex in the second case in
the interior of edge to be deleted. These moves preserve the Lefschetz theorem, as seen

>

Figure 4.1. The two Henneberg moves.

by an appropriate form of the decomposition theorem: one constructs an embedding of
algebras

A*(G) — J*(G')
encoding the Henneberg move of G to G/, give an appropriate basis for the cokernel and
prove the Lefschetz theorem on the decomposition, and in particular conclude rigidity
for G’ from rigidity for G.

Let us briefly note that there is an easy way to visualize such embeddings of algebras
without growing to technical: Using the ring of conewise polynomials (Section 3.4). The
embedding is then canonical: we use only the fact that conewise polynomials on &/*(G)
define conewise polynomials on the refinement &/*(G"). O

4.2. Limits of refinement and decomposition. While the Laman theorem is a very nice
generic Lefschetz theorem, it turns out that that it relies on a principle that is unfortu-
nately of limited use in proving the Lefschetz theorem in general.
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This program is also the the easier part of the classical deformation approach that also
McMullen used to prove the hard Lefschetz theorem for simple polytopes [McM93]:
One constructs a local refinement move as, for instance, stellar subdivisions, Whiteley’s
edge splittings [Whi90] or the aforementioned Henneberg moves that descends to an
embedding of algebras
g s o

By splitting the latter cleverly (using different forms of the decomposition theorem) one
can then often conclude the Lefschetz theorem for the refinement from the Lefschetz
theorem on the preimage.

On the other hand, one should not underestimate this approach. Indeed, the only cases
of Theorem I(1) beyond polytopes rely on spheres obtained from the simplex by local
refinement moves. See for instance [BN10, Mur10], although the use of this beautiful
"decomposition principle" is obscured by the step of algebraic shifting, that is unneces-
sary for the proof but reduces the splitting to a more pleasant combinatorial one (though
we lose sight of the Poincaré pairing). Additionally, much of the reasoning of [AHK18]
can be simplified using this technique, as the proof of the Hodge-Riemann relations for
matroids only ever uses the blowup part of the McMullen program.

Unfortunately, these kinds of proofs are not useful for us as they can only treat blowups
(and local similar moves implying an embedding of algebras as above), and not all
spheres of dimension three and higher can be generated by such local refinement moves.
This is especially drastic in dimension five and higher, where such a result would make
the decision problem of distinguishing an arbitrary triangulated five-manifold from a
sphere treatable, which contradicts the work of Markov and Novikov.

Indeed, even if we allowed local moves in general, it would force us to restrict to some-
thing like bistellar transformations [Pac87], and in particular PL spheres, and we would
need to incorporate blowdowns (and analogous moves). McMullen got around this is-
sue by proving ingeniously that the Hodge-Riemann relations in lower dimensions im-
ply the preservation of the hard Lefschetz theorem, meaning he only had to take care of
the Hodge-Riemann relations in the blowdown, which now was comparatively simple
as the hard Lefschetz guaranteed the Hodge-Riemann form did not degenerate in the
deformation. But alas, we do not have the Hodge-Riemann relations without ample
classes.

Our main interest in Laman’s theorem is different: instead of the numerical condition
for the faces of simplicial complexes, we want to focus on an algebraic condition for
ideals.
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4.3. Numerical consequences of the Lefschetz theorem. Let )’ denote a simplicial (ra-
tional) sphere and let A denote a subcomplex of X. We define

Ki(X,A) = dim F; (X, A),
where
FK (X, A) = coker[d,(A) — o.(X)].
Note that these are just the (duals of) squarefree monomial ideals generated by the

monomials supported outside A referenced in the Hall-Laman relations.

The monotonicity property of the Laman theorem is a consequence of the Lefschetz
isomorphism, and this has several applications we can distract ourselves with.

Observation 4.3. Consider X a 2k-dimensional rational sphere in R?**1. If 5 satisfies the
hard Lefschetz property, then for every subcomplex A of X, we have

Ki(X,4) < kpp1 (X, A4Q). (6)

This is a trivial consequence of the commutative square

A1 (2) —L— oty (2)

| !

Hi1 (2, 4) — Hi(2, 4)

so that an isomorphism (and in particular surjection) of the top map implies a surjection
of the bottom map.

4.4. Avocation: A Hall type problem and expansion of ideals. This is certainly a more
appropriate algebraic version of the Laman condition, as it takes into account the ring
instead of the face number. The main objective could be to show that the converse holds
as well, that is, to show that if Inequality (6) holds for all A C X, then the Lefschetz
property holds for X, that is,

a*(D) L gk ti(x)

is an isomorphism for some ¢ in &!. This would be a fantastic full realization of Hall’s
marriage theorem [Hal35] for intersection rings of toric varieties (that is, expansion im-
plies existence of an injective morphism). Let us recall the classical version:

Theorem 4.4 (Hall’s marriage theorem). Assume we have two finite sets X and Y, and a
relation between them so that every subset A of X has at least |A| elements in' Y related to it.
Then the relation supports an injective morphism.
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It is natural to see Laman’s theorem in this context: it postulates the expansion of ideals,
that is, it posits that any monomial ideal in a Laman graph is larger (with respect to
dimension) in degree two than it is in degree one. One could hope for such a theorem
generally in toric geometry. Alas, that does not seem to be true, though we have no
explicit counterexample for this special case. However, it is not true that expansion
of ideals in commutative graded rings implies the existence of an injective map as the
following example found by David Kazhdan (personal communication) shows.

Example 4.5. Let ¢; be the standard basis of X = R",
x: R* — R"

0((62') — (—1)i6i .

Let
n:XP oy

be the quotient by the span of e; A e; where i — j are even and

X x X — Y
be given by

§(«',2") = m(a' A o).

The map 8 is symmetric, therefore defining a multiplication on a commutative graded
ring generated in degree one, multiplying two degree one elements by applying 9.

Moreover, for X’ C X a subspace, the subspace 5(X’, X’) C Y is of a larger dimen-
sion than X' for n large enough. However,

d(xz,xx) = 0,

so the map is never an injection.

We will repair this by replacing the expansion condition by a more robust condition on
the pairing in the next section.

4.5. Avocation: Bad Artinian reduction. One could rightfully ask in the situation of
Theorem I whether it is necessary to ask for genericity of the Artinian reduction, or
whether just any linear system of parameters is enough (for an appropriate Lefschetz
element).

Observation 4.3 allows us to answer also this question in the negative. Recall: If A is
a simplicial complex, and o is a face in A then a stellar subdivision of A at ¢ is the
simplicial complex

Moo= (A-0)u | ({ur}*7)

TEDst, A
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where v, is the new vertex introduced in place of o, and * is used to denote the free join
of two simplices. If A is geometric, then v, will be chosen to lie in the linear span of o.

Example 4.6. Consider X' the boundary of the tetrahedron, and denote its vertices by
1,2,3 and 4.

Perform stellar subdivisions at every triangle of X, call the newly created vertices 1/, 2’, 3/
and 4. Call the resulting complex X'

Realize the vertices in Rl as follows: place the vertices 1,2, 3 and 4 in general position
in R} ¢ RBl Place the remaining vertices in RII\R[?l. The associated linear system
is a linear system of parameters for R[.X’], and therefore &/*(X") is a Poincaré duality
algebra.

However, if we consider the subcomplex A = X' N X/, the quotient #.. (X', A) satisfies
Ki(X',A) =3 and ko(X,A)=2

which violates Observation 4.3. Hence, the associated ring &/*(X’) cannot satisfy the
Lefschetz theorem with respect to any Picard divisor.

Remark 4.7. Strictly speaking, we are no longer considering Picard divisors, as there
are no varieties any more. Rather, we use this term as a shorthand for the group of
degree one elements in our commutative rings.

4.6. The Griinbaum-Kalai-Sarkaria conjecture. Before we briefly discuss the impor-
tance of Observation 4.3, let us note a simple but important corollary.

Corollary 4.8. If X is a 2k-dimensional rational sphere in R***! that satisfies the hard Lef-
schetz property, then, for every subcomplex A of X, we have Inequality 1, that is,
(k+2) fie1(4) = fu(4).

Proof. Observation 4.3 gives
dim 4(A) > dim og1(A),
Moreover, we have the immediate inequality
dim oy (4) < fr—1(4),

which follows by estimating the dimension of a vector space by the size of a generating
set, in this case the (k — 1)-faces and

dim p11(4) > fr(4) = (k+ 1) fe-1(4),
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which follows by estimating the number of relations from above: By Proposition 3.1,
there are k + 1 relations for each (k — 1)-face, so (k + 1) fz—1(4) is an upper bound for
the number of nontrivial relations. O

Remark 4.9. Kalai showed that under the assumptions of the previous corollary, the
[?jlﬁ]) as a subcomplex, and
is contained in turn in the shifting of the infinite cyclic (2k + 1)-polytope [Kal91, KalO1].

This allows one to prove Kruskal-Katona type theorems for complexes embeddable in

algebraic shifting of A does not contain the Flores complex (

spheres, and in particular sharp bounds for the Griinbaum-Kalai-Sarkaria conjecture,
the equality cases for which are attained by compressed collections of k-faces in cyclic
(2k+1)-polytopes. In the end, this effort only improves the bounds a little, in an additive
error depending on the dimension, so that we shall content ourselves with stating the
simplified Bound (1) here.

Finally, these bounds also apply to complexes A embeddable as subcomplexes into gen-
eral 2k-dimensional triangulated rational manifolds M, with a small caveat: depend-
ing on the k-th rational Betti number of M, we have to allow for an additive error of

(*+1Yby(M). For instance, the inequality of Corollary 4.8 modifies to

2k +1
(k+2) - fr-1(4) + ( L >bk(M) > fe(4),
This extends to Kalai’s sharpening via the Kruskal-Katona type bound discussed above,
and follows from the inequality

2k+1
dim /(4) > dim oj1(4) - ( ]:_ )bk(M)
that in turn follows from biased Poincaré duality in M that is introduced in the next
section. This implies at once another conjecture of Kiihnel [Kiih94]: if a complete k-
dimensional complex on n vertices embeds into M sufficiently tamely (so that it extends
to a triangulation of M), then

n—k—1 2k +1
<
( k+1 ) = <k+1>bk(M)’

thereby bounding the number of vertices such a complex can have.

Now, as we will prove the hard Lefschetz theorem (first for PL spheres, then for general
manifolds in Section 9), the conclusion of the corollary and the remark following it
hold without qualification. However, it is useful to note that a simpler, but nonetheless
central, property of the intersection ring already implies Inequality (6), and therefore
also (1). This is our biased Poincaré duality we will examine in Section 5.
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4.7. More conjectures of Kithnel. We now provided a simple way to prove a simple
way to conclude a conjecture of Kiithnel [Kiih95] from the Lefschetz property (which is
then proven by our Theorem I). We want to prove

Theorem 4.10. Consider M a rational manifold (possibly with boundary, and not necessarily
orientable) of dimension d — 1. Then

(?)bj_l(m + (j.fl)bd_j(M) < ("‘d+,j_1> for1<j<

N

J

This follows at once from work of Murai [Murl5] and Theorem I, but Murai’s proof
is rather intransparent and nontrivial. We provide a short and sweet argument here,
similar to the Griinbaum conjecture.

Proof. Let us first observe that by Macaulay’s theorem [Mac27], it suffices entirely to
prove that &/’ (M) is of dimension at least

(j) bj-1(M1) + <j ! 1>bdj<M>

Consider now a generic element 7 of #4-2/71()M). Consider the diagram

I (M) N AT (M)

I I

Boerro LI (stuM) — B epr0) S (s, M)
where the vertical maps are the cone lemmas, given by the composition
AN (st,M) ~ eI (stoM) — o’ (M)

where the last map is the inclusion of ideals. We notice that the bottom map is a surjec-
tion by Theorem I: it is simply the Lefschetz property. Hence, the top horizontal map
is a surjection. By Proposition 3.9, the kernel of the top map is of dimension at least
(?)bj_l(M), and the image is of dimension at least (jfl)bd_j(M). O
4.8. Stress subspaces and partitioned subspaces. Before we continue, it is useful to ex-
tend the definition of the modules # to rational manifolds (possibly with boundary) M.
For subcomplexes A of M, we therefore write

ki(M,A) == dim Z'(M, A),

where
H*(M,A) = ker[B* (M) — B* (A C M)]
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and
* — d*(A o * *
B(ACM) =LA [l (0) = @,y o (st,0)]
We will also use the Weil dual spaces, denoted by %, and 3, as quotients and subspaces
of ¢/, respectively.

One reason we shall mostly work with stress groups is that kernels and images of en-
visioned Lefschetz elements (when they do not connect opposite degrees), enjoy nice
descriptions. The kernels are ideally of the form

B(ACM) = d(A) N B(M),

called stress space. The Poincaré duals (duals under the Poincaré pairing) of #. (M, A),
and in particular the images of Lefschetz maps as we shall see later, can be understood
as well, as they are of the form

‘%*(M)\Z = (A(steM): o€ M, 0 ¢ A) C B.(M),

that is, subspaces generated by partitionable classes in the sense of partition of unity.
As an exercise in sanity, the reader is invited to write down %*(M )|Z" it is the image of

B (M) — P Au(steM).
c€EM, oA
We will call such a subspace therefore a partitioned subspace. They will be rather hard
to work with directly if A is not a codimension zero manifold in M, which will be one
of the main obstacles to overcome in the section that follows.

5. BIASED POINCARE DUALITY AND THE HALL-LAMAN RELATIONS

In this section, we introduce a crucial ingredient of the program by introducing a gener-
icity property of the Poincaré pairing replacing Laman’s criterion. This is the central
notion of the paper, and will accompany us throughout. We shall provide various tech-
niques around using and verifying this property. The previous section, especially the
notation of Section 4.8, is necessary to understand the notions used here.

5.1. Poincaré pairings. Recall: Let M be a triangulated rational manifold' of dimension
d — 1 realized in R?, and %*(M) its face ring modulo Artinian reduction and interior
socle. Then we have a pairing

BE(M) x BTRF(M) — BYM) = R.

IRecall that we assume orientability and closedness unless otherwise stated.
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The essential observation we wish to make is that, while the signature of the pairing
does not change under small perturbations, it is often convenient to have the possibility
to make certain subspaces non-degenerate under the pairing.

5.2. Biased Poincaré duality in ideals. We say that )M satisfies biased Poincaré duality
in degree k < ¢ if for all proper subcomplexes A of M, the pairing

FEM,A) x HETFM,A) — FHYM,A) 2R 7)

is nondegenerate on the first factor. Sometimes we will also say that a specific ideal .#
in a graded Poincaré duality algebra over R satisfies biased Poincaré duality, if

IFx gih 5 g4 2R (8)

is nondegenerate in the first factor, where d is the degree of the fundamental class. An
important special case is biased Poincaré duality at a subcomplex A, synonymous with
biased Poincaré duality for the ideal (M, A).

We keep it separate as on its own it already has interesting consequences, even without
having to consider a Lefschetz theorem. The following is a but a restatement of the
definition.

Proposition 5.1. For an ideal .7 in %*(M) the following are equivalent:

(1) The map
B*(M
S — ( )/ann@*(M)J
is an injection in degree k.
(2) Forevery x € 7%, there exists a yy in 7%= such that z - y # 0.

(3) F satisfies biased Poincaré duality in degree k.

We obtain immediately an instrumental way to prove biased Poincaré duality for mono-

mial ideals.

Corollary 5.2. % * (M, A) satisfies biased Poincaré duality in degree k if and only if
HE(M,A) — B M)z

is injective.

Proof. It is useful to understand what %* (M) ais: following our definition, dualized, it

is the image of

B (M) — P Au(steM).
ocEM, o A
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Equivalently, it is the quotient of %*(M) under the kernel of this map. Which is to say,
it is the quotient of %* (M) by the annihilator of #*(M, A) (as it is the ideal generated
by the monomials not supported in A). Hence, the corollary follows from the previous
proposition. O

5.3. Avocation: Relation to the Griinbaum-Kalai-Sarkaria conjecture. Assume that
M is a rational manifold of dimension 2k realized in R?**! so that biased Poincaré
duality holds with respect to a subcomplex A. Then Inequality (6) follows, that is, we
have

Kk(M, A) < Kk+1(M, A)
In particular, the Griinbaum-Kalai-Sarkaria conjecture holds for A (with the appropri-
ate correction term as in Remark 4.9).

5.4. General properties of biased Poincaré duality. To describe and prove biased Poincaré
duality in general, we start with a first observation, the following persistence lemma.

Lemma 5.3. Let M denote a rational (d — 1)-manifold in R, and k < %. Then biased Poincaré
duality holds for M in degree k if biased Poincaré duality holds for links of all vertices in M and
in degree k.

Proof. By partition of unity in M, any element of %*(M, A) pairs with some prime
divisor z,. Following Lemma 3.10, this pullback maps to o/*(lk, M) = z,%8%(M). Using
the obvious fact that monomial ideals pull back to monomial ideals, we are reduced to
proving Poincaré duality of 1k, A in & *(lk, M); the claim follows. O

This allows us to prove biased Poincaré duality by restricting to the case of degree
k and d = 2k. Notice that in particular biased Poincaré duality in degree k for 2k
manifolds, and hence the Griinbaum-Kalai-Sarkaria conjecture and Kiihnel conjectures
for manifolds, only require the discussion of the property in spheres (see Remark 4.9).

The second useful lemma shows a stability property of biased Poincaré duality under
PL homeomorphism, and in particular subdivision, and hence justifies the preceding
results.

Lemma 5.4. A PL homeomorphism ¢ : M — M’ of rational manifolds M, M’ in R that
restricts to the identity on a common subcomplex A preserves biased Poincaré duality, that is,
FK*(M, A) satisfies biased Poincaré duality (in degree k) if and only if Z*(M', A) does (in
degree k).
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Proof. By the persistence lemma, we may assume that M is of dimension 2k — 1. The
idea is to construct an isomorphism

H (M, A) =2 F (M, A)

where % (M, A) resp. # (M, A) are the orthogonal complements of #*(M, A) resp.
F*(M', A) under the Poincaré pairing. If we do so, we are done, as proving biased
Poincaré duality can be proven on % * (M, A) or its orthogonal complement under the
Poincaré pairing in degree k.

To this end, notice that we may define a PL homeomorphism more generally as any
transformation obtained by stellar subdivisions and their inverses. Following Alexan-
der’s classical work (see [Lic99] for a survey), this subsumes classical PL equivalences.
Recall that a refinement of geometric simplicial complexes X to a complex X' induces
a map
A*(X) — d*(X').

This is easily seen on the level of conewise polynomial functions, see Section 3.4. After
all, a conewise polynomial on a simplicial cone complex is conewise polynomial on any
refinement.

Now, a stellar subdivision of M at a face o, denoted by M1, induces a pullback map
A*(M) — d*(M*o). )

Its cokernel is a subspace of the ideal of x,, : after all, it is generated by those functions
that are conewise polynomial on M1, but not on M. But this means we can generate
those functions by those that vanish on M — ¢. Which are generated by z,, .

Now, the embedding (9) above descends an embedding
B (M) — B*(Mto).

This is simply because the kernels of &/*(M) — %*(M) resp. 4*(M1to) — B*(Mto)
are identified by Proposition 3.9 as homology groups of M, which stay invariant in the
subdivision. The cokernel is therefore”, once again, lying in the ideal of x,,,. Hence, the
cokernel is identical to the cokernel of

H*(M,A) — H*(Mto, A).

Hence, Z (M, A) = X" (Mto,A) stays invariant under the subdivision, which im-
plies in particular that the non-degeneracy of the Poincaré pairing is preserved. 0

2\which can be shown to have not changed, though that is irrelevant for us
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Remark 5.5. In fact, the argument above gives that

lo| -1

B*(Mto) = B* (M) & @ =, od*(k, M).

i=1
Moreover, this decomposition is canonically orthogonal under the Poincaré pairing, see
also [Pet16, Proposition 2.2]. For toric varieties, this is but a special case of the decom-
position theorem (see [BBDG18]) and the proof in this generality is a straightforward
adaption. See also [AHK18, Section 6] for the analogous case of matroids.

5.5. Characterization theorem for biased Poincaré duality: spherical envelopes. We
now provide the key result that helps us on the way to prove the Lefschetz theorem for
spheres. The idea is to show equivalence with another property. Recall that a hypersur-
face is an embedded manifold of codimension one.

Proposition 5.6. Assume E is a rational hypersurface sphere in a manifold M of dimension
2k — 1 = d. Then M in R satisfies biased Poincaré duality in degree k and with respect to E if
and only if

di(E) = 0.

Note that @/;,(E) = 0 is a Lefschetz property: Project E to a hyperplane along a
projection map 7, and let ¥ denote the height of the vertices of that projection. Then
4 (E) = 0if and only if ¥ induces the middle Lefschetz isomorphism on &/ (7E).

The proof is very simple, but illustrates a few important principles.

Proof. We have a short exact sequence
0 — dy(E) — Br(M) — FHyp(M,E) — 0
so we see that
Br(M) = Hp(M,E) = Br(M)x
in case the first space is trivial, so the claim simply follows by Poincaré duality.
For the converse, we consider the exact sequence
0 — B (ECM) — B(M) — Fi(M,E) — 0.
Notice that because
Hip_1(E) — Hp_1(M)

is the trivial map, we have
BB C M) = dy(E)
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by Proposition 3.9. Hence, a nontrivial o € &/, (EF) maps to zero in homology in E. Con-
sider then the compactification M of M \ E as a manifold with boundary, creating two
boundary components isomorphic to E. As a maps to 0 in homology in £, it maps to 0
in homology in M (using the inclusion of E into the latter). Hence, o, embedded into ei-
ther of the two copies of E, lies in %, (M) by Proposition 3.9. Under the simplicial map
identifying the two boundary components of M again, the manifold M gets mapped to
M, and %B,(M) gets sent to @k(M)|E:

Notice that
i (steM) = 0
unless o is an interior (k — 1)-face of M, so that we have a well-defined map
P Ai(steM) — P Ai(stoM)

eM ceM,
7 c¢FE

and in particular a map of the images of these two direct sums in o/),(M) resp. o/}, (M),

i.e. a surjective map

so that then « is in the image of %, (M) B

Hence

Br(M)g — Fi(M, E)
has a nontrivial kernel as & = 0 in the latter space. Because % (M )@ and F#j (M, E)
are isomorphic as vectorspaces (they are dual under the Poincaré pairing) the map also
has a nontrivial cokernel, which implies that M does not satisfy biased Poincaré duality
with respect to A by Corollary 5.2. O

Example 5.7. Consider the case £ = 1, and X' a sphere of dimension 1, realized in R2. If
A is a 0-dimensional sphere in X, then % (X, A) satisfies biased Poincaré duality if and
only if A does not lie on a line through the origin in R?.

Figure 5.2. Biased Poincaré duality in a sphere X' and with respect to a codi-
mension one sphere A is related to the Lefschetz theorem on the latter.
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On the other hand, this means that very nice and even smooth varieties do not satisfy
biased Poincaré duality, for instance products of lower-dimensional varieties like the
product of two projective lines P! x P!, shown in Figure 5.2 on the right.

5.6. From spheres to complexes to manifolds. The strategy for the proof of the Lef-
schetz theorem is now as follows: Say we want to prove the middle Lefschetz property
for a sphere X' of dimension 2k — 2. By the above Proposition 5.6, we can embed X
into a manifold M as a hypersurface, and prove a pairing property instead. Clearly, it
does not matter if we prove that pairing property for X, or its (k — 1)-skeleton. This
provides us with critical flexibility. Indeed, every complex of dimension (k — 1) in a
combinatorial (2k — 1)-manifold embeds into many hypersurfaces. We shall repeat the
exact construction we need later (Proposition 7.1), but we give a simpler one here to
give an idea, and prepare some important ingredients.

This is based on a folklore geometric observation:

Proposition 5.8. If Aisa (k — 1)-dimensional subcomplex in a (2k — 1)-dimensional combina-
torial manifold M in R?*, then there exists a subdivision M' of M, and a 2(k — 1)-dimensional
hypersurface S in M’ containing A.

A notion of importance in this context is the simplicial neighbourhood N, A of an
induced subcomplex I" in a simplicial complex A, defined as
NrA = U sty A.
wel'(0)

We call a simplicial neighbourhood regular if it is regular in the sense of PL topol-
ogy [RS82], that is, it is a PL mapping cylinder over the PL manifold given as the
boundary of the simplicial neighbourhood, mapped to I". We sometimes use the no-
tion of regular neighbourhood without referring to a specific I, and in this case it will
simply be a regular simply neighbourhood with respect to some I'.

Proof. There exists a simplicial homeomorphism that embeds A into the boundary of
its regular neighbourhood in a sufficiently fine refinement of M by a folklore general
position argument. This map can be assumed to be facewise linear on A by [Bin83,
Section 1.2]. A subdivision of M that realizes the regular neighbourhood therefore gives
the desired subdivision. O

Corollary 5.9. In the situation of the previous lemma, there exists in a refinement M' of M a
hypersurface with boundary Eax D A so that

d*(A) = A*(EL).
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We can assume that OF  is an induced subcomplex of E a.

We need the following proposition, essentially due to Whiteley [Whi90], see also [BN10,
Murl10]:

Proposition 5.10. Consider a triangulated surface S of dimension 2k — 2, realized in R%*~1,
Consider an element ¢ € o/1(X), and an edge e of S. Assume that ¢ acts as a middle Lefschetz
element on 1k, S. Consider the stellar subdivision on the edge, and a generic linear combination
0" of £ with the variable of the new vertex v.. Then

ker[ol,(Ste) - aly_1(Ste)] — ker[ay(S) -2 ayp1(S)].

Proof of Corollary 5.9. We can assume that the link of every edge not in £ is combi-
natorially equivalent to a polytope by applying sufficiently many stellar subdivisions
[AIL5].

If EA supports a k-stress outside A then it must be supported in a (k¥ — 1)-face outside
A. Removing that face may affect the manifold property, but we can refine £4 and M
outside A so that the star of that face is a compact ball in the interior of Ex, in which
case its removal preserves the manifold property.

To make sure this process terminates in finite time, we have to ensure that we do not
introduce any new k-stresses in the refinement; this is ensured by Proposition 5.10 and
the Lefschetz theorem for spheres arising as boundaries of polytopes [Sta80]. O

We shall need a stronger version of this corollary later, but we leave it here anyway
because it serves to illustrate our strategy.
Let us make two quick remarks:

Remark 5.11. Instead of subdividing first to make links polytopal, we could of course
simply use an induction and assume the Lefschetz theorem for (2k — 4)-spheres already.

Remark 5.12. It is not hard to see that subdivisions at other faces similarly preserve the
Lefschetz property (see [BN10]), but for simplicity we restrict to subdivisions of edges.

We call such a complex, that is, a supercomplex E of A such that #*(A) = &/*(E) holds
an envelope in degree k for A. Passing from from a subcomplex of M to its envelope
(in degree k) does not affect the biased Poincaré duality (in degree k) as in such case

HE(M, A) =2 FF(M,E,).

Using the above, we can now replace any (k — 1)-complex, such as the skeleton of
a triangulated sphere, by a hypersurface. How does this help? First, we shall now



BEYOND POSITIVITY 41

see that a Lefschetz property for that hypersurface is equivalent to the desired biased
Poincaré duality property. Later, we shall see that there are always hypersurfaces for
which that Lefschetz property is rather easy to prove.

5.7. Characterization theorem for closed hypersurfaces. We next want to deal with
envelopes that are closed rational hypersurfaces. After all, we just argued that we can
replace (k — 1)-dimensional complexes in (2k — 1)-dimensional manifolds with hyper-
surfaces (though, be careful, not generally closed). We nevertheless offer up this first
intermediate case for rather didactic purposes; it is less technical than the case of hyper-
surfaces with boundary examined next.

Before we do that, we make a small intermission.

We are almost in the same situation as in Proposition 3.9: M is a rational manifold of
dimension 2k — 1 = d — 1 in R%, but this time E is a closed rational hypersurface in it
that is not necessarily a sphere.

For simplicity, we shall assume such a hypersurface to be relatively (k — 2)-acyclic, that
is, the map E — M is injective in rational homology up to dimension k£ — 2. We will see
that this is sufficiently general for our purposes.

Indeed, following the proof of Proposition 5.8, this is a valid assumption we can make
for combinatorial manifolds: every A of dimension k — 1 in M lies in a relatively (k — 2)-
acyclic closed hypersurface after subdivisions of M outside of A.

We shall also assume that the map £ < M is the trivial map in homology in dimension
d — 2, and shall treat the remaining case using the culminating methods of the next
Section 5.8.

Note that then M is parted into a finite number of compact simplicial manifolds (M;);er
such that the union of their boundaries is the hypersurface E.

Note that if k¥ > 1, then there are at most two of these rational manifolds. Note further
that biased Poincaré duality with respect to E is equivalent to biased Poincaré duality

- U

with respect to

J
ien\{j}
forall j € I'if |I|> 2 as the ideals # (M, M ;) are orthogonal to each other in the Poincaré
pairing.

We may therefore restrict to examining M7 without loss of generality, and may assume
that
E = 0M; = OM;.

Theorem 5.13. If |I|> 2, then M in RY satisfies biased Poincaré duality with respect to M
and degree k = d/2 as above if and only if the sequence
0 — Bu(BEcC M) — (H_)® ) — (H)® o)

is exact.
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The proof is a direct combination of Proposition 3.9 and Corollary 5.2.

Proof. The theorem follows at once from the commutative diagram:

where the bottom space % (M, E) is defined by the vertical exact sequence. It injects
into %, (M, M), which is the Poincaré dual to B (M;) and therefore isomorphic to
it as vectorspaces. Hence, the exact sequence of the assumption is equivalent to an
isomorphism
Bi(My) = Hp(My,E) — Hu(M,M,),

where the spaces on the extreme left and extreme right are of the same dimension.
Hence, the first isomorphism is therefore equivalent to an isomorphism between the
extreme spaces, which is exactly biased Poincaré duality by Corollary 5.2. O

5.8. The doubling trick and the general characterization theorem. To prove biased
Poincaré duality, the above criterion will not be enough, unfortunately. In particular,
we cannot always assume that E is a closed hypersurface. Instead, the criterion below
will suffice in general by Corollary 5.9.

Again, we are almost in the same situation as before, gradually generalizing until we
can now formulate the main theorem: A is again a rational manifold of dimension
2k — 1 = d — 1 in RY, but this time around we allow for rational hypersurfaces in it to
have boundary.

Consider for this purpose the complement M of E in M, where E is a relatively (k — 2)-
acyclic rational, orientable hypersurface in A whose boundary OF is an induced sub-
complex of E, and the double DE of E. Notice that the proof of Corollary 5.9 guarantees
the existence of such an envelope in degree k for any (k — 1)-dimensional subcomplex
of a combinatorial M (potentially having to subdivide M outside of that complex).
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There is a folding map
7T:DE — E

for doubles that will be tremendously useful, which identifies the two copies of E that
we call the charts of DE.

The open manifold M can be compactified canonically to a compact manifold DM with
boundary DFE (since E was orientable), and the folding map extends to a map

T:DM — M.
Let us also introduce the following useful concept: Let 7 denote the general position
projection to a hyperplane H, and ¥ the height over that projection, so that
dp(X) = ker[d(nX) L oy 1 (nX))]

for a complex X in R%. Let us first observe the following helpful lemma that translates
the problem to the case of doubles.

Lemma 5.14. Consider 7t a general position projection to a hyperplane, and let ) denote the
height over that hyperplane. The following are equivalent:

(1) The map
B (nE C nM) —2s By_\(nE,0nE),
which factors as
By (mE C M) —— By_1(nE,0nE)
x} T
Bi—1(ME C M)

is a surjection.
(2) The isomorphism
A, (DM,DE) = o, (M,E)
descends to an isomorphism of the image % (DM, DE) of
B,(DM c M) —s o, (DM,DE)
to the image Ky, (M, E) of
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Here we read %, (X C M) for X C DM as the kernel of the composition

(Hy-1)() (DM)
Moreover, let us note that for a manifold X with boundary 0.X, we define (X, 0X)
naturally using the definition of stars in relative complexes:
sty (X,0X) = (stpX,st,0X)
with the latter being empty if v is not in 9.X.

Let us briefly take a moment to explain why we require the above lemma, for all its
technicality: We wish to prove the existence of a surjection

Br(M) 5 —» Hi(M, E).
Unfortunately, the first space, a partitioned subspace of %, (M ), lacks a nice descripition.
Therefore, we look at doubles. In a déja-vu from Proposition 5.6, notice that
)y (st,DM) = 0
unless o is an interior (k — 1)-face of DM, so that we have a well-defined map

P  F(steDM) — P AilsteM)

ceDM(k—1) ceMk-1)
oc¢E

and in particular a map of the images of these two direct sums in oAy, (DM) resp. oy, (M),

i.e. amap
Br,(DM) — %’k(M)‘E.

We can now see how the doubling construction helps: Consider the commutative dia-
gram

(M, E) «———— #,(DM,DE)

T I

Br(M) 5 By, (DM)

T T

D Hi(steM) —— B  di(st,DM).
OGM;];U’ oceDM(kE=1)
g

The previous lemma ensures that the top horizontal map is a surjection. Hence, proving
a surjection of the left top vertical map is reduced to proving a surjection on the right
top vertical map.
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Proof of Lemma 5.14. We prove that (1) implies (2); this is, for our purposes, the critical
direction. The converse is obtained by reversing the logic of the steps below.

The map described in (2) is clearly an injection as it is the specialization of an injective
map. But the condition of (1) ensures that the cokernels of

Bi(mE C M) 2, Bi_1(mE C M)
and
B (nDE C M) —%s Byp_(nDE C M)

are generated by elements in &/j,_; (O E), which in particular implies an injection (and
in fact an isomorphism)

%kfl(TEDE cnM SN t%kfl(TEE cnM

) [9Bp(xDE ¢ mM) ) [ 9B(rE  mM);
On the other hand, we have by relative acyclicity the following commutative diagram
for degrees at most k:

0 —— B,(nDE c M) — B, (nDM c nM) —— o, (nDM,nDE) — 0

| | !

0 — B.(nECnM) —— B(nM) —— A (nM,nE) —— 0

which after reduction by ¥ implies a commutative diagram

B(DM C M) —— aly(DM,DE) —— B (DEC M) /0 g mary — 0

| | j

Be(M) ———— dy(M,E) —— Bra(mEC 7T1\4)/29LOZ,,1€(7TE c M) — 0

which in turn implies that the desired map
o, (DM,DE) — o,(M,E)

is also a surjection when restricted to the images of %B;(DM C M) and B (M), respec-
tively. 0

This takes us rather far, as we now have to prove that (DM ) surjects onto % (DM, DE)
in degree k. We combine this with the arguments for Theorem 5.13 to obtain:

Theorem 5.15. In the situation of the previous Lemma 5.14,

d d
k

Br(DE € M) — (Hy—1)W)(DM) — (Hyp1)) (M)

is exact if and only if
B (DM) — H,(DM,DE)
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is surjective.

Proof. Consider as in the proof of Theorem 5.13 the commutative diagram

The vertical sequence is exact by definition, and the horizontal sequence is exact by
Proposition 3.9. The claim follows at once by considering the diagonal maps. 0

5.9. The Hall-Laman relations. Finally, biased Poincaré duality allows us to formulate
a Lefschetz property at ideals. We say that M a rational manifold of dimension d — 1
in R? satisfies the Hall-Laman relations in degree k¥ < ¢ and with respect to an ideal
I* C B*(M) if there exists an £ in B! (M), the pairing
gt ox gbh — gi=R
a b+ deg(abti=?)

is nondegenerate. Usually interested in face-rings, we will say M satisfies the Hall-

(10)

Laman relations if it does so at all squarefree monomial ideals, that is, for all Z* (M, A),
where A is any subcomplex of M, and their annihilators. As #*(M, A) is generated by
monomials not in A, these are described as

H'(M,A) = ker | B* (M) — P o*(sto M)
oceM
oA
Notice that the two statements are equivalent for the middle pairing, that is, when
2k = d, because Z*(M,A) and ﬁk(M , A) are orthogonal complements in &*(M).
Biased Poincaré duality is evidently a weaker form of the Hall-Laman relations, with
equivalence in the case k = d — k.
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6. PERTURBATIONS VIA BIASED POINCARE DUALITY

To prove biased Poincaré duality in higher degrees, we need to understand the Lef-
schetz theorem for face rings of manifolds; this in itself is not a hard task, but requires
some care as to how we actually construct Lefschetz elements. The idea is provided in
the following lemma, that we shall explore throughout the section.

6.1. The perturbation lemma. The following lemma is, together with biased Poincaré
duality, the heart of this paper:
Lemma 6.1. Consider two linear maps
“pB: X — Y
of two vector spaces X and Y over R.
(1) Assume that (3 has image transversal to the image of «, that is,
B(kera) N imax = 0 C %.
Then a generic linear combination «“+” of « and 3 has kernel
ker(a “+7 3) = keroe N kerf3.

(2) Similarly, if
B (ker(a®)) N im(a®) = 0 ¢ I°
or equivalently
B~ (ima) + kera = Z,
then
im(oe “4+7 B) = ima + imf.

Here we use (-)¢ to denote dual maps and vector spaces in the basic linear-algebra sense
of the notion.

Proof. This is an immediate consequence of the implicit function theorem, applied to
the map a + ¢ ate = 0.

More instructively, let us take a brief moment to visualize Statement (1). Find a sub-
space A of X such that

0A = a2 and I = AP kera
so that in particular o is injective on A. Then, for € > 0 small enough, the image of

X+ Pl — Y
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is

(x + eB)(A) + PBkerax C Z.
But if we norm % in any way, then (x + ¢f3)(A) approximates xA as ¢ tends to zero,
which is linearly independent from {3 kera by assumption. Claim (1) follows directly,
and so does (2) by duality, although we encourage the reader to develop a direct geo-
metric intuition for it. O

Note that this simple lemma immediately extends to any infinite field, independent of
characteristic, by computing the Hasse derivative of («+¢f3)(A) at 0. Alternatively, one
can use representation theory of the Kronecker quiver [Rin13]. Compare also to Gurvits’
Quantum Matching theory [Gur02] for another approach towards Hall type theorems
over vectorspaces.

This is an amazingly innocent and powerful lemma, as it allows us to control the kernel
resp. the image of a linear combination of two maps. Note that the conditions are nat-
urally dual to each other, so that when we apply the construction in Gorenstein rings
associated to simplicial manifolds, we usually get both conclusions for the price of one.
Let us also remark that the proofs of the hard Lefschetz theorem via the decomposition
principle, such as those of Murai, Laman and Whiteley discussed in Section 4.2, can be
thought of as employing a very special case of the perturbation lemma.

6.2. The approximation lemma. Before we continue, let us note that we can actually do
a little better, and in fact approximate image and kernel of a“+”(3: Note quite simply
the following lemma, which follows immediately from the proof of the Perturbation
Lemma 6.1.

Lemma 6.2. Consider ocand 3 as in the perturbation lemma, and assume X and ¥ are normed.
Then

(1) Assume that (3 has image transversal to the image of x, that is,
B(kera) N imax = 0 C %.
Then
limim(x+ef) = (x(), B(kera)) .
e—0
(2) Similarly, if
B (ker(a¥)) Nim(a®) = 0 ¢
then
lir%ker(och eB) = keraNker[f : ¥ — % /ima). O
e—
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Why is this lemma useful? Consider a sphere X' of dimension d — 1, let k¥ < d/2, and let
i < d — 2k then we do not expect

AF(2) L gt

to be an isomorphism, but only an injection at best. Lemma 6.2(1) allows us to describe
the image. Similarly, the second part of the same lemma will allow us to study the
kernel of A

i) L gl
Hence, we obtain a quite explicit way to study primitive classes under the Lefschetz
map. We explore this later in an avocation.

6.3. The transversal prime property. The strategy for the Lefschetz theorem is to prove
the following property:

Let M denote a (d — 1)-manifold (possibly with boundary) in RY, and k < 4. Let W
denote a subset of the vertices of M. Then M has the transversal prime property in
degree k and with respect to W if

ker [(“ > wy) R By (M) — B(M, aM)l
weWw

= anng, , () <xw]w eWcC M(O)>
= ﬂ ker [{L’w : '%dfk(M) — ggd,kfl(M)]
weWw
We remind the reader that

43 b
Lw

weW
stands for a generic linear combination of prime divisors z,, with w € W.

Note that if the transversal prime property holds for W = M%), then we conclude the
hard Lefschetz theorem for M. The general strategy for us is to prove the transversal
prime property by linearly ordering the vertices in any way, and proceeding by induc-
tion on the size of initial segments.

6.4. Transversal primes as another version of the Hall-Laman relations. Consider a
subset of vertices W in the interior M° of M, any (d — 1)-manifold as above. Then
FK*(M,M — W) is generated in degree one, and if M satisfies the transversal prime
property with respect to W in degree k, then we obtain an isomorphism

'(“Ewew”xw)dizk

Hag_ (M, M — W) im | P Ay(stw M) — Bp(M,0M)]| .

weW
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This in itself forms another Lefschetz theorem, for the ideal #* (M, M — W) instead of
its annihilator. Note that in particular, the transversal prime property in degree k£ is
equivalent to saying that

im (44 Z nxw)dfﬂf . %d_k(M) — %k(M, 8M)1
L weWw

=im @ ,Ska(Sth) — (ggk(M, 8M)]
LweW

= im [ B (M) =y — Br(M, OM)] .

Alas, we can prove the statement inductively, and directly so in some cases, for instance
for nicely decomposable spheres we discuss now.

6.5. Avocation: Arranged marriage and Lefschetz theorems for decomposable spheres.
Ideally we want to prove the transversal prime property by induction on the size of W.
This follows an greedy proof of Hall’s marriage theorem: Given two finite sets X, Y,
and a relation # between them so that every subset A of X has at least |A| elements
AR C Y related to it. To find the injective map supported by it, start with an element
z1 of X, and "marry" it to an element y; of 1% C Y. Then proceed to marry another el-
ement x9, then the next, and so on. At some point this proof may run into trouble, as all
elements of z; % C Y may already be married to z; for some j < i. Now, the expansive
property has to be employed to reshuffle the previously married element to accommo-
date z; by constructing an alternating paths to an element of {z; : j € [i]}% C Y not
matched.

We now discuss how this is employed in our context of simplicial spheres and their
face rings. Essentially, we want to avoid the reshuffling step, as rings seem to rigid to
handle it, and because the perturbation Lemma 6.1 is not designed to describe higher
order perturbations, or equivalently global properties, immediately. Indeed, reshuffling
would correspond to analyzing the higher derivatives (or global properties) of & + ¢f3,
which gets increasingly tricky and we want to avoid initially. Instead, we notice that
reshuffling is not necessary in the algebraic setting for a simple case, and then describe
a homological way to analyse the global structure nevertheless.

Without further ado, let us illustrate our strategy with a toy example. A pure simplicial
d-manifold is L-decomposable if it is a simplex or there exists a vertex whose deletion
is L-decomposable of dimension d, and such that the boundary of the link of the same
vertex is empty, or L-decomposable of codimension one, compare also [BP79].

Theorem 6.3. L-decomposable spheres satisfy Theorem (1), the generic Lefschetz property.
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Proof. We prove this theorem by double induction on dimension and the number of
vertices, the base case of zero-dimensional spheres being clear.

We prove stronger that any L-decomposable (d — 1)-ball Ain a (d — 1)-sphere X satis-
ties the hard Lefschetz property with respect to its boundary, that is, with respect to a
suitable Artinian reduction and Picard divisor ¢, we have an isomorphism

dF(A,04) - gt R(a)
which is obtained from the composition

AR(A,0A) ——— ik (A)

]

dR(A DA

In other words, the sphere X satisfies the Hall-Laman relations with respect to the mono-
mial ideal generated by the faces in the interior of A. We want to apply Lemma 6.1 to

_____

st ACst X

Figure 6.3. The case of L-decomposable spheres.

the spaces
T = d%(A,0A) and ¥ = A4T7F(A).

For this purpose we consider such a ball A, and consider v the first vertex removed in
a decomposition to a smaller ball. Now, we can assume without loss of generality that,
if ¥, is the height over the projection along v, then 9, = z, in *(st, A) (this is always
true up to a constant factor), and consider a commutative diagram

d—2k
A (st A, st,04) — 5 IR (A, A=)

1911 2k—1

d*(k, Ak, 04) —— F97F1(Ik, A)
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where the vertical maps are isomorphisms given by the cone lemma. Hence, the top
map is an isomorphism if and only if the bottom map is.

But that is just the Hall-Laman relations for lk, 2 with respect to the monomial ideal
generated by faces interior to lk, A. But, with a sufficiently generic choice of linear
system of parameters, we may assume exactly this by induction on the dimension.

Hence, the image of

AF(A,00) B ik
is described as x,#/%7%~1(A), and its cokernel is precisely &/9~*(A — v). It follows by
Poincaré duality that the kernel is then o/*(A — v, 9(A — v)).

We can in addition assume that A — v satisfies the hard Lefschetz theorem with respect
to its boundary already by induction on the size of A measured in number of vertices,
so that by virtue of a Picard divisor ¢ € o/*(A) we have an isomorphism

.(Zl)d72k

A*(A—v,0(A —v)) AF(A - ).

Notice now that
ker [z : o%(A,04) — dF(A)] = dM(A-v,0(4-v))

and
coker {xg_% R (A,040) — .Qfd_k(A)} = ATFA ).

Hence z, =: x and ¢’ =: 3 satisfies the first condition of Lemma 6.1.

Remark 6.4. Really, we are considering the (d — 2k)th powers of the multiplications
with these elements here, but the adaption of Lemma 6.1 is straightforward. We will
later see that the case of d — 2k > 1 can also be straightforwardly and directly reduced
to the case d — 2k = 1, justifying our handwaving in this step.

In conclusion, the Hall-Laman relations are true at A in X' if they are trueat A —v. O

We can actually use Lemma 6.2 to say something more. For this, we look at the Weil
dual situation.

Given a geometric simplicial complex I" in R?, and « an element of &/ (I"), where k < d,
then we define the p-norm of « as

||a||p=< > IX"aI”>p-

JGAUV*U

For us, the 2-norm shall generally suffice, and we shall refer to that norm in calculations.
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Consider, with the intersection ring as above and 1,2, ... an initial segment of vertices
in the (d— 1)-sphere X in RY that form a vertex-decomposition of the same. We can then

{ = Z EiT;

consider the divisor
where |g;[> |gi41].

Proposition 6.5. With respect to ¢ as above, and for any positive j < d, its kernel in
£
dj(X) — dj1(X)

approaches a stress subspace, and its image approaches a partitioned subspace as |¢il/|e; 1] — o©.

This is exceptionally confounding , allowing us to reduce to the discussion of stress
and partitioned spaces as announced in Section 4.8, and allowing us to even describe
and discuss primitive classes in an especially beautiful way. Let us therefore define,
given a sequence of indeterminates (x1, 22, ...) a decaying sequence of linear forms as

a sequence
by = Zat’ixi
with
|5t,i| t—o0
et it1]

sufficiently fast (for instance, faster than any algebraic function).

6.6. The general perturbative approach. Let us briefly summarize and generalize the
observation employed in the proof of Theorem 6.3.

Consider M a rational manifold with boundary of dimension (d — 1) realized in R¢, and
assume that we proved the transversal prime property for a set of vertices W’ of M for
the map between degree d — k and degree k. For simplicity of notation, we will assume
that d = 2k + 1, the other Lefschetz maps will be reduced to that case. Consider an
additional vertex of M notin W".

When we want to prove the transversal prime property for W = W’ U {w}, we want to
use Lemma 6.1, applied to the maps

o = ¢ "z, and B = xy
veW’
and to the spaces

L = B (M) and ¥ = By,(M,0M).
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Now, note that if we have already proven the transversal prime property with respect
to W, then kernel and image of « have a particularly nice description:

keraw = ﬂ ker [z, : Bip1(M) — Br(M)]
veW’

and

ima = im | @@ Ay(stoM) — By(M,0M)] .
veW’
We have the following central theorem:

Theorem 6.6. In the situation above, the following are equivalent.
(1) The assumptions of Lemma 6.1(1) hold, that is,
B(kera) N imx = 0 C %.
(2) The assumptions of Lemma 6.1(2) hold, that is,
B '(imer) + kera = .

(3) The pullback of kerx to
Ay (stwM) = dy(lky, M)
along x., satisfies biased Poincaré duality in the (d — 2)-sphere lk,, M.

Statement (3) can be interpreted for stresses using Corollary 5.2 or equivalently by defin-
ing the product on /., (lk,, M) by Poincaré duality with o/*(lk,, M).

Proof. We have (1) < (2) by Poincaré duality. For (3) < (1), observe that kera and ima
are orthogonal complements in %, (M ). Hence

“ ”
Dvew! Ty
=

jW = (im lngFl(M) ggk(M) + @k(ﬁM CM)) N &2{]{<8th)

in ofy(sty, M) and
Kw = Ty C Hi(sty,M)
are orthogonal to each other. It follows that
Tpkera N imax = 0 in By (M,0M)
if and only if the Hall-Laman relations are true for #y in &, (sty,M).

To finally show that also (1) = (3), it suffices to show

Lemma 6.7. Fyy and Fyy are orthogonal complements in ofy(lk,, M).
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For this, it suffices to argue that their dimensions sum up to dim @/ (st,, M), which fol-
lows by the short exact sequence

0 — Brri(M—wcC M) — Bri(M) — dp(stuyM) — 0

and because
kerax N kerxw,, and imoa + imx,,

are orthogonal complements in the space of stresses %41 (M —w C M) and its Poincaré
dual in %y (M, 0M), the image

im [By, (M, OM) —s dy(M,OM Ust,M)]. 0

We can therefore extend the transversal prime property from W' to W if any of the above
conditions hold. Note further that the task to verify the conditions in Theorem 6.6 is
much simpler if we use the transversal prime property applies to W/, which we did not
assume for its proof (indeed, we could have chosen o in any other way). In that case,
the kernel of « is a stress subspace, and the image is a partitioned space and described
by the partition complex of Sections 3.7 and 3.8.

This has especially nice description if M — W' and
U Sty M
veEW!
are codimension zero manifolds, when the full force of Proposition 3.9 applies. As we
see the pullbacks to the star of w appear directly as #y resp. Sy above in the induc-
tion step, this is of central importance for our calculations. Unfortunately, this is not

Figure 6.4. The perturbative approach is simpler if the intermediate complexes
are manifolds

always the case. There are then two options: perhaps to use higher order derivatives in
Lemma 6.1 as alluded to in the beginning of Section 6.5 to realize the algebraic version of
reshuffling, or even a direct "homological" version of that Lemma taking into account all
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prime divisors at once, but we lack such a lemma. Instead, we use another method: we
encode global homological information by embeddings into higher-dimensional mani-
folds, introducing an exterior locus of control and using the fact that in these context,
complexes have easier decompositions.

Nevertheless, this observation provides the critical tool for us; it allows us to prove the
Lefschetz theorem by induction, having come full circle: We will prove the Hall-Laman
relations in lower dimensions, which implies the hard Lefschetz theorem by induction,
which in turn implies the Hall-Laman relations using the characterization theorem. The
details are the subject of the next two sections.

7. RAILWAY CONSTRUCTIONS, LEFSCHETZ THEOREMS AND GLOBALITY VIA DETOURS

The main issue presenting itself to us, if we wish to apply the perturbation lemma in
general, is that triangulations even of spheres may be very nasty already in dimension 3.
Indeed, the hardness of distinguishing manifolds and embeddings (as exemplified by
the existence of knotted embeddings of circles) in dimension three and higher implies
that in general orders of vertices may not be nice enough to apply the reasoning as we
did in the case of shellable spheres. Compare also [Lic91] for an explicit construction.
The next two sections are largely setup, and we postpone the proofs to Section 8. We
also focus on PL spheres, and postpone the discussion of general manifolds to the final
section.

The approach can briefly be summarized as follows: Ideally, we would like to have a
way to apply the perturbation Lemma 6.1 globally, ideally in a homological way. Unfor-
tunately, we have no good statement of that kind that allows us to build a homology the-
ory. Indeed, we do not even have a nice symmetric version of the perturbation Lemma.
On the other hand, we have no good way to exhaust our triangulated manifolds either.

Instead, we introduce globality through the backdoor: We consider our sphere X, for
which we do not have a good decomposition but want to prove the Lefschetz theorem,
into a higher-dimensional sphere X where we can ensure a sufficiently nice decomposi-
tion, and use topological properties of the embedding

Yo X

to conclude the originally desired Lefschetz theorem. We do so by, as announced earlier,
finding a different hypersurface for a skeleton of X' that is nicely decomposable, a so-
called railway.
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We expect that this is the one point where major simplifications are to be expected. Find-
ing a simpler detour than the one presented here (via railways) could lead to simpler
proofs. In fact, we know already of one such alternative path, via edge contractions, see
[Adi19], though not a simpler one. On the other hand, there seems to be no way around
the biased Poincaré duality property.

7.1. Railway construction. We need to refine our notions of envelopes, and in partic-
ular Corollary 5.9. We greedily ask for the best achievable properties for envelopes,
which is why the definition is convoluted and subdivided into two parts.

We say a an orientable simplicial rational manifold U in R? with induced boundary
and of dimension d — 1, and A is a (kK — 1)-dimensional induced subcomplex of the
interior U° = (U, 0U) of U, and finally a linear order on the vertices of A is a railway in
degree k < d if the following conditions are satisfied:

(1) For every initial segment W of the vertices of A, the complex Ny U is the regular

neighbourhood of an induced subcomplex U[W] C U° of U, that is,

NyU = | stuU = U  stU
weW v vertex of U[W]
and Ny U as a rational manifold with boundary strongly deformation retracts to the
subcomplex induced by the vertices of U[IV]
NwA = U Sty A,
wew

which itself strongly retracts to Ny A and U[W].
(2) The restriction of Ny U to the boundary of U is a regular neighbourhood in oU.
(3) If w is the terminal vertex of W and W’ = W\w, then

U, = (lkw U) N (8UUNW/U)

is a regular neighbourhood submanifold in the (d — 2)-manifold lk,, U and its com-
plement CU,, is a regular neighbourhood homotopy equivalent to (lk,, U)N(A—W").
(4) U is an envelope for A in degree k: we have o/*(U) = &*(A).

We call A its tabula. We call U a métro if it satisfies Conditions (1), (2) and (3).

It is often useful to impose an additional condition of topological simplicity. We call a
railway resp. métro octavian if:

(5) NyU in U is a (k — 2)-acyclic rational manifold (for every initial segment W) for
all initial segments W/, and
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(6) so is its complement in U: the complementary rational manifold to Ny U in U is
(k — 2)-acyclic.

We call a (octavian) métro of degree k hereditary if for every initial segment W with
tinal vertex w, the complex U, is a hereditary (octavian) métro in lk,, X' of degree k — 1,
or A is of dimension 0. Moreover, we demand that lk,, Ny ¢,,) U is the initial segment
of the métro, that is, it is a regular neighbourhood ball whose vertices are initial in the
order.

We call a octavian railway hereditary if for every initial segment W with final vertex w,
the complex U,, is a hereditary octavian métro in lk,, X’ or A is of dimension 0. Moreover,
we demand that lk,, Ny 1,1 U is the initial segment of the railway, that is, it is a regular
neighbourhood ball whose vertices are initial in the order.

Proposition 7.1. Consider X a combinatorial rational homology sphere of dimension d — 1
realized in RY, and I' a subcomplex of dimension k — 1 in X with k < 4.

Then there exists a hereditary octavian railway U with tabula A > I' that is, up to subdivision
of X, a hypersurface in the same, and A is an envelope for I in degree k.

We call I" the republic of the tabula A and railway U.

Proof. The proof is an application of the general position principle in high codimension:
we start with an arbitrary order on the vertices of I', which we may assume to be (k—2)-
acyclic. In fact, by adding faces to I" of dimension & — 1 to obtain a new complex A, we
may assume that after removing initial sets of vertices, the complex A remains (k — 2)-
acyclic and embeddable in X up to subdivision, and so is the neighbourhood of the
initial vertices. Figure 7.5 shows how one modifies center to tabula when removing
a first vertex. By subdividing A outside of I" and putting the new vertices in general
position, we can assume the latter is an envelope in degree k for the former.

?
./c \./.'

Figure 7.5. Removing vertices may force us to attach (k — 1)-faces to keep con-
nectivity conditions intact. This has to be done while at the same time making
sure we do not additionally create degree k elements, which is achieved by sub-
divisions at the new faces.
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Now, we construct U inductively. For this, let us assume first that A lies in some hy-
persurface S already. We can assume so by Proposition 5.8. We can assume that S is
subdivided sufficiently finely, so that the stars of two non-adjacent vertices of A inter-
sect only in A.

The trick is now as follows: We simply take a naive construction, to be simply the
neighbourhood of A in S. We then repair the construction to the desired railway by
attaching parts outside of S.

Now, assume we have constructed U up to the initial segment of vertices W already, that
is, we have a hereditary railway U(WW) for Ny A. Consider the next vertex w, in order
to extend the construction. If we simply add st,,S, obtaining U (W) U st,,S. Now, we
may have a problem: the result may not be a hypersurface with boundary. Specifically,
there may be faces of lk,, U whose links are not spheres or disks. In the link of such a
defective vertex b, we could simply complete 1k, (U (W) U st,,.S) to a disk in 1k, S. After
all Ik, (U (W) U st S) retracts to lky Nyyg,3 4, a (k — 1)-dimensional complex, and 1k, S
has vanishing homotopy groups up to dimension d — 2, so we collapse that skeleton to
a point. The regular neighbourhood of that collapse gives a disk.

However, we then run into the issue of involving other faces of 1k, A not in lkj, Ny, A
yet. These are up to (k — 1)-dimensional, and a contraction might just be obstructed by
them if lk; S is of dimension smaller than 2k — 2. Hence, we pass to lk; X, which is of
dimension at least 2k — 2.

Then, we can move the retraction we constructed in lk;, S into general position, and
hence can contract a (kK — 1)-complex lk; Ny 1,y A without affecting the other faces of
Ik, A. By moving the neighborhood of that contraction as well, we modified Ik, (U (W)U
st S) to a hypersurface disk in 1k, X, as desired.

We can now subdivide to ensure Conditions (1) to (3) easily. With the connectivity
assumptions on A we ensured in the beginning, we obtain the octavian property.

We now turn to making sure that the result is an envelope.

This is achieved by subdividing the construction in a sufficiently fine way, similar to
the proof of Corollary 5.9. Either we use [AI15], and assume the link of every edge
is the combinatorially the boundary of a polytope (or, for boundary edges, an equidi-
mensional disk in the boundary of a polytope), or we induct on Theorem I and assume
the middle Lefschetz theorem for (d — 3)-dimensional spheres. In any case, we can
use Whiteley’s Proposition 5.10 and its generalization to general stellar subdivisions in
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Figure 7.6. Thickening to a hypersurface, and the intermediate manifolds Uy},
U{l’g} and U{1,2,3}

[BN10] to ensure such stellar subdivisions do not introduce any new k-stresses. How-
ever, we want more: we want to be able to actually remove k-stresses. The key lies in
examining the boundary of U, and a little bit of simple homotopy.

As a regular neighbourhood of A, we may assume U has a simplicial collapse U \, A to
A (see [Whi39]). Consider an elementary collapse U . U’, along a free face o. Stellarly
subdivide a o, and move the new vertices into general position.

By the Hall-Laman relations for lk, Ufo, or equivalently the hard Lefschetz theorem
for lk., UTo (where e, is the unique interior edge to U1o incident to v,), we see that after
the subdivision, the open star st; Uto does not support a k-stress: If J is the height over
a general position hyperplane in v+ € R?, 7 the projection to that hyperplane, then

1 (nlk, Uto) -5 dy_s(nlk,, Uto)
is an isomorphism, and in particular an injection.

In particular, &/ (sty Ufo) is zero by the cone lemma. Hence, any k-stress of Uto must
be supported in U’.

Repeating this we see that after stellar subdivisions along the collapses, we observe that
any k-stress of the railway can be assumed to be supported in A.
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Ve

Figure 7.7. Subdividing a simple homotopy collapse along a free edge e, and
perturbing it to remove stresses in the neighbourhood of the newly created ver-
tex v,

Finally, it is straightforward to see that the entire construction can be made hereditary
by carefully minding the links in every construction step. O

Remark 7.2. It is tempting to draw connections from railways to the somewhat simi-
lar notion of dessins d’enfant, at least in the case of surfaces. However, use and critical
properties are different, so that we chose not to overemphasize this connection by choos-
ing a different name.

7.2. Biased Poincaré duality via hypersurface envelopes. The critical observation to
make is that railways allow us to impose a good order, and therefore show the Lefschetz
theorem. Alas, we need to make use of a finer understanding of the map from Chow
cohomology to simplicial homology (already encountered in Isomorphism (4)) given by
the Map (5).

Consider a rational sphere X' of dimension d — 1 realized in R?, where d = 2k, and U a
(k — 2)-acyclic hypersurface (with boundary) in Y. We are interested in the following
consequence of Theorem 5.15.

Theorem 7.3. Under the preceding conditions, assume that

(1) with respect to a projection Tt to a general position hyperplane, the height ¥ induces an
isomorphism
By (U) SN A1 (U, moU).
(2) The map
4, (DU) — (H—y))(DX)

is surjective.
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Then we obtain the biased Poincaré duality property for U: Biased Poincaré duality holds
with respect to the ideal % * (U, X) in X. Conversely, if (1) holds, biased Poincaré duality implies
(2). O

It is useful to note a particular corollary of this fact:

Corollary 7.4. Under the preceding conditions, assume that A is the (k — 1)-skeleton of a
rational hypersurface and sphere 3 in X and that U is a hypersurface envelope in degree k for
A. Then we have an isomorphism

TR (19)) EELASITLICHS y)
that is, ¥ defines a Lefschetz map in 73 with respect to the middle isomorphism.

Proof. Following Theorem 7.3, X satisfies biased Poincaré duality with respect to A. The
claim follows by Proposition 5.6. 0

This observation is of central importance.

7.3. Using railways to establish the middle Lefschetz isomorphism. We obtain an in-
teresting "bait and switch" trick to simplify the proof of the middle Lefschetz theorem,
and the proof of biased Poincaré duality with respect to subcomplexes in spheres; in-
deed, while both may be hard to do for a specific surface resp. hypersurface envelope,
it is exceedingly easier for railways. In turn, we only have to discuss the Lefschetz
properties of the latter to conclude properties of the former.

In particular, we obtain a proof of the middle isomorphism of the hard Lefschetz the-
orem for a (2k — 2)-dimensional X' sphere embedded as a hypersurface in a sphere X’
of dimension (2k — 1) without having to worry about good orderings in 2. The con-
struction of X’ is of no importance, as both biased Poincaré duality for # (X', X) and
hard Lefschetz for X are equivalent (see Proposition 5.6), so we may simply take the
suspension susp X realized in R?".

But the former can be proven using a different envelope for the k-skeleton of X, in
particular we can choose it to be a railway with all the nice properties we desire. The
(middle) hard Lefschetz isomorphism for X' follows as a corollary. This means that
contrary to the case of L-decomposable spheres, we rely on an indirect way to derive
the hard Lefschetz theorem.

7.4. ... and the Hall-Laman relations. We can also use the previous observation to es-
tablish the Hall-Laman relations and the general Lefschetz isomorphism. That is com-
paratively easy to do directly if the sphere is itself a hereditary métro, but if that is not
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the case, then we circumvent the issue by reducing the problem to biased Poincaré dual-
ity, which in turn we prove using an octavian and hereditary railway for an appropriate
complex.

To this end, assume we wish to prove the Hall-Laman relations for a pair (X', A), where
A is a subcomplex of ¥ a (d — 1)-sphere, specifically the Hall-Laman relations for
F* (X, A) or its annihilator. Label the two vertices of the suspension n and s (for north
and south). We then argue using the following observation, which follows as Propo-
sition 5.6. Let 7t denote the projection along n, and let ¥ denote the height over that
projection, and let A * B denote the free join of two simplicial complexes A and B.

Lemma 7.5. Considering susp X realized in R™!, and k < 4, the following two are equivalent:
(1) The Hall-Laman relations for
FFH (susp X, susp(A) Us x ) resp. fkﬂ(susp Y.nxA)

with respect to xy,.
(2) The Hall-Laman relations for

I (D, mA) resp. H(nE,mA)
with respect to V.

Proof. Without loss of generality we have ¥ = x, — 5 in &/*(susp X'). Consider then the

diagram
9d—2k

A* (X)) A (%)

g2kt

A (susp X s % ) —2—— 9k (nx X))
where the first vertical map is defined by the composition of cone lemmas
d*(nY) = g¥nxX) 2 g Ml (susp X, s x X).

and the second vertical map is simply the cone lemma. An isomorphism on the top
is then equivalent to an isomorphism of the bottom map, and restricting to ideals and
their Poincaré duals gives the desired. 0

Hence, we can reduce the Hall-Laman relations in their entirety to biased Poincaré dual-
ity. There is a caveat: For anything but the middle Lefschetz and Hall-Laman relations,
we have to restrict the the linear system. We shall justify that restriction after the proof
of the middle Lefschetz theorem.

Before we continue, let us sum up what happened here:
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The case of L-decomposable spheres suggest that we prove the Lefschetz theorem by
pure induction: we prove the Hall-Laman-relations for lower-dimensional spheres and
the perturbation program to prove the Lefschetz theorem in higher dimensions, leaving
us to establish the biased Poincaré duality as base case of the Hall-Laman relations.

Instead, we ignore the Lefschetz theorem entirely, and prove biased Poincaré duality by
induction on dimension, and Lefschetz theorem merely falls off as a side-product.

8. INDUCTIVE STEP VIA RAILWAYS AND PROOF OF THE MAIN THEOREM

We are ready to study the crucial inductive step necessary for Theorem I. Following the
preceding discussion, we need to prove biased Poincaré duality for subcomplexes of
spheres. For this purpose, we noticed that we can reduce to the case of railways and
métros using Theorem 7.3 and Proposition 7.1:

We have to verify that for every subcomplex A of dimension k£ — 1 in a PL sphere X of
dimension d—1 = 2k—1, we can show biased Poincaré duality. To this end, we show that
for a suitable hypersurface envelope for degree k (specifically, the octavian hereditary
railway with A as its republic), we can insure that the conditions of Theorem 7.3 apply.
We do so by induction on the dimension, using biased Poincaré duality for spheres of
dimension 2k — 3.

8.1. Analysis of links, Part (1). Consider therefore a railway U of dimension 2k — 2 in
a sphere X in R? and of dimension d — 1 = 2k — 1, and initial segments of vertices W
and W’ with W/ = W — w. Let us now verify both conditions, using as assumption the
following:

o The biased Poincaré duality in PL spheres of dimension d — 3, and

o the middle Lefschetz isomorphism in PL spheres of dimension d—4 (which is a special
case of the first assumption), and

o for sufficiently fine codimension zero métros M for (k — 2)-dimensional complexes in
spheres X' of dimension d — 3, the transversal prime properties: The images of

A(Z, 8 = M°) = (D) an

and
Bi(M,0M) 5 ol 1(5) (12)
satisfy biased Poincaré duality in X’ where we assume that / is supported on interior

vertices of M. This again is a consequence of the inductive program and the first
assumption, and much simpler than proving the Lefschetz theorem for all manifolds
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as métros allow for simple decomposition. This derivation follows as in Theorem 6.3,
see also the Section 8.2.

To verify that U satisfies assumption Theorem 7.3(1) (or rather, that U can be made to
satisfy the same by changing its coordinates) using the inductive program, we consider
7 is a projection to R?~1, and ¥ denotes the height with respect to that projection, which
we will construct via the inductive approach. This follows essentially directly as in
Section 6.6.

In particular, following the envelope Theorem 7.3, we then have to understand the pull-
back
ajwe%k(TEU — W/) C ﬂk_l(T[ 1k, U)

along the differential x,,.

We abbreviate this subspace by Fyy .

Remark 8.1. We have to be careful here, as we are changing the linear system of parame-
ters, or equivalently the vertex coordinates of X in R, so we have to verify that property
(4) of railways still applies. This can be done indirectly, using the constructed Lefschetz
element to perturb the original coordinates, or directly as follows: The construction of
railways only used the combinatorial structure of the same, and Lefschetz properties of
edges outside of the republic of U. It is easy to see that choosing the Lefschetz element
in general position on interior vertices of U therefore does not affect property (4).

To show they satisfy the biased Poincaré duality property, we note that Ik, U N Ny U is
a manifold itself. To see how this helps us specifically, we shall argue that the octavian
and hereditary condition ensure that %y is approximated by the stress complex of a
subcomplex following Lemma 6.2.

First, we need the following basic consequence of the first condition of railways.

Lemma 8.2. We have
(i (mst,U) v e W) = <.Qik(7'[stvU) NS (U[W/])(O)> C ()

provided U is in general position and the generic Lefschetz theorem is established for (d — 4)-
spheres.

Proof. We prove this by induction on the size of W. Assume we proved the statement
for W', we proceed to prove it when we add the next vertex w, where W = W' U {w}.
Then

(Nw U Nsty,U) —w
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is a (d — 4)-manifold and a regular neighbourhood. It therefore does not support any
k-stress relative to the boundary provided U is in general position. O

Lemma 8.3. The orthogonal complement Hy; of Fw is
ker[h : ﬂk_l(ﬂ(lkw U) N T[(aU U NW/U)) — ﬂk_g(ﬂ(lkw U)] +
lekfl(TE 1k, NW/U) C ﬂkfl(ﬂ 1k, U)

Proof. We have that

P d(nst,U) — dy(nNyU)
ve(UW’])(©)

is a surjection by assumption (5) and Proposition 3.9. By the previous lemma, we there-

fore have
P di(nst,U) —» dp(nNy-U).
veW’
Hence, the claim follows by Lemma 6.7. O

This is already in the form we could treat it, essentially encoding the Poincaré pairing
on the primitive part. It is the third assumption at the beginning of the section. Let us
see how this is achieved in detail, using the assumption that the railway is additionally
hereditary.

8.2. Lefschetz for métros. Let us assume the height ¢ is chosen as decaying for the or-
der on vertices for the railway in the link, and using Lemma 6.2, which implies that #;;;
approximates a stress subspace, which satisfies biased Poincaré duality by induction on
the dimension. Formulated as a lemma for métros, we have the following:

Lemma 8.4. Consider M a (2k — 3)-dimensional hereditary octavian métro realized in R?%~2,
and ¢ a decaying Lefschetz function along the vertices of the tabula, then the kernels of

o1 (M) -5 oj_o(M)

and
Bo_1(M) -5 By_o(M)

approximate stress subspaces.

Proof. This follows as in Proposition 6.5. O
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This shows that given sufficiently general position, we can guarantee that Assump-
tion (1) is satisfied in Theorem 7.3. Notice that we only used the Lefschetz Isomor-
phism (11) for the verification of the first condition of Theorem 7.3, the other statement
shall be used for the second condition.

Remark 8.5. We reduced the Lefschetz theorem for métros to biased Poincaré duality
in lower dimensions, but in fact this reduction is unnecessary, and one can argue purely
on the level of métros, similar to the proof of Theorem 6.3.

8.3. Maps to homology. Now, we have used the perturbation program to establish that
we can ensure Assumption (1) of Theorem 7.3. For Condition (2), we have to discuss
maps to cohomology, which we do in this section that gives the culminating technology
for our purpose.

We discuss here the closed hypersurfaces in spheres, and then in the next section we
review how this can be achieved in doubles.

Let us assume we are in the situation of Theorem 5.13, but that M is a rational sphere X.
We have to establish an isomorphism

A(E) = (Hy)® (). (13)

For this, we write R? as Rl%, and consider the projection 7t to RI4-1] Consider the

subspace
d—1]

@u(nE) = ker | (nE) — (Hy_)“¥) (a)] .
Then, if ¥ denotes the height over Rl=1] then we obtain the following observation:
Lemma 8.6. Assume we have an isomorphism
9 ~ (M=) x{d}
ker[6i(ME) — i1 (ME)] = (Hp_1)\ *1 (M) (14)
induced by homy. Then we have Isomorphism (13).

Here, we index the map hom by the element of the linear system 9.

Proof. Provided Isomorphism (14) holds, we have in particular a surjection
€n(nE) -% o)_i(nE).

Hence, the quotient
dk(ﬂE)/%k(T[E)

is generated by kernel elements of the map

dp(mE) -2 oy 1 (nE)
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that map injectively to

() DO0) /g @Dty )

which in turn is isomorphic to

(Hk—1)<k)(Ml)/homg (ker[%k(T[E) =, ﬂk—l(ﬂE)])

as desired. 0

We can even turn this into a Lefschetz isomorphism with respect to a supremely inter-
esting pairing! We do so as follows:

First, assume that £ is induced in ¥ (which we can do without loss of generality by
Lemma 5.4). Second, assume that 9 induces a proper embedding of X even if it may be
degenerate on E. This is easily obtained by choosing v generic on the vertices of X' not
in the E. Now we define a pairing

(B) x (H1)(D () — R (15)
as follows: Every element of /(M) can naturally be written as a sum of an element
of (Hk_l)([;ci])(Ml) and an element of %y (M;). But the latter is orthogonal to </x(E)
in &/ (X)), so that the natural pairing

(X)) x (X)) — R
restricted to

induces the desired pairing via the isomorphism
(d]
(kal)( k ) (Ml) = 'dk(Ml)/%k(Ml)

Note that Isomorphism (13) is equivalent to saying that Pairing (15) is perfect, and that
Er(TE) is the orthogonal complement to (Hk_l)([d;n) (M) when ¢ = 0.

Remark 8.7. These relative pairings are very interesting, and one can draw up an entire
Hall-Laman theory for them. We will contend ourselves with developing the basic case
we need for the Lefschetz theorem for spheres.

Now, we have to adapt the inductive program, specifically Theorem 6.6. We do so as
follows:
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Assuming that we have proven the transversal prime property is proven for a set of
vertices W/, that is, for 9[W'] := “3° .y "z,, we have

ker |homypy : kerd[W'] — (Hk_l)([zj])*{d}(Ml) = anng, (rg) (To|v € W)
where we denote the final space as
Gr(mE —W' CnE) = dp(nE —W')NEL(nE).
We have the following useful observation:
Lemma 8.8. When restricting the Pairing (15) to

@) x (H) D an) s R,

where

Gu(E) = ker[@u(nE) W gy (mE)]
the spaces

Cr(ME — W' c nE) C 6x(E) C di(E)
and

homyGx(E)  (Hy ) ED 8 an) ¢ () ()

are orthogonal complements.

Proof. It is clear from the discussion above that both subspaces are orthogonal to each
other. Indeed, as
Gu(nE - W' c nE) — (Hy_)n)
is a trivial map, then
Gr(mE — W' C tE) — Br(M)
and in fact
GL(nE —W' CcnE) = Bp(My) N dp(nE —W').
But %i_1(M;) and € (FE) are orthogonal, and so are in particular the former and the
latter spaces image in (H k_l)([zj])*{d}(Ml) under homyy. It finally follows from a
dimension count that they are indeed orthogonal complements. O

When we want to prove the transversal prime property for W = W’ U {w}, we want to
use perturbation. We map @ (nE) to /i1 (mst, E). Notice now that

im[I[W'] : €r(nE) = dy—1(ntsty, E)] N Ag—q1 (nsty, E)
generates a subspace of the kernel of

@ .ka;,l(T[StvE) — .kafl(T[Ev
veW
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which following Proposition 3.9 maps to (H k_1)<[zj]) (E). Consider the composition
with

Ho ) DBy = () D gy
H(Hk—l)([zzi])*{d}(Mﬁ — (kal)([gii])*{d}(Ml)/

where we abbreviated

im [homﬁ[W,] ]

. . . / ([d:u)*{d}
im[homyy] = im |homyy : kerd[W’'] — (Hj_q1) k-1 (My)|,

an image we can understand equivalently as the image of

Ker [@ Ay (mstoE) — s (mE)| — (Ho_n) D )
veW’

under the above composition. Consider therefore finally the kernel of this composition

ker l@ A1 (st E) — «Qik—l(T[E)] — (H’H)([H)*{d}(Ml)/ im[homyy]
veW

and project it to &/j,_1(st,E). Denote the resulting subspace of &), (st,mE) by Fw.
Let on the other hand
FKw = .’L'w%k(TEE -W'c 7'[E)

Lemma 8.9. The spaces Fy and Sy are orthogonal complements in oy, (lk,, TE).

Proof. By Lemma 5.4, we may assume the existence of a vertex u € M7 so that
o u projects to the origin under 7, that is,
mu = 0

and
o we have
(stuM1) N E = st E.

Consider then the preimage
Jw C dy(EUst, M)

of
im[I[W'] : Gr(mE) = dy_1(ntstyE)] C dyp_1(E Nk, M)

with respect to the composition

Ap(E Ust M) 2 ofp_q(styM) — y_1(k, My). (16)
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Further restrict to the kernel fw of

Sw — dy(EUsty M) —

s (He ) DB gy () (D o) /im[homqu]'

Under Composition (16), the image of fw is the space fj» we defined before. Hence,

the claim follows by Lemma 8.8. O

From this lemma, we immediately obtain a version of Theorem 6.6.

Proposition 8.10. In the situation above, the following are equivalent.
(1) The assumptions of Lemma 6.1(1) hold, that is,
T, CR(ME — W' CcnE) N Jw = 0.
(2) The assumptions of Lemma 6.1(2) hold, that is,
2,  (A—1(ky E) N Fy) + Gp(mE - W' CE) = Gp(nE).
(3) The pullback Fw of €r(mE — W) to
1 (stwE) = dj_1(lky E)
along x,, satisfies biased Poincaré duality in the (d — 2)-sphere lk,, E.

Arguing as in Lemma 6.1, we obtain that if the conditions of Proposition 8.10 are satis-
fied, then the transversal prime property holds for W.

8.4. Maps to homology in the double. Let us first reformulate the second condition in
Theorem 7.3. Denote by &), (mDU) the kernel of the map

s, (nDU) — (H,_)(+) (D)

where, for context, we recall that we consider the ambient space R

7t to Rl41],

and the projection

Lemma 8.11. To obtain surjectivity of

d,(DU) — (Hy—1)(®) (DY)
it is enough to demonstrate an isomorphism

B (nU) -Ls a1 (nU, mdU) (17)
and a surjection

ker [@(nDU) %+ dly_y (nDU)| —222s (Hy) DA D5y, (18)
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Proof. Similar to the proof of Lemma 8.6, but we do no longer care for (or expect for that
matter, as ¥ must be very special to give a double in the preimage of the projection) the
map

@r(nDU) - o), (nDU) (19)
to be a surjection.

An important subspace of Hy_;(DU) to keep in mind is induced by the folding map:
F = ker[t: H,_1(DU) — Hy_1(U)].
With this, the quotient
.ka(T[DU)/%k(T[DU) (20)
is generated by preimage of (“4") in the map
sy (nDU) 25 (Hy) (") (D).

A basis for the Quotient (20) can therefore be chosen to be in the preimage of the folding
map intersected with the kernel of the folding map

A (mDU) — oy (nU).

Finally, we use surjectivity of the Map (17), and conclude that we can choose the basis
to map isomorphically to

d
k

F( = H)BOD) /G piy

which in turn is isomorphic to

(Hk—l)(k)(ﬁz)/homﬁ (ker[%k(TEDU) 2, ﬂk—l("DU)D

as was claimed. O

Now, let us consider Theorem 7.3(2). To prove surjectivity of the Map (18), we use
inductive program as in the previous section.

Let {9,9} = 1 'v denote the preimages in the associated charts for interior vertices v
of U. Assume we have proven the appropriate stable annihilator property for W', that
is,

(1) if

19[W,] A Z ”(CC{) + ZC{,)
veWw’
and homyyy is the associated map to homology, the image of

homy(yy1: ker [9[W'] : €(nDU) — dj,_1(nDU)] — () (DA (D)
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is as large as possible: it equals the image of

ker | €D  yp_i(nst,DU) — dly_1(nDU)
vet 1w/

in (Hk,l)([zj])*{d}(ﬁl‘). Notice that because

Ny DU = | st,DU
vetr 1w/
is a manifold by Condition (2) for railways, this image can be identified as the image

of
[d—

(F OV Hia Ny DU D () (0 (B ),
Furthermore,
(2) the image
im [9[W'] : €x(nDU) — dj_1(nDU)]
contains the images of
im {(L‘{, +xp @k(ﬂ[j) D @k(ﬂ[j) — .kafl(TEDU)} ,
for v € W'. This is simply the Lefschetz theorem we proved iteratively for step L.

Additionally, by the Lefschetz theorem for (d — 4)-spheres, we may assume that the
stress space o), (U — W) and therefore also /(U — W') have no degree k stresses
outside of their manifold part.

As in the previous section,
1m[19[W’] : 6x(mDU) — ﬂk_l(ﬂDUﬂ N <627k_1(7'tsthU>, Hy_1(mtstyDU))
generates a subspace of the kernel of

P di1(nst,DU) — dlyp_1(nDU)
veU(0)

which following Proposition 3.9 maps to (Hy_) (=) (DU).
Consider the composition with
(11, o0) = (1) O o) —
— () ) () (D)
where im[homyy] has an especially nice description by transversal prime property:

It is the image of the (k — 1)-st homology of the manifold N, 1;»DU in DX (to the
([z:i]) « {d}-th power).

im[hom(y1]
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Consider the projection of the kernel of this composition to
A1 (TESthU) & A1 (ﬂSthU)

and call it Ay .

8.5. Analysis of links, Part (2). We can now finish the proof, as we have reduced the
difficult problem of constructing Lefschetz maps to a homological problem.

If w is the next vertex of the linear order as before, then we have as in Lemma 8.8.

Lemma 8.12. fyy is orthogonal to the pullback of
@G (DU — T 'W)
along
L1y = Ty T Ty
to
A1 (mlky U) = dy_1(nlky DU) & oy (mlky DU)
with respect to the antidiagonal fundamental class, that is, the fundamental class of DU under
pullback along x-1,,. O

Here, G (DU — 1 'W’) is the kernel of
5 (")
el (nDU — W) — (H“(DE) / Hk_1<f>x))
Restrict a:T_lw‘%k(nDU — 7 'W’) to classes that are in the kernel of the folding map T,
obtaining a subspace & of &/),_; (7 lk,, U). This subspace is naturally invariant under the
natural involution map  that exchanges the charts. Note that this involution preserves
the pairing.

It suffices to consider this subspace as only these classes give rise to homology cycles
in #. It would be enough to show that this pullback satisfies biased Poincaré duality.
However, we do something simpler: First observe that, because we only have to take
care of the pullback to one chart by symmetry of the pairing. This is already simpler, but
we can simplify further. We will work with another decomposition: We shall construct
a nice subspace I of

Gp(mDU — 1 'W') C dljy_1(m 1k, U)

such that  maps into & under id — (, and shall argue we can work with just this
subspace.

We do so by exploiting condition (6) of octavian railways. From here, we obtain:
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Lemma 8.13. The kernel
H = ker |Hy 1 (nDU — T 'W') — Hy y(nDU) — Heat(DX) [ 5 2)]

surjects onto Hy,_o(1k,,(U — W')) under the folding map . O

Here, the map to Hy_2(lk,, (U — W’)) factors as
Hy (DU — v 'W') — Hy_y(st21,(aDU — 1~ 'W')) —
— Hj_o(mCU,) = Hj_o(lky(U — W)
where
Str—1, (MDU — T71W') = sty (nDU — v W) U sty (DU — T W)

and

.

nCU, = (nCU,) U (nCU,)
and finally
st°_ 1, (MDU — T W) = (sty1,(nDU — 1 W'), nCU,,).

We can therefore argue as follows: Consider a subspace

H C Hy_i(st21,(nDU — 1 'W"))

1w
of the image of # in Hj_1(st>_, (DU — t~'W’)) such that the above composition
maps x maps isomorphically to Hy_5(lk,,(U — W')). Then we can consider

Ay (st s, (mDU — W) — (Hpor)(% D (st

1w 1w

(mDU — v~ 'W"))
and the preimage
Dy C Ay (st2-1,, (TDU — v 1W"))
of Z("s"). Then
To-14yDy C l’T—lw%k(T[DU — T_IW,)
and
((id=1V)ox1,)(Dy) C &
so that we identify z.-1,9,, as the desired space 7.

We shall argue the following two points:

(1) Biased Poincaré duality for 9 implies the transversal prime property for doubles
with respect to the vertex set W = W' U {w}.
(2) Biased Poincaré duality for 7 holds.
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To the first point, we simply notice that biased Poincaré duality for 7 implies that
xT71w9w N dkfl(sthEDU N T[(aU U NT—1W/DU))
maps surjectively to

d—1
k

(Hyo—2)1) (s, DU A (U U N1, DU)) .

But then
(T U WT) N di_1(stynDU N (0U U N -1y, DU))
generates
(Hy)1) (st DU 1 (8U U N1y DU))
which implies that
homyy = homyy

+ im [(Hk_l)([i‘i]> (5twDU N (AU U N1y DU)) — (Hk_l)([i‘ﬁ*{d}(ﬁz)]
= im [C%T A Hyoy (Neoay DUY) DA () (d)et) (132>] -

To achieve the second point, notice that we can choose % within some bounds, and in
particular can find a codimension zero submanifold 7" of nCU,, such that % defines
relative homology classes in

Hy_1(st2-1,,(DU — T 'W’), 1)
and such that the composition
H — Hy 1(st21,(DU — T 'W'),T) — Hy_o(T)

is an isomorphism. If k > 3, we can simply choose 7" to be the restriction of 7CU,, to
one chart, and if £ = 2, then 7 is naturally chosen so that the folding map defines an
isomorphism of manifolds on it, see Figure 8.8. For k = 1 we already solved the problem
completely in Example 5.7. With this choice, the second point follows immediately from
Lemma 8.4.

Hence, we can represent the image of % in H, k—1(sto_1, (DU — W), T) by codimen-
sion zero submanifolds. We obtain a pair (X, 1) (see also Figure 8.8) such that

o X isa (k — 2)-acyclic manifold of dimension 2k — 2 that maps simplicially and locally
injectively to
@(X) = ste-1,(TDU — 1t 'W’) C =DU.
o The (k — 3)-connected submanifold of its boundary " maps isomorphically to the
complement tCU,,.
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o Moreover, the relative stresses &/ (X, 7") map surjectively to &, and

T = (x"rflw 0 (P) ('Q{k(Xv T))

Figure 8.8. The pullback of & (nDU — 1 'W’) to st;-1,mDU is de-
composed along the relative homology classes of im[ker[Hy_1(DU) —

Hk_l(ﬁE)/Hk_l(ﬁE)} — Hy_1(Hg—1(st,DU, CU,)] by reducing it to a pair-
ing question in a simpler space X.

This allows us to finish the proof, as simplicial maps descend to morphisms of face
rings and we can therefore discuss &/i(X,7’) instead of the doubled railway: We denote
by CT,, the complement of 7" in 1k X, and by U the copy of the star st,,7tU in the
chart corresponding to the vertex @ € (¢ o) 'w. Then the orthogonal complement
to o, (X,7T)in
kX = U IkzX
we(pot)~lw

is described as
ker[ﬁ%k(CTw) — %kfl(CTw)] +
@ .ka_l(lkJUa—Xo) C @ ﬂk_l(lkEUJ)

we(@ot) 1w we(@ot) 1w
which we know for sufficiently general position Artinian reduction and Lefschetz ele-
ment satisfies biased Poincaré duality by the Lefschetz theorem for métros, see also the
second part of Lemma 8.4. Hence, we can ensure that the railway U satisfies the second
condition of Theorem 7.3 by induction on dimension.

8.6. Beyond the middle isomorphism. We now have completely understood the mid-
dle Lefschetz isomorphism, as well as the middle Hall-Laman relations for both even
and odd-dimensional spheres. In the latter case we are only talking about the biased
Poincaré duality property, and the Lefschetz property becomes trivial.

For the general case, something remains to be said. Specifically, Lemma 7.5 required us
to chose the linear system in a specific way. Let us examine the situation.
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Consider a (d — 1)-sphere X, and assume you are trying to prove the Hall-Laman re-

lations for the Lefschetz map from degree k to d — k, where k < 4. Then, after iter-
ated suspension, we are reduced to the middle Lefschetz isomorphism resp. the biased
Poincaré duality property. But this means that the faces of X' are now restricted to a

d-dimensional subspace.

Can we find the desired Lefschetz element under this restriction? Well, above, we re-
duced the Lefschetz property to a Lefschetz property for lower-dimensional spheres.
So, instead of having the faces of ¥ needing to lie in a d-dimensional subspace, we
then obtain a restriction on the faces of lk, X' (where v is any vertex of X)) in a (d — 1)-
dimensional subspace. This descends down to zero-dimensional spheres, where the
restriction finally becomes empty. Hence, we can in fact enforce this additional condi-
tion, completing the proof.

9. BEYOND PL SPHERES

For manifolds that are not PL spheres, the same proof goes through with minor caveats.
These are exclusively related to the reduction to railways, which are easy construct in
combinatorial manifolds using basic general position techniques, but which demands
some additional words beyond that case.

The main issue is that in general, given a simplicial complex A of dimension k < d-1/2—1
contained in a homology sphere of dimension d — 1, it is not clear that A is contained
in a hypersurface of trivial homology, making the construction of railways in this case
tricky. While it is possible to remedy this by considering Buchsbaum railways instead
of ones that are railways, this leads us rather far astray.

For simplicity, we shall therefore not prove the Hall-Laman relations for general mani-
folds, but only the hard Lefschetz theorems.

9.1. Homology spheres. Consider for instance first the case of a combinatorial ratio-
nal homology sphere X' of dimension d — 1. First, let us note that the proof of biased
Poincaré duality for combinatorial rational homology spheres goes through verbatim
(as we already established the existence of railways (Proposition 3.9) in the case of com-
binatorial rational homology spheres), completing the proof of Theorem II, so it remains
to discuss the Lefschetz theorem.

If X is not a PL sphere, then susp X is not a PL sphere, but we can use results of Freed-
man and Kervaire [Fre82, Ker69] to instead realize and combinatorial integral homology



BEYOND POSITIVITY 79

sphere ¥ as hypersurface in a PL sphere X’°. Following the same program as above,
we obtain immediately the middle hard Lefschetz theorem for X' by proving biased
Poincaré duality for X’ with respect to the subcomplex ¥. To obtain the higher Lef-
schetz isomorphisms, we want to use Lemma 7.5: If we want to prove to the Lefschetz
theorem, say, from degree k to degree d — k, then Lemma 7.5 asks us to prove biased
Poincaré duality for the (d — k — 1)-skeleton of 0A; * X, where ¢ = d — 2k, in the i-
fold suspension susp’ X' of X. However that in general is not a combinatorial manifold.
However, we can still use the observation: The suspension vertices in the i-fold suspen-
sion form a i-dimensional crosspolytope #'. Using the Freedman-Kervaire construction,
we can modify

suspi Y = %X
outside of

(892w 2,

where (-)(<7) denotes the j-skeleton of a simplicial complex, to a triangulated (d+i — 1)-
sphere. In this modification, the subcomplex 9A; * X is not affected, hence we are
reduced back to proving biased Poincaré duality in a PL sphere.

However, this still only works for combinatorial rational homology spheres, but not
rational spheres, which makes aforementioned discussion pointless in general. For this
general case, we can be slightly more clever about the octavian railway construction,
and exploit the fact that suspensions are always simply connected. Indeed, the two
critical points in the proof of Proposition 7.1 was, apart from the codimension, the fact
that we could embed in a hypersurface to start with, and the simple connectivity of
links, which ensures the vanishing of homotopy groups.

Consider again 0A; * X, with ¢ = d — 2k, in the i-fold suspension susp’ X of X. Now,
we can construct a octavian railway for this complex as before, if we have performed
at least one suspension. This means an unfortunate loss: For rational spheres that are
not combinatorial, we are unable to prove the middle biased Poincaré duality for odd-
dimensional spheres (as the links of vertices are not yet simply connected).

Let us summarize:

Theorem 9.1. Consider a triangulated rational (d — 1)-sphere X, and the associated graded
commutative ring R[X]. Then there exists an open dense subset of the Artinian/socle reductions
R of RIM|] and an open dense subset & C R[X], where o/ (%) € R, such that for every
k < d/2, we have the

3Freedman and Kervaire show this in the smooth category, but combinatorial rational homology spheres
have a smoothing [Cai61], so that we can use their results.
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(1) Generic Lefschetz theorem: For every o/ (X) € R and every £ € £, we have an isomor-
phism
k 42k d—k
d5(Y) —— (D).
(2) Hall Laman relations: If X is combinatorial, or k < 4, then in addition the perfect pairing

gE(X) x JTHE) — YD) =R
a b b— deg(ab)

is non-degenerate in the first factor when restricted to any squarefree monomial ideal .7 .

9.2. The main theorem for manifolds. For manifolds, we again restrict to Lefschetz
theorem. Anticipating the final result, we obtain

Theorem 9.2. Consider a triangulated rational (d — 1)-manifold M, and the associated graded
commutative ring R[{M]. Then there exists an open dense subset of the Artinian/socle reductions
R of R[M] and an open dense subset & C RY[M], where of (M) € R, such that for every
k < d/2, we have the

(1) Generic Lefschetz theorem: For every o/ (M) € R and every { € &£, we have an isomor-

phism

B(M) N @Ak (),

(2) Biased Poincaré duality: If X' is combinatorial, or k < %, then in addition the perfect

pairing

dE(E) x TR — YD) =R
a b b deg(ab)
is non-degenerate in the first factor when restricted to any squarefree monomial ideal .7 .

Only few modifications are necessary, and we sketch the proof of the above theorem by
surveying the necessary modifications. The first is the definition of railways we need to
prove the second statement.

9.3. Railways and métros in manifolds. We fix this as follows. We keep Conditions (1)-
(4) as is, and modify the last conditions using the ambient manifold M.

(5") NyU — M induces an injection in homology up to dimension (k£ — 2) for all initial
segments W'.

(6") The complementary manifold to Ny»U in U mapped into M induces an injection
in homology up to dimension (k — 2).

A (octavian) métro in M is again a railway of codimension zero and satisfying Condi-
tions (1) to (3), (5") and (6"). It is again an easy exercise to show hereditary octavian
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railways in combinatorial (d — 1)-manifolds M exist for every subcomplex A of dimen-
sion at most ¢ — 1.

9.4. Using railways, revisited. The proof of Theorem 9.2 for works as the proof for
spheres, reducing everything to the case of the middle pairing using the following ver-
sion of Lemma 7.5. This is straightforward if one is only interested in the middle Lef-
schetz isomorphism, but requires some definitions in general.

Let susp’ denote the i-fold suspension, let n; denote the i-th north pole, and let A;_;
denote the simplex on the first (¢ — 1) north poles.
Lemma 9.3. Considering susp’ M realized in R, and k + i < %, the following two are
equivalent:
(1) The Hall-Laman relations for

%kﬂ(suspi M, A; « M)

with respect to the map xy,.
(2) The Hall-Laman relations for

%k(ﬁ susp' 1 M, mA;_1 * M)

with respect to V. O

Here, we define %* (susp’(M)) as the quotient of & (susp’(M)) by the interior socle ideal,
that is, the ideal generated by socle elements of degree less than d + i. We can compute
this as follows: Recall that

(=) (30) = (Soc) (M)
Assume now the suspension points are colinear. The projection susp A — A for a gen-
eral complex A induces splittings
A (susp A, dsusp A) =2 AH(A,0A) & ¥ (st susp A, st8 dsusp A)
and
A*(susp A) =2 dH(A) @ o (st susp A).
This splitting commutes with the decomposition of &/*(M) resp. &*(susp’(M)) into
socles, and we obtain that
(Soc®)* (susp' (M) = (Soc®)* (susp'™ (M) @ an,(Soc®)* (susp'™" (M)

The lemma follows as before.
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Now, we only need to prove the biased Poincaré duality of Lemma 9.3. For this, we
again need the notion of railways. We define this as follows:

A railway in a subdivision of susp’ M is a singular hypersurface with boundary that is
a rational manifold outside the suspension points. The octavian condition is modified
by considering the radial projection

U : susp’ M\ {singular points} — M
the conditions (5) and (6) are modified as

(5") ¥ : Ny»U — M induces an injection in homology up to dimension (k — 2) for all
initial segments TW'.

(6") The complementary manifold to Ny U in U, mapped to M along \{ induces an
injection in homology up to dimension (k — 2).

With this, remainder of the proof proceeds as before.

9.5. Positive characteristic. What happens when we do no longer restrict to rational
homology spheres, but homology spheres, or even manifolds, with respect to any other
tield? What works, and what has to be modified, and what does apparently not work?

One thing we rely on is that the field is infinite. That leaves still the possibility that the
characteristic is positive.

Immediately, we then see that the approximation results, that is, Lemma 6.2 and its
relatives, make less sense in positive characteristic. However, the perturbation lemma,
and in particular the Lefschetz theorems, still apply as stated.

There are two ways to see the latter: we worked with stress spaces, the Weil dual for the
face ring most of the time, and it is perhaps not immediately clear how to define these
in a suitable way in positive characteristic. For this, we replace the differential operator
by the Hasse derivative and obtain the appropriate Weil dual in positive characteristic.
With this, and apart from the aforementioned approximation lemma, the results apply
as usual.

Alternatively, we should note however that we worked with stress spaces precisely
because of the nice approximations of primitive subspaces, and they were at no point
critical to our investigations. Indeed, we could have worked with face rings throughout,
would have to modify our perspective slightly, but then otherwise work as before, and
in particular obtain the Lefschetz theorems and Hall-Laman relations.
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