THE AFFINE GRASSMANNIAN AS A PRESHEAF QUOTIENT

KESTUTIS CESNAVICIUS

ABSTRACT. For a reductive group G over a ring A, its affine Grassmannian Grg plays important
roles in a wide range of subjects and is typically defined as the étale sheafification of the presheaf
quotient LG/L*G of the loop group LG by its positive loop subgroup L*tG. We show that the
Zariski sheafification gives the same result. Moreover, for totally isotropic G (for instance, for
quasi-split ), we show that no sheafification is needed at all: Grg is already the presheaf quotient
LG/L*G, which seems new already in the classical case of G over C. For totally isotropic G, we
also show that the affine Grassmannian may be formed using polynomial loops. We deduce all of
these results from the study of G-torsors on P that is ultimately built on the geometry of Bung.
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The affine Grassmannian Grg of a reductive group G originated in Lusztig’s [Lus83, Section 11]
(see also Beilinson—Drinfeld’s [BD, Section 4.5]) and is instrumental in the geometric Langlands
program and other subjects that study G-torsors and their moduli. The goal of this article is to show
that Grg admits a simpler definition than previously thought: for most G, it is simply the presheaf
quotient LG/LT G of the loop group LG by its positive loop subgroup L*G, so that the fpqc or étale
sheafifications of this quotient that were used previously are not needed, see Theorems 12 and 17 for
precise statements.

1. Conventions. As in [SGA 3y pew, exposé XIX, définition 2.7|, a reductive group scheme over
a scheme S is a smooth, affine S-group scheme whose geometric S-fibers are connected reductive
groups. An S-scheme is locally constant if fpqc locally on S it becomes isomorphic to some | |,; S.

CNRS, UNIVERSITE PARIS-SACLAY, LABORATOIRE DE MATHEMATIQUES D’ORsAY, F-91405, OrRsAy, FRANCE
E-mail address: kestutis@math.u-psud.fr.
Date: May 18, 2025.
2020 Mathematics Subject Classification. Primary 141.15; Secondary 14M17.
Key words and phrases. Affine Grassmannian, loop group, reductive group, torsor.
1



1. THE AFFINE GRASSMANNIAN AND ITS MODULAR DESCRIPTION

In this section, we fix a base ring A and aim to review the definition and the modular interpretation
of the affine Grassmannian Grg for a smooth, quasi-affine’ A[t]-group scheme G, see Proposition 7.

2. The loop functor. For a functor X on the category of A((t))-algebras (resp., A[t]-algebras), its
loop functor LX (resp., positive loop functor LT X) is defined on the category of A-algebras by

LX: B X(B(t)) (resp., LTX: B X(B[t])).

The morphism LTX — LX is often an inclusion, for instance, this is so whenever X is a subfunctor
of a separated A[t]-scheme (see [EGA I, corollaire 9.5.6]).

If X is an A[t]-scheme, then, by [Bhal6, Theorem 4.1 and Remark 4.6], LT X" is an A-scheme because
LTX ~ Liﬂln>0 ReS(A[t]/(tn))/A(XA[t]/(tn)>, equivalently, (L+X)(B) = lim X(B[t]/(tn))

<~—n>0
for every A-algebra B, compare with [CLNS18, Chapter 3, Corollary 3.3.7 b)|. Similarly, if X
is a quasi-compact and quasi-separated A[t]-algebraic space, then, by [Bhal6, Theorem 4.1| and
[SP, Proposition 05YF and Lemmas 07SF and 05YD], LT X is a quasi-compact and quasi-separated
A-algebraic space. If X is even an affine A[t]-scheme, then, by considering a presentation of its
coordinate ring in terms of generators and relations, L*X is an affine A-scheme and LX is an
ind-affine A-ind-scheme, more precisely, there are affine A-schemes X,, and closed immersions

Xg— X1 < --- suchthat LTX =X, and LX = UnZO X, as functors on A-algebras B.

For an A-algebra B, let B{t} be the Henselization of B[t] with respect to the ideal tB[t], see
[BC22, Section 2.1.2] or [SP, Lemma 0A02]. It is useful to consider Henselian (resp., algebraic;
resp., polynomial) variants L, X and L} X (resp., LagX and L;ng; resp., LpolyX and L | X):

poly
LpX: B — X(B{t}[1]) and  LjX: Bw— X(B{t}),
LagX : B — X((B[t14181)[1]) and L. X: B X(B[t]i1pp),
X: B — X(B[t]),

LpoyX: B — X(B[t, t71]) and L;Oly
granted that X is begins its life over A{t}[1] (resp., over (A[t]HtA[t])[%]; resp., over A[t,t7!]) and,
for L X, even already over A{t} (resp., over A[t]y 4afs; resp., over A[t]). These variant functors are
sometimes easier to handle, for instance, they all commute with filtered direct limits in B granted
that so does X', moreover, L;OlyX and Ly X are nothing else but restrictions of scalars.

(+)

By the following proposition, for many X', the functors L; ’'X cannot be improved by sheafifying.

Proposition 3. For a scheme X over A(t), or over A{t}[1], or over (A[t]iyiapq)[3], or over
A[t, 7Y (resp., over A[t], or over A{t}, or over Alt]i 414, or over A[t]) as in §2 such that every
quasi-compact open of X is quasi-affine, the functor LyX (resp., and also its subfunctor LX) is an
fpqc sheaf on the category of A-algebras.

Proof. Since X is separated, [EGA I, corollaire 9.5.6] ensures that the map LfX — L,X is indeed
an inclusion. Thus, all we need to show is that for an fpqc cover B — B’ of A-algebras, the sequence

(LsX)(B) = (L X)(B') 3 (L X)(B'@pB') (resp., (L X)(B) — (L X)(B') 3 (L X)(B'®pB"))

lof course, over a field every quasi-affine group scheme of finite type is affine, see [SGA 3| new, exposé Vlg,
proposition 11.11], and likewise for flat, finite type, separated groups over Dedekind rings with affine (or merely
quasi-affine) generic fibers, see [SGA 311, exposé XVII, proposition C.2.1 (3)] and [Ana73, proposition 2.3.1]. Over
higher-dimensional base rings, however, there exist quasi-affine groups that are not affine, see [Ray70, chapitre VII,
section 3] for such an example over Clz,y].
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is exact. The case of the polynomial variant follows from fpqc descent [SP, Lemma 023Q] because
B[t] —» B'[t] 3 (B'®p B)[t] and B[t,t7!] - B'[t,t7!] =3 (B'®p B')[t,t 7]

are both fpqc cover sequences. For other variants, since each ring-valued point of X factors through
a quasi-compact open, we may assume that X is quasi-affine. The maps

B{t} — B/{t} and B[t]l-i-tB[t] - B,[t]l-i-tB’[t]

are both faithfully flat, in particular, they induce surjections on spectra, so the Henselian and
algebraic variants reduce further to affine X. In the power series case, the reduction to affine X
is more subtle if B and B’ are not Noetherian (because then we do not know whether the map
Spec B'((t)) — Spec B((t)) is surjective) and will use ideas from [BC22, Lemma 2.2.9 (i)] as follows.

By realizing X as the complement of the vanishing locus of a finitely generated ideal in an affine
A((t))-scheme (resp., A[t]-scheme), to reduce to affine X we need to show that elements by, ..., b, in
B((t)) (resp., in B[t])) generate the unit ideal as soon as their images do so in B'((t)) (resp., in B'[t]).
The case of B[t] follows by checking modulo ¢ and using the faithful flatness of B — B’. To treat
B((t)), we may assume that by,...,b, € B[t] and use the faithfully flat cover B[t] — (B[t] ®z B/)?t)
(Henselization with respect to the ideal generated by t) to reduce to showing that by, ..., b, generate
the unit ideal in (B[t] ®p B’)?t)[%]. The t-adic completion of (B[t] ®p B’)?t) is B'[t] and, by
assumption, there are a1,...,a, € B'[t] with aib; + ... + apb, =tV in B'[t] for some N > 0. By
approximating modulo tV*+1, therefore, there are a},...,a!, € (B[t] ®p B/)?t) such that

arbr + ...+ apby € tN + V(B[] @5 By
This means that by, ..., b, indeed generate the unit ideal in (B[t] ®p B’)Z)[%], as desired.

Now that X is affine, the functor X'(—) turns fiber products of rings into fiber products of sets. Thus,
all we need to show is the exactness of the horizontal sequences in the commutative diagram

B[t]1+tB[t] B B/[t]1+tB'[t] ——= (B'®sp B,)[t]l-i-t(B’@BB’)[t]

i
B{t} ————— B'{t} —————= (B’ ®p B'){t}
[ [ [

B[t] ——— B'[t] —= (B’ ®p B)[{],

which implies the corresponding exactness after further inverting ¢; here the bottom vertical maps
are injective by [BC22, Section 2.1.2] (a limit argument to reduce to finite type Z-algebras). The
exactness of the bottom row is seen coefficientwise. Thus, by fpqc descent, it is enough to show that

B'{t} ®py B'{t} — (B'®p B'){t},
B'[th 11819 ®B1] 11 B [thiisg = (B @5 B)[thi(sess-

The injectivity of the second map is evident because B'[t] ® gy B'[t] — (B’ ®p B')[t] and the
elements of 1 + t(B' ®p B’)[t] are nonzerodivisors. As for the first map, if the B-algebra B’ was
finitely presented, then we could use a limit argument to reduce to a Noetherian situation and then
check the injectivity after passing to completions. In general, since every étale (B’ ® g B')[t]-algebra
(B’ ®p B’)-fiberwise has no embedded associated primes, both of the maps in question are injections
by [RG71, premiére partie, corollaire 3.2.6] and a limit argument. O

Remark 4. In Proposition 3, the assumption on quasi-compact opens holds if X" is a subscheme of

an affine scheme. In general, a scheme whose quasi-compact opens are all quasi-affine is ind-quasi-

affine, see [BC22, Definition 2.2.5] and the references to [SP]| given there for details. We avoid this
3


https://stacks.math.columbia.edu/tag/023Q

terminology here because it may be confusing in the context of ind-schemes. The automorphism
scheme of a reductive group is such an X’ that need not be quasi-affine, see [Ces22b, Section 1.3.7].
Another useful example is locally constant schemes X, for which even LX = LTX as follows.

Corollary 5. Let A be a ring.

(a)

(b)

Proof.

(a)

In the following diagram, the squares are Cartesian and the maps are bijective on idempotents:

A€ Alt]¢ Alt]1earn A{t}—— A[t]

N [ [

Alt, 71 (Alt]ieap) [71— A{tHF1— A(®)).

For every scheme X over A[t], or over A{t}, or over A[t]i gy, or over A[t] as in §2 such
that X is locally constant (see §1), we have Lf X — L, X.

As indicated, the maps are all injective, either by inspection, or by faithful flatness, or by a limit
argument given in [BC22, Section 2.1.2]. The squares are Cartesian by [SP, Lemma 0BNR]. As
for idempotents, since the maps are injective, it suffices to recall from [BCQQ, Corollary 2.1.19]
that the map A — A((t)) is bijective on idempotents (as one may also show directly).

By [SP, Lemma 0APS|, we may check fpqc locally on the base that our locally constant X
satisfies the assumptions of Proposition 3, more precisely, that every quasi-compact open of
X is quasi-affine. In particular, in the case when X" begins life over A{t}, the square

X(A{th)—— X (A{t}[7])

| |

X (A[]) ——— X(A(®)

is Cartesian by [BC22, Proposition 2.2.12], and likewise with Alt]i4¢apy or A[t] in place of
A{t}. Since we may vary A, this reduces us to showing that the inclusion X' (A[t]) < X (A((t))
is an equality. For this, since loc. cit. also implies that for every prime p < A the square

X (A[t] ®a Ap) —— X (A(?) ®a 4y)

| |

X (Ap[t) —————— X (4 (#))

is Cartesian, by combining this square with spreading out, we may assume further that A is
local. At this point, Proposition 3 allows us replace A by its strict Henselization.

Once A is strictly Henselian local, we fix any A((¢))-point of X and form its schematic image
to get a closed subscheme Z < X, see [SP, Definition 01R7|. It is enough to show that

Z = Spec(A[t]).

We first claim that the map Z — Spec(A[t]) is surjective. For this, since X' is locally
constant, we may choose a faithfully flat A[t]-algebra B such that Xp =~ | |,_; Spec B. By
[SP, Lemma 0811|, the formation of Z commutes with base change to B, so we need to show

that the schematic image of any B[%]-point of Xp surjects onto Spec B. It does because
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otherwise, by the explicit nature of X, the open immersion Spec(B [%]) c Spec B would
factor through some proper closed subscheme, contradicting its schematic density.

Since A[t] is strictly Henselian local and X is étale, [EGA IV, théoréme 18.5.11] ensures
that for every z € Z above the maximal ideal of A[t], we have

X =~ Spec(Ox, ) u X' with Oy , =~ A[t].

We have already argued that such a z exists, and (a) shows that Spec(A((t))) inherits
connectedness from Spec A, and so ensures that Z n X’ = J. The desired Z = Spec(A[t])
now follows from the schematic density of the open immersion Spec(A((t))) < Spec(A[t]). O

6. The affine Grassmannian. In the setting of §2, if the functor X is group valued, then so are
the functors L X and L,X. With this in mind, for a smooth, quasi-affine A[t]-group scheme G, its
affine Grassmannian is the pointed set valued functor defined by

Grg = (LG/L*G)e, (6.1)

where, as indicated, the sheafification of the presheaf quotient LG/L™G is formed in the étale topology.
If instead G begins life as a smooth, quasi-affine A{t}-group scheme, then [BCQQ, Example 2.2.19]
(which is based on approximation and algebraization techniques) ensures that we may use Henselian
loops instead, more precisely, that we have an identification of presheaf quotients

LG/L*G =~ L,G/L; G

In many situations, the affine Grassmannian Grg is represented by an A-ind-scheme, which is often
even ind-projective over A, see, for instance, [PRO8|. This proceeds by embedding G into some GL,,
which is not always possible with our general assumptions, so we will not use representability results.

In the literature one sometimes finds the affine Grassmannian defined as the fpqc sheafification
(LG/L*G)tpqe- A priori this makes no mathematical sense: even for a field, isomorphism classes of
its fpqc covers form a proper class, so the fpqc sheafification may not exist; however, by the following
proposition, this “fpqc sheafification approach” gives the same result for our G as above.

Proposition 7. For a ring A and a smooth, quasi-affine A[t]-group scheme G, the affine Grassman-
nian Grg is an fpqc sheaf and has the following modular description on the category of A-algebras B:

E is a G-torsor over BJt],

Grg(B) = {(5’ ) ' L€ E(B((t) is a trivialization over B((t))}/ o

while the presheaf quotient LG/L*G is a subfunctor of Grg parametrizing those (E,1) with £ trivial.

Proof. For the trivial G-torsor, LtG parametrizes its G-torsor automorphisms over (—)[t] while
LG parametrizes its trivializations ¢ over (—)((t)), so the presheaf quotient LG/L*G is the claimed
subfunctor of Grg, granted that the latter has the displayed modular description. Moreover, by
the smoothness and quasi-affineness of £ inherited from G (see [SP, Lemma 0247]) and by the
infinitesimal lifting of sections (compare also with [BC22, Proposition 2.1.4]), each (£, ¢) lands in
this subfunctor étale locally on B, so the sought modular description will follow once we argue that
it defines an fpqc sheaf. For this, since the pairs (£,¢) have no nontrivial automorphisms, all that
remains is to show that the groupoid-valued functor

€ is a G-torsor over B[t], }

ve E(B((t))) is a trivialization over B((t))
5
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is a stack for the fpqc topology on A-algebras B. For this, let B — B’ be an fpqc cover of A-algebras
and let (£',¢) be a pair for B’ equipped with a descent datum with respect to this cover. It suffices
to uniquely descend & to a G-torsor € over B[t]: the trivialization ¢/ will then also descend because
L€ is an fpqc sheaf by Proposition 3. The usual fpqc descent for G-torsors (see [SP, Lemma 0247])
gives us a unique compatible system of G-torsor descents &, over B[t]/(t"*!) for n = 0. It then
remains to uniquely algebraize this sequence to a G-torsor £ over B[t], and there are several ways
to do this (with even more possible arguments if G is affine). Perhaps the most direct is to apply
the algebraization result [BHL17, Theorem 8.1| to the classifying stack BG. A somewhat more
elementary approach is to first use [BC22, Theorem 2.1.6] to lift & to a G-torsor € over B[t] and to
then inductively build a compatible sequence of isomorphisms

ElBp/ntry = En,
by using loc. cit. and the smoothness of the quasi-affine B[t]-group Autg(£). O

2. THE AFFINE GRASSMANNIAN AS A ZARISKI QUOTIENT

Even though the affine Grassmannian of G is defined as the étale sheafification of the presheaf quotient
LG/LG* (see (6.1)), in Theorem 12 below we show that the Zariski sheafification suffices when G is
reductive and descends to A. For intuition for why the Zariski topology may be enough, we recall
that the inclusion L*G < LG is morally similar to the inclusion P < G of a parabolic subgroup of a
reductive group scheme, and that (G/P)gpqc = (G/P)zar because over any semilocal ring parabolic
subgroups of the same type are conjugate, see [SGA 3111 pew, exposé XX VI, corollaire 5.2].

We will deduce that the Zariski sheafification is enough from the following result about torsors over
IP’}4 that is proved by studying the geometry of the algebraic stack Bung that parametrizes such
torsors, or in [PS24] by a different approach. Various weaker and more technical earlier variants of
this result would suffice as well, for instance, [Fed22, Theorem 6| or [éosQQb7 Proposition 5.3.6]. In
effect, in some sense, we obtain the main results of this article by ascending geometric information
along the uniformization map Grg — Bung.

Theorem 8 ([CFQB, Theorem 3.6]). Let G be a reductive group scheme over a semilocal ring A.
Every G-torsor E over PY is A-sectionwise constant, equivalently, Elg—oy =~ Elg—o}- g

We will use Theorem 8 through its following consequence for reductive group torsors over A[t].

Proposition 9. Let A be a semilocal ring and let G be an A[t]-group scheme that is an extension
of an A[t]-group G that is locally constant (see §1) by a reductive A[t]-group scheme G° such that
Qg((t)) descends to a reductive A-group scheme. No nontrivial G-torsor over A[t] trivializes over
A((t)), that is, we have

Ker (H'(A[t],9) — H'(A(1),9)) = {+};

in particular, GO itself descends to a reductive A-group scheme.

Proof. Let £ be a G-torsor over A[t] that trivializes over A((¢)). By Corollary 5 (b), every e €
E(A((t) gives rise to an A((t))-point of the G¢-torsor £/G° that extends uniquely to an A[t]-point
ee (£/GY)(A[t]). The preimage of € in £ is a GV-torsor that trivializes over A((t)). We may replace
£ by this preimage to reduce to the case when G = G°.

Now that G = G°, suppose first that G descends to a reductive A-group G. Due to the triviality

over A((t)), we may patch & with the trivial G-torsor over PL\{t = 0} (see, for instance, [BC22,

Lemma 2.2.11 (b)]) to build a G-torsor E over P} such that Elg—oy =~ E|gp—0y and Elg—qy is trivial.
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By Theorem 8, then £[;_gy is also trivial, to the effect that, by the infinitesimal lifting of sections
due to smoothness, & is trivial, too, as desired (compare also with [BC22, Proposition 2.1.4]).

To complete the proof, it remains to show that the reductive A-group scheme G for which we
have G 4() =~ Ga(s) also descends G, that is, that already G 4p ~ Gapy. By Corollary 5 (a) and
the classification of reductive group schemes (recalled in [Ces22b, Sections 1.3.1 and 1.3.7]), our
G corresponds to an Aut, (G)-torsor over A[t] that trivializes over A((t)). However, as recalled
in loc. cit., Aut,,(G) is an extension of a locally constant A-group by the reductive A-group G2,
In particular, the case settled in the first two paragraphs of the proof applies and shows that the
Aut, (G)-torsor in question is trivial already over A[t], so that G 4 ~ G, as desired. O

Corollary 10. For a reductive group scheme G over a semilocal ring A, we have

HY(A,G) — HY(A(1),G).

Proof. By twisting (see [Ces22b, equation (1.2.1.1)]), it suffices to show that the map in question
has trivial kernel. This follows from Proposition 9 because, by [BC22, Theorem 2.1.6], we have

HY(A,G) = HY(A[t], G). O

Remark 11. Results of [FG21] suggest that the reductivity assumption may be nonessential for
Corollary 10. It would therefore be interesting to find a more general result of this type.

We are ready for the promised sufficiency of the Zariski sheafification for Grg in the case when
G is (constant) reductive. One may compare this to its earlier variant [Bacl9, Proposition 14]
that restricted to smooth A over a field and deduced the conclusion from the Grothendieck—Serre
conjecture. For us, it is the study of the latter that has indirectly led to the results of this article.

Theorem 12. For a ring A and an A[t]-group scheme G that is an extension of a finite étale
A[t]-group G by a reductive A[t]-group scheme G° that descends to a reductive A-group scheme,
the affine Grassmannian Grg is the Zariski sheafification of the presheaf quotient LG/L*G, that is,

Grg = (LG/L"G)zar.

Proof. By the modular interpretation supplied by Proposition 7, the possibility of varying A, and
the infinitesimal lifting of sections due to smoothness, all we need to show is that for any G-torsor £
over A[t] that trivializes over A((t)), the G-torsor £[_q, trivializes Zariski locally on A. However,
Proposition 9 ensures that 5|{t:0} trivializes even Zariski semilocally on A. O

Remark 13.

(1) We do not know whether the reductivity assumption is critical for Theorem 12, for instance,
whether the Zariski sheafification also suffices for parahoric groups. Certainly, it does in the
case when G is a reductive A[t]-group scheme and P is a smooth, quasi-affine A[t]-group
scheme equipped with an A[t]-morphism P — G that modulo ¢ reduces to an inclusion of a
parabolic subgroup: indeed, by [B622, Theorem 2.1.6] and [Ccs22b, equation (1.3.5.2)], these
assumptions ensure that H'(B[t], P) ¢ H(B][t],G) for any semilocal A-algebra B, so

Ker (H'(B[t],G) — H'(B(t),9)) = {*} = Ker (H'(B[t],P) — H'(B(#),P)) = {*},

to the effect that Proposition 7 and Theorem 12 imply the claimed Grp =~ (LP/LTP)zar.
7



(2) We do not know whether Theorem 12 admits a version for the Witt vector affine Grassmannian.
For a version of Theorem 12 for the Bj;-affine Grassmannian, see [CY24, Theorem 3.1].

3. THE AFFINE GRASSMANNIAN AS A PRESHEAF QUOTIENT

For most reductive group schemes G, even the Zariski sheafification is not needed when forming
the affine Grassmannian Grg: in Theorem 17 below, we show that the latter often agrees already
with the presheaf quotient LG/L*G. This appears to be new already for reductive groups G over
C, although for GL,, it essentially follows from [BCQQ, Theorem 2.1.24|, and is based on the finer
variant of Theorem 8 recorded in Theorem 16 below, which, in addition to the geometry of Bung,
uses Quillen patching for torsors over Ah to progress beyond semilocal A. For this variant, the
relevant condition on G is the following.

Definition 14 ([Ces22a, Definition 8.1]). A semisimple group scheme G over a scheme S is totally
isotropic if in the canonical decomposition of [SGA 311 yew, exposé XXIV, proposition 5.10 (i)]:

G = Hie{An,Bn,...,Gg} R‘eSSi/S(Gi)

of its adjoint quotient G, where i ranges over the types of connected Dynkin diagrams, S; is
a finite étale S-scheme, and G; is an adjoint semisimple S;-group with simple geometric fibers
of type i, Zariski locally on S each G; has a parabolic S;-subgroup that contains no S;-fiber of
G; (equivalently, Zariski locally on S each Resg,/4(G;) contains a nontrivial split torus G,,, s, see

[SGA 3111 new, exposé XX VI, corollaire 6.12] and [Ce822b, end of Section 1.3.4]).

Example 15. Slightly informally, G is totally isotropic if Zariski locally on S it has a parabolic
subgroup containing no factor of the adjoint group G®4. To see this, recall that parabolic subgroups
of G correspond to those of G*, which correspond to collections of parabolic subgroups of G;, one for
each i, see [Ces22b, end of Section 1.3.4]. Certainly, every quasi-split (so also every split) semisimple
group is totally isotropic.

Theorem 16 ([CFQB, Theorem 4.2]). Let G be a totally isotropic reductive group scheme over a
ring A. For a G-torsor E over PY, if El (=} is trivial, then E‘Ah is also trivial. O

Theorem 17. For a ring A and an A[t]-group scheme G that is an extension of a finite étale
A[t]-group G¢* by a reductive A[t]-group scheme G° that descends to a reductive A-group scheme
whose adjoint quotient is totally isotropic, the affine Grassmannian Grg is the presheaf quotient
LG/L*G, that is,

GI‘g = LQ/L+Q.

Proof. As in the proof of Theorem 12, by the modular description of Proposition 7 and the possibility
of varying A, we need to show that no nontrivial G-torsor £ over A[t] trivializes over A((t)). For this,
as in the proof of Proposition 9, Corollary 5 (b) immediately reduces us to the case when G = Gy and
G is the base change of a reductive A-group scheme G whose adjoint quotient is totally isotropic.

To treat this case, we again patch £ with the trivial G-torsor over PL\{t = 0} to build a G-torsor E
over IP}4 such that Eypp ~ € and F ]{t:oo} is trivial. By Theorem 16, this last condition forces E| AL
to be trivial. However, then £ is trivial, too, as desired. ]

We recall from [BCQQ, Theorems 2.1.24 and 3.1.7] that the following global variant of Corollary 10
was known when G is either a pure inner form of GL,, or a torus.
8



Corollary 18. For a reductive group scheme G over a ring A with G® totally isotropic, no nontrivial
G-torsor over A trivializes over A((t)), in other words, we have

Ker(H'(A,G) — HY(A(t),G)) = {*}.

Proof. Proposition 7 and Theorem 17 show that no nontrivial G-torsor over A[t] trivializes over
A((t)). Thus, it suffices to recall from [BC22, Theorem 2.1.6| that

HY(A,G) = HY(A[t], Q). O

Finally, we note that the preceding proof shows that the affine Grassmannian in the totally isotropic
case may even be formed using polynomial loops as follows.

Theorem 19. For a reductive group scheme G over a ring A with G* totally isotropic, its affine
Grassmannian Grg may be formed as the presheaf quotient using the polynomial loops, more pre-
cisely, we have

GI“G = LpolyG/L;)rolyG,

explicitly, we have
G(A(#))/G(A[tD) = G(A{t}[1])/G(Aft})
G((A[t)ieap) [$1)/G (Al ap) = GA[t t71) /G (A1),

le

equivalently,

G(A(#) = G(A[t,t T DG(ALD),
G(A{t}[}]) = G(A[t, £ DG(A{t}),

G((Althsear)[3]) = GA[L T DG(Al 14 eary)-

These equalities seem elementary, but we do not know how to argue them directly even for G = GL,,.
For instance, in terms of Beauville-Laszlo patching used in the proof below, one would need to argue
that every finite projective A[t]-module that is free both over A[t,t~!] and over A[t] is free.

Q

Proof. Since G is affine, its functor of points preserves the Cartesianness of the squares from
Corollary 5 (a). In particular, the map

G(A[t,t™])/G(A[t]) — G(A(1))/G(A[t])

is injective, and so are its counterparts for algebraic or Henselian loops in place of polynomial loops.
Thus, all we need to show is that this map is also surjective or, equivalently, that

GA[t, £ ING(A()/G(A[E]) = {+}.
However, if this double quotient was nontrivial, then we could use patching (for instance, [BCQ2,
Lemma 2.2.11 (b)]) to build a nontrivial G-torsor over Al, that would trivialize both over G, 4 and

also over the formal completion along {t = 0}. We could then extend this G-torsor to all of P! by
patching with the trivial torsor at infinity, and thus obtain a contradiction to Theorem 16. [l

Remark 20. We do not know the extent to which the assumptions of Theorems 17 and 19 are

optimal because they are imposed by our proofs, for instance, we do not know whether the affine

Grassmannian Grg agrees with the presheaf quotient LG/LTG for every (possibly not totally

isotropic) reductive A-group G, although we expect that it does not. On the other hand, since

our proofs are reductions to general results about torsors over P, the reader will have no trouble

adapting them to various close variants of the affine Grassmannian that are sometimes considered
9



in the literature, for instance, to affine Grassmannians constructed using general relative Cartier
divisors in A}y in place of {t = 0}.
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