GENERICALLY TRIVIAL TORSORS UNDER CONSTANT GROUPS

ALEXIS BOUTHIER, KESTUTIS CESNAVICIUS, AND FEDERICO SCAVIA

ABsTRACT. We resolve the Grothendieck—Serre question over an arbitrary base field k: for a smooth
k-group scheme G and a smooth k-variety X, we show that every generically trivial G-torsor over X
trivializes Zariski semilocally on X. This was known when G is reductive or when k is perfect, and
to settle it in general we uncover a wealth of new arithmetic phenomena over imperfect k.

We build our arguments on new purity theorems for torsors under pseudo-complete, pseudo-
proper, and pseudo-finite k-groups, for instance, respectively, under wound unipotent k-groups,
under pseudo-abelian varieties, and under the kernels Ker(i¢) of comparison maps i¢ that relate
pseudo-reductive groups to restrictions of scalars of reductive groups. We then deduce an Auslander—
Buchsbaum type extension theorem for torsors under quasi-reductive k-groups; for instance, we show
that torsors over AZ\{(0,0)} under wound unipotent k-groups extend to torsors over A, in striking
contrast to the case of split unipotent groups. For a quasi-reductive k-group G, this extension
theorem allows us to quickly classify G-torsors over P}, by an argument that already simplifies the
reductive case and to establish Birkhoff, Cartan, and Iwasawa decompositions for G(k((t))).

We combine these new results with deep inputs from recent work on the structure of pseudo-
reductive and quasi-reductive k-groups to show an unramifiedness statement for the Whitehead
group (the unstable Ki-group) of a quasi-reductive k-group, and then use it to argue that, for
a smooth k-group G and a semilocal k-algebra A, every G-torsor over P trivial at {t = 0} is
also trivial at {¢ = 0}, which is known to imply the Grothendieck—Serre conclusion via geometric
arguments. To achieve all this, we develop and heavily use the structure theory of k-group schemes
locally of finite type.
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1. THE GROTHENDIECK—SERRE QUESTION
1.1. The main result

In 1958, Grothendieck [Gro58, pages 26-27, remarques 3°| and Serre [Ser58, page 31, remarque]
predicted that, for an algebraically closed field k, a finite type, smooth k-group scheme G, and
a smooth k-scheme X, every generically trivial G-torsor over X trivializes Zariski locally on X.
In [CTO92], Colliot-Théléne and Ojanguren proved that this is the case, and they also established
several special cases of the analogous prediction over any base field k.

We fully resolve the Grothendieck—Serre question over an arbitrary base field &k, with the main

novelty being in the case of an imperfect k with a nonreductive G. Over a general (imperfect) k,

smooth group schemes have a rich structure, in which wound unipotent groups, pseudo-reductive and

quasi-reductive groups, and pseudo-abelian varieties play major roles, see §2.1 for a review of this

and for these terms. Consequently, the Grothendieck—Serre question over an imperfect & is vastly

more intricate. On the other hand, allowing general G is important: for instance, recent “inverse
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Galois” type results of [Flo23], [BS24] say that essentially any G occurs as the automorphism group
of a projective k-variety Y, and then G-torsors amount to forms of Y.

We work directly with geometrically regular, semilocal k-algebras: in the special case of local rings
of smooth varieties X, this recovers the setting above. Allowing semilocal rings is an additional
complication because Example 8.2.3 rules out direct reductions to the local case.

Theorem 1.1.1 (Theorem 8.1.2). Let k be a field, let R be a geometrically reqular, semilocal k-algebra
with K := Frac(R), and let G be a smooth k-group scheme (more generally, a locally of finite type
k-group scheme such that every k-torus of Gy, lies in (Ggred)g, where G&"°Y < G is the largest smooth
k-subgroup). Every generically trivial G-torsor over R is trivial, that is,

Ker(H'(R,G) » HY(K,G)) = {*}. (1.1.1.1)

The parenthetical condition on G was introduced by Gabber in [Gabl2| for a different purpose,
and it holds if k is perfect or if G is locally of finite type and either is a normal k-subgroup of a
smooth k-group or is nilpotent, see Remark 2.2.13. These cases cover many groups that appear “in
nature,” for instance, Picard group schemes, which are always commutative, even though in general
the parenthetical condition seems delicate to check.

Theorem 1.1.1 is optimal in that its parenthetical condition on G cannot be dropped and its
conclusion (1.1.1.1) cannot be strengthened to injectivity; relatedly, the parenthetical condition
is lost by inner forms, as examples of Florence-Gille [FG21, Examples 7.2, Remark 7.3] show.
In Example 8.2.4, we give a further example of this with G being the automorphism group of a
pseudo-semisimple k-group and illustrate how to use Theorem 1.1.1 to show that this automorphism
group is not a normal k-subgroup of any smooth k-group.

1.1.2. Known cases. Theorem 1.1.1 has so far been established in the following cases.

e When k is perfect by Colliot-Théléne-Ojanguren [CTO92] if k is infinite and by Gabber
(unpublished) if k is finite. These works make additional assumptions on the k-group G
locally of finite type that are, however, not difficult to remove because their k is perfect.

e When G is reductive by Raghunathan [Rag94], [Rag95| if k is infinite and by Gabber
(unpublished) if k is finite. The reductive case has subsequently been taken much further,
culminating in the equal characteristic setting in the works of Fedorov—Panin [FP15] if & is
infinite and of Panin [Pan20] if k is finite, where they showed that (1.1.1.1) also holds if the
reductive G is defined merely over R and need not descend to k. In Examples 8.2.1 and 8.2.2,
we give new examples showing the failure of such a generalization beyond reductive G.

e When G is affine and R =~ k[t] by Florence-Gille in [FG21, Theorem 6.3|.

Theorem 1.1.1 is genuinely new over imperfect k and beyond reductive G, although Gabber also
considered this direction in unpublished work using methods different from ours (private communi-
cation).! In fact, our Theorem 1.1.1 is the culmination of a succession of intermediate results of
independent interest about purity and torsors under smooth (and often quasi-reductive) k-group
schemes overviewed in §§1.2-1.5 below.

We recall that a k-group scheme G is quasi-reductive if it is connected, smooth, affine, and has
no nontrivial split unipotent normal k-subgroups. If k is perfect, then this is nothing else than
being reductive, but it is much more general otherwise: as special cases, quasi-reductive groups

LAs far as we are aware, Gabber’s approach was based on establishing the Birkhoff decomposition Theorem 1.4.1 (a)
for quasi-reductive k-groups G (compare with the approach of [Rag94] in the reductive case) by building a suitable
generalization of a refined Tits system on G(k((¢))) in the sense of Kac—Peterson [KP85].

3



include both smooth, connected, wound unipotent groups, which are abundant over imperfect k
due to the additivity of p-polynomials (example: {z = aP + tyP} < GZ,IFp (t)), and pseudo-reductive
groups (example: Resg 1/p) /5, (1) (GLy, g, (1/9))). Already in the case of pseudo-reductive groups, the
structure theory is vast and complex, although we have the enormous benefit of having the recent
books [CGP15], [CP16], as well as the survey [CP17|, where this theory developed by Tits and Conrad-—
Gabber—Prasad is presented. The classification of pseudo-reductive groups is not the key to the
Grothendieck—Serre problem for their torsors—much like in the reductive case, where the usefulness
of the classification in terms of root data only helps to understand the overall landscape—still, we
apply and refine a significant number of results from these works while arguing Theorem 1.1.1.

We stress that our attention to quasi-reductive groups or, for that matter, to wound unipotent groups,
pseudo-reductive groups, or pseudo-abelian varieties, all of which play important roles in the proof of
Theorem 1.1.1, is not dictated by cravings for baroque generalizations but rather by sober realities of
the situation. Indeed, all of these groups are subquotients of the fundamental filtration describing the
structure of a general k-group scheme locally of finite type (see §2.1.2), so we must handle them to
obtain Theorem 1.1.1. The reason why quasi-reductive groups and not, for instance, pseudo-abelian
varieties form the core case of the Grothendieck—Serre problem is that pseudo-abelian varieties G
over k satisfy more: for them, not only is every generically trivial G-torsor £ over R trivial, but also
trivializations extend uniquely, that is, E(R) =~ E(K) (see Theorem 3.2.2 (ii)), as was observed in
the abelian variety case already by Serre himself [Ser58, p. 22, preuve du lemme 4|. This allows for
stronger dévissage in exact sequences, so we may “peel off” the pseudo-abelian variety part of the
fundamental filtration when proving Theorem 1.1.1. Likewise, since G, has no nontrivial torsors
over affine schemes, we may also “peel off” the split unipotent part. What is left is a quasi-reductive
group, for which further direct reductions of the Grothendieck—Serre problem appear delicate. This
matches experience with the reductive case, in which reducing to semisimple or simply connected
groups is both desirable and remarkably complex: such a reduction was the main goal of [Pan20b].

1.2. Purity and extension theorems for torsors

We build Theorem 1.1.1 on the purity Theorem 1.2.2 for torsors under groups that satisfy the
following generalizations of finiteness or properness.

Definition 1.2.1. A finite type, separated scheme X over a field k is
(i) (Definition 2.2.2) pseudo-finite if X (k®) is finite;

(ii) (Definition 3.1.1) pseudo-proper (resp., pseudo-complete) if it satisfies the valuative criterion
of properness with respect to those discrete valuation rings over k that are geometrically
regular (resp., whose residue field is separable over k).

As an example, a pseudo-proper X is required to satisfy the valuative criterion of properness with
respect to local rings of smooth curves over k, but not necessarily with respect to local rings of
smooth curves over purely inseparable field extensions of k. Restrictions of scalars of proper schemes
along such extensions are always pseudo-proper (granted that they are schemes and not merely
algebraic spaces), but in most cases they are not proper. If k is perfect, then an X is pseudo-finite
(resp., pseudo-proper or pseudo-complete) if and only if it is finite (resp., proper), but in general
only the ‘if” holds and we have strict implications

pseudo-finite = pseudo-proper = pseudo-complete.

We show in Proposition 3.1.5 that a finite type k-group scheme G is pseudo-finite precisely when its

largest connected, smooth k-subgroup is trivial, and that G is pseudo-proper (resp., pseudo-complete)

precisely when its largest connected, smooth, affine k-subgroup is strongly wound unipotent (resp., is
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wound unipotent) in the sense that it is unipotent and has no nontrivial unirational k-subgroups.
For instance, pseudo-abelian varieties in the sense of Totaro [Tot13] are pseudo-proper, and they are
proper precisely when they are abelian varieties.

Pseudo-properness is a robust geometric refinement of the older notion of pseudo-completeness: for
instance, conditionally on resolving singularities, a k-smooth, integral X is pseudo-proper if and only
if for every proper, regular compactification X < X over k with X\ X a divisor, the k-smooth locus
of X is precisely X. As for pseudo-completeness, Borel-Tits [BT78, Proposition 1], Tits [Tit13, cours
1992-1993, section 2.5], and Conrad—Gabber—Prasad [CGP15, Proposition C.1.6] showed that G/P
is pseudo-complete for every pseudo-parabolic k-subgroup P of a connected, smooth, affine k-group
G. In Theorem 3.3.1, we show (via a new argument) that such G/P are even pseudo-proper.

Theorem 1.2.2. Let k be a field, let S be a geometrically reqular k-scheme, let Z < S be a closed
subset of codimension = 2, and let G be a finite type k-group scheme. If either

(i) (Theorem 4.1.3). G is pseudo-finite and commutative; or
(i1) (Theorem 4.2.1). G is pseudo-proper and smooth; or

(i) (Theorem 4.5.1). G is pseudo-complete and smooth, and every z € Z of codimension 2 in
S lies in a geometrically reqular k-subscheme S, < S of codimension > 0 (when k,/k is
separable, we may take S, to be a sufficiently small open of {z});

then pullback induces an equivalence of categories

{G-torsors over S} = {G-torsors over S\Z}.

For instance, Theorem 1.2.2 (iii) says that for a smooth, wound unipotent k-group G, every G-torsor
over A?\{(0,0)} extends uniquely to a G-torsor over A7. This came as a surprise because wound
groups tend to have many nontrivial torsors (see [Ros25, Theorem 1.6]), whereas G, has many
nontrivial torsors over AZ\{(0,0)} none of which extends (which is how one sees, via Cech cohomology,

that A2\{(0,0)} is not affine).

Thus, for the extendability of torsors, wound unipotent groups are much closer to reductive groups
than to split unipotent groups. For instance, reductive group torsors over A7\{(0,0)} extend to
those over Ai, and likewise over all regular schemes of dimension 2, thanks to the Auslander—
Buchsbaum formula, which gives the key case of vector bundles (see [CTS79, Corollary 6.13], or
[Ces22b, Section 1.3.9] for a review). We use the purity Theorem 1.2.2 to generalize this extendability
result to quasi-reductive groups as follows.

Theorem 1.2.3 (Theorem 4.4.1). Let k be a field, let S be a geometrically reqular k-scheme of
dimension 2, let z € S be a point of height 2, and let G be a quasi-reductive k-group. Suppose that
either G is pseudo-reductive or z lies on a geometrically reqular k-subscheme S, < S of codimension
> 0 (when k,/k is separable, we may take S, = z). Pullback induces an equivalence of categories

{G-torsors over S} = {G-torsors over S\z}.

Theorem 1.2.3 directly reduces to vector bundles only in the reductive case: by the Matsushima
theorem [Alp14, Theorems 9.4.1 and 9.7.5], a connected, smooth subgroup G < GL,, is reductive if
and only if the homogeneous space GL,,/G is affine, and this affineness is critical because it implies
that reductions of GL,-torsors to G-torsors over S\z extend uniquely to those over S. Moreover,
Theorem 1.2.3 is specific to dimension 2, as nontrivial vector bundles exist already over the punctured

spectrum of C[[s,t,u]: indeed, the kernel of the map C[s, ¢, u]®? (ot C[s, t,u] is such by the

Auslander—Buchsbaum formula applied to the cokernel. We argue Theorems 1.2.2 and 1.2.3 by
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extensive dévissage both in S and in G that uses the “classical” cases of these theorems (finite groups,
abelian varieties, or reductive groups) to reduce to when S is (roughly) Spec(k[s, t]) and G is wound
unipotent, given by the vanishing of some p-polynomial F', and then by computing with this F’
(woundness amounts to a nonvanishing property of the principal part of F'; which is critical in the
computation). The main inputs to the dévissage in S are the Gabber—Quillen geometric presentation
theorem and the Popescu theorem. The dévissage in G is more intricate, for instance, it requires a
fresh common perspective on the theories of pseudo-reductive groups and pseudo-abelian varieties.
Our point of view on both is that it is fruitful to study them via the comparison map

iG: G — Resk//k(é)
where k//k is the finite, purely inseparable field of definition of the geometric unipotent radical
%)u,E(GE) and G := Gy/%u, 1»(Gr) is the associated reductive k’-group (resp., an abelian variety
over k'). Except perhaps for the pseudo-abelian variety aspect, this is not new: the map ig also
appeared in [CGP15], then to a much larger extent in [CP16| and in [CP17]. What is new is the
affineness of the homogeneous space Resy ;. (G)/ic(G) that we show in Proposition 2.3.5 by building

on ideas from [écle, Lemma 2.1]. As we already saw when discussing the Matsushima theorem
above, affineness of homogeneous spaces is both delicate and key for handling torsors. As for the
kernel Ker(ig), it is unipotent, pseudo-finite, and, in situations to which it is easy to reduce to, also
commutative (see §2.4.2 and §2.5.2), so Theorem 1.2.2 (i) applies to it. This control of the kernel
and the “cokernel” translates into the control of torsors when passing from G to ig(G), then to
Resy i (G), and, finally, to the “classical” case of G, so it enables our dévissage in G.

This sequence of reductions from G to G is also how we argue the aforementioned pseudo-properness
of G/P in Theorem 3.3.1. Another argument for the latter is to note that Theorem 1.2.3 implies
that the affine Grassmannian of a quasi-reductive k-group is ind-pseudo-proper and to then realize
(G/P)ys as a closed subscheme of some such affine Grassmannian. For the sake of focus, we do
not include this alternative approach to Theorem 3.3.1 but we hope to return to it, especially since
ind-pseudo-properness combined with the loop rotation action also gives alternative proofs for the
Birkhoff and Cartan decompositions of Theorem 1.4.1 below.

1.3. Classification of G-torsors over P}g

For a field k, torsors over IP’,l'C under a reductive k-group G form a well-studied subject, with key
classification results of Grothendieck [Gro57|, Harder [Har68|, and Biswas-Nagaraj [BN09|, and
subsequent simplifications of Anschiitz [Ans18] and Wedhorn [Wed24|, among others. We extend this
classification to when G is merely quasi-reductive, and simultaneously quickly reprove the reductive
case by combining Theorem 1.2.3 with results of Alper-Hall-Rydh [AHR25| (or of Wedhorn [Wed24])
about lifting sections over Henselian pairs. Our approach is more robust already in the reductive
case, for instance, we do not need our smooth k-group to be connected or even affine.

Theorem 1.3.1 (Theorem 5.2.4). For a.ﬁeld k and a smooth k-group scheme G whose largest
connected, smooth, affine k-subgroup GS™ ™ < G is quasi-reductive,

HY (P}, G) =~ H'(BG,,,G) and Hyp,, (P;,G) ~ Homy g (G, G)/G(E),

moreover, a G-torsor E over Pllv 1s Zariski locally trivial if and only if it is trivial at a single k-point,
in which case it reduces to the Gy,-torsor 0(1) along some k-homomorphism \: G, j, — G.

The key idea is to view P} as [(A7\{0})/G,,], that is, as the open complement of the stacky origin
BG,, < [A?/G,,], and to then apply Theorem 1.2.3 (in its finer form given in Theorem 4.4.1) to
uniquely extend G-torsors over P} to those over [A?/G,,]. We then classify G-torsors over [AZ/G,,]
for any smooth k-group G by reducing to lifting results from [AHR25]|, see Lemma 5.2.2.
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In contrast, it seems difficult to directly adapt known arguments from the reductive case because
they critically use the reductivity, for instance, the Tannakian approach of Anschiitz [Ans18| rests
on Haboush’s theorem from [Hab75]. Relatedly, the classification Theorem 1.3.1 fails for general
connected, smooth, affine k-groups G, see Remark 5.2.5.

1.4. The Birkhoff, Cartan, and Iwasawa decompositions

Theorem 1.3.1 and its proof method allow us to quickly establish the Birkhoff and the Cartan
decompositions of a quasi-reductive k-group, once more even after dropping the connectedness or the
affineness assumptions. Our argument for the Birkhoff decomposition is new and simpler already in
the reductive case, it is inspired by the Alper—Heinloth—Halpern-Leistner approach to the reductive
case of the Cartan decomposition from [AHHL21].

Theorem 1.4.1. Let k be a field, let G be a k-group scheme G locally of finite type, and let
G < G be the largest connected, smooth, affine k-subgroup (see §2.1.2 (4)).

(a) (Birkhoff decomposition, Theorem 6.1.1). If G 4s quasi-reductive, then
G(k(1) = I eHomy p G, 0)/c) GRIET DG E);

(b) (Cartan decomposition, Theorem 6.2.2). If GS™ 1" s quasi-reductive, then

G(k(t)) = retomy p G, &)/ CERIEDEGE[L);

(¢) (Iwasawa decomposition, Theorem 8.3.1). For each pseudo-parabolic k-subgroup P < G¥™ 1
G(k(t) = P(k(@))G(K[])-

The Iwasawa decomposition results by combining the pseudo-properness of (the connected components
of) G/P with a special case of Theorem 1.1.1. In the Birkhoff and Cartan decompositions, for
a maximal split k-torus S < G, the indexing set Homy. g, (G, G)/G(k) may be identified with
Homy,gp (G, S)/Na(S)(k), see Lemma 5.2.3. Thus, if G' contains no nontrivial split k-tori, then
the Cartan decomposition gives G(k((t))) = G(k[t]), see Corollary 6.2.3. This consequence leads
to simple new proofs of some key results of [CGP15, Appendix CJ: in Corollaries 6.2.4 and 6.2.5,
we show that the maximal split unipotent k-subgroups are precisely the unipotent radicals of the
minimal pseudo-parabolic k-subgroups (a generalization of a result of Borel-Tits from [BT71]), and
that if a quasi-reductive k-group has G, ; as a k-subgroup, then it also has G, ; as a k-subgroup.

To link the Birkhoff decomposition to Theorem 1.3.1 it suffices to note that, by patching, the set of
double cosets G(k[t1])\G(k((#)))/G(k[t]) is identified with the set of isomorphism classes of those G-
torsors over P}, that trivialize over both P{\{t = 0} and {¢ = 0}, so with the set of isomorphism classes
of Zariski locally trivial G-torsors over P;. Similarly, the set G(k[t])\G(k((t)))/G(k[t]) is identified
with the set of isomorphism classes of those G-torsors over the glueing Spec(k[t]) Uspec(r(r)) SPec(k[t])
that trivialize over both copies of Spec(k[t]). After noting that this glueing is the open complement
of {s = ¢ = 0} in the quotient stack [Spec(k[t][s,s']/(ss’ —t))/Gn], where G, acts over k[t] by
scaling s (resp., ') via the character of weight 1 (resp., —1), we apply the Auslander-Buchsbaum
extension Theorem 1.2.3 to extend them to G-torsors over the entire quotient stack. We then classify
G-torsors over the latter by applying results of Wedhorn [Wed24| (or of Alper-Hall-Rydh [AHR25]).

In the case when k is finite but the quasi-reductive group G is defined merely over k((t)), Solleveld

established Cartan decompositions in [Sol18, Theorem 5] using methods from Bruhat-Tits theory.

Although the finiteness of k is very restrictive, he manages to decompose G(k((t))) with respect to

double cosets of more general subgroups than our G(k[t]). It would be very interesting to find a
7



way to adapt our geometric approach to these more general subgroups and to obtain the general
Cartan decompositions without restrictions on k.

1.5. Unramifiedness of the Whitehead group and torsors over IF’}4

Geometric simplifications of our geometrically regular, semilocal k-algebra R, more precisely, the
geometric approach to the Grothendieck—Serre conjecture developed in [CT092]|, [FP15], [Pan20],
[éesQZ], and [CFQB], reduce our goal Theorem 1.1.1 to the study of G-torsors over P}, more precisely,
to arguing that a G-torsor over Pk that is trivial at {¢ = o0} is also trivial at {¢ = 0}. In the toy
case when R is a field, this sectionwise triviality follows from the classification Theorem 1.3.1, so the
problem becomes that of bootstrapping this statement from the residue fields of R. For reductive
groups, this was carried out in [CF23, Theorem 3.5] (see also [PS25]) using the geometry of Bung.
In our setting, a relevant extension of Theorem 1.3.1 is the following theorem.

Theorem 1.5.1 (Theorem 7.2.1). For a field k, a smooth k-group G, a semilocal k-algebra A, and a
G-torsor E over PY, if E| =y is trivial, then so is E|g—oy.

Theorem 1.5.1 is the most technically demanding part of the proof of Theorem 1.1.1 and rests on
some of the deepest aspects of the structure theory of pseudo-reductive and quasi-reductive k-groups
that were recently developed in [CGP15] and [CP16]. For instance, after reducing to a G that is
quasi-semisimple, that is, quasi-reductive and perfect, we critically rely on the theory of the simply
connected cover of a quasi-semisimple k-group supplied by [CP16, Theorem 5.1.3|, as well as on
inputs from [CGP15, Appendix C| about the existence of Levi subgroups of quasi-reductive groups
and about the subgroup G(k)™ < G(k) generated by the “elementary matrices” (by the k-points of
the unipotent radicals of the pseudo-parabolic k-subgroups). Indeed, as in the reductive case, a
crucial step towards Theorem 1.5.1 is the so-called unramifiedness of the Whitehead group

W(k,G):=G(k)/G(k)*
that we argue in a sufficient for our purposes pseudo-split case in Proposition 7.1.6.

The Whitehead group is an invariant of K-theoretic flavor, for instance, the stabilization (the
direct limit over n) of the Whitehead groups W (k, GL,,) is Kj(k). The strategy for bootstrapping
Theorem 1.5.1 from the case of the residue fields of A supplied by Theorem 1.3.1 is to modify E
along a well-chosen A-(finite étale) closed Y < Gy, 4 in order to force E to be residually trivial over
A and to then use the rigidity of G-torsors over P! that results from deformation theory. Thus,
restricting for the sake of illustration to when A is local with residue field k and Y is an A-point
cut out by a 7 := t — y, the relevance of the Whitehead group W (k((7)), G) stems from the fact
that G(k((7))) parametrizes patchings of torsors along the formal completion of {7 = 0} in P}, while
G(k(())* parametrizes “elementary” patchings, which are straightforward to lift to patchings along
the formal completion of {7 = 0} in PL. The problem of controlling the difference between general
patchings and the “elementary” ones becomes the problem of controlling the Whitehead group, and
the unramifiedness of the latter, expressed concretely as

?
G(k(T) = G(k()) " G(k[7]),
becomes the key to the liftability of the relevant patchings to IP’%, so also to the bootstrap argument.

1.6. Fixed base field. Throughout this article, we fix an arbitrary base field k. The main case to
keep in mind is when k is imperfect because that of a perfect k is much simpler.

1.7. Notation and conventions. For a field K, we let K*® (resp., K) denote a choice of its separable

closure (resp., denote the algebraic closure of K*®). We let oy, (resp., p1,) denote the kernel of the

endomorphism of G, k (resp., Gy, k) given by t — tP, where p is the characteristic exponent of

K (so p = 1if char(K) = 0, and else p = char(K)). A K-algebra R is geometrically regular if
8



R®p K’ is a regular Noetherian ring for every finite field extension K’/K; by Popescu’s theorem
[SP, Theorem 07GC]| (a deep result!), this amounts to R being Noetherian and a filtered direct limit
of smooth k-algebras. We let Frac(—) denote the total ring of fractions. For a ring A, we write A{t}
for the Henselization of A[t] along tA[t].

We freely use various widely-known properties of restriction of scalars reviewed in [BLR90, Section 7.6]
and in [CGP15, Section A.5], in particular, its left exactness and commutation with quotients by
faithful actions of smooth groups (which is in essence immediate from [SP, Lemma 04GH], see also
[CGP15, Corollary A.5.4 (3)]). We will also freely use the representability by algebraic spaces of
restrictions of scalars of algebraic spaces along finite flat maps, see [SP, Proposition 05YF]. In general,
analogous representability for schemes needs the quasi-compact opens to all be quasi-projective, but
when dealing with k-group schemes locally of finite type this will not be an issue because the results
that we review in §2.1.1 supply such quasi-projectivity.

We recall from [SGA 3q1, exposé XVII, définition 1.1, propositions 1.2, théoréme 3.5, lemme 3.9]
that a k-group scheme U is unipotent if U is a finite successive extension of closed k-subgroups
of G ak (which may all be taken to be G ak if U is smooth and connected), equivalently, if U is
a closed k-subgroup of the group of upper unitriangular matrices of some GL,, ;. We recall from
[SGA 31, exposé XVII, propositions 2.1, 2.2] that unipotent groups are affine, of finite type, and
stable under closed subgroups, quotients (which are therefore affine, see also Lemma 2.3.4), extensions,
base change, and, by [CGP15, Proposition A.5.12|, [SGA 3 ey, exposé VIIa, proposition 8.3|, and
embedding a large Frobenius kernel into GL,, , also under restrictions of scalars along field extensions.

We do not assume algebraic spaces to be quasi-separated, that is, we use [SP, Definition 025Y]. For a
group fppf sheaf G over a scheme S, as in [Ray70, chapitre VI, définitions VI 1.1], a homogeneous space
(resp., a torsor) under G is an fppf S-sheaf E that fppf locally on S has a section and is equipped

with a right G-action such that the map G xg FE @e)lege), E xg E is an fppf cover (resp., is an
isomorphism), in particular, throughout we work with torsors for the fppf topology. We freely use
well-known representability properties of torsors and of quotients reviewed in [Ces22b, Section 1.2.3].
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notice, this article owes a significant intellectual debt to his ideas. We thank Michel Brion, Brian
Conrad, Christophe Cornut, Roman Fedorov, Philippe Gille, Ning Guo, Mathieu Florence, Joao
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correspondence. We thank the Institute for Advanced Study for ideal conditions while working on
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under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 851146). This project is based upon work supported by the National Science Foundation under
Grant No. DMS-1926686. This project was supported by the Simons Collaboration on Perfection in
Algebra, Geometry, and Topology, award ID MP-SCMPS-00001529-10.

2. THE STRUCTURE OF k-GROUP SCHEMES LOCALLY OF FINITE TYPE

Our main result, Theorem 1.1.1, deals with arbitrary group schemes G locally of finite type over a
field, so we begin by reviewing the structure theory of such G in this chapter. This both prepares
us for subsequent work by reviewing critical notions specific to imperfect fields (wound unipotent,
quasi-reductive, pseudo-(abelian variety), pseudo-parabolic, etc.) and also shows how these notions
arise naturally from an arbitrary G. More precisely, in §2.1, we review a fundamental filtration
of G by k-subgroups whose study is a fruitful way to approach an arbitrary G, and in subsequent
§§2.2-2.6 we present techniques for attacking critical subquotients in this filtration. Most of this
material is essentially a review, even if of facts that deserve to be known more widely, although
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the affineness of the “cokernel” of i & established in Proposition 2.3.5 is a new result that will be
critically important in subsequent chapters.

2.1. The fundamental filtration by k-subgroups and its subquotients

We start by reviewing the structure theory of arbitrary k-group schemes locally of finite type.

2.1.1. k-groups locally of finite type. Throughout §2.1, we fix a k-group scheme G locally of
finite type. We recall from [BLR90, Section 7.1, Lemma 2] that such a G is automatically separated,
and, from [SGA 3| ey, exposé VI, proposition 2.5.2 (¢)|, that a quasi-compact monomorphism of
k-groups locally of finite type is necessarily a closed immersion. Certainly, this fails for non-quasi-

compact monomorphisms, such as for Z, =1 Ggq, 1 with £ of characteristic 0, for which, relatedly,
the k-group algebraic space G, 1/Z;, locally of finite type is not quasi-separated (see also §1.7).

On the other hand, we recall from [Art69, Lemma 4.2] that every quasi-separated k-group algebraic
space is representable by a scheme. This means that we would not gain much by allowing G to
be an algebraic space and, more significantly, that G/H is representable by a k-group scheme
locally of finite type for any closed normal k-subgroup H <1 G (see also §1.7). Moreover, by the
Chevalley theorem [SGA 37,0y, exposé VIp, théoréme 11.17|, these quotient groups G/H are all
affine as soon as so is G. As far as their representability goes, however, much more is true: by
[Ray70, chapitre VI, corollaire 2.6] (with [SGA 37 ey, exposé VI, théoréme 3.2 (i), (iv) (a’); exposé
V, théoréme 4.1 (iv)|), every quasi-separated homogeneous space under G over k is representable by
a k-scheme each of whose quasi-compact opens is quasi-projective. Knowing this quasi-projectivity
is useful when dealing with the representability question of restrictions of scalars, see §1.7.

2.1.2. The fundamental filtration. To study our general G, it is useful to keep in mind its
following (closed) k-subgroups.

. . gred
quotient is quasi-reductive Py quotient is an G < G
~ abelian variety
- =~ //\ \ v v
%us’ k(G) < %)u’ k(G) < Gsm lin < Ghn < (Ggred)(] < GO
—_——
V & —— v v g y
quotient is quotient is a has a filtration
wound unipotent : Guni pseudo-(abelian variety) with quotients
: < Resyy y, (finite)
\% \Y \%
t
(%us, k(G))z (‘@u, k(G) )j G™"
\% \%

quotient is
pseudo-reductive

\% \Y
(%us,k(G))l (%u,k(G))l
\Y \Y

(Zus,k(G))o =1= (Zu1(G))o
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We now define the notation appearing in this diagram, discuss the respective subgroups and their
associated subquotients, and give forward references to more detailed further discussions.

(1)

The identity component G° of G. This is the connected component of G through which
the identity section factors. By [SGA 3j .., exposé VIa, théoréme 2.6.5], this GO is a
clopen, geometrically connected, quasi-compact (so of finite type), normal k-subgroup of G.
The formation of G° commutes with base change to any field extension and with passage to
quotients by connected, normal k-subgroups of G. In particular (or by [SGA 37 ey, exposé VIa,
proposition 5.5.1]), the quotient G/GP is étale, its base change to k* becomes a k*-group
scheme associated to some abstract group.

The smooth part G&°d of G. This is the largest smooth, closed k-subgroup of G,
equivalently, the largest geometrically reduced, closed k-subscheme of G' (hence the notation
(—)gred; see [SCA 31 0y, exposé VI, proposition 1.3.1 (2)] for the equivalence), we review
its construction in §2.2.1 below. The formation of G#°d commutes with base change to any
separable field extension and with passage to quotients by smooth, normal, closed k-subgroups
of G. In §2.2.8 below, we recall that the inclusion (G&*°4)? < G may be refined by further
closed subgroups whose successive subquotients are subschemes of restrictions of scalars of
the form Resy, /k(ﬁnite K'-scheme) for some finite, purely inseparable field extensions k'/k;
this tends to be useful for reducing to smooth groups. One reason why smooth k-groups are
preferable is that, by Grothendieck’s theorem [CGP15, Lemma C.4.4], they always have a
maximal torus defined over & (the same also holds for commutative groups but not in general,
see [SGA 37 hew, exposé XVII, remarque 5.9.1]).

The linear part G'™ of G. This is the smallest connected, affine, normal k-subgroup
G g (@& such that G := (G8™4)?/GM  is an abelian variety.

The Chevalley theorem [BLR90, Section 9.2, Theorem 1| (see also [Ray70, lemme IX.2.7 ii)]
and [Bril7, Proposition 4.1.4 (2) and Theorem 4.3.4]) ensures that this G'™ exists, and, in
the case when k is perfect, that G is smooth and that its formation commutes with base
change to any field extension k/k. In contrast, when k is imperfect, G'™ need not be smooth
(see, for instance, §2.4.1 below) and, by a limit, spreading out, and Galois descent argument,
the base change property only holds for separable field extensions. Nevertheless, regardless of
what k is, G has no nontrivial infinitesimal k-group quotients: indeed, if the intersection

of the kernels of all such quotients was smaller than G, then that would contradict the
definition of Gl™,

It might be more appropriate to call G the connected linear part of G, but we prefer brevity.

The smooth linear part G™ '™ of G. This is the largest connected, smooth, affine
k-subgroup of GG, more succinctly, it is simply

GBS lin = ((Glin)gred>0.

It might be more appropriate to call GS™ 1" the connected smooth linear part of G, but we
again prefer brevity because this seems unlikely to cause confusion. Indeed, a general G' has
no largest smooth, affine k-subgroup, as the example of the constant k-group Q/Z shows.

The formation of GS™!" commutes with base change to any separable field extension and
with passage to quotients by connected, smooth, affine normal k-subgroups of GG. Its stability
under conjugation by k*-points of G ensures that GS™ " is normal in G&"¢d,

11



Thanks to its smoothness, G*™ " is more manageable than G, although the quotient
GP . — (G«gred)O/Gsm7 lin

is no longer an abelian variety, but only a pseudo-abelian variety in the sense of Totaro, that
is, it is smooth, connected, and has no nontrivial smooth, connected, affine k-subgroups. We
review some aspects of pseudo-abelian varieties in §2.4 below, and in Proposition 3.1.5 we show
that they are pseudo-proper (in the sense of Definition 3.1.1). This pseudo-properness is useful
for controlling GP#¥, so also for reducing to connected, smooth, affine k-groups in practice.
The quotient G /GS™ i is identified with (GPaV)li"| so it is pseudo-finite in the sense that
its largest smooth, closed k-subgroup (G'n/Gsm-lin)ered g ¢tale (see Definition 2.2.2).

(5) The unipotent k-radical Z#, (G) of G. This is the largest connected, smooth, unipotent
(see below), normal k-subgroup of the smooth linear part GS™ ! (equivalently, of G&"4),
its existence is immediate from the definition, alternatively, one may refer to [SGA 31 new,
exposé VIg, corollaire 7.1.1]. The formation of %, 1(G) commutes with base change to any
separable field extension and with passage to quotients by connected, smooth, unipotent,
normal k-subgroups of G. The quotient?

Gpred = G5 hn/%u,k(G)

is a pseudo-reductive k-group in the sense that it is connected, smooth, affine, and has a
trivial unipotent k-radical, that is, %, x(GPd) = 1. Pseudo-reductive groups form the most
delicate part of the entire diagram above, and analyzing them is subtle. In §§2.3-2.5 below,
we present a widely useful and somewhat underappreciated framework for handling them,
more precisely, for reducing to reductive groups.

(6) The split unipotent k-radical Z,s (G) of G. This is the largest split unipotent (see
below), normal k-subgroup of the unipotent k-radical %, 1(G) (equivalently, of Gered) it
exists by, for instance, [CGP15, Theorem B.3.4]. Here we recall that a unipotent k-group
is split if it is an iterated extension of the additive group G, ;. It is then also connected
and smooth, equivalently, a connected, smooth, unipotent k-group is split if and only if it
admits a dominant k-morphism from some A}, in which case it is even isomorphic to A} as
a k-scheme, so that every k-group quotient of a split unipotent k-group is split unipotent,
see [Conl5, Corollary 3.9]. In contrast, a unipotent k-group is wound if it has no G, j as a
k-subgroup (see [Ros25, Proposition A.1] for equivalent characterizations of woundness).® By
[CGP15, Theorem B.3.4|, the formation of %y 1(G) commutes with base change to separable
field extensions and with passage to quotients by split unipotent, normal k-subgroups of G.

The quotient %, 1(G)/%us, (G) is wound unipotent, so
qued = G lin/%u& k(G)

is a quasi-reductive k-group in the sense that it is connected, smooth, affine, and has a
trivial split unipotent k-radical, so that % k(Ged) = 1, equivalently, so that its unipotent
k-radical Z,, 1(G) is wound.

(7) The iterated cckp kernels (%, 1(G)); and (Zus k(G));. These are defined inductively
for any smooth, unipotent k-group U as follows: U has a unique largest connected, smooth,
central, p-torsion k-subgroup Uy <1 U, the cckp kernel of U (see [CGP15, Definition B.3.1]),

2We use the notation GP™*? even when k is perfect, for instance, algebraically closed, even though then GP™? is
necessarily reductive. We reserve (—)™¢ for denoting the underlying reduced closed subscheme.
3Some authors require wound unipotent groups to be smooth by definition; our terminology agrees with [BLR90, top
of p. 174], except that we do not require wound groups to be connected.
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and for ¢ > 1 one inductively sets U; := (U/U;_1)1. By loc. cit. and [CGP15, Corollary B.3.3],
the filtration {U;};>0 is exhaustive, its formation commutes with base change to separable
field extensions, and if U is wound (resp., strongly wound, see Definition 2.7.3 below), then so
is every subquotient Uy /U; for i’ = i (see Lemma 2.7.5 below). This last aspect is remarkable
because woundness is most often not inherited by quotients, see §2.7.1 below or [Ros25, before
Definition 1.2, also Proposition 7.7].

The pseudo-parabolic subgroups P, < G*™!", These are certain connected, smooth,
affine k-subgroups that contain %, ,(G) and are associated to k-group homomorphisms
X Gy ), — G, we review them in §2.6.2 below. By [CGP15, Proposition 3.5.2 (1)], the
pseudo-parabolicity of a smooth k-subgroup P < G may be tested after base change to any
separable field extension k’/k, and it is also insensitive to base change to any such extension.
Each pseudo-parabolic Py is the preimage of the corresponding pseudo-parabolic of GPred,

If the induced A: Gy, 1 — GPd ig noncentral, then Py is strictly smaller than GS™!" so

. d . . .
the pseudo-reductive k-group Pf % is “smaller” than GP™4, and is even commutative when

(Py\)gs is minimal among the pseudo-parabolics of Gys. Thus, pseudo-parabolics aid the
study of the most delicate part GP*? of the diagram above by facilitating passage to “smaller’
pseudo-reductive groups, all the way up to commutative pseudo-reductive groups, for which
nonabelian complexities disappear. To aid this further, we prove in Theorem 3.3.1 below that
the homogeneous spaces GS™ ! /Py | in fact, already the (G&°4)?/Py, are all pseudo-proper.

)

The largest unirational k-subgroup G"™ < G. This is the largest unirational (closed)
k-subgroup of G, it exists by [BLR90, bottom of p. 310]. Here we recall that a finite type,
reduced k-scheme X is unirational if there is a dominant rational k-morphism A} --» X
(see [Bor91, Section AG.13.7]), equivalently, if X is integral with a function field that is a
subfield of some purely transcendental extension k(t1,...,t,) over k. For every nonempty
open U of a unirational X and every semilocal k-algebra A with infinite residue fields, we
have U(A) # (J, in particular, if k£ is infinite, then X (k) is Zariski dense in X. Every
unirational X is generically smooth, in particular, our G"™ is smooth and connected, and
every quotient of G™ is again unirational. All maps from Al to abelian varieties are constant,
so G < @™ lin in other words, G™ is affine.

By a recent result of Rosengarten [Ros24, Theorem 1.6], the formation of G™ commutes
with base change to separable field extensions, in particular, G'™ is normal in G&™d. By
considering function fields, we see that the formation of G"™ also commutes with passage
to quotients by split unipotent, normal k-subgroups of GG. For a smooth k-group G we may
keep iteratively forming quotients by (—)™ to eventually reduce to the case when G" = 1.
Bosch-Liitkebohmert—-Raynaud have characterized groups at which this process stops in the
commutative case, more precisely, by [BLR90, Section 10.3, Theorem 1|, for a connected,
smooth, commutative k-group G, the following are equivalent:

(i) i = o

(i) G(S) = G(U) for every dense open immersion U < S of smooth k-schemes;
and, granted that G is a dense open in a proper, regular k-scheme G, these are equivalent to
(iii) G = G, that is, G is precisely the k-smooth locus of G.

By the resolution of singularities conjecture, such a G ought to exist, and in practice one may
sometimes build it, for instance, for groups given by the vanishing of p-polynomials as in
13



§2.7.1 below, compare with [Tot13, Example 9.7]. For a version of the criterion above beyond
commutative groups, see Proposition 3.1.5 (b) below.

(10) The k-subgroup G'* < G generated by the k-tori. This is the k-subgroup of G,
equivalently, of GS™ " ' generated by the k-tori of G. It is connected, smooth, affine, and
unirational over k because k-tori are unirational (see [Bor91, Chapter III, Example 8.13 (2)]),
so that G lies in G™. By [CGP15, Proposition A.2.11] (and (4) above), the formation
of G*' commutes with base change to any separable field extension (and even to any field
extension if G is smooth), G*" is normal in G#°4, and GS™ 1" /Gt is unipotent. If G is
quasi-reductive (resp., pseudo-reductive), then, by normality, so are G*" and G*™. Conversely,
G'*" = 1 if and only if G is unipotent, that is, if and only if GP™d = 1; whereas G"™ = 1
if and only if GS™ ! is strongly wound unipotent (see Definition 2.7.3 below).

The formation of the subgroups (1)—(10), so of the entire diagram above, is functorial in G and
commutes with products and with base change to separable field extensions, so also with restrictions
of scalars along finite separable field extensions. In particular, being a pseudo-abelian variety
(resp., a pseudo-reductive group; resp., a quasi-reductive group; resp., a wound unipotent group)
commutes with and may be tested after such a base change, and if a smooth k-group acts by group
automorphisms on G, or even merely on G4, then this action preserves the k-subgroups G&™d,
(Gered)0 Glin - gsmlin - quni - Gtor ' 1 (Q), Rus, k(G), (R, k(G))i, and (s £(G));. By letting this
action be that of G&"4 on itself by conjugation, we see that these subgroups are normal even in G&"9,

Granted that we discard GO, G, G™ and G'*, the formation of the diagram displayed above
also commutes with restrictions of scalars along arbitrary finite field extensions: for this, the settled
separable case reduces us to purely inseparable extensions, then we note the preservation of G&d
(see §1.7 and §2.2.1), then also of (G&"4)% (also use [CGP15, Proposition A.5.9]), then also of
Gsling 2 1 (Q), Rus,k(G) (see also [CGP15, proof of Proposition 1.1.10]), then also of the pseudo-
parabolic subgroups (see [CGP15, Proposition 2.2.13]), and finally of the cckp filtrations (combine
[CGP15, Proposition A.5.15 (1)] with the previous steps). In particular, pseudo-abelian varieties
(resp., pseudo-reductive groups; resp., quasi-reductive groups; resp., smooth, wound unipotent groups)
are stable under restrictions of scalars, and they are also stable under extensions and under passage
to connected, smooth, normal k-subgroups.

2.1.3. The case when k is perfect. We will be especially interested in the case when the field k
is imperfect: this is when the geometric phenomena are particularly rich and when all the inclusions
of subgroups in the diagram displayed above are in general strict. In contrast, in the case when k is
perfect, the structure theory above simplifies as follows.

(i) We have G'" = Gs™li" and the pseudo-abelian variety GP2" is an abelian variety, see (3). In
fact, the following inclusion is an equality precisely over perfect fields:

{abelian varieties} € {pseudo-abelian varieties}

(to see the strictness of the inclusion over every imperfect field, consider restrictions of scalars
of abelian varieties from purely inseparable extensions and see [CGP15, Example A.5.6]; for
more interesting examples, see [Tot13, Corollaries 6.5 and 7.3|).

1 e have Zys. i = Xy k , both of them descen z(G%) to k, and bot an
(ii) We h R, (GQ) R, (@), both of th d d%u’k(Gk) k d both GP™d and

G4 are reductive, see (5) and (6). In fact, each of the following inclusions is an equality
precisely over perfect fields:

{reductive groups} < {pseudo-reductive groups} < {quasi-reductive groups}
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(for strictness of the inclusions over every imperfect field, again consider restrictions of scalars).
Moreover, over perfect fields every connected, smooth unipotent group is split, that is, the
woundness phenomenon is specific to imperfect fields.

In the case when k is even of characteristic 0, by the Cartier theorem [SGA 37 0y, exposé Vg,
corollaire 1.6.1], every locally of finite type k-group is smooth, that is,

(iii) We have G&™4 = G.

Over a general field k, the Cartier theorem has a useful generalization: by [SGA 37 ,ew, exposé VIIy,
proposition 8.3|, for any k-group scheme G locally of finite type, there is an infinitesimal, normal
k-subgroup a¢ <1 G that may be chosen to be any sufficiently large Frobenius kernel of GG such that
the k-group G/a¢ is smooth.

2.1.4. The derived subgroup Z(G). In addition to the subgroups presented in §2.1.2, every
smooth k-group scheme G has a derived subgroup Z(G) defined as the smallest closed k-subgroup

containing the image of the commutator map G x; G (9, 1) = ghg™h ™" G, see [SGA 31 ey, exposé Vg,
définition 7.2.2 b)]. By [SGA 31 pew, exposé VIg, proposition 7.1, corollaire 7.3|, this Z(G) exists, is
smooth and normal in G, its formation commutes with base change to arbitrary field extensions,
G/2(G) is commutative, and G is commutative if and only if Z(G) = 1. By [SGA 37 jey, exposé VI,
corollaire 7.2.1, proposition 7.8, corollaire 7.10], if G is of finite type, then Z(G) is the image (as

fpqc sheaves) of the commutator map above and Z(G)(k) is the derived subgroup of G(k), and if G
is connected, then so is 2(G).

If a smooth k-group G is affine (resp., pseudo-reductive; resp., quasi-reductive; resp., unipotent;
resp., wound unipotent; resp., unirational), then so is 2(G). If G = G'**, then [CGP15, Propo-
sitions A.2.8, A.2.10] ensure that G/2(G) is a torus (it is connected, smooth, commutative, and
generated by its k-tori) that is a quotient of any maximal k-torus of G.

A smooth k-group scheme G is perfect if 2(G) = G. By §2.1.2 and [CGP15, Proposition A.2.11], a
connected, smooth, perfect k-group G is generated by tori, that is, G = G**. A pseudo-semisimple
(resp., quasi-semisimple) k-group is a pseudo-reductive (resp., quasi-reductive) k-group that is perfect,
so a reductive k-group is quasi-semisimple (resp., pseudo-semisimple) if and only if it is semisimple.

2.2. Passage to smooth groups and pseudo-finiteness

Other than the identity component G discussed in §2.1.2 (1), the first piece of the fundamental
filtration of G is the largest smooth, closed k-subgroup G#d. We review the construction of G&"d

and recall a useful technique for passing from G to G&*°d.

2.2.1. The underlying geometrically reduced subspace X2 = X. Each locally of finite type

k-algebraic space X has the largest geometrically reduced, closed k-subspace
Xgred c Xred c X

defined as follows. One defines X&"°d by Galois descent by declaring (X&*°%),. to be the schematic
(or merely Zariski) closure of X (k%) in Xjs, see [SP, Lemmas 082X and 0830]. By loc. cit., the
definition is compatible with pullback under any étale k-morphism X’ — X, so, by considering an
atlas, the claim that this X&"d is the largest geometrically reduced, closed subspace reduces to the
scheme case that was settled in [CGP15, Lemma C.4.1]. Of course, if k is perfect, then we simply
have Xered — xred Lyt this fails for imperfect k: for instance, if X = Spec(k’) for a nontrivial,
finite, purely inseparable extension k’/k, then X&"°d = ¢

By definition, X&"4 is functorial in X and commutes with pullback along any smooth k-morphism
X’ — X. Moreover, as in loc. cit., X8 (k') = X (k') for every separable field extension k’/k and
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the formation of X#*°d commutes with products and with base change to any such &’ (in particular,
if X(k') # ¢, then already X (k®) # &). Therefore, the inclusion

xeed(g) < X(S)

is an equality for every integral k-algebraic space S whose function field is a separable extension of k
(the pullback of X&"*d under any S-point of X is a closed subspace of S that contains the generic
point), see [SP, Definition 0ENE].

The compatibility with products and the functoriality of X&*°d imply that if X is a k-group, then
Xered ig its closed k-subgroup, the largest smooth (see §2.1.2 (2)), closed k-subgroup of X. Similarly,
if X is a k-group and E is an X-torsor over k, then X&' is either empty or a X&*®d-torsor whose
induced X-torsor is E: in fact, X&°d =« ¥ exactly when E trivializes over some separable extension
of k, equivalently, over k°.

Definition 2.2.2. A k-algebraic space X is

o pseudo-(locally quasi-finite) if it is locally of finite type and X&d is locally quasi-finite (equiv-

alently, étale; equivalently, X has no positive-dimensional k-smooth subspaces; equivalently,
each quasi-compact open subscheme of X has only finitely many k°-points);

e pseudo-finite if it is separated, of finite type, and X84 is finite (equivalently, finite étale;
equivalently, X has only finitely many k®-points).

Being pseudo-finite is what occurs in practice, although being pseudo-(locally quasi-finite) is useful
for making some statements sharp, without unnecessary hypotheses. In §2.3.1, §2.4.2, and 2.5.2 below,
we will see many pseudo-finite, positive-dimensional k-groups relevant for the study of pseudo-abelian
varieties and pseudo-reductive groups.

Remark 2.2.3. By §2.2.1, being pseudo-(locally quasi-finite) (resp., pseudo-finite) is stable under
and may be tested after base change to any separable field extension k'/k. Moreover, if X is
pseudo-(locally quasi-finite), then X84 is a separated (étale) k-scheme, see [SP, Lemma 06LZ].

Remark 2.2.4. Pseudo-(locally quasi-finite) (resp., pseudo-finite) k-group schemes are stable under
passing to k-subgroups and extensions, but are not stable under quotients.

Remark 2.2.5. For perfect k, an X is pseudo-(locally quasi-finite) (resp., pseudo-finite) if and
only if it is locally quasi-finite (resp., finite). Over imperfect k, however, pseudo-finite yet positive-
dimensional k-schemes are pervasive, as the following examples show.

Example 2.2.6. If X is pseudo-finite, then so is every k-subspace of a quasi-finite, separated
X-algebraic space X’. For instance, every finite k-scheme is pseudo-finite and, more interestingly, for
every finite extension k’/k and every finite (or merely pseudo-finite) k’-scheme X', every subspace of
X := Resp 1. X " is pseudo-finite. When £’/k is not separable, such X may have an arbitrarily large
dimension, as happens already with X’ = a,.

Example 2.2.7. For a k-group scheme G locally of finite type, the quotient G/G&™¢ is pseudo-
(locally quasi-finite) (resp., even pseudo-finite if G is of finite type): indeed, its only k*-point is
the identity section. Similarly, for a G-torsor E over k, the quotient E/G#*d is pseudo-(locally
quasi-finite) and (E/G&*e)gd » &5 if and only if F trivializes over k*.

To study pseudo-finite groups effectively, and also to pass from G to G&*°d for general k-group
schemes of finite type, we use the following method of going deeper into G until we reach G&d,
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2.2.8. Filtration by stabilizers (compare with [GGMBI14, section 5.4]). As we will see, any
k-group scheme G of finite type has a filtration by k-subgroups

Gl =g < gD <. < GO =@ (so that GBd = (GW)ged for all 1)

such that each G acts on the affine k-scheme Resy, /1 (Q;) for some finite, purely inseparable field
extension k;/k and k;-group quotient @Q; := G,(;i) / (G,Ei_))red, and GU*Y) is the stabilizer of the unique
k-point of Resy, /1,(Q;). Indeed, inductively on i,

yred < G\ .. so that

~= kperf>

e we choose k; to be a field of definition of the kP°f-subgroup (G(i)

. i . k;?erf A
(G,(C?)gred is a k;-subgroup of Ggi) that descends (G,(;gerf)md and (G,(;i))gred ~ (G,(;))red;

e we set Q; 1= G,(j_)/(G,(f_))gred, so that @; is k;-finite, connected, and Q;(k;) and Q;(k{) are

T K3

both singletons (see Example 2.2.7);

restricting to G < Reski/k(G,gi)), also to a G()-action on Resy, /1(Q:);

e we note that the G,(;L_)—action on @; gives rise to a Reski/k(G,gi))—action on Resy, /1(Qi), so, by

e we let GUTY < GO be the stabilizer of the unique k-point of Reski/k(Qi);

e we note that GU*Y does not depend on the choice of k; because enlarging the latter has the
effect of G(-equivariantly embedding Resy, /1(Qi) into a larger such restriction of scalars.

If Q; is not reduced, then GU*+Y < G: indeed, the counit (Resy, /k(—))k; — (=) of the adjunction
is functorial and commutes with products, so (Resy, /1 (Q:))r, — Qi is G,(c?—equivariant, to the effect

that if we had G0+Y = GO then G,(;;_) could not act transitively on Q;. Moreover, G+1) contains
(G))gred ~ Gered hecause (Resy, /1 (Q:))(k°) is a singleton and G (k*) is schematically dense in
(G)ered | By Noetherian induction, since G is of finite type and we have G0 < G whenever
Geed < GO the filtration eventually stabilizes at G&"d.

By construction, the filtration (2.2.8) is functorial in G and commutes with products and with base
change along separable field extensions, so also with restriction of scalars along finite separable field
extensions. In particular, if a smooth k-group acts by k-group automorphisms on G, then this action
preserves the k-subgroups G,

Lemma 2.2.9. In §2.2.8, for every k-group G of finite type, the G(i)/G(il) for i’ =1 are quasi-affine.
In particular, a pseudo-finite k-group scheme is affine.

Proof. Each G®/GU+Y) is quasi-affine: by [GGMB14, remarques 2.1.4 (i)], it is a subscheme of the
affine k-scheme Resy, /1,(Q;). Thus, by induction and descent for quasi-affine maps [SP, Lemma 02L7],
each G /G(i/) is quasi-affine. If G is pseudo-finite, then G&*°4 is finite étale, so it follows that G is
quasi-affine. Then [SGA 31 ey, exposé Vg, proposition 11.11] shows that G is affine. O

Remark 2.2.10. In [Tot13, Lemma 6.3|, assuming that k is imperfect, Totaro constructs pseudo-
finite, commutative extensions of connected, smooth, commutative, p-torsion k-groups U by «.
Lemma 2.2.9 implies that such extensions do not exist if instead, for instance, U is a nonzero abelian
variety, although this also follows already from [Gro62, proposition 3.1].

Lemma 2.2.11. Let G be a k-group scheme of finite type and let X be a quasi-affine k-scheme of

finite type equipped with a G-action.
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(a) Let G, < G be the schematic stabilizer of an x € X (k). If every k-torus of G stabilizes x
(that is, lies in (G.)z), then the orbit G- x = G /G, is closed in X.

(b) If every k-torus of G, lies in (G&°)y- (see Remark 2.2.13), then each GO /qt+1) Resy, /1 (Q:)
in §2.2.8 is a closed immersion, the G(i)/G(i/) for i’ =i are all affine, and G/G& is affine.

Proof. The claim (b) follows from (a) and the affineness of Resy, /;(Q;), so we focus on (a). In the
latter, the orbit G - x is a subscheme of X, see, for instance, [GGMBI14, remarques 2.1.4 (i)]. To
show that it is closed, we proceed similarly to [GGMB14, lemme 2.4.7] that treated the case when G
is affine. We first replace k by k and G by G™ to reduce to when k = k and G is smooth. We then
consider finitely many translates of G° - 2 to reduce further to when G is also connected. Moreover,
we replace X by the schematic closure of GG - & to assume that G - z is schematically dense in X.

By the anti-Chevalley theorem [CGP15, Theorem A.3.9], then G is an extension of a smooth affine
k-group G by a semi-abelian variety A. By assumption, the toral part T of A fixes z, so, since it
is also normal in G, it fixes every k-point of G - x. Since k-points of G - x are schematically dense
in X, we find that T" acts trivially on X, in other words, the action of G factors through G/T.
Moreover, by [CGP15, Proposition C.4.5 (2)], the maximal k-tori of G/T are precisely the images
of the maximal tori of G. Thus, by replacing G by G/T', we retain our assumption about G, and
hence reduce to the case when A is an abelian variety. However, X is quasi-affine and A is normal
in G, so we likewise find that A fixes every k-point of G - . It then acts trivially on X, so we may
replace G by G* to reduce to when G is affine.

In the affine case, the k-subgroup G** < G generated by the k-tori of G is connected, smooth, and
normal with G/G*" unipotent (see [CGP15, Proposition A.2.11]). By our assumption on G, and
the argument with k-points as above, G*" acts trivially on X. We may therefore pass to G/G*" to
reduce to the case when G is unipotent. Then, however, the desired closedness of G - x < X is the
Rosenlicht lemma [SGA 3y, exposé XVII, lemme 5.7.3]. O

Remark 2.2.12. Lemma 2.2.11 fails if G is merely locally of finite type (and not quasi-compact).
For instance, for any a € k*, the constant k-group Z acts on A}C by (n,t) — a™t, where t is the
coordinate of A}C; if a is not a root of unity, then the orbit of the k-point ¢ = 1 is not closed in A,lg.

Remark 2.2.13. By [GGMBI4, lemme 2.4.5], [SGA 3111 new, exposé¢ XVII, théoréme 7.3.1] (applied
to (Gm)0), and [SGA 3y, exposé XII, proposition 1.12], for a k-group scheme G locally of finite
type, every k-torus of Gy lies in (G&°)r, that is, (G7)'" < (G&°d), in each of the following cases:

(i) if GY is a normal subgroup of smooth k-group scheme (in particular, if G is smooth); or

(i) if G° is nilpotent (for instance, either commutative or unipotent, see [SGA 31 neyw, €x-
posé XVII, corollaire 3.7]).

For a k-group scheme locally of finite type, the condition that every k-torus of G, lies in (Ggred)E is
stable under base change to any field extension k'/k and may be tested after base change to any
separable field extension (see §2.1.2 (10) and §2.2.1). In general, it is not inherited by inner forms, see
[FG21, Example 7.2 (b) and Remark 7.3 (b)|. As an example, if a pseudo-finite k-group G satisfies
this condition, then §2.1.2 (10) implies that (G%)red is unipotent (compare with Lemma 2.2.9 above).

2.3. The comparison map i, &

We approach pseudo-reductive groups (resp., and pseudo-abelian varieties to some extent) via a
comparison map i, & that relates them to restrictions of scalars of reductive groups (resp., of

abelian varieties). We now analyze this map in an abstract setting and establish Propositions 2.3.3
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and 2.3.5 that allow us to control its kernel and “cokernel.” Although the map i, & is known to
play a prominent role in the theory of pseudo-reductive groups, even in this case the affineness of its
“cokernel” established in Proposition 2.3.5 seems new.

2.3.1. The comparison map i, z and its kernel. Let G be a k-group scheme locally of finite

type, let k’'/k be a finite field extension, and let q: Gy — G be a k’-group scheme quotient. By the
universal property, q corresponds to a k-group scheme homomorphism

’iG’aZ G — Resk//k(é)
(see §1.7 and §2.1.1). The corresponding A’-group homomorphism Ker(i, &) — G is trivial, so
Ker(ig @) < Ker(q). Even if the choice of k" appears to be noncanonical, this does not matter:
enlarging k' and using the corresponding base change of G amounts to postcomposing i @ With a
closed immersion, see [BLR90, bottom of p. 197].

To analyze the kernel of i, & in Proposition 2.3.3, we use the following lemma.

Lemma 2.3.2. For a finite, purely inseparable field extension k'/k and a k'-group scheme G locally
of finite type, the counit map (Resy 1 (G))w — G has unipotent kernel that is split if G is smooth.

Proof. The counit map is given by the functoriality of the restriction of scalars relative to the
diagonal map k' ®x k' — k’. Since k’'/k is purely inseparable, this diagonal map is simply the
quotient of a local Artinian k’-algebra A := k’ ®; k’ by its maximal ideal m. Thus, by filtering by
powers of m and using §1.7 and formal smoothness, it suffices to show that the kernel of the map
Res(4/mnt+1) /1 (G Ajmnt+1) — Res(a/mn) e (Gaymn) is a power of G, . This, however, follows from
deformation theory [SGA 37 e, exposé III, théoréme 0.1.8]. O

Proposition 2.3.3. In the setting of §2.3.1,
(a) If Ker(q) is quasi-compact (e.qg., if so is G), then both igg and Ker(iG’@) are quasi-compact;
(b) If Ker(q)? (resp., Ker(q)) is unipotent, then so is Ker(iGﬁ)O (resp., Ker(ig 7));

(c) If Ker(q)? is unipotent (resp., and Ker(q) is quasi-compact) and G&° has no nontrivial,
connected, smooth, unipotent, normal k-subgroups, then Ker(i., &) is pseudo-(locally quasi-
finite) (resp., pseudo-finite).

Proof.

(a) By Lemma 2.3.2, the kernels of the horizontal maps in the commutative square

(Resk//k(Gk/))k/ —d Gk’

| §

(Resp/x(G))y —» G

are unipotent, so these maps are affine. The quasi-compactness of Ker(q) then ensures that
the vertical maps are quasi-compact. Thus, since G — Res;, /k(Gk/) is a closed immersion by
[BLR90, bottom of p. 197], we conclude that iG, @ Is quasi-compact. By base change, then
Ker(iaé) is also quasi-compact.

(b) It suffices to recall that Ker(i, z)i < Ker(q) and to review §1.7.
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(c) Since Ker(ig ) is normal in G and of formation compatible with base change to separable
extensions, G(k®)-conjugation preserves Ker(iaé)gred. Thus, the latter is normal in G&"4
(see §2.1.2 (2)). Our assumption on G#*°! and the unipotence of Ker(z’aé)o given by (b)
now ensure that (Ker(iG’é)gmd)o is trivial, to the effect that Ker(ig ) is pseudo-(locally
quasi-finite). If Ker(q) is quasi-compact, then, by (a), so is Ker(ig ), so that it is even
pseudo-finite (see Definition 2.2.2). O

To analyze the “cokernel” of i, & in Proposition 2.3.5, we use the following lemma.

Lemma 2.3.4. Let G be a k-group scheme locally of finite type with G° an extension of a solvable,
affine k-group by an infinitesimal k-group. For any closed k-subgroup H < G, the connected
components of G/H are clopen and affine, in particular, if G is of finite type, then G/H s affine.

Proof. The key aspect is the affineness: indeed, G/H is a separated k-scheme locally of finite type
by the results reviewed in §2.1.1, and so its connected components are clopen by [SP, Lemmas 04MF
and 04ME]. By the end of §2.1.3, for a sufficiently large Frobenius kernel ag < G, both G := G/ag

and H := H/(ag n H) are smooth k-groups and, by our assumption, G is solvable. Moreover,
the flat, separated surjection G/H — G/H is finite: indeed, its base change along itself admits a
surjection from ag xp G/H, so |SP, Lemmas 0AH6 and 02LS] give the claimed finiteness. Thus, it
suffices to show that every connected component of G/H is affine. In effect, we may assume that G°
is solvable, affine, and that G and H are smooth, so that so is G/H.

The map G/H® — G/H is an H/H"-torsor, so, by §2.1.2 (1) and [SGA 3j1, exposé X, corollaire 5.14],
the connected components of G/HY are finite étale over those of G/H. By [SP, Lemma 01YQ)], it
then suffices to argue that every connected component of G/H" is affine, that is, we may assume
that H is connected. Once H is connected, the connected components of G/H are precisely the
images of the connected components of G. Moreover, each component of G becomes a finite
union of G'-torsors after base change to some finite separable extension of k. Thus, effectivity of
descent for affine schemes [SP, Lemma 0245] allows us to replace G by G° to reduce to the case
when G is also connected. Once both G and H are smooth and connected, since we may base
change to k (see [SP, Lemma 02L5]), the affineness is a special case of [Con15, Example 5.5] and
[Bor91, Theorem 15.11] (or [Bri21, Theorem 1]). O

Proposition 2.3.5. In the setting of §2.3.1, suppose that k' /k is purely inseparable and that Ker(q)
18 quasi-compact. Then

Qq.c = Respr(G)/ig 5(G)

is an affine scheme, and if G is commutative, then Qq @ 18 a commutative, unipotent k-group.

Proof. When q is an isomorphism, a similar result was established over any base in [éele, Lemma 2.1],
so we will build on its method. Since i, & is quasi-compact by Proposition 2.3.3 (a), arguments as
in the proof of Lemma 2.3.4 ensure that Q. & is a separated k-scheme locally of finite type.

By descent for affineness [SP, Lemma 02L5] and §1.7, it is enough to show that (Qg 7)i is affine

(resp., and is unipotent when G is commutative). Over k' we have the counit map

J— J— h J— J—
(Resk//k(G))k/ = Resk’®kk’/1f’(Gk’®kk’) d Resk//k/(G) = G,
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as well as a diagram of k’-group homomorphisms

1— Ker(q) Gk‘/ 4

Ji J{(igc)k’

1—— Ker(h) —_— (ReSk//k(é))k/ L) G—— 1,

G 1

whose commutativity follows from the case when ¢ is the identity. We conclude that A is surjective
and, by a diagram chase, that

Ker(h)/i(Ker(q)) = (Qg @)k (2.3.5.1)
Moreover, Ker(h) is unipotent by Lemma 2.3.2 and ¢ inherits quasi-compactness from i, 5. At this
point, by (2.3.5.1) and §1.7, Lemma 2.3.4 gives the claim. O

2.4. From pseudo-abelian varieties to abelian varieties

Pseudo-abelian varieties were introduced by Totaro in [Tot13]. In this section, we review the aspects
of their theory relevant for us, stressing the comparison map ig of §2.3 because this highlights the
analogy with the theory of pseudo-reductive groups.

2.4.1. Pseudo-abelian varieties. A pseudo-abelian variety is a smooth, connected k-group scheme
G that has no nontrivial connected, smooth, affine, normal k-subgroups, see [Tot13, Definition 0.1].
By |Tot13, Theorem 2.1], a pseudo-abelian variety G is automatically commutative, in particular,
the normality assumption in the definition could be dropped: G has no nontrivial connected, smooth,
affine k-subgroup, in other words, G™ ! — 1. In addition, by loc. cit., a pseudo-abelian variety G
is in a unique way an extension

0—-G® -G —G™P 0 (2.4.1.1)

of a connected, smooth, commutative, unipotent k-group G"™P by an abelian variety G*. In
particular, G is proper if and only if it is an abelian variety.

On the other hand, §2.1.2 gives us an extension in the other order:

0—G" -G -G —0. (2.4.1.2)

The deﬁr_lition and the commutativity of pseudo-abelian varieties imply that the connected, affine k-
group G has no positive-dimensional smooth k-subgroups, so GI™ is pseudo-finite, see §2.2.1. Since
there are no nontrivial homomorphisms from a torus to a unipotent group, nor to an abelian variety,
(2.4.1.1) and §2.1.2 imply that the connected, smooth, affine, commutative k-group (G'm)p)red is
unipotent and is identified with (Gy)1m.

Both extensions (2.4.1.1) and (2.4.1.2) help in practice, and it is useful to keep in mind the relationship
between them. Namely, the map of abelian varieties

Gab — G

is an isogeny: it is surjective because the affine group G™P cannot surject on a nonzero abelian
variety, and its kernel G n G is finite because it is both proper and affine. Similarly,

Glin _y Gunip

is an isogeny: it is surjective because the abelian variety G®¥ cannot surject on a positive-dimensional
affine group, and its kernel G® ~ G is finite. The order of the common kernel G** ~ G, and
hence also the common degree, of these two isogenies is a power of the characteristic exponent p of k
because the component group of (G*® n G!"); inherits unipotence from ((G")z)™d, see §1.7.
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By [Tot13, Corollary 6.5], if k is imperfect of characteristic p, then every connected, smooth,
commutative, unipotent k-group of exponent p (such as G,) occurs as GUP for some pseudo-abelian
variety G over k. In particular, the isogenies G —» G"P exhibit many pseudo-finite, commutative
covers of split unipotent k-groups, see also [Tot13, Lemma 6.3].

2.4.2. The comparison map ig for pseudo-abelian varieties. Let G be a pseudo-abelian
variety over k. Since (—)*™!" and (—)" agree over perfect fields (see §2.1.3 (i)), by [ECA 1V,
corollaire 4.8.11], there is the smallest finite, purely inseparable field extension &’/k such that (G)"™
is smooth, in other words, such that it is a k’-descent of the smooth, unipotent k-subgroup (GE)hn.
Similarly to (2.4.1.2), we set G := (Gp)® = G /(Gj)"™ and consider the resulting comparison map

iGi G — Resk//k(G),

whose formation commutes with base change to any separable extension of k. The image i¢(G) is

smooth and connected, so it is a pseudo-abelian subvariety of the pseudo-abelian variety Res, /k(G),
see the final part of §2.1.2. The &’ and G remain the same for i(G) and the map ii(@) 1s the inclusion

ic(G) © Resy 1, (G), compare with the proof of [CGP15, Lemma 9.2.1]. Propositions 2.3.3 and 2.3.5
ensure that Ker(ig) is pseudo-finite and unipotent, while Coker(i) is connected, smooth, and
unipotent. With this control of the (co)kernel, it is fruitful to study the pseudo-abelian variety G by

reducing to the pseudo-abelian variety i¢(G) and then to the abelian variety G.

2.5. From quasi-reductive groups to reductive groups

Pseudo-reductive groups were introduced by Tits [Tit13, cours 1991-1992] and have been studied
extensively by him and, more recently, by Conrad-Gabber-Prasad [CGP15] and Conrad-Prasad
[CP16], [CP17]. We now frame the pseudo-reductive theory around the comparison map of §2.3 and
review some aspects needed for our later arguments.

2.5.1. Notation. Throughout this section, we fix a connected, smooth, affine k-group G.

2.5.2. The comparison map ig. We may choose the smallest finite, purely inseparable field
extension k'/k such that %, 1v(Gy) is a k'-descent of Z_ +(G%) (see [EGA 1V3, corollaire 4.8.11]

for the existence of the smallest such k'), in other words, such that the &’-group G := (G} )P*? of
((5)) is reductive (recall from §2.1.3 (ii) that the unipotent radical over a perfect field descends the
geometric unipotent radical). We say that G is simply connected (resp., adjoint) if G is semisimple
and simply connected (resp., adjoint). In general, we consider the resulting comparison map

iGZ G — Resk//k(G),

whose formation commutes with base change to any separable extension of k. Proposition 2.3.3
ensures that Ker(ig) is unipotent and that it is pseudo-finite if and only if G is pseudo-reductive.
In fact, for pseudo-reductive G, as we will review in §2.5.3 below, Ker(ig) is a central extension of
commutative, pseudo-finite, unipotent k-groups (and is even itself commutative if char(k) # 2). Even
if G is pseudo-reductive, Ker(ig) need not be connected or smooth, see [CGP15, Example 1.6.3,
Remark 9.1.11, Theorem 9.8.1 (3)—(4)].

By [CGP15, Lemma 9.2.1], the image ig(G) is pseudo-reductive, the k" and G remain the same

for ig(G), and the map i;, () is the inclusion ig(G) < Resy,(G). By Proposition 2.3.5, the
homogeneous space Resy 1, (G)/ic(G) is connected, smooth, and affine.

With this control of the kernel and the “cokernel,” it is often fruitful to approach the study of G' by
first reducing to the pseudo-reductive group ig(G) and then to the reductive group G.
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2.5.3. Passage to pseudo-reductive groups of minimal type. Suppose now that G is
pseudo-reductive. By [CGP15, Proposition 9.4.2 (i)], for a maximal k-torus T' < G (which ex-
ists, see §2.1.2 (2)), the subgroup

¢c = Ker(ig) n Zg(T) < Ker(ig)

is central in G and does not depend on the choice of T'. Of course, % is also pseudo-finite and
unipotent because it inherits these properties from Ker(ig). By [CGP15, Proposition 9.4.2 (i)—(ii)]
and [CGP15, Corollary 9.4.3], the quotient ¢ := G/%¢ is pseudo-reductive with ¢ = 1, and the
map ig is the composition of iy and the quotient G — 4. A pseudo-reductive k-group G is

e of minimal type if 65 =1 (see [CGP15, Definition 9.4.4]), equivalently, if G ~ ¢;

e ultraminimal if ig is injective, equivalently, if G is of minimal type and Ggs has a reduced
root system (see [CGP15, Theorem 9.4.7]).

For instance, by the above, i¢(G) is an ultraminimal pseudo-reductive k-group. Pseudo-reductive
groups of minimal type that are not ultraminimal exist only in characteristic 2, and they cause by
far the most complications in the general theory; for instance, they are the raison d’étre for the book
[CP16]. In practice, since ¢ is central, it is often straightforward to reduce to the minimal type
case, but passing to ultraminimal groups tends to be more delicate.

One may control Ker(ig) even if G is of minimal type but not ultraminimal. Namely, in this case, by
[CGP15, Theorem 9.4.7|, the pseudo-finite, unipotent k-group Ker(ig) is connected, commutative,
but not central, and if G contains a split maximal k-torus T', then Ker(ig) is the direct product of
its intersections with the root groups of the multipliable roots of T

2.6. The control of pseudo-parabolic subgroups

The study of connected, smooth, affine k-groups benefits from the theory of pseudo-parabolic
subgroups introduced by Borel-Tits in [BT78|, as these are means for passing to smaller pseudo-
reductive groups, see §2.1.2 (8). We review some aspects of the pseudo-parabolic subgroup theory
for use in subsequent chapters.

2.6.1. Subgroups associated to G,,-actions. Let A be a ring and let G be a finitely presented,
affine A-group scheme equipped with a left action of G,,, 4 over A:

)\:Gm7AXG—>G.

A common case is when the action is conjugation composed with an A-homomorphism G,, 4 — G
(often also denoted A for simplicity). By [CGP15, Remark 2.1.11 (with Lemma 2.1.5)|, the G, a-
action gives rise to the finitely presented, closed A-subgroups:

(1) Pg(M\) < G, the attractor subgroup, i.e., the subfunctor parametrizing those A-algebra valued
points g of G for which the action map ¢ — t - g extends to a map A — G

(2) Ug(N) < Pg(A), the subfunctor parametrizing those such g for which the resulting map
Al — G sends the zero section of Al to the identity section of G;

(3) Za(\) < Pg(A), the subfunctor parametrizing the A-stable sections of G.

The formation of Pg(\), Ug(A), and Zg(A\) commutes with arbitrary base change in A, as well
as with intersections with A-stable, closed, finitely presented A-subgroups of G, and, by |[CGP15,
Remark 2.1.11 (with Proposition 2.1.8 (2))], we have

Pe(N) = Ug(A) x Za(A).
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By [CGP15, Remark 2.1.11 (with Lemma 2.1.5 and Proposition 2.1.8 (4))], the A-group Ug(A) has
connected, unipotent A-fibers, and if the A-fibers of G are connected, then so are those of Pg(\)
and Zg(A). By [CGP15, Remark 2.1.11 (with Propositions 2.1.8 (3) and 2.1.10)], if G is A-smooth,
then so are Pg(A), Ug(N), and Zg(N), and the A-fibers of Ug(A) are even split unipotent.

Letting —A denote the G, 4-action on G obtained from A by precomposing with the inversion of
Gm, 4, by loc. cit. and [EGA IV, corollaire 17.9.5|, the multiplication map

Ug(—=\) x Pa(\) - G (2.6.1.1)

is an open immersion provided that its source is A-flat (which holds if either G is A-smooth or A is
a field). If (2.6.1.1) is an open immersion and the reduced geometric A-fibers of G are connected
and solvable, then (2.6.1.1) is even an isomorphism: indeed, we may assume that A is a field and
G is smooth, note that G/Pg()) is affine by [Conl5, Example 5.5] and [Bor91, Theorem 15.11] (or
[Bri21, Theorem 1]), and then conclude from Lemma 2.2.11 (a) that the open Ug(—\) € G/Pg(\)
is simultaneously closed (this argument reproves [CGP15, Proposition 2.1.12 (1)]).

The formation of the open immersion (2.6.1.1) commutes with intersections with A-stable, closed,
finitely presented A-subgroups G’ < G for which Ug/(—\) x Pgr(\) is A-flat. Similarly, the Pg(\),
Uc(N), and Zg(A) are compatible with flat surjections as follows: by [CGP15, Remark 2.1.11 (with
Corollary 2.1.9)| and [EGA IV3, corollaire 11.3.11], if G has connected A-fibers, Pg(A) (resp., Ug(A);
resp., Zg(X)) is A-flat, and 7: G — G’ is a faithfully flat, G,,,, s4-equivariant surjection onto a finitely
presented, affine A-group G’ with a G, 4-action X, then 7 induces a flat surjection Pg(A\) — Pgr(\)
(resp., Ug(A) = Ugr(N'); resp., Zg(X) — Zg/(N')) whose target is also A-flat.

2.6.2. Pseudo-parabolic subgroups. For a connected, smooth, affine k-group scheme G, a k-
subgroup P < G is pseudo-parabolic if it has the form

P = Py := PN %, 1k(G), equivalently, P = Py := Po(N)Z%us, k(G)
for a k-homomorphism \: G, , — G, see [CGP15, Definition 2.2.1 and Proposition 2.2.4].

By §2.6.1, pseudo-parabolic k-subgroups are connected, smooth, and affine. Moreover, by [CGP15,
Corollary 2.2.5|, we have

R,k (P\) = Ug(N) R, 1(G)  and  Rys 1 (Py) = Ug(A)Rus, k(G),

so that Zys 1(P\) = Ug(A\) when G is quasi-reductive, and %, 1 (P5) is split unipotent when G is
pseudo-reductive. By [CGP15, Proposition 3.5.2 (1)] (with the final aspect of §2.1.2 (2)), a k-subgroup
P < G is pseudo-parabolic if and only if Py < Gy is pseudo-parabolic for some (equivalently, any)
separable extension k’/k. A pseudo-parabolic k-subgroup P < G is a pseudo-Borel if Pys < Ggs is a
minimal pseudo-parabolic of Gy, equivalently, by [CGP15, Proposition 3.5.4], if the image of P is a
Borel subgroup of (GE)pred. By [CGP15, Proposition 2.2.9], the pseudo-parabolic (resp., pseudo-
Borel) k-subgroups of a reductive k-group are precisely its parabolic (resp., Borel) k-subgroups.
By [CP17, Corollary 4.3.5] (resp., [CGP15, Proposition 3.5.8]), pseudo-parabolic k-subgroups of a
pseudo-parabolic P < G (resp., smooth k-subgroups of G containing P) are pseudo-parabolic.

By |CGP15, Proposition 2.2.10], the pseudo-parabolic k-subgroups of G are the preimages of the
pseudo-parabolic k-subgroups of GP™¢ (so also of those of G¥?). We may even replace GP*d by
its pseudo-reductive quotient of minimal type (see §2.5.3): by [CGP15, Proposition 2.2.12 (3)], for
every quotient G — G’ of pseudo-reductive k-groups with a central kernel, the pseudo-parabolic
k-subgroups of G are the preimages of the pseudo-parabolic k-subgroups of G’. Of course, by
definition, the pseudo-parabolic k-subgroups of a quasi-reductive G are precisely the Pg () for
k-homomorphisms \: G, 1 — G.
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In the case when G' = Resy,(G) for a nonzero, finite, reduced k-algebra k' and a k'-group G’
with pseudo-reductive k’-fibers, by [CGP15, Proposition 2.2.13|, the pseudo-parabolic k-subgroups
P < G correspond to the fiberwise pseudo-parabolic k’-subgroups P’ < G’ via the inverse bijections
P’ Resyi(P') and P+ 7(Py), where 7: Gy — G’ is the counit of the adjunction. In this
setting, by [CGP15, Corollary A.5.4 (3)] (with §1.7), for the corresponding P and P’, we have
G/P = Resy 5 (G'/P"). To reach such restrictions of scalars in practice, we use the following lemmas.

The following lemma pointed out to us by Gabber controls pseudo-parabolic k-subgroups when
passing from a pseudo-reductive k-group of minimal type to its ultraminimal quotient.

Lemma 2.6.3. Let G be a pseudo-reductive k-group of minimal type, let ic: G — Resy 1, (G) be the
map as in §2.5.2, and let P < G be a pseudo-parabolic k-subgroup. The k-subgroup ic(P) < ig(G) is
pseudo-parabolic and, for a k-scheme S and an S-point y of iq(G)/ic(P), the y-fiber of the map

G/P — ig(G)/ic(P)

is a torsor under an S-form of the k-group Ker(iq)/(Ker(ic) N P), and this S-form is trivial whenever
y lifts to an S-point of ic(G). Moreover, we have

Ker(ig) ~ (Ker(ig) n P) x Ker(ig)/(Ker(ig) n P). (2.6.3.1)

Proof. By §§2.6.1-2.6.2, the k-subgroup ig(P) < ig(G) is pseudo-parabolic. The k-group Ker(ig)
(or even GG) acts on G/P, and if an x € G(S) lifts y, then the y-fiber of the map G/P — ig(G)/ic(P)

is Ker(ig)-equivariantly isomorphic to
Ker(ig)s/(Ker(ic)s n aPsz ") = x(Ker(ic)/(Ker(ig) n P))sz ™",

which is a base change of Ker(ig)/(Ker(ig) n P). Since G is of minimal type, Ker(ig) is commutative
(see §2.5.3), so the conjugation action of G on Ker(ig) factors through ig(G). By fppf descent,
we conclude that if y merely lifts to an S-point of ig(G), then the aforementioned y-fiber is a
Ker(ig)/(Ker(ig) n P)-torsor over S, and that in general the y-fiber is a torsor under an S-form of
Ker(ig)/(Ker(ig) n P), as claimed.

Let A\: Gy, k — G be a k-homomorphism with P = Pg()) and let T < G be a maximal k-torus
through which A factors. As we reviewed in §2.5.3, the base change Ker(ig)gs is a direct product
of its intersections Ker(ig)gs n U, with the root groups U, for the multipliable roots a of Tys. In
particular, [CGP15, Proposition 2.1.8 (2)-(3) and Corollary 3.3.12] ensure that (Ker(ig) n P)gs (resp.,
(Ker(ig)/(Ker(ig) N P))gs) is isomorphic to the direct product of the intersections Ker(ig)gs n U,
for those multipliable roots a of Tys for which {(a,\) = 0 (resp., (a,\) < 0). In particular,
(Ker(ig)/(Ker(ig) n P))gs is Gal(k®/k)-equivariantly identified with a direct factor of Ker(iq)
complementary to (Ker(ig) n P)gs, and Galois descent gives the claimed decomposition

Ker(ig) ~ (Ker(ig) n P) x Ker(ig)/(Ker(ig) n P). O

For ultraminimal pseudo-reductive GG, we control its pseudo-parabolic k-subgroups as follows.

Lemma 2.6.4. Let G be an ultraminimal pseudo-reductive k-group, let iq: G — Resk//k(G) be its

comparison map as in §2.5.2, let P < G be a pseudo-parabolic k-subgroup, and let P < G be the
mmage of Py. Then i induces a closed immersion

Proof. Base change to k° allows us to assume that k is separably closed (Seg §2.5.2 and §2.6.2). Let

A: Gy — G be a k-homomorphism with P = Pg()\) and let A: Gy, p» — G be the composition of
25



A\ and Gy — G. Then X is the k’-homomorphism corresponding to A o ig and P = Pé(X) (see
§2.6.1). Since i¢ is injective, we shorten A oig to A and note that, by [CGP15, Propositions 2.1.13|,

R@Sk//k(ﬁ) = PResk//k(é) ()\) and R@Sk//k(Ué(—A)) = UReSk//k(@)(_)\)'
Therefore, by §2.6.1, the following square is Cartesian
Ug (=) x Pa(A)~— Resy 1,(Ug(—A)) x Resy /i, (P)

ﬂ i

G¢ ‘G Resk//k,(G)

and its vertical (resp., horizontal) maps are open (resp., closed) immersions. In particular, since
Resy /i, (G)/Resy i (P) = Resy x(G/P) (see §2.6.2), the vertical (resp., the top horizontal) maps of

Ug (=) Resy 1,(Ug(—A))

[

are open (resp., closed) immersions, and this square is also Cartesian. To conclude that the bottom
horizontal map is also a closed immersion, by G(k)-translation, all that remains is to show that the
G(k)-translates of Resy /,(Ug(—A)) cover Resy,(G/P). For this, since k//k is purely inseparable,
by [CGP15, Corollary A.5.4 (2)], it suffices to show that the G(k)-translates of Ug(—\) cover G/P,
which follows from [CGP15, top of p. 587|. (|

2.7. The control of unipotent groups

We conclude discussing the diagram of §2.1.2 by reviewing the structure of wound unipotent groups.

2.7.1. Structure of smooth, connected, unipotent k-groups. In general, to handle the
subquotients of the cckp filtration, we need to understand connected, smooth, commutative, p-
torsion, unipotent k-groups G. These can be made explicit: by a result of Tits [BLR9I0, Section 10.2,
Proposition 10] (or [CGP15, Proposition B.1.13]), every such G is a subgroup of G *! given by the
vanishing locus of some p-polynomial

F = Zfio Z;L;O fl'jtfj € k‘[to, - ,tN] with flnl #0 when n; >0,

and the smoothness condition amounts to there being a nonzero linear term. This gives a concrete
way to understand cohomology: functorially in a k-algebra R, we have

HYR,G) =~ (RN*H)F=0 HYR,G) ~ R/F(RN'Y), HZ*(R,G) 0. (2.7.1.1)

When G is also wound, these references (with [CGP15, Lemma B.1.7 (1)<(2)], if one prefers) give
more: we may choose an F' as above for which the polynomial of principal parts

Fprin = Lo finith
has no nontrivial zeros in N1, this is critical for working with wound groups in practice. In addition,
once a unipotent group G is given by the vanishing locus of a p-polynomial F', it is sometimes useful
to project onto a proper subset of the coordinates ¢;: this realizes G as an extension of a power of
G, by the (possibly nonsmooth) unipotent group given by the vanishing locus of the p-polynomial
obtained from F' by setting these t; to 0. This also shows that woundness tends to be destroyed by

passing to quotients.
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Wound groups contain no G, ’s as k-subgroups, but they may contain nontrivial unirational k-
subgroups or even be unirational themselves. The latter are somewhat manageable as follows.

Lemma 2.7.2 (Rosengarten, a positive answer to [Ach19, Question 2.21]). Every unirational, wound,
unipotent k-group G that is minimal, in the sense that each of its unirational k-subgroups is either
trivial or G itself, is commutative. The nontrivial, unirational, wound, unipotent k-groups are all of
dimension = p — 1, and if k is separably closed of characteristic p > 0, then the minimal such groups
are precisely the following k-groups with a € k\kP and n > 1:

Ga,n = Resk(al/pn—l)/k (Resk(al/Pn)/k(al/Pn_l) (Gm,k(al/Pn)) /Gm,k(al/pn_l)) .

Proof. This lemma and its proof are due to Rosengarten. Since G is unirational, it is smooth and
connected (see §2.1.2 (9)). By §2.1.4 and the cckp filtration, the derived subgroup 2(G) is smaller
than G and unirational. Thus, if G is minimal, then 2(G) = 1, so that G is commutative.

The dimension assertion follows from the rest, so we now assume that & is separably closed and that
G is a nontrivial, unirational, wound, unipotent k-group that is minimal (so also commutative). By
[Ros21b, proof of Theorem 1.3 on pp. 442-443] (or [Ach19, Remark 2.6(ii)]), the unirationality implies
that G is a quotient of Res 4/, (G, ) for some finite k-algebra A. Since Res 4/;(Gyy, 4) is unirational
and decomposes into a product according to the factors of A, the minimality of G allows us to assume
that A is local. By the proof of Lemma 2.3.2, the surjection Res (G, 4) — Res grea (G, prea)
has a split unipotent kernel, so, since G is wound, we may pass to A™d to assume that A is a finite,
purely inseparable field extension k’/k. Since k' is a sum of monogenic subextensions k < k; < &/,
we check on Lie algebras that Resys (G, r) is a quotient of [ [; Res, (G, k,). Since G is minimal
and nontrivial, we may therefore replace k¥’ by some k; to reduce to the case when k' = l{:(al/ P") for
some a € k\kP and n > 1. By decreasing n if needed and again using the minimality of G, we may
assume that the map Resk(al/pnq)/k(([}m’k(al/pnq)) — G vanishes, so that

Resk(aypn)/k (Gm7k(a1/p")> /Resk(al/pnfl)/k (Gm,k(al/pn71)> — (. (2721)

The source of this surjection is G, »,, see §1.7. Moreover, G, p is wound and given by the vanishing of
some p-polynomial F of degree p: indeed, this holds for G, 1 (see [Oes84, chapitre VI, proposition 5.3|)
and is stable under restrictions of scalars along purely inseparable field extensions (decomposed into
successive extensions of degree p). Thus, by [Ros25, proof of Proposition 7.7|, every quotient of G4 p
by a nontrivial k-subgroup is split unipotent. As G is wound, (2.7.2.1) must then be an isomorphism.

The identification of the source of (2.7.2.1) with G, ,, shows that this wound, unipotent k-group
is unirational, so it remains to show that it is minimal; equivalently, by the argument above, that
it admits no Gy, ,, with b € k\k” and m > 1 as a proper k-subgroup. By dimension considerations,
this is not possible if n = 1, so, arguing by induction for all £ at once, we assume that n > 1
is minimal for which some G, , is not minimal, and hence properly contains some Gy ,,,. The
unipotent k-group Gp,,, splits over k(b'/P™), so Gy, cannot remain wound over k(b'/P™). The
extensions k(a'/?") and k(b'/P™) are then not disjoint over k, that is, k(a'/?) = k(b'/P). On the
other hand, by the definition of the Weil restriction, we have a nonzero k(a'/?)-homomorphism
(Gb,m)k(aup) — Gap - Lemma 2.3.2 ensures that (Gb,m)k(bl/p) is an extension over k(bY/?) of
Gyi/p, m—1 (interpreted to be zero if m = 1) by a split unipotent group. Since Gaip p—q 1s wound,
we obtain a nonzero k(b"/?)-homomorphism Gyp m—1 = Gaip 51, which, by induction, must be
surjective. Then, however, the dimension of Gyu/» ,,,_; is at least that of G 15 ,,_;, so the dimension
of G, is at least that of G 5, and hence that ’ijm cannot be a proper k—s’ubgroup of Ggn. U

Definition 2.7.3. A unipotent k-group G is strongly wound
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e if G has no nontrivial unirational k-subgroups, that is, if G'™ = 1; equivalently,
e if G has no nontrivial, commutative, unirational k-subgroups (see Lemma 2.7.2); equivalently,

e if (G receives no nontrivial k-homomorphism from a unirational k-group.

Example 2.7.4. By Lemma 2.7.2, a wound, unipotent k-group of dimension < p—1 is strongly wound.

By §2.1.2 (9), this condition is insensitive to base change to a separable field extension. It is also
inherited by the subquotients of the cckp filtration as follows.

Lemma 2.7.5. Let G be a connected, smooth, strongly wound, unipotent k-group. Every subquotient
of the cckp filtration of G is strongly wound (and connected, smooth, unipotent).

Proof. Let G1 < G be the largest connected, smooth, central, p-torsion k-subgroup of G. If
(G/G1)" = 1, then we may replace G by G/G; and iterate, so, for the sake of contradiction,
we choose a nontrivial, unirational k-subgroup H < G/G1 and let H < G be its preimage. We have
a central extension of k-groups

1—>G1—>ﬁ[—>H—>1

and, to obtain a contradiction with the definition of G, we will show that H is central in G and
p-torsion. For this, we imitate the proof of [Conl5, Proposition 3.2].

We lose no generality by base changing to k° to assume that k is separably closed (see §2.1.2 (7)).
To see that H is central in G, for a g € G(k) we consider the k-morphism H — G given by
h — ghg~'h~!. Since G is central in G, this morphism factors through a k-morphism H — G.
However, G is strongly wound, so every k-morphism from a unirational k-variety (such as H) to G
that sends some k-point to the identity is constant. Consequently, the commutators ghg 'h™! all
vanish and, since g is arbitrary and k is separably closed, we get that H is central in G. Similarly,
since GG is p-torsion and central in G, the p-power morphism H — G factors through a k-morphism
H — @G that must a posteriori be constant, to the effect that H is p-torsion. O

For treating nonsmooth, commutative, unipotent groups, the following lemma is useful.

Lemma 2.7.6 ([BLRI0, Section 10.2, Lemma 13|). A commutative, connected, (resp., wound) unipo-
tent k-group is a subgroup of a commutative, connected, smooth, (resp., wound) unipotent k-group. [

3. PSEUDO-PROPERNESS AND EXTENSION RESULTS FOR SECTIONS

In §3.1, we introduce the notion of pseudo-properness, which strengthens that of pseudo-completeness
due to Tits, and we classify pseudo-proper k-groups. In §3.2, we establish general extension results
for sections of torsors under pseudo-proper groups, and thus reduce our main result Theorem 1.1.1
to connected, smooth, affine groups. We use these extension results in §3.3 to show that G/P is
pseudo-proper for every pseudo-parabolic k-subgroup P < G of a smooth, affine k-group G.

3.1. Pseudo-properness and pseudo-completeness

A k-variety X is proper if and only if X(R) — X (K) for every discrete valuation ring R that is
a k-algebra with fraction field K. By only requiring this valuative criterion to hold for certain
subclasses of R, we obtain the following variants of the notion of properness over imperfect k.

Definition 3.1.1. A k-algebraic space X is
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(i) pseudo-proper if it is separated, of finite type, and for every discrete valuation ring R that is
a geometrically regular k-algebra with fraction field K, we have

X(R) > X(K); (3.1.1.1)

(ii) pseudo-complete if it is separated, of finite type, and (3.1.1.1) holds for every discrete valuation
ring R that is a k-algebra whose residue field is separable over k.

The notion of pseudo-completeness has already been introduced by Tits in [Tit13, cours 1992-1993,
section 2.3|, see also [CGP15, Definition C.1.1].

By [Mat89, Section 28, Lemma 1 on p. 216, Theorem 28.7|, a discrete valuation ring R that is a
k-algebra whose residue field is separable over k is geometrically regular over k, so

finite =——= proper ———=> pseudo-proper ——> pseudo-complete
(3.1.1.2)
pseudo-finite

where the implication pseudo-finite = pseudo-proper follows by noting that pseudo-properness may
be tested on X#°d see Remark 3.1.3 below (and compare also with the more general Theorem 1.1.1
below). If k is perfect, then these implications, except for the two that point top right, are all
equalities, see [SP, Lemma OH1X] and Remark 2.2.5. Over an imperfect k, these implications are all
strict thanks to Example 2.2.6, the following example, and Example 3.1.6 below.

Example 3.1.2 (pseudo-proper = proper). For a finite extension k’/k and a proper (or merely
pseudo-proper) k’-algebraic space X', the restriction of scalars X := Resy kX " (see §1.7) is pseudo-
proper (loc. cit.). In fact, pseudo-properness ascends along proper morphisms, so an algebraic
space that is proper over this X, for instance, a closed subspace of X, is also pseudo-proper. For
nonseparable k’/k, such X are often not proper; see [CGP15, Example A.5.6].

This example shows why it is natural to allow algebraic spaces in Definition 3.1.1: namely, X need
not be a scheme if X’ is not quasi-projective. For instance, X is not a scheme if k’/k is separable
quadratic and X’ has two k’-points that are not contained in any affine open subscheme of Xé,, and

Hironaka gave examples of proper such X’ with &’ = C that are not projective.

Remark 3.1.3. The map (3.1.1.1) is injective because X is separated (see [EGA I, corollaire 9.5.6]),
so we are only imposing its surjectivity. In particular, since the geometric regularity of R forces K
to be separable over k, by (2.2.1), a separated k-algebraic space X of finite type is pseudo-proper
(resp., pseudo-complete) if and only if so is X8, Moreover, since R is 1-dimensional, its geometric
regularity in (i) is equivalent to geometric normality: concretely, it means that R ®y, k' is required to
be a semilocal Dedekind ring for every finite field extension &'/k. By [EGA IV, proposition 5.13.7]
and the Popescu theorem (see §1.7), in (i) the strict Henselization of R is still geometrically regular
over k, so, by [SP, Lemma 0ARH]|, we may restrict to strictly Henselian R in (i) (and also in (ii)).

Lemma 3.1.4. Let X be a k-algebraic space and let k'/k be a field extension.
(a) If Xp is pseudo-proper (resp., pseudo-complete) over k', then so is X over k.

(b) If k' /k is separable and X is pseudo-proper (resp., pseudo-complete) over k, then so is X
over k'.

Proof. By fpqc descent [SP, Lemmas 0421 and 041U], being separated or of finite type may be
checked after base change to k’. Thus, for (b), it suffices to note that since k’/k is separable, a ring
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(resp., a field) that is geometrically regular (resp., separable) as a k’-algebra is also geometrically
regular (resp., separable) as a k-algebra.

In the remaining (a), we begin with the case when k’/k is separable. This assumption and [CGP15,
argument on top of page 583| ensure that for every discrete valuation ring R that is a geometrically
regular k-algebra, there is a local injection R — R’ over k — k’ such that R’ is a localization of R®j k'’
at some prime ideal and also a discrete valuation ring that is geometrically regular as a k’-algebra. It
then remains to apply [SP, Lemma 0ARH]| to get the separable case of (a). An analogous argument
works for an arbitrary k'/k granted that we focus on the pseudo-completeness variant (although
the latter also results by adapting the argument that follows). In general, due to the settled (b)
and the separable case of (a), it remains to settle the pseudo-proper variant of (a) in the case
when k’/k is purely inseparable. In this case, we fix a discrete valuation ring R that is a geometrically
regular k-algebra with fraction field K and a K-point of X that we wish to extend to an R-point. By
the pseudo-properness of X/ over k' and a limit argument, there is a finite, purely inseparable field
extension ¢/k such that the induced (K ® ¢)-point of X, extends to an (R ®y, £)-point, equivalently,
such that the induced K-point of Resy,(Xy) extends to an R-point. To get the desired R-point
of X, it remains to note that, since X is separated, the map X — Res@/k(Xg) of the adjunction is a
closed immersion, see [BLRI0, bottom of p. 197] and [SP, Lemma 03KP|. O

Proposition 3.1.5. Let G be a k-group scheme of finite type.

(a) G is pseudo-finite if and only if (G0 = 1.

Gs™s lin

(b) G is pseudo-complete if and only if is wound unipotent.

(c) G is pseudo-proper if and only if GS™ ™ is strongly wound unipotent, equivalently, if and only
if G has no nontrivial unirational k-subgroup (that is: G'™ = 1).

In particular, a pseudo-abelian variety is pseudo-proper, and it is proper if and only if it is an abelian
variety. In each of these statements, the corresponding pseudo-finiteness, pseudo-completeness,
pseudo-properness, or properness conclusion also holds for every étale locally trivial G-torsor over k.

Proof. By Lemma 3.1.4, Remark 2.2.3, §2.1.2, and Remark 3.1.3, the conditions in question are
insensitive to base change to k* and only depend on G#°d, so we may assume that & is separably
closed and G is smooth. Each G-torsor is then trivial and each connected component of G is
k-isomorphic to GV, so it is enough to treat G under the assumption that it is connected.

Since k is separably closed, G is pseudo-finite if and only if G(k) is finite. This happens if and only
if the closure of G(k) in G is O-dimensional, that is, if and only if (G&"9)? = 1.

For the rest, we first argue the claim about pseudo-abelian varieties. By §2.4.1, it suffices to show
that each pseudo-abelian variety G is pseudo-proper. There are many ways to see this: for instance,
by the Popescu theorem (see §1.7) and the Bosch-Liitkebohmert—Raynaud criterion recalled in
§2.1.2 (9), it suffices to check that there is no nontrivial, connected, unirational (and hence smooth)
k-subgroup U < G. The abelian variety G® has no such k-subgroup, so U lies in G, and so is
affine. The definition of a pseudo-abelian variety then implies that U is trivial. For another argument
for the pseudo-properness of G, see Theorem 3.2.2 (ii) below and its proof.

For the remaining (b) and (c¢), since pseudo-completeness or pseudo-properness may be tested after

restricting to strictly Henselian discrete valuation rings R (subject to the respective condition on

R, see Remark 3.1.3), and thanks to the already settled case of pseudo-abelian varieties, we may

replace G by GS™ " to assume that our connected, smooth G is affine. Since neither G, nor G,

are pseudo-complete, they cannot occur as k-subgroups of any pseudo-complete GG. In particular,
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every pseudo-complete, connected, smooth, affine k-group G satisfies G*°* = 1, and so is even wound
unipotent by §2.1.2 (9). Conversely, the pseudo-completeness of wound unipotent groups is a result
of Tits, see [CGP15, Lemma C.1.8], that follows by combining the cckp filtration with (2.7.1.1).
This settles (b).

Pseudo-properness of strongly wound unipotent groups in (c¢) follows from the cckp filtration,
Lemma 2.7.5, and the same Bosch—Liitkebohmert—Raynaud criterion from §2.1.2 (9). Conversely, if
a smooth, wound unipotent k-group G is pseudo-proper, then the same criterion implies that G has
no nontrivial, commutative, unirational k-subgroups, so that G is strongly wound by Definition 2.7.3.
Thanks to (b), this gives the first “if and only if” in (¢). For the second “if and only if” in (c), it
then remains to review §2.1.2 (10). O

Example 3.1.6 (pseudo-complete = pseudo-proper). For every finite, purely inseparable field
extension k’/k, by [Oes84, chapitre VI, section 5.1, lemme]| (alternatively, see Lemma 2.7.2 above),

U := Resk//k (Gm)/Gm

is a wound unipotent, unirational (in particular, not strongly wound) k-group, so, by Proposi-
tion 3.1.5 (¢), it is pseudo-complete but not pseudo-proper unless k' = k. In general, to appreciate
the difference between pseudo-properness and pseudo-completeness of a separated k-algebraic space
X of finite type, consider a smooth affine k-curve C' and a closed point c € C'. If X is pseudo-proper,
then every k-morphism C' — ¢ — X extends uniquely to a k-morphism C' — X; in contrast, if X is
only pseudo-complete over k, then such an extension is guaranteed only when k(c)/k is separable.

Remark 3.1.7. Pseudo-properness is intriguing from the point of view of resolving singularities.
Namely, for a smooth, integral, pseudo-proper k-scheme X and any regular, proper, integral
compactification X ¢ X with X\X a divisor, by (3.1.1.1), we have X = X, that is, the k-smooth
locus of X is not larger than X. In other words, X is regular but not smooth anywhere along
the boundary X\X. Such an X ought to exist by the resolution of singularities conjecture but
remains elusive even in the cases of Proposition 3.1.5, for instance, for pseudo-abelian varieties
or for connected, smooth, strongly wound unipotent groups. The pseudo-properness of these two
types of groups and [BLR90, Section 10.3, Theorem 1| show that they never possess a smooth
compactification over k unless they are abelian varieties to begin with.

3.2. Extending generic sections and Grothendieck—Serre for pseudo-abelian varieties

An integral scheme S with fraction field K and any finite S-scheme X satisfy
X(S) = X(K), (3.2.0.1)

see, for instance, [éesl?, Lemma 3.1.9]. This is useful in many contexts, for instance, in moduli
theory, where X may parametrize automorphisms of some object and we may wish to extend
automorphisms over K to those of an entire family over S. We extend this to pseudo-finite X (see
Definition 2.2.2) as follows.

Proposition 3.2.1. Let S be a normal integral k-scheme whose function field K is separable over k
(an automatic assumption if S is geometrically reduced). For a pseudo-(locally quasi-finite) k-algebraic
space X (resp., a k-group scheme G locally of finite type), we have

X(8) = X(K) (resp., (G/(G=*)°)(S) = (G/(GF*)")(K)).

Proof. By (2.2.1) and Remark 2.2.3, we may replace X by X#*d to reduce to the case when X is

a separated, étale k-scheme. The separatedness ensures that the map in question is injective, see

[EGA I, corollaire 9.5.6]. Thus, for its surjectivity, we may replace X by an affine open containing
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the K-point of interest to reduce to when X is finite étale. The finite case, however, is a special
instance of (3.2.0.1). The claim about G follows from that about X and Example 2.2.7. O

An integral, regular scheme S with fraction field K and a torsor F under an abelian S-scheme A
satisfy

E(S) = E(K), so that, consequently, HY(S,A) — HY(K, A), (3.2.1.1)

see, for instance, [BLRI0, Section 8.4, Corollary 6] or [éesQQb, Remark 3.1.7] (essentially, it suffices
to view A as the dual of its dual AV and use the regularity to extend line bundles), alternatively
[Bhal2, Proposition 4.2 and Remark 4.5] (this last argument is based on finding projective lines
in positive-dimensional fibers of modifications of regular schemes, see also [KS15, Theorem B.0.1]).
This Grothendieck—Serre type conclusion for abelian schemes is useful in many contexts.

We extend this to pseudo-abelian varieties, in particular, we establish the pseudo-abelian variety
case of our main Grothendieck—Serre Theorem 1.1.1 in part (c¢) (ii) of the following Theorem 3.2.2.
Its part (b) (ii) also extends Proposition 3.2.1 to torsors over S under pseudo-finite k-groups. The
key statement is (3.2.2.2) in (b) and was announced by Gabber in [Gab12, bottom of p. 2371] under
an additional unipotence assumption.

Theorem 3.2.2. Let G be a k-group scheme locally of finite type, let S be an integral k-scheme, and
let E be a G-torsor over S.
(a) We have
(E/GY)(S) = (E/G°)(K). (3.2.2.1)

(b) If S is geometrically normal over k and every k-torus of G lies in (G&™%), then

(B/(GEH)(8) = (B/(GE)")(K). (3.2.2.2)

(c) If S is geometrically normal over k and regular and every k-torus of Gy, lies in (Ggred)g, then

(E/Gs™ 1y (8) &5 (B/GP™ 1y (K). (3.2.2.3)

In particular, in the setting of (a) (resp., (b), resp., (¢)),

(i) each generically trivial G-torsor over S reduces to a generically trivial G°-torsor (resp., (G&*¢4)0-
torsor, resp., G™ hn—torsor) over S;

(ii) if GO is trivial (resp., is pseudo-finite, resp., is pseudo-proper), then

E(S) 5 E(K) and Ker(H'(S,G) —» H'(K,G)) = {#}. (3.2.2.4)

Proof. Preimages in E of scheme-valued points of E/GY correspond to reductions of £ to a G%-torsor,
and similarly for (G&"9)? and GS™'" so (3.2.2.1), (3.2.2.2), and (3.2.2.3) imply (i). They also
imply (ii) in the cases (a), (b), and reduce it to connected, smooth, affine G in the case (c) because
if GO is trivial (resp., pseudo-finite; resp., pseudo-proper), then G© is trivial (resp., (G&*°4) is trivial;
resp., GS™ 1 is pseudo-proper). To conclude (ii) in the case (c), we may work étale locally on S, so,
by the smoothness of G, may assume that E is trivial. The pseudo-properness of G then extends
every K-point of G uniquely to a U-point for some open U < S with complement of codimension
> 2 (depending on the K-point). The affineness of G, the codimension condition, and, for instance,
[CS24, Lemma 7.2.7(b)] (recalled in (4.1.0.2) below), then extend a U-point uniquely to an S-point.
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(a)

(b)

By working étale locally on S to trivialize the G/G%torsor E/GY (see §2.1.2 (1)), we find
from (3.2.0.1) that

(E/GO)(S) = (B/G°)(K).

Since (G&*4)0 is closed in G, the quotient E/(G#&"*9) is a separated S-algebraic space (see §1.7),
so [EGA I, corollaire 9.5.6] and its proof ensure that (3.2.2.2) is injective. For its surjectivity,
by working locally, we may assume that S is affine. In addition, since the preimage in E of
any S-point of F/G° is a G°-torsor, by (a), we may assume that G is connected, so of finite
type. If then G is already smooth, so that G = G&°4, then E/(G#"*9)? is S-finite and (3.2.2.2)
is a special case of (3.2.0.1). Thus, it suffices to reduce to smooth G, and for this it is enough
to argue that we lose no generality by replacing G by successively deeper subgroups G(®) of
the filtration (2.2.8). Moreover, since (G()8red = Gered each G inherits our assumption
on the k-tori. Thus, for a finite, purely inseparable field extension k/k and k’-group quotient
Q = G /(Gp)™d, it suffices to show how to replace G by the stabilizer G, of the unique
q € (Resy,(Q))(k). For this, since Geed < Gy (see §2.2.8), our assumption on the k-tori
and Lemma 2.2.11 ensure the closedness of the orbit G/G = G - ¢ = Res;y/;,(Q). Consider
the affine S-scheme defined by the contracted product E x& (Resy /k(Q))s. The adjunction
counit (Resy/,(Q))r — @ is Gi-equivariant (see §2.2.8), so it gives an S-morphism

E XG (Resk//k(Q))S = ReSSk//S(ESk/ XGk/ QSk’)’ (3225)

which we check to be an isomorphism by working fppf locally on S to trivialize E. Since @Q is
a finite &’-scheme, its Sj/-form Es, x CGrr Qs,, is a finite Sp-scheme, and Sy is normal and
integral by the geometric normality of S. Thus, (3.2.2.5) and (3.2.0.1) give

(E x ¢ (Resk’/k(Q))S)(S) — (E x ¢ (Resk’/k<Q))S><K)'

Since G - ¢ < Resyy /5 (Q) is closed, so is F xG(G-q)s c E x¢ (Resy/(@))s. Moreover, fppf
locally on S, we have E/G, = E x% (G - q). Thus, also

(B/Gq)(S) = (E/Gg)(K).
Now, a K-point of E/(G&°%)0 lifts to an S-point after replacing E by the corresponding
G4-subtorsor, reducing the proof of (3.2.2.2) to the case of G, as desired.

Similarly to the proof of (b), (3.2.2.2) reduces (3.2.2.3) to the case when G is connected
and smooth. Then G/G! is an abelian variety (see §2.1.2 (3)), so (3.2.1.1) applies, and the
argument of (a) reduces to when G is connected and affine (but possibly not smooth). To
conclude (3.2.2.3), we review §2.1.2 (4) and apply (3.2.2.2) once again. O

Remark 3.2.3. In the case when G = Resy,;(G’) for a finite, purely inseparable extension &'/k and
an abelian variety G’ over £/, it is remarkable that Theorem 3.2.2 (¢) (ii) holds without assuming
that S is geometrically regular. This is the advantage of approaching (c) (ii) indirectly, via (b).

Remark 3.2.4. The condition on the k-tori of G7 is needed in Theorem 3.2.2: without it (3.2.2.2)
fails already for some pseudo-finite G, see [FG21, Example 7.2 (b) and Remark 7.3 (b)].

3.3. Pseudo-properness of G/P

We wish to improve a result of Borel-Tits [BT78, Proposition 1| that reappeared in [Tit13, cours 1992
1993, section 2.5] and [CGP15, Proposition C.1.6]: for a pseudo-parabolic subgroup P of a smooth,

affine,

connected k-group G, the quotient G/P is not only pseudo-complete as these references

showed, but is even pseudo-proper as we now argue. The arguments there were built on the pseudo-
completeness of wound unipotent groups and do not generalize because the wound groups that are
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relevant there are not pseudo-proper (see Proposition 3.1.5 (¢)). In contrast, we build our argument
on the extension result Theorem 3.2.2 and the comparison map ig of §2.5.2.

Theorem 3.3.1. For a connected, smooth, affine k-group G and a pseudo-parabolic k-subgroup
P c G, the quotient G/P is pseudo-proper and quasi-projective over k.

Example 3.3.2. If G = Resy ,(G’) for a finite field extension &'/k and a reductive k’-group
G', then P = Resy (P’) for some parabolic A’-subgroup P’ < G’ (see §2.6.2). In this case,
[CGP15, Corollary A.5.4 (3)] ensures that G/P = Resy (G'/P’), which is pseudo-proper by
Example 3.1.2 and [SGA 3111 pew, exposé XX VI, proposition 1.2].

Proof of Theorem 3.3.1. The quasi-projectivity of G/P follows from the results reviewed in §2.1.1.
For its pseudo-properness, by §2.6.2, we may assume that G is pseudo-reductive, of minimal type.
We let i be the comparison map as in §2.5.2, so that i¢(G)/iq(P) is pseudo-proper by Lemma 2.6.4
and Example 3.3.2. As for G/P itself, we then consider a strictly Henselian discrete valuation ring R
that is a geometrically regular k-algebra with fraction field K and an x € (G/P)(K) to be extended
to an R-point. The target of the map

G/P — ic(G)/ic(P) (3.3.2.1)

is pseudo-proper, so there is a unique y € (i¢(G)/ic(P))(R) that extends the image of z. Since R
is strictly Henselian and ig(P) is smooth, y lifts to an R-point of ig(G), so, by Lemma 2.6.3, the
y-fiber of the map (3.3.2.1) is a generically trivial torsor over R under a k-group that is a direct
factor of Ker(ig), with = as a generic trivialization. Since Ker(ig) is pseudo-finite (see §2.5.2), so
are its direct factors over k. Thus, Theorem 3.2.2 (b) (ii) ensures that x extends to an R-point
of the torsor in question. In particular, x extends to an R-point of G/P, so that G/P is indeed
pseudo-proper by Remark 3.1.3. ]

Example 3.3.3. To illustrate how the pseudo-properness of G//P is useful in practice, consider a
smooth, integral k-curve C' with the function field K and a G-torsor E over C. Sections of E/P
correspond to reductions of F to a P-torsor, and the pseudo-properness of G/P, applied over an
étale cover of C' trivializing F, implies that

(E/P)(C) = (E/P)(K).

In other words, every generic P-reduction of E extends uniquely to a P-reduction of E over all of C.
If we only knew that G/P was pseudo-complete, then we would only know the same extendability
for those P-reductions of E that are defined over some dense open C’ < C such that the residue
field of every point of C\C’ is separable over k.

Proposition 3.1.5 (b) and Theorem 3.3.1 combine into the following single statement.

Corollary 3.3.4. For a k-group scheme G locally of finite type, an étale locally trivial G-torsor £
over k, and a pseudo-parabolic k-subgroup P < G*™'  the connected components of the quotient
E/P are pseudo-proper and quasi-projective.

Proof. By considering a finite field extension over which a given connected component of E acquires a
rational point, we see that the components of E/P are quasi-compact. Thus, by the results reviewed
in §2.1.1, they are also quasi-projective. For their remaining pseudo-properness, by Lemma 3.1.4 (a),
we may base change to k° to reduce to when k is separably closed, so that F is trivial and E/P ~ G/P.

Since P is smooth (see §2.6.2), so is the map G — G/P. Thus, by §2.2.1, the preimage of (G/P)s*d
is precisely G&™4, that is, (G/P)#* ~ G&"d/P. By Remark 3.1.3, we may therefore replace G by
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Geed to reduce to when G is smooth. Once G is smooth, since k is separably closed, the target of
G/P - G/G°

is a disjoint union of copies of Spec(k) and the preimage of each one of them is a copy of G°/P.
This reduces us to considering G°/P, that is, we may assume that G is smooth and connected. We
then consider the smooth map
G/P — G/Gsm,lin

whose target, by §2.1.2 (4), is a pseudo-abelian variety. Since pseudo-properness may be tested using
strictly Henselian, geometrically regular discrete valuation rings R over k (see Remark 3.1.3) and, by
strict Henselianity, the R-fibers of this map are isomorphic to G™ 1" /P, the sought pseudo-properness
of G/P follows by combining the pseudo-abelian variety case settled in Proposition 3.1.5 (b) and the
connected, smooth, affine case settled in Theorem 3.3.1. U

4. PURITY AND EXTENSION RESULTS FOR TORSORS

Our argument for Theorem 1.1.1 is built on purity results for GG-torsors. The classical cases of these
results concern finite schemes, abelian varieties, and reductive groups, and we now generalize to
pseudo-finite schemes, pseudo-abelian varieties, and quasi-reductive groups. These generalizations
seem subtle, however: the statements require new, sometimes delicate hypotheses and the proofs
reach classical cases in somewhat intricate ways. To carry them out, we critically use the comparison
maps ig of §§2.3-2.5, in particular, we use the new affineness result Proposition 2.3.5.

4.1. Purity for torsors under pseudo-finite groups

A well-known purity result of Moret-Bailly says that for a regular scheme S, a closed subset Z < S
of codimension > 2, and a finite, flat S-group G, we have an equivalence of categories

{G-torsors over S} — {G-torsors over S\Z}, (4.1.0.1)

see [MB85, lemme 2] or [(S24, Theorem 7.1.3]. We extend this to commutative pseudo-finite k-groups
G in Theorem 4.1.3 below. Since pseudo-finite groups appear as kernels of the comparison maps i¢g
presented in §2.4.2 and §2.5.2, this purity for pseudo-finite groups is a building block towards similar
results for pseudo-abelian varieties and pseudo-reductive groups. The full faithfulness in (4.1.0.1) is
a special case of the Hartogs extension principle for sections: for a scheme S that is of depth > 2
along a closed subset Z < S, and for an affine S-scheme X, we have

X(S) 2 X(5\2), (4.1.0.2)

see, for instance, [(S24, Lemma 7.2.7 (b)], or perhaps also [Ces22b, Section 1.3.9] for further review.
We now upgrade this Hartogs principle to a similar extendability result for fppf local triviality of
torsors in Lemma 4.1.2.

Lemma 4.1.1. For a finite, locally free scheme map S' — S and a flat, locally finitely presented
S’-group algebraic space G, the counit map (Resgr/s(G))sr — G gives a monomorphism of stacks

B(RGSS//S(G)) — ReSSr/S(BG) (4.1.1.1)

whose essential image, for a variable S-scheme T, consists of those G-torsors over T' := S" xg T
that trivialize fppf locally over T' (and not merely over T"). In particular, this monomorphism is an
equivalence whenever G is smooth.

Proof. Except for the last assertion, the claims are all special cases of [Gir71, chapitre V, proposi-

tion 3.1.3] (and of its proof). When G is smooth, to show that every G-torsor over T” trivializes

fppf locally on T', a limit argument allows us to assume that 7T is strictly Henselian local. Then our
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T-finite 7" is a union of strictly Henselian local schemes, so that, since G-torsors inherit smoothness
(see §1.7), they are all trivial over T". O

To analyze (4.1.1.1) beyond smooth groups, we will use the following lemma.

Lemma 4.1.2. For a finite, purely inseparable field extension k'/k, a k'-group G that is either finite
or unipotent, and a k-scheme S that is of depth = 2 along a closed subset Z < S, a G-torsor E over
S’ 1= Sy trivializes fppf locally on S if and only if its restriction to (S\Z)y trivializes fppf locally on
S\Z, in other words, the following square is Cartesian:

(B(Resgr/s(Gsr))) (S)———— (Resgr s(BGg)) (S)

(B(Resgr/s(Gg))) (S\Z)—— (Resgs(BGg)) (S\Z).

Proof. The equivalent reformulation in terms of the Cartesian square, as well as the full faithfulness
of the horizontal arrows of this square, follows from Lemma 4.1.1. The affineness of G, the depth
hypothesis, and (4.1.0.2) give the full faithfulness of the vertical arrows. Moreover, the “only if”
assertion is clear, so we focus on the “if,” for which we may work locally on S, and hence, by a limit
argument, assume that S is local.

We choose a k/-group embedding G < G with G = GL,, i if G is finite (resp., with G some k'-group
of upper unitriangular matrices when G is unipotent) and note that in both cases the homogeneous

space é/G is affine, see [CesQQb, Section 1.3.8], §1.7, and Lemma 2.3.4. By Lemma 2.3.2, the kernels
of the counit maps

c: (Resp/p(G))pw - G and  ¢: (Resk//k(é))k/ - @
are unipotent. Lemma 2.3.4 then shows that Ker(¢)/Ker(c) is affine. However, then the quotient
Resy 1 (G)/Resy x(G) is also affine: after base change to &', it suffices to note that the map

(Resyru(G)/Resy (@) = (Resy e (G))eo/ (Resio (G — G/G

is affine because fppf locally on the target its source is isomorphic to the base change of Ker(¢)/Ker(c).
We conclude that both the source and the target of the map

1: Resk//k(é)/Resk//k,(G) — Resk//k(é/G)
are affine, in particular, by (4.1.0.2), an S-point of Resk//k(é/G) lies in Resk,/k(é)/Resk//k(G) if and
only if so does the induced (S\Z)-point.

With this in mind, we consider the commutative square

(Resw(@)/Resiu(G) ) (8\2) —— H(S\Z, Resy4(G))

&(S\Z) Jj

(Resi 1(G/G) ) (8\2) ———— H($\2)w, G)

whose horizontal arrows are the connecting maps of long exact cohomology sequences and vertical
maps are injective by the above and by Lemma 4.1.1. Since S is local, S’ is semilocal, so all G-torsors
over S’ are trivial. In particular, F induces a trivial G-torsor, so, since F |(S\Z)k, trivializes fppf

locally on S\Z, Lemma 4.1.1 and [Gir71, chapitre III, proposition 3.2.2] ensure that the class of
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El(s\z),, comes from some a € (Resk//k(é)/Resk//k(G)> (S\Z) that is unique up to the left action
of (Resy /k(CNJ))(S\Z ). Similarly, the analogous square over S shows that the class of E in H(S’, G)
comes from some [ € (Resk//k(é/G)) (S) that is unique up to the left action of (Resk//k(@))(S).

~ ~

However, Resk//k(é) is affine, so (Resy/x(G))(S) = (Resy 4 (G))(S\Z) by (4.1.0.2). In particular,
we may arrange that | s\z = a. At this point, the conclusion of the previous paragraph implies that

3 is actually an S-point of Resk//k(é)/Resk//k(G). Then, however, 3 lifts to an S-point of Resk//k(é)
fppf locally on S, to the effect that E trivializes fppf locally on S, as desired. O

We now extend the purity (4.1.0.1) to torsors under pseudo-finite groups.

Theorem 4.1.3. Let S be a geometrically regular k-scheme, let Z < S be a closed subset of
codimension > 2, and let G be a k-group scheme locally of finite type with G° pseudo-finite and
commutative. For every gerbe B over S isomorphic to BG étale locally on S, we have

#(S) — B(S\Z),
in particular, for every S-group 4 isomorphic to G étale locally on S, we have
HY(S,9) = HY(S\Z,9) and, if 4 is commutative, also H*(S,9) — H*(S\Z,9).

Proof. Tt suffices to settle the claim about %: the conclusions about H! (resp., H?) follow from the
rest by choosing Z = B¥ (resp., by letting # be a ¥-gerbe over S that trivializes over S\Z and
using [SP, Lemma 0DLS] to see that this £ is isomorphic to BG étale locally on S). By descent,
the claim about 4 is étale local on S, so we may assume that 8 = BG and, by also working étale
locally and combining Noetherian induction with spreading out, that .S is strictly Henselian local and
7 is its closed point.* By Lemma 2.2.9 (and [SP, Lemma 02L5]), the connected components of G
are affine, so, by (4.1.0.2) and fpqc descent, the map BG(S) — BG(S\Z) is fully faithful. Thus, we
only need to show that every G-torsor over S\Z extends to a G-torsor over S (necessarily uniquely
up to a unique isomorphism).

For this, we first treat the case when G* = 1, that is, when G is twisted constant (see §2.1.2 (1)).
Due to its strict Henselianity, S is automatically a k®-scheme, so this case follows from the purity
for the étale fundamental group [SGA 2.y, exposé X, théoréme 3.4| (with [SGA 3y, exposé X,
corollaire 5.14] to ensure that every connected component of every torsor under a constant group
over S\Z is finite étale).

In general, by applying the settled twisted constant case to G/GY, and since S is strictly Henselian,
we find that every (G/GY)-torsor over S\Z is trivial. In particular, every G-torsor over S\Z reduces
to a GO-torsor over S\Z, so that we may assume that G is connected, and so also pseudo-finite
and commutative. With these assumptions, we will even prove that H %(S, G) = 0. For this, since
such vanishing is stable under extensions, §2.2.8 and the pseudo-finiteness of G allow us to assume
that G < Resy ;@ for a finite, purely inseparable field extension k'/k and a finite, commutative
k'-group Q). After base change to k' and using Lemma 2.3.2, §1.7, and the finiteness of (), the
k-group (Resy /,Q)/G is affine. Thus, since S is of depth > 2 along Z, the Hartogs extension for
sections (4.1.0.2) gives Hy (S, (Resy ,Q)/G) = 0. The exact sequence

Hy(S, (Resp 1.Q)/G) — HZ(S,G) — Hz(S, Resy 1 Q)

4This specific assumption on Z will not be used in this proof, but it is convenient to do all the straightforward
preliminary reductions at once here and then simply also refer to them in the later proofs of Theorems 4.2.1 and 4.3.1.
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then reduces the desired vanishing of HZ(S,G) to the case when G = Resy k@ Moreover, the
vanishing of this HZ follows from the equivalence of categories (S) — Z(S\Z) for gerbes % over S
that become isomorphic to BG étale locally on S. Thus, by repeating the same reductions as at the
beginning of the proof, we are left with showing that every G-torsor over S\Z extends (necessarily
uniquely up to a unique isomorphism) to a G-torsor over S. Equivalently, by Lemma 4.1.1, since
G = Resy (@), we need to show that every Q-torsor over (S\Z)y that trivializes fppf locally on
S\Z extends to a Q-torsor over Sy that trivializes fppf locally on S. Since @ is finite, Sy is regular,
and Zy < Sy is of codimension > 2, the purity result (4.1.0.1) supplies the extension to a Q-torsor
over Sir. It then remains to note that, by Lemma 4.1.2, this torsor automatically trivializes fppf
locally on S because the same holds over S\Z. O

As we now show, purity for torsors under pseudo-finite groups of Theorem 4.1.3 implies that the map
on H? in (4.1.3) need not be surjective even when G is finite. This also shows that the assumptions
of [CS24, Theorem 1.1.1] are sharp.

Corollary 4.1.4. If k is imperfect of characteristic p, then for every 2-dimensional, geometrically
reqular, local k-algebra (R, m), its punctured spectrum Upg := Spec(R)\m, and a k-group G that is
either oy, or a nontrivial commutative extension of Z/pZ by py,, there is a G-gerbe over Ug that does
not extend to a G-gerbe over R, in particular, H3(R,G) # 0.

Proof. By [SP, Lemma 0AVZ], since R is 2-dimensional, we have H2(R) % 0, equivalently, there
is a nontrivial G,-torsor £ over Ug. On the other hand [Tot13, Lemmas 6.3 and 7. 1] supply a
commutative, pseudo finite extension G of Gg by G over k. By Theorem 4.1.3, every G-torsor over
Urg extends to a G-torsor over R. Thus, since E does not extend to a G,-torsor over R (else it would

be trivial), it does not lift to a G-torsor. In particular, via the long exact cohomology sequence
associated to the extension, E gives rise to a nontrivial G-gerbe over Ur. By the cohomology
sequence and Theorem 4.1.3 again, this G-gerbe does not extend to a G-gerbe over R. g

4.2. Purity for torsors under pseudo-proper groups

Purity for torsors under abelian schemes says that for a regular scheme S, a closed subset Z < S of
codimension > 2, and an abelian scheme G over .S, we have an equivalence of categories

{G-torsors over S} — {G-torsors over S\Z}. (4.2.0.1)

Indeed, (3.2.1.1) supplies the full faithfulness even with S\Z replaced by the union of the generic
points of S and so also shows that every G-torsor over S\Z has finite order, at which point the
extendability to S of a relevant G[n]-torsor over S\Z for some n > 0 follows from (4.1.0.1).

We now extend (4.2.0.1) to analogous purity for torsors under pseudo-abelian varieties, more generally,
for torsors under smooth, pseudo-proper k-groups.

Theorem 4.2.1. Let S be a geometrically regular k-scheme, let Z < S be a closed subset of
codimension = 2, and let G be a k-group scheme locally of finite type with G° pseudo-proper (see
Proposition 3.1.5 (¢)) and either smooth or commutative. For every gerbe % over S isomorphic to
BG étale locally on S, we have

#(S) — B(S\Z),
in particular, for every S-group 4 isomorphic to G étale locally on S, we have

HY(S,9) = HY(S\Z,9) and, if 9 is commutative, also H?(S,9) — H*(S\Z,¥). (4.2.1.1)
38


https://stacks.math.columbia.edu/tag/0AVZ

Proof. As in the proof of Theorem 4.1.3, we may assume that S is strictly Henselian local and that
Z is its closed point. As there, we need to show that every G-torsor (resp., every isomorphism of
G-torsors) over S\Z extends uniquely to a G-torsor (resp., an isomorphism of G-torsors) over S.
Since S is strictly Henselian, it is automatically a k®-scheme, so every (G/G°)-torsor over S is a
disjoint union of copies of S (see §2.1.2 (1)) and every G-torsor over S is then, as an S-scheme,
a disjoint union of GY-torsors. By applying Theorem 4.1.3 to the étale k-group G/G°, we may
therefore pass to G° to assume that G is connected. (To extend G-torsor isomorphisms, we note
that, by schematic density of S\Z in S, it suffices to extend them as scheme isomorphisms.)

The case when our connected G is commutative reduces to when it is smooth: indeed, then torsor
isomorphisms extend by Theorem 3.2.2 (ii), the smooth k-subgroup G4 inherits pseudo-properness,
and, by Example 2.2.7, the quotient G/G#&"°? is pseudo-finite, so Theorem 4.1.3 and (4.2.1.1) applied
to Gered (including the aspect about H?) imply the claim for G. Once our connected G is smooth,
since S is strictly Henselian, every G-torsor over S is trivial. In particular, the desired conclusion is
stable under extensions and we may assume that G is either a pseudo-abelian variety or a connected,
smooth, strongly wound unipotent group (see §2.1.2 (4) and Proposition 3.1.5 (¢)). Moreover, by
Theorem 3.2.2 (ii), it even suffices to show that every G-torsor over S\Z is generically trivial.

In the pseudo-abelian variety case, we consider the comparison map of §2.4.2:

igl G — Resk:/k(é),

and we aim directly for the a priori stronger conclusion that H%(S, G) = 0. For this, since
Ker(ig) is commutative and pseudo-finite, Theorem 4.1.3 allows us to replace G by i (G); in other
words, we may assume that ig is injective. At this point, since Coker(i) is affine, (4.1.0.2) gives
H (S, Coker(ig)) = 0, to the effect that we may assume that G = Resy/;(G). By the same reasoning
as in the proof of Theorem 4.1.3 and by Lemma 4.1.1, it now suffices to show that every G-torsor
over (S\Z)y extends to a G-torsor over Sj.. However, G is an abelian variety, Sy is regular, and
Zyr < Sy is of codimension > 2, so this extendability follows from (4.2.0.1).

In the remaining unipotent case, by Lemma 2.7.5, we may assume that our connected, smooth,
strongly wound, unipotent k-group G is commutative and p-torsion. Moreover, by the Popescu
theorem (see §1.7), we may assume that S is the strict Henselization of a smooth k-scheme at a
point. By excision [éesZQb, Proposition 4.2.1], the question of extending G-torsors over Z only
depends on the base change to the completion of S along Z. Thus, by passing to this completion,
we may assume that S is not only strictly Henselian but also complete. At this point, the desired
generic triviality of G-torsors over S\Z becomes a special case of Lemma 4.2.2 (b). O

Lemma 4.2.2. Let p be the characteristic exponent of k, let S be a locally Noetherian k-scheme, let
Z < S be a closed subset of codimension = 2, and let G be a unipotent k-group scheme.

(a) If S is of depth = 3 along Z (so that Z < S is of codimension > 3), then every G-torsor over
S\Z extends uniquely to a G-torsor over S, in fact, for every S-gerbe % isomorphic to BG
étale locally on S, we have B(S) — B(S\Z).

(b) If S is geometrically regular, strictly Henselian, local, Z is its closed point, S is complete
along Z, and G is connected, smooth, commutative, and p-torsion, then every G-torsor over
S\Z is generically trivial.

(c) Ifk is separably closed, S = Spec(ﬁAi,Z) for a closed point z = Z of A =~ Spec(k[s,t]) cut out
set-theoretically by sP" —a and tP" —b for some a,b € k, n,m =0, and G is connected, smooth,
commutative, and p-torsion, then every G-torsor over S\z trivializes both over S[ﬁ] and
over S[ﬁ]
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Proof.

(a)

Both the assumptions and the conclusion of (c) are strictly stronger than those of (b).

As in the proof of Theorem 4.1.3, it suffices to show that G-torsors extend, and we may
assume that S is local. Since G is unipotent, it is a k-subgroup of some upper unitriangular
matrix k-group U, and U/G is affine; its sections correspond to G-reductions of the trivial
U-torsor, see §1.7. This affineness and (4.1.0.2) give (U/G)(S) — (U/G)(S\Z). Thus, since
every U-torsor over our local § is trivial, we may assume that G = U. We then need to
show that every G-torsor over S\Z is trivial and, by passing to subquotients of G, we reduce
to G = Gg. It then suffices to note that H'(S\Z, Og z) = HZ(S,Os) = 0 because S is
Noetherian local of depth > 3.

By the Popescu theorem (see §1.7) and a limit argument, we may assume that S is the
completion of the strict Henselization of a smooth, irreducible k-scheme X of dimension d = 0
at the generic point y of some irreducible closed Y < X of codimension > 2. Moreover, by (a),
we may assume that S is 2-dimensional, so that Y is of codimension 2. By the presentation
theorem [CTHKO97, Theorem 3.1.1], at the cost of shrinking X around y, we may find a
smooth k-morphism ¢: X — Azfl of relative dimension 1 that makes Y finite over Aiil.
Since Y < X is of codimension 2, its image ¥(Y) < Azfl is a divisor with the generic point
¥ (y). By the presentation theorem again, now applied with ¥(Y") < Aiil in place of Y < X,
after shrinking X around y we may find a smooth k-morphism ¢': X — Az_Q of relative
dimension 2 that makes Y finite over AZ_Q. Now ¢/(y) is the generic point of AZ_Q, SO we may
replace k by k(t1,...,t4—2) (see also §2.1.2 (6)) to reduce to the case when X is of dimension
2 and Y is its closed point y. Moreover, since the strict Henselization of X at y does not
change if we consider Xjs instead, we may also assume that k is separably closed.

We apply the presentation theorem [CTHK97, Theorem 3.1.1| one final time to find, after
shrinking X around y, an étale k-morphism ¢: X — Ai with kg, = ky, so also with
% A2 o(y) = % x,y- By its universal property, the completion of the strict Henselization of a

Noetherian local ring is insensitive to first passing to an initial completion, so our S is also
the completion of the strict Henselization of Ai at ©(y). Moreover, since k is separably closed,

the strict Henselization is superfluous. All in all, we may assume that S =~ Spec(ﬁ A2, ,) for

some closed point z € Az. The extension k,/k is purely inseparable, so, letting s and ¢ be
the standard coordinates on Ai, there are some a,b € k and n, m > 0 for which the Artinian
local closed subscheme Spec(k[s, t]/(s?" — a,t?" — b)) = A2 is an infinitesimal thickening of
z. We are now in the setting of (¢), so it suffices to settle the latter.

By §2.7.1, our k-group G is given by the vanishing locus of some p-polynomial

F = Zi\io 27;0 fijuf] € k[uo, . ,UN]

with fin, # 0 whenever n; > 0. By symmetry, it suffices to argue that every G-torsor over

S\z trivializes over S [ﬁ]

We set B := é)\Ai,zv

Moreover, let A be the (sP" — a)-adic completion of k[s], so that B is the (t*" — b)-adic
completion of A[t]. Concretely, A is the ring of formal series

so that concretely B is the (s?" — a,t?" — b)-adic completion of k[s,t].

Yisolaio+aiis+ -+ ai,pnflspn_l)(spn —a)’ with a; €k, (4.2.2.1)
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where multiplication uses iterative division by s?" — a until the residue polynomial has degree
< p" — 1. Similarly, B is the ring of formal series

Z]}O(b]”o + bj71t + -+ bjypm_ltpm_l)(tpm — b)] with bjyj/ € A.

We consider the fraction fields K4 and Kp of A and B, respectively, as well as the (t*" — b)-
adic completion C of K 4[t]. Similarly, C' is the ring of formal power series

ijo(cj,o +ciat+ -+ Cj7pm,1tpm_1)(tpm — b)j with cjjt € Ky.

By excision [60522b, Proposition 4.2.1], a G-torsor over S\z amounts to a G-torsor over

B[ﬁ] whose restriction to C[ﬁ] extends to a G-torsor over C. Via the explicit
1

description of G-torsors in terms of F' (see (2.7.1.1)), this amounts to an a € B[ ;m— ] and a
B € C for which we have o — 3 = F(7y) for some 7 € (C[n—])N*!. The coordinates of v are

tP"™ —b
formal series > ;7 (cjo +cjit +- -+ cjpm—1tP" T (#P" — b)7 with ¢; y € K4 and only finitely
N+

many c; ; nonzero for j < 0. Collecting the terms with j > 0 gives an element ' €
By replacing § with 8+ F(v) (see (2.7.1.1)), we reduce to the case when ¢;; = 0 for all
j = 0. In turn, each c;; is a formal series >, ,(ai0 + ai18 + - + ajpn_15” 1)(s?" — a)’
with a; 7 € k and only finitely many a; # nonzero for ¢ < 0. Collecting the terms with i > 0
for all the nonzero c; ;» with j < 0 gives an element " € (A[ﬁ])]\”rl
a — F(7") reduces us further to the case when ¢; j = 0 whenever j > 0 and also a; ; = 0 for

. Replacing a by

i > 0. At this point, each coordinate of  is a finite sum of terms a; 5"t/ (s*" — a)' (" — b)?
with 4,7 < 0 and ' < p”, j/ < p™. Consequently, F () is a finite sum of terms of this form
because F is a p-polynomial and, for any r > 0, i'p" < p™p" and j'p" < p™p", ensuring that
division by (s?" —a) and (t*" — b) only involves powers with negative exponents. On the
other hand, $ involves only nonnegative powers of (t?" — b), while a only involves coefficients
b; i» whose formal expansions only use nonnegative powers of (s?" —a). Thus, a — 8 = F(v)
is possible only if F'(vy) = 0, that is, « = . Then a € B by (4.1.0.2). In other words, the
1

restriction of our G-torsor to B[ 5m—; ] extends to B itself. Since B is strictly Henselian and

G is smooth, it follows that every G-torsor over S\z trivializes over S [ﬁ], as desired. [

4.3. Purity for torsors under pseudo-complete groups

Purity for torsors under wound unipotent groups that we establish in Theorem 4.3.1 is a genuinely
new phenomenon that has no analogue over perfect fields. Indeed, for G, we have

{G-torsors over AZ} 2> {G,-torsors over A7\{(0,0)}} (4.3.0.2)

because A2\{(0,0)} is not affine. In contrast, this equivalence holds with G, replaced by any smooth,
wound, unipotent k-group, or even any smooth, pseudo-complete k-group, due to the following
extension of Theorem 4.2.1 to pseudo-complete groups.

Theorem 4.3.1. Let S be a geometrically regular k-scheme, let Z < S be a closed subset of
codimension = 2, and let G be a k-group scheme locally of finite type with G° pseudo-complete (for
instance, wound unipotent, see Proposition 3.1.5 (b)) and either smooth or commutative. If either

(i) every z € Z of codimension 2 in S lies in a geometrically reqular k-subscheme S, < S of

codimension > 0 (when k,/k is separable, we may take S, to be a small open of {z}); or

(i) GO ~ Resy/,(C/T) for a finite field extension £/k, a commutative pseudo-reductive £-group C,

and a mazimal {-torus T < C' (all such G° are wound unipotent); or

(iii) GY is wound unipotent and [k : kP] = p, where p is the characteristic exponent of k; or
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(iv) G%S is unirational and contains no nonzero proper unirational k*-subgroups;
then, for every gerbe % over S isomorphic to BG étale locally on S, we have
#(S) = B(S\Z),
in particular, for every S-group 4 isomorphic to G étale locally on S, we have

HY(S,9) = HY(S\Z,9) and, if 4 is commutative, also H*(S,9) — H*(S\Z,9).

The cases (ii)—(iv) show that the purity conclusion of Theorem 4.2.1 may continue to hold for some
k-groups G that are not pseudo-proper.

Proof. As in the proof of Theorem 4.1.3, we may assume that S is strictly Henselian local and Z is
its closed point z. As there, we need to show that every G-torsor over S\z extends uniquely (up
to a unique isomorphism) to a G-torsor over S, and likewise for torsor isomorphisms. As in the
proof of Theorem 4.2.1, we may assume that G is connected. Moreover, as there, the case when our
connected G is commutative reduces to the smooth case. In the latter, we combine the stability of
the desired conclusion under extensions with Theorems 4.2.1 and 4.1.3 (and Proposition 3.1.5) to
replace G by G and reduce to when G is connected, wound, and unipotent. At this point G is
affine, so the uniqueness aspect follows from (4.1.0.2). Since G is even unipotent, for the remaining
triviality of G-torsors over S\z, Lemma 4.2.2 (a) allows us to assume that S is 2-dimensional.

(i) The triviality of G-torsors over S\z is stable under extensions, so we may pass to the
subquotients of the filtration of G by its iterated cckp kernels (see §2.1.2 (7)) to reduce to
when G is commutative and p-torsion.

We let R be the coordinate ring of S and fix a geometrically regular, closed S’ < S of
codimension > 0 that is the S, in the assumption (i). The Popescu theorem (see §1.7) ensures
that R is a filtered direct limit of local rings R; of smooth k-schemes with local transition
maps. Since the transition maps are local, for large 7, a regular sequence that cuts out S’ < S
descends to a regular sequence in R;. This descended sequence cuts out a closed subscheme
S! < Spec(R;) of codimension > 0 that is geometrically regular (see [SP, Lemma 0381]):
indeed, S}, < Spec(R ®y, k') is regular for every finite, purely inseparable field extension k'/k,
which only happens if (S]), < Spec(R; ®y, k') is regular. Thus, a limit argument allows us to
replace R by some R; to reduce to the case when R is a local ring of a smooth k-scheme, at
the cost of no longer assuming that R is strictly local and instead needing to show that every
G-torsor over S\z extends to a G-torsor over S.

To simplify R further, we now use our assumption on S’. By spreading out, S’ < S is
a localization of a closed immersion &’ © S of irreducible smooth k-schemes, and we let
s: Os,, - Us_, be the resulting surjection of local rings (with R = 05 .). By [EGA IV,
corollaire 17.11.3] and the Jacobi criterion [BLRI0, Section 2.2, Proposition 7|, there is a local
ring A of some maximal ideal of some k[T7, ..., T,] for which Os_; is a localization of a smooth
A-algebra in such a way that Os . is an étale A-algebra. By base change, the Os/ .-algebra
R = Os'.,®a Us, ; is then a localization of a smooth Os: ,-algebra and comes equipped with
a “diagonal” section §: R — Os:, . Since § factors through the quotient R — Os . ®a Os 5,
whose target is étale over Os ., and so has the target of 5 as a direct factor, we conclude
from [EGA IVy, corollaire 17.9.5] that the étale map Os , — R induces an isomorphism

between the completion of Os, . along the kernel of s and that of R along the kernel of 5. By
[BLR90, Section 3.1, Proposition 2|, the latter completion is isomorphic to Og . [t1,. .., t,].
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(i)

(iii)

Thus, the completion of R along the ideal of S’ is a formal power series ring R[t1,. .. ta],
where R is a local ring of a smooth k-scheme and n < 2 (because R is 2-dimensional).

The completion map R — R[t1,...,t,] is faithfully flat and an isomorphism on residue fields
at maximal ideals, so, for extending our G-torsor over S\z to a G-torsor over S, excision
[CesQQb, Proposition 4.2.1] reduces us to when R is R[t1,...,t,], at the cost of losing the
assumption that R is a localization of a smooth k-algebra. We then apply the Popescu theorem
R[t1, ..., tp_1] and use a limit and algebraization argument based on [BC22, Theorem 2.3.3
(c) (or Corollary 2.3.5 (a))] to reduce further to the case when n = 1, in other words, to when
R is R[t] for an essentially smooth k-algebra R of dimension 1 (because R is of dimension 2).

By spreading out, R is the local ring at a generic point of an irreducible divisor in a smooth,
affine k-scheme S of dimension d > 0. Moreover, we may assume that k is imperfect (so
infinite): otherwise, our smooth, wound, unipotent k-group G is trivial, and so are its torsors.
By the presentation lemma [CTHK97, Theorem 3.1.1], after shrinking around R, our S admits
a smooth map of relative dimension 1 to Azfl that makes the divisor in question finite over
Ai_l. We may then replace k by the function field k(t1,...,t4-1) of Az_l to reduce to when
R is a local ring at a closed point of a smooth, affine k-curve (the assumptions on G are
preserved because k(t1,...,ts_1) is separable over k, see §2.1.2). By the uniqueness of the
sought G-torsor extension and by Galois descent, we have the liberty of base changing to any
finite Galois extension of k, so by a limit argument and further passage to t-adic completion,
we may also assume that k is separably closed.

By [Ces22, Lemma 6.3], the completion of R is isomorphic to that of Al at some closed point.
Thus, by excision [éesQQb, Proposition 4.2.1| again, we are reduced to when R = R[t], where
R is the completion of k[s] at some maximal ideal, explicitly, since k is separably closed, at
the ideal (sP" —a) < k[s] for some a € k. At this point, we are in the setting Lemma 4.2.2 (c),
so we apply it to get that every G-torsor E over S\z trivializes both over R((t)) and over
K[t] where K is the fraction field of R. It remains to note that, since K is separable over
k and G is pseudo-complete (see Proposition 3.1.5 (¢)), any trivialization of E over R((t))
extends uniquely to a trivialization of E over Kt], that is, to a trivialization over all of S\z.

The woundness of G follows from [CGP15, Example B.2.8]. By Lemma 4.1.1, we may assume
that £ = k, so that G ~ C/T. By the purity for the Brauer group [Ces19, Theorem 5.3] (in
fact, already by [Gro68, théoréme 6.1 b)]), we have H2(S\z,T) = 0, to the effect that every
G-torsor over S\z lifts to a C-torsor over S\z. To conclude, we will show that every C-torsor
over S\z extends to a C-torsor over S (equivalently, is trivial).

We consider the map ic: C — Resk//k(é) of §2.5.2, where C is a k/-torus because it is both
commutative and reductive. Since Ker(ic) is commutative and pseudo-finite, Theorem 4.1.3
applies to it, and so allows us to replace C by ic(C) to assume that C' is ultraminimal.
Moreover, since Resyy;(C)/C is affine (see §2.5.2), as in the proof of Lemma 4.2.2 (a), we

may replace C by Resy /k(C). Then, however, Lemma 4.1.1 reduces us to the case when
k' = k, so to when C is a torus. The torus case holds, for instance, by [éesli), Theorem 6.1].

As in the proof of (i), we reduce to when our connected, smooth, wound, unipotent k-group
G is commutative and p-torsion. By [Ros25, Theorem 1.8], the assumption [k : kP] = p then
ensures that G ~ C/T for some commutative pseudo-reductive k-group C and a maximal
k-torus T' < C. Thus, (ii) gives the claim.
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(iv) As in the proof of (i), we may base change to any finite Galois subextension of k*/k. By our
assumption on Ggs and Lemma 2.7.2, after some such base change G becomes a Res,(C/T)
as in (ii). Thus, (ii) gives the claim. 0

Remark 4.3.2. Theorem 4.3.1 (i) and (iii) continue to hold if instead of assuming that G is smooth,
we assume that G° is wound unipotent and commutative. Indeed, we may first use Theorem 4.1.3
to replace G by GV as in the proof above and then use Lemma 2.7.6 to embed our commutative,
connected, wound, unipotent G as a k-subgroup of a commutative, connected, smooth, wound,
unipotent k-group G. Since G/G is affine (sce §1.7), as in the proof of Lemma 4.2.2 (a), we replace
G by G to reduce to when G is, in addition, smooth, a case settled in Theorem 4.3.1 (i) and (iii).

Remark 4.3.3. The proof of Theorem 4.3.1 (i) simplifies significantly if every z € Z of codimension
2 in S has k,/k separable: by the Cohen structure theorem [Mat89, Theorems 28.3 and 30.6 (i)],
then the completion of Og, , is k-isomorphic to k.[s,t], so passage to power series rings becomes
much more direct than in the proof above.

Remark 4.3.4. Theorem 4.3.1 (ii) fails if we assume instead that G° ~ A/A?P is the largest
unipotent quotient of a pseudo-abelian variety A over k as in (2.4.1.1): by [Tot13, Corollary 7.3],
even G, j, is of this form for suitable k, and the conclusion of Theorem 4.3.1 fails for it, see (4.3.0.2).

4.4. Auslander—Buchsbaum extension for torsors under quasi-reductive groups

A well-known extension result for torsors under reductive groups that is ultimately based on the
Auslander—Buchsbaum formula to treat the key case of vector bundles says that for a regular scheme
S of dimension 2, a closed subset Z < S of codimension 2 (so that Z consists of isolated points of
height 2), and a reductive S-group G, pullback gives an equivalence of categories

{G-torsors over S} — {G-torsors over S\Z}, (4.4.0.1)

see [CTS79, Corollary 6.14]. We generalize this to quasi-reductive groups as follows and simultaneously
extend Theorems 4.2.1 and 4.3.1 beyond pseudo-proper or pseudo-complete smooth k-groups G.

Theorem 4.4.1. Let S be a geometrically reqular k-scheme of dimension < 2, let Z < S be a closed
subset of codimension = 2 (so that Z consists of isolated points of height 2), and let G be a smooth
k-group scheme with G™ '™ quasi-reductive. Suppose that either

(i) Go™ I 45 pseudo-reductive; or

(ii) every z € Z lies in a geometrically reqular k-subscheme S, < S of codimension > 0 (when
k./k is separable, we may take S, = z).

For every gerbe A over S isomorphic to BG étale locally on S, we have
#(S) — B(S\Z),
i particular, for every S-group & isomorphic to G étale locally on S, we have

HY(S,9) = HY(S\Z,9) and, if 4 is commutative, also H*(S,9) — H*(S\Z,9).

Proof. By descent, we may work étale locally on .5, so a spreading out argument allows us to assume
that S is strictly Henselian, local, of dimension 2, and that Z is its closed point. Then, since G is
k-smooth, every G-torsor over S is trivial and we need to show that

(1) G(S) = G(S\Z); and

(2) every G-torsor over S\Z is trivial.
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The separatedness of G gives the injectivity in (1), see [(S24, Lemma 7.2.7 (a)], while the surjectivity
is stable under extensions of smooth groups because each such group has no nontrivial torsors over
S. To get the surjectivity for G it then suffices to note that it holds for G/G®™ ! by Theorem 4.2.1
and for GS™ 1 by (4.1.0.2).

The remaining (2) is likewise stable under extensions of smooth groups and holds for G/G™ !i»
by Theorem 4.2.1, so we may replace G by G™ 1" to assume that G is quasi-reductive. Moreover,
Theorem 4.3.1 (i) supplies (2) for the smooth, wound unipotent k-group %, (G), so we may replace
G by G/%,,1(G) to assume that G is pseudo-reductive. For pseudo-reductive G, we first consider
its central, pseudo-finite k-subgroup % discussed in §2.5.3. By Theorem 4.1.3, every %g-torsor over
S\Z extends to a €g-torsor over S. This lets us replace G by G/%¢, in other words, we may assume
that our pseudo-reductive G is of minimal type. We then consider the comparison map of §2.5.2:

Y:GI G — Resk//k(é).
Since G is of minimal type, its pseudo-finite k-subgroup Ker(ig) is commutative (see §2.5.3), so
we may use Theorem 4.1.3 again to replace G by ig(G), and hence reduce to when our pseudo-
reductive G is ultraminimal. As in the proof of Lemma 4.2.2 (a), the affineness of Resy /,(G)/G (see

§2.5.2) and §4.1.0.2 then allow us to replace G by Resy,(G). Finally, Lemma 4.1.1 allows us to

replace Resp (G) by G to reduce to when G is reductive. In the reductive case, (2) follows from
(4.4.0.1). O

Remark 4.4.2. To show that the quasi-reductivity assumption is optimal in Theorem 4.4.1, we
suppose that Zys 1(G) # 1 (with G still smooth), we let S be the strict Henselization of the origin of
Az with Z < S the closed point, and we will show that G has a nontrivial torsor over S\Z, contrary
to what the conclusion of Theorem 4.4.1 would predict. By the proof of Theorem 4.4.1, nontrivial
G,-torsors over Az\Z restrict to nontrivial G,-torsors over S\Z. Such restrictions induce nontrivial
PRos, i (G)-torsors E over S\Z (see the next sentence or the proof of Lemma 4.2.2 (a)). If such an £
induced the trivial G-torsor, then E would be the preimage of an (S\Z)-point of G/Z%ys 1(G). By
Theorem 4.4.1, this (S\Z)-point extends to an S-point, so E would extend to an Zys, 1(G)-torsor
over S, a contradiction. The importance of quasi-reductivity, relatedly, the failure of Theorem 4.4.1
for GG, invalidates several more direct ways to attack Theorem 4.4.1.

Remark 4.4.3. Although there are other ways to see this, Remark 4.4.2 gives a playful proof of the
fact that the quotient G/Z of a quasi-reductive k-group G by a central k-subtorus 2 is still quasi-
reductive. Indeed, with Z < S as in Remark 4.4.2, it suffices to note that, by [Ceslf), Theorem 1.3]
(in fact, already by [Gro68, théoréme 6.1 b)|), every G/Z -torsor over S\Z lifts to a G-torsor over
S\Z, and so, by Theorem 4.4.1, it extends to a G/Z-torsor over S, and hence is trivial.

5. CLASSIFICATION OF G-TORSORS OVER P},

The endpoint of the geometric approach to the Grothendieck—Serre conjecture is the study of torsors
over the relative P'. As we explain in §5.2, the extension results of Chapter 4 lead to a quick
classification of G-torsors over ]P’llC for quasi-reductive G. For this, we begin in §5.1 with the auxiliary
and more direct unipotent case.

5.1. Torsors over Py under unipotent groups

Torsors over a relative Pg under unipotent S-groups descend to S as in Proposition 5.1.2 below,
whose proof uses the following auxiliary lemma.

Lemma 5.1.1. For every n = 0, base change induces an equivalence of categories

nite k-schemes} — { finite, flat P -schemes F' such that Or ~ Oy, as Opr-modules},
finite k-sch =, {finite, flat PR -sch F such that € ﬁﬂ?kd Opp-modul
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with an inverse functor given by F +— s*(F) for any fived s € P} (k).

Proof. Since Homg,,, (ﬁ]}»z, ﬁ]}vz) =~ k, the triviality of O as a vector bundle implies that commutative
k

ﬁprkz—algebra structures on O correspond to commutative k-algebra structures on s*(0p). O

Proposition 5.1.2. Let S be an algebraic space and let 4 be a flat, locally finitely presented, quasi-
separated S-group algebraic space each of whose geometric S-fibers %5 has a unipotent linear part
(%f)hn (see §2.1.1 and §2.1.2 (3)), and suppose that ¢4 is an extension of an fpqc locally constant
S-group € by a finitely presented S-group algebraic space. For every S-gerbe B for the fppf topology
isomorphic to BY fppf locally on S, we have B(S) — B(PL) for every n > 1, in particular,

4(8) = 9(PY) and HY(S,9) > HY(PL,9).

Proof. By working fppf locally on S, we may assume that # = BY. We then first claim that
4G(8) — 4 (PY). (5.1.2.1)

For this, since P has an S-point, we may focus on the surjectivity and, by a descent and limit
argument, may assume that S is affine and even local. The rigidity lemma [MFK94, Proposition 6.1]
then reduces us to .S being the spectrum of a field K, and fpqc descent allows us to assume that K is
algebraically closed. To then check that every P}-point of ¢ comes from a K-point, by (2.2.1) and
translation, we may assume that ¢ is smooth and connected. However, every P%-point of a smooth,
connected K-group comes from a K-point: for abelian varieties this is [Mil86, Corollary 3.8|, for
affine groups this results from I'(P}, ¢) = K, and the general case follows from §2.1.2 (3).

By applying (5.1.2.1) fpqc locally on S, we find that
Isomy (E, E')(S) = Isomy (E, E')(P%)

for all ¢-torsors E and E’ over S, in other words, the functor #(S) — Z(PY) is fully faithful. To
argue that it is also essentially surjective, by fpqc descent again, it then suffices to show that every
¢-torsor I/ over IP§ trivializes fpqc locally on S. For this, letting s be an S-point of P’y and working
fpqc locally again, we may assume that s*(E) is trivial and % is constant.

Every ¢-torsor over PY¢ trivializes even étale locally on S: for this, by a limit argument and the
proper base change theorem [SGA 411, exposé XII, corollaire 5.5 (ii)], we may assume that S is the
spectrum of a separably closed field k, then note that, by [SGA 3y, exposé X, corollaire 5.14], every
connected component of a €-torsor over P} is finite étale over P!, and, finally, recall that this étale
cover splits by [SGA 1,0y, exposé XI, proposition 1.1] (with [SP, Theorem 0BTY] to pass to k).
By applying this to the @-torsor induced by F, we reduce the sought fpqc local triviality of F to
the case when % is trivial, so that ¢ is finitely presented over S, with the triviality of s*(FE) again
arranged by a preliminary fpqc base change on S.

Once ¥ is finitely presented over S, we may first do a descent and limit argument to reduce to
Noetherian S and then, by a further limit argument and fpqc base change that uses [EGA III;, chapitre
0, proposition 10.3.1], even to S being the spectrum of a complete Noetherian local ring with an
algebraically closed residue field. We seek a trivialization of E over P whose restriction to s recovers
a fixed trivialization of s*(F), and, by (5.1.2.1), there is at most one such. This way of choosing
a preferred trivialization uniquely and compatibly with base change in S allows us to apply the
continuity formula [BHL17, Corollary 1.6] (with [Ces22b, Section 1.2.3] to ensure that E is an
algebraic space) to reduce to when S is Artinian local with an algebraically closed residue field K.

At this point the vanishing of the cohomology H'(P}, 0) ~ H?(P}, ) =~ 0 and the deformation
theory of ¢-torsors, more precisely, [I1172, théoréme 2.4.4, page 209], imply that F is the unique
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deformation of Elpy to a ¥-torsor over P§ (see the second half of the proof of [CF23, Proposi-
tion 3.1 (b)] for more details). In particular, to prove that E is trivial, we may base change to the
special fiber and reduce to the case when S = Spec(K).

Recalling that % is trivial and ¢ is of finite type, consider the finite K-group F := % /(4°)"¢ and
the F-torsor E over P% induced by E. Since F/F? is étale (see §2.1.2 (1)), the F/F-torsor E/FY
is a finite étale cover of P%. Thus, E/F? is trivial by [SGA 1,ey, exposé XI, proposition 1.1], so
we may assume that F' = F9 so that F is infinitesimal. To show that E descends to an F-torsor
over K, and hence is trivial, by Lemma 5.1.1, it suffices to show that 07 is a trivial vector bundle
over P'%.. For this, by [OSS80, Theorem 3.2.1| (which is stated over the complex numbers but whose
proof works over any base field), it suffices to show the same after restricting to any line L < P7,
so we may assume that n = 1. However, the vector bundle &7 trivializes over the finite, flat cover
E — PL, and hence also over (E)™d. Since F is infinitesimal, the function field of the integral

K-curve (E)™d is purely inseparable over K (t), so it is contained in some K (t/ pe) with £ > 0. By
passing to normalizations, we conclude that &7 trivializes over some finite, flat cover P}( — IP’}(. By
then decomposing € into a sum of line bundles €'(n), we get that 0 is trivial, as desired.

Since E is trivial, E reduces to a (¢%)"-torsor over P% and we may assume that ¢ is smooth and
connected. Our assumptions and §2.1.2 (3) now imply that ¢ is an extension of an abelian variety
A by a unipotent group. By (3.2.1.1),

H' (P, A) — H' (k(Pf), A),

so every A-torsor over P has finite order, in other words, reduces to an A[m]-torsor for some m > 0.
Since the K-group A[m] is finite, by the argument above about F', it has no nontrivial torsors over
IP%-, and hence neither does A. Consequently, we may assume that ¢ is unipotent, and, by passing
to subquotients, that it is either finite or G, k (see §1.7). In the finite case, the argument above
about F' suffices, while G, x has no nontrivial torsors over P} because H L "%, 0) = 0. All in all,
our ¥-torsor I over P} is trivial, so it descends to K. ]

Remark 5.1.3. As for higher cohomology, for every commutative, unipotent k-group U and every
k-algebraic space S, we have H'(S,U) = H'(P%,U) for all i. Indeed, to see that U = R (Upn)
where : P§ — S is the structure map, we may assume that k is algebraically closed, handle U = G, i
by [EGA III;, proposition 2.1.15], and then handle a general U by dévissage, Proposition 5.1.2, and
[SGA 3y, exposé XVII, corollaire 1.7].

Beyond unipotent groups, Proposition 5.1.2 helps reduce the structure group of G-torsors over Pg to
the (unirational) k-subgroup G*°* < G generated by the k-tori of G (see §2.1.2 (10)) as follows.

Corollary 5.1.4. Let G be a smooth k-group scheme, let S be a k-scheme, and let E be a G-torsor
over P& with n > 1. Pullback along an s € PY(S) gives an equivalence

{reductions of E to a G**-torsor} = {reductions of s*(E) to a G***-torsor}.

In particular, if s*(E) is trivial, then E reduces to a G*"-torsor over P% whose s-pullback is trivial
(resp., then E is even trivial if GY°" = 1, that is, if GS™ ™ is unipotent).

Proof. The category of reductions of E (resp., of s*(E)) to a G*'-torsor is equivalent to the

set (E/G'"")(P%) (resp., (s*(E/G™))(S)). Moreover, E/G*" is a (G/G*™")-torsor over P%, so

Proposition 5.1.2 gives the claim once we argue that (G/G'*")" is unipotent. The latter follows

from §2.1.2 (3), (4), and (10). O
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The following consequence of Corollary 5.1.4 extends [CFQS, Theorem 4.2] beyond reductive groups.

Corollary 5.1.5. For a smooth k-group scheme G with GS™ "™ unipotent and a k-algebra A, no
nontrivial G-torsor E over AYy trivializes over the punctured formal neighborhood A((t™1)) of infinity.

Proof. For convenience, we set s := t~!. Since G is smooth, by [BC22, Corollary 2.1.22 (b) (with
Example 2.1.18)|, our E trivializes already over the punctured Henselization A{s}[1] at infinity. In
particular, by patching [MB96, Theorem 5.5], it extends to a G-torsor over P4 that is trivial at
infinity. Corollary 5.1.4 then implies that E is trivial. g

5.2. Torsors over P}C under quasi-reductive groups

We apply the Auslander—Buchsbaum extension Theorem 4.4.1 for torsors under quasi-reductive
groups to obtain a classification of torsors over IP’}C in Theorem 5.2.4. For this, we view the projective
space as an open of [A7/G,,] as follows and then classify torsors over this stack in Lemma 5.2.2.

Example 5.2.1. Letting G,, 7z act on A%H by scaling the coordinates, the open complement of
BG,,,z =~ [{0}/G,, 7] in the quotient [AZT!/G,,] is the projective space P% =~ [(AZT\{0})/G,].
The structure map P}, — BG,, 7z classifies the line bundle &/(—1): as we now argue, the square

A%H\{O} —— Spec(Z)

J’ Plo(-1) J

pr 2 BG,, 2

is a Gy, z-equivariant and Cartesian. To see this, first recall from [SP, Lemma 0INE]| (or [EGA II,
théoréme 4.2.4]) that the fiber product of the outer bottom part of the square represents the functor
that sends a scheme S to the set of isomorphism classes of line bundles .Z on S equipped both with
50,...,8n € H°(S, %) that have no common zeros and with a o: g — £V explicitly, . is the
pullback of €(1) along the map S — P}, given by x — [so(x) : --- : sp(x)]. On the other hand,
AZFT1\{0} represents the functor that sends S to the set of (n + 1)-tuples to,...,t, € H°(S, Os)
with no common zeros. The two functors are identified via t; = ¢V o s;, and this is G,,-equivariant
because G,, acts on both sides by scaling via a character of weight —1 (so t; = A~1¢;, etc.).

Torsors over [A"/G,,] under smooth groups may be classified as follows.

Lemma 5.2.2. For a ring A and a smooth, quasi-separated A-group algebraic space G, we have
HY(BGy,, 4,G) = HY([AY/Gy, 4], G) (5.2.2.1)

via pullback along the structure map [A" /Gy, a] — BGyy, 4, and if G is also quasi-affine, then
restricting along the origin BGy, 4 — [A”} /Gy, 4] gives a full, essentially surjective functor

{G-torsors over [Ay /Gy, a]} — {G-torsors over BG,,, a}. (5.2.2.2)

Proof. The composition BGy,, 4 — [A” /Gy, 4] — BGyy,, 4 is the identity, so (5.2.2.1) is injective,
and (5.2.2.2) is essentially surjective. To show that (5.2.2.1) is also surjective, we need to argue that
nonisomorphic G-torsors over [A”; /G, ] cannot become isomorphic over BG,, 4. This follows from
[AHR25, Proposition 7.9 (case 7.6 (c) (N)) and Remark 2.5] applied to the functor that parametrizes
isomorphisms between two G-torsors (by [SP, Lemma 04SK]| this functor is a quasi-separated,
smooth relative algebraic space). In the case when G is quasi-affine, by [SGA 31 ey, exposé VIp,
proposition 11.11], its A-fibers are affine, so the stabilizers of the A-stack BG are also affine. Thus,
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[AHR25, Proposition 7.9 (case 7.6 (c¢) (N)) and Remark 2.5] applied to the base change of BG to
[A” /Gy, 4] also give the remaining fullness of (5.2.2.2). O

The following final input to Theorem 5.2.4 is widely known for reductive k-groups.

Lemma 5.2.3. For a k-group scheme G locally of finite type, the mazimal split k-tort S < G are
pairwise G(k)-conjugate and, for any such S, we have

Homy ¢ (G, S)/Ne(S) (k) = Homy gp (G, G)/G (k)
Proof. The G(k)-conjugacy of maximal split k-tori is [CGP15, Proposition C.4.5 (1)]. Thus, since
every k-homomorphism A: G,, — G factors through some maximal split k-torus of G, the displayed
map is surjective. For its injectivity, fix a maximal split k-torus S < G and consider k-homomorphisms
AN Gy, — S with A(—) = g)N(—)g~! for some g € G(k). Both S and gSg~! are maximal k-split
tori of G through which A factors, so both lie in the largest connected, smooth, affine k-subgroup
Gs™ 1 < @ and then even in the centralizer Zgsm i (\) of A\. However, [SGA 3y, exposé XI,
corollaire 5.3] ensures that Zgem,in () is a closed k-subgroup of G. The conjugacy of maximal split
k-tori applies to it and gives an h € (Zgem, 1 (M) (k) with S = hgSg~th~!. Now hg € Ng(S)(k) and
hg\ (=)(hg)~t = hA(=)h~t = A\(—), so that A and X are Ng(S)(k)-conjugate. O

Theorem 5.2.4. Let G be a k-group scheme locally of finite type such that every k-torus of Gy
lies in (G&™4)r (see Remark 2.2.13) and let E be a G-torsor over P}. No nontrivial G-torsor over
k[t] (resp., over k[t]y w[y; resp., over k{t}; resp., over k[t]) trivializes after inverting t, and the
following conditions are equivalent:

(i) E‘A}g is trivial;
(ii) E is Zariski locally trivial,
(iii) E is generically trivial,
and if G is smooth, then they are also equivalent to
(iv) s*(E) is trivial for some s € Pi(k);
(v) s*(E) is trivial for every s € P}(k);
(Vi) Elyy is trivial, where t is the standard coordinate of Ay,.
If G is smooth, then, for every s € PL(k), the sequence of pointed sets
(+} - HL (PL,G) > H'(PL,G) 5 H'(k,G) — {*} (5.2.4.1)
is exact. If G is smooth with GS™ '™ quasi-reductive (see §2.1.2 (4)), then
HY(P},G) =~ H'(BG,,,G), (5.2.4.2)
letting S < G be a mazximal k-split torus, also
H}or(PL, G) = Homy, g (Gon, G)/G(k) =" Homy g (Gom, S)/Ner(S) (k) (5.2.4.3)
and, in addition, the conditions (1)—(vi) are also equivalent to

(vil) E is the inflation of the Gp,-torsor O'(1) along some \: Gy, — G.
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Proof. By patching [MB96, Theorem 5.5|, a G-torsor £ over k[t] (resp., over k[t]y su[]; resp., over
k{t}; resp., over k[t]) that trivializes after inverting ¢ extends to a G-torsor over P} that trivializes
over PI\{t = 0} (loc. cit. applies since k[t] is a filtered direct limit of flat, finitely presented k[t]-
algebras). Thus, the equivalence of (i)—(iii) implies that &£ is trivial. If at least one of (i)—(iii) holds,
then, by Theorem 3.2.2 (i), our E reduces to a generically trivial GS™ ! _torsor. In particular, we
may assume throughout that G is smooth.

The patching argument also shows that (vi) implies (iv), so since (vi) follows from (i), we may
discard (vi) altogether. Similarly, we may discard (v) because it implies (iv) and follows from (ii).
Moreover, the equivalence of (ii) and (v) gives (5.2.4.1).

If either (i)—(iii) holds for our smooth G, then we saw that, by Theorem 3.2.2 (¢) (i), we may assume
that G is connected, smooth, and affine. If (iv) holds, then Corollary 5.1.4 allows us to reduce E to
a G*™ -torsor E'" with s*(E*") trivial, so we may again assume that G is connected, smooth, and
affine. Moreover, since G, has no nontrivial torsors over affine schemes, (i)—(iv) are all insensitive
to replacing G by G/Zys 1(G). All in all, to argue that each of (i)—(iv) implies the others, we may
assume that G is quasi-reductive.

In the remaining case when G is smooth with GS™! quasi-reductive, we view P} =~ [(A2\{0})/G,,]
as the open complement of BG,, = [{0}/G,,] in [A}/G,,], see Example 5.2.1. By the Auslander—
Buchsbaum extension Theorem 4.4.1 (ii) for G-torsors (applied after pullback along AZ — [A2/G,,,])
and (5.2.2.1), we have

HY(P},G) = H'([A?/G,,],G) = H'(BG,,,G).

Here the Zariski locally trivial G-torsors on IP’/,lC correspond to those G-torsors over BG,, that trivialize
over the cover Spec(k) — BGy,: indeed, Zariski local triviality implies triviality at every k-point of
P!, whereas the G-torsors over BG,, that trivialize over Spec(k) are the inflations of the tautological
Gp-torsor along some k-homomorphism A: G, — G, where G is the automorphism group of a
trivial G-torsor Ej over Spec(k) and A is unique up to changing a trivialization of Ey, concretely,
up to G(k)-conjugation. The claimed (5.2.4.3) follows, and we also get that either of (i), (ii), (iv),
or (vii) implies all of (i)—(vii). By spreading out, so does (iii) if k is infinite. In the remaining case
when £ is finite and (iii) holds, we already saw that to argue (i)—(vii), we may assume that G is
quasi-reductive. Then Lang’s theorem gives (iv) (see [Ser02, Chapter III, Section 2.3, Theorem 1']),
and hence, by what we have already argued, (i)—(vii) all hold. O

Remark 5.2.5. We now show that (5.2.4.3) fails without the quasi-reductivity assumption. Torsors
under G := G, x G,,, where G,,, acts on G, via a character of weight 1, are all Zariski locally trivial.
By [Gir71, chapitre III, remarque 2.6.3, proposition 3.3.1 (i)], the set of isomorphism classes of those
G-torsors over P} whose induced G,,-torsor corresponds to &(n) is identified with H(Pt, &(n)). For
n < 2, the latter is a nonzero k-vector space (see [EGA III;, proposition 2.1.15]), so not a singleton.

6. THE BIRKHOFF AND CARTAN DECOMPOSITIONS FOR QUASI-REDUCTIVE GROUPS

The classification Theorem 5.2.4 for torsors over }P’}C under a quasi-reductive k-group and its proof
yield the Birkhoff and the Cartan decompositions in Theorems 6.1.1 and 6.2.2. For the Iwasawa
decomposition, whose proof relies on a case of Theorem 1.1.1, see Theorem 8.3.1.

6.1. The Birkhoff decomposition

The final part of the following decomposition result is similar to [608241), Theorem 3.6].
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Theorem 6.1.1 (Birkhoff Decomposition). For a k-group scheme G locally of finite type with G=™ i
quasi-reductive and a mazximal split k-torus S < G, we have

GR[t]) = [ nettomp gy (@, )86 (5) () G RIET DG (E[t
G(k(t)) (k[t™]
GR{t}F]) = I etomy yp G, 5)/Nes(5) k) GE[E]
) = (k[t™7]

(

(

( (6.1.1.1)
G(k(1) (

)

where t* := \(t) € G(k[t*1]), and
G(K[tH'])/G(K[t]) = G(k(1))/G(k[t] ) = G(E{t}[1])/G(k{t}) = G(k(#))/G(k[t]). (6.1.1.2)

Proof. By (2.2.1), the decompositions in question are insensitive to replacing G' by G&8"4, so we
may assume that G is smooth. Let A denote either k[t], or k[t]), or k{t}, or k[t], depending on
the respective decomposition in question, so that in all cases A is a filtered direct limit of flat,
finitely presented k[t]-algebras (by the Popescu theorem [SP, Theorem 07GC| when A = k[t]). B
patching [MB96, Theorem 5.5], the double coset space G(k[t™1])\G(A[$])/G(A) is identified with
the set of isomorphism classes of those G-torsors over P} that trivialize both over P{\{t = 0} and
over Spec(A). By Theorem 5.2.4, such G-torsors are all 1nduced from the G,,-torsor (1) via some
k-homomorphism A: G,, — 5, Wlth two G-torsors being isomorphic if and only if the corresponding
cocharacters are N¢(S)(k)-conjugate. Moreover, when G = Gy, the class in the double coset space
AX\A[L]* /k[t~1]* that corresponds to €'(1) is given by the element . Thus, the functoriality gives
the desired decompositions (6.1.1.1).

The maps in (6.1.1.2) are all surjective by (6.1.1.1). Their injectivity follows from [MB96, Theo-
rem 5.5], which implies, for instance, that a k[t*!]-point of G that extends to a k[t]-point when
restricted to k((t)) already extends to a k[t]-point. O

Remark 6.1.2. When one approaches the decompositions (6.1.1.1) purely group-theoretically, the
critical part to argue is that the union of double cosets on the right side of a desired equality form a
subgroup of the left side. This is a rather concrete statement but it tends to be quite delicate even
in the reductive case, compare with [Rag94, proof of Theorem 3.4].

6.2. The Cartan decomposition

To argue the Cartan decomposition in Theorem 6.2.2, we adapt ideas from §5.2 that gave the Birkhoff
decomposition. More precisely, we combine the Auslander—Buchsbaum extension Theorem 4.4.1 for
torsors under quasi-reductive groups with the approach to the Cartan decomposition introduced in
[AHHL21] in the reductive case. The relevant analogue of Lemma 5.2.2 is the following lemma.

Lemma 6.2.1. Let G be a smooth k-group scheme, let O be a Henselian discrete valuation ring
that is a k-algebra whose residue field k is separable over k, let m € O be a uniformizer, and set
S := [Spec(O[s, §']/(ss' — 7)) /Gy,] where Gy, acts over O by scaling s (resp., s') via the character
of weight 1 (resp., —1). Restriction to s = s’ = 0 gives

HY(S,G) =~ H'(BG,, ., G). (6.2.1.1)
Moreover, for a G-torsor E over S, the following are equivalent:
(i) E trivializes over the source of the map Spec(k) — BGyy,, . < S
(ii) E trivializes over S[1];

(ili) E trivializes over S[%].
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Proof. Our O is Henselian and & is separable over k, so O is an algebra over k. Thus, we may replace
k by k to reduce to when k = k. Then (6.2.1.1) amounts to saying that G-torsors over S descend
uniquely to G-torsors over BG,,, ;. Thus, since both S[1] and S[Z] are isomorphic to Spec(0), by
restricting to the residue field of the latter and using the smoothness of G and the Henselianity of O
(see [BC22, Theorem 2.1.6 (a)]), we find that (6.2.1.1) gives the equivalence of (i)—(iii).

Overall, it remains to descend every G-torsor E over S to BG,, ;. For this, by twisting [Gir71,
chapitre III, remarque 2.6.3], we may replace G by an inner form (see §2.1.1) to force E|s—g—¢ to
trivialize over the source of the map Spec(k) — BGy, k. Since the closed {s' = 0} = S is [A}/G,,],
we then conclude from (5.2.2.1) that E|y_g is generically trivial. The closed point of S[2] = Spec(0)
is the generic point of {s’ = 0} < S, so, since O is Henselian and G is smooth, we conclude that
E‘S[%] is trivial (see [BC22, Theorem 2.1.6 (a)]), in particular, that E is generically trivial. At

this point, since S is geometrically regular over k, Theorem 3.2.2 (i) ensures that F reduces to a
generically trivial GS™ ! _torsor over S. Thus, we may assume that G is affine, in which case, since O
is Henselian, (6.2.1.1) is a special case of [Wed24, Corollary 2.9] (or of [AHR25, Proposition 7.9]). O

Theorem 6.2.2 (Cartan Decomposition). For a k-group scheme G locally of finite type with GS™ !

quasi-reductive, a k-algebra O that is a Henselian discrete valuation ring whose residue field is
separable over k, a uniformizer m € O, and K := Frac(O),

G(K) = I retomo (@, 0. 0)/c(0) GOITG(O), (6.2.2.1)
where ™ 1= \(m) € G(K); moreover, for a mazimal split k-torus S < G,
G(k{t}[1]) = Uetomg gy (G, 5)/Na(5) (1) GR{EDE G (K{t}),
G k(1) = I reHomy 4 (©nm, 5)/Ne(5) (k) GEIEDEG(E[L]).

Proof. By (2.2.1) and the separability of K over k, which results from that of the residue field of
O (see the sentence containing (3.1.1.2)), the desired decompositions are insensitive to replacing G
by G&"4 5o we may assume that G is smooth. Moreover, @ is Henselian and its residue field x is
separable over k, so O is an algebra over k. Thus, we may replace k by x to reduce to when x = k
(see also §2.1.2). By functoriality, this implies, in particular, that the pullback map

Homo.gp (G, 0, G)/G(O) — Homygp (G, s, G)/G (k)

is surjective. It is also injective: for this, since G(O) — G(k) by smoothness (see [EGA 1V,
théoréme 18.5.17]), it suffices to note that, for any two O-homomorphisms A\, \': G, 0 — G that
agree over the residue field k and, as one checks over K, that must factor through Gs™ ' by [SGA 31,
exposé XI, corollaires 5.2, 5.4], the subfunctor Transpgsm,in (A, \') © G parametrizing sections
that conjugate A to X is a residually trivial Zgem, i (A)-torsor over O, which must then be trivial
because Zgsm,1in(A) is smooth (see loc. cit. or §2.6.1). The bijectivity we just argued and Lemma 5.2.3
imply that it suffices to settle (6.2.2.1) and with the index set replaced by Homy g, (G 1, G)/G(E).

To argue (6.2.2.1), we imitate the method of Alper—Heinloth-Halpern-Leistner from the reductive
case [AHHL21]. We consider the stack S := [Spec(O[s, s']/(ss’ — 7))/Gy,] of Lemma 6.2.1. Its open
S\{s = s’ = 0} is the glueing of two copies of Spec(Q) along Spec(K). Thus, G(O)\G(K)/G(O)
is identified with the set of isomorphism classes of those G-torsors over S\{s = s’ = 0} that are
trivial on both copies of Spec(Q). Since S is geometrically regular over k and Ols, s'|/(ss’ — 7)
is 2-dimensional, the quasi-reductivity assumption and Theorem 4.4.1 ensure that G-torsors over
S\{s = s’ = 0} extend uniquely to those over S. Thus, by Lemma 6.2.1, pullback of G-torsors along
the structure map S — BG,, j identifies the set G(O)\G(K)/G(O) with the set of isomorphism
classes of those G-torsors over BGy,,  that trivialize over Spec(k). By the proof of Theorem 5.2.4,
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this latter set is identified with Homy_gp (G, 1, G)/G (k). Since over K both s and s’ are invertible
with ss’ = 7, overall a A € Homy g, (G, k, G)/G(k) corresponds to the double coset of 7. O

The Cartan decomposition gives the following integrality property of rational points of anisotropic
quasi-reductive groups that generalizes pseudo-completeness of wound unipotent groups (see Propo-
sition 3.1.5 (b)). In the reductive case, this is a theorem of Bruhat and Tits usually proved
group-theoretically, for instance, by using buildings, see [Pra82|, [Guo22, Proposition 6 (2)], and
[FG21, Corollary 3.8], while our argument is algebro-geometric and in essence originates in [AHHL21].

sm,lin

Corollary 6.2.3. For a k-group scheme G locally of finite type with G quasi-reductive, a
k-algebra O that is a discrete valuation ring whose residue field k is separable over k and such that
G, contains no nontrivial split k-torus, and K := Frac(O), we have

G(0) = G(K).

Proof. Certainly, G(O) c G(K). Conversely, for checking that every K-point of G extends to an
O-point, by considering generators and relations for coordinate algebras of elements of an affine open

cover of G, we may replace O by its completion. Once O is complete, the Cartan decomposition
(6.2.2.1) (and the first part of the proof of Theorem 6.2.2) implies that G(O) = G(K). O

We now use Theorem 6.2.2 to quickly reprove some of the main results of [CGP15, Appendix C.3|.

Corollary 6.2.4. If a k-group scheme G locally of finite type with G™ '™ quasi-reductive has G,k
as a k-subgroup, then it also has Gy, 1, as a k-subgroup.

Proof. If G4, < G, then G(k[t]) < G(k((t))). By Corollary 6.2.3 (applied with O = k[t]), this
means that G' has G, ; as a k-subgroup. O

The following consequence of the Cartan decomposition generalizes [BT71, corollaire 3.7].

Corollary 6.2.5. FEvery split unipotent k-subgroup U of a k-group scheme G locally of finite type
lies in Hus, k(P) for some pseudo-parabolic k-subgroup P < G™™ i The mazimal split unipotent
k-subgroups of G are precisely the unipotent radicals of the minimal pseudo-parabolic k-subgroups of
GS™ 1 and the latter are pairwise GS™ '™ (k)-conjugate.

Proof. The pairwise GS™ 1" (k)-conjugacy of the minimal pseudo-parabolic k-subgroups, and so also
of their (split) unipotent radicals, mentioned in the statement for convenience of later reference,
is a result of Borel-Tits [CGP15, Theorem C.2.5]. Moreover, by [CGP15, Proposition 3.5.14|, an
inclusion of pseudo-parabolic k-subgroups induces the opposite inclusion on their split unipotent
radicals, so it suffices to settle the claim about U.

For the latter, since U < G®™ 1" we lose no generality by assuming that G is connected, smooth,
and affine. Since U is split, by [CGP15, Lemma C.2.2|, it lies in some G(k)-conjugate of each pseudo-
parabolic k-subgroup P < G. Thus, by §2.6.2, we may iteratively replace G by such conjugates of P
to reduce to when G has no proper pseudo-parabolic k-subgroups. Moreover, since U is split, it is
enough to show that U < %, ,(P), so we may replace G by its largest pseudo-reductive quotient
GP™4 to also assume that G is pseudo-reductive (see §2.1.2 (6) and §2.6.2). In this pseudo-reductive
case with no proper pseudo-parabolic k-subgroups, we claim that U is trivial (so that P = G suffices).
Indeed, otherwise Corollary 6.2.4 would supply some G, ; < G, which, since G has no nontrivial
pseudo-parabolic k-subgroups, would be central. By [CGP15, Proposition 2.2.12 (3)], we could then
replace G by its quotient G by this central G, k: by [CGP15, Proposition 1.2.4, Lemma 9.4.1], this
G is still pseudo-reductive because Ext} (G, x, Gy, k) = 0 thanks to [DG70, chapitre I1I, section 6,
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no. 5, corollaire 5.2]. By iterating this reduction finitely many times, we would arrive at the case
when G has no G, as a k-subgroup, so that U = 1 by Corollary 6.2.4, as desired. O

7. TORSORS OVER A RELATIVE P’{ UNDER CONSTANT GROUPS

In §7.2, we upgrade the analysis of torsors over IP’}C carried out in §5.2 to the analysis of torsors
over ]P’}4 for any semilocal k-algebra A. This is a critical step of the geometric approach to the
Grothendieck—Serre question and it rests on structural results about the Whitehead group of a
quasi-reductive group that we establish in §7.1.

7.1. Unramifiedness of the Whitehead group in the quasi-reductive setting

In Proposition 7.1.6, we prove an unramifiedness property of the subgroup G(k)* generated, roughly
speaking, by the “elementary matrices” of a quasi-semisimple k-group G. In the classical case of
semisimple groups, the corresponding results about G(k)* are primarily due to Borel and Tits
[BT73], with an excellent overview by Gille [Gil09].

7.1.1. Notation. Throughout this section, we fix a connected, smooth, affine k-group G.

7.1.2. The subgroup G(k)* < G(k). As in [BT73, section 6.1], we let G(k)* denote the (normal)
subgroup of G(k) generated by the U (k) for split unipotent k-subgroups U < G. By §2.1.2 (6), this
G(k)* is functorial in G and k.

By Corollary 6.2.5, our G(k)" is generated by the G(k)-conjugates of Zys, 1(P)(k) for any single
minimal pseudo-parabolic k-subgroup P < G. If k is infinite, then we even have

G(k)Jr = <<@u8,k(PA>(k)7%uS,k(Pf>\)(k)>

for any minimal pseudo-parabolic k-subgroup P\, < G (with notation as in §2.6.2): for this, it is
enough to show that G(k) normalizes the right hand side, or that

G(k) £ U (V) (k) Uc (=) (k)Ua(N) (k) Za (V) (k).

For the latter, since Pg(\) = Ug(A) X Zg(A) and Ug(—A) x Pg()) is open in G (see §2.6.1), it
suffices to cover G by the Ug(\)(k)-translates of Ug(—A)Pg(A). By multiplying the inverse of the
open with the open itself, we get Ug(A\)Ug(—A)Pa(X) = G. Since k is infinite, the split unipotent
Uc() has a dense set of k-points (see §2.6.1), so, for each g € G(k), [CGP15, top of p. 587] gives an
u € Ug(N)(k) whose inverse lies in the open Ug(—A)Pg(A)g™! < Gz. Thus, g € uw(Ug(—\)Pa(N)).

7.1.3. The Whitehead group W (k,G). The Whitehead group of G is the quotient
W(k,G) == G(k)/G(k)",

compare with [Gil09, Section 1] in the reductive case. It is functorial in G and in k (see §7.1.2) and
only depends on the largest quasi-reductive quotient G9d:

W(k,G) = W(k, GFed),

indeed, split unipotent groups have no nontrivial torsors over k, so G(k) —» G9°4(k) and, by §7.1.2
and §2.6.2, the preimage of G4°d(k)* is precisely G(k)*. Moreover, as we now argue, for every
maximal k-split torus S < G, we have

G(k) = G(k)"Za(S)(k), equivalently, Zg(S)(k) — W (k, Q). (7.1.3.1)

Indeed, [CGP15, Remark C.2.33] (applied with & = G®°4(k)T) gives this with G replaced by G4,
so to deduce it for G it suffices to recall from [CGP15, Lemma C.2.31] that S maps onto a maximal
k-split torus of G4 and to apply the following sharpening of [CGP15, Proposition A.2.8].
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Lemma 7.1.4. For a surjection 7: G — G’ of connected, smooth, affine k-groups with Ker(w) split
unipotent, and a k-torus T < G with image T' < G, the kernel of the surjection

Zg(T) — Ze(T')
1s also split unipotent. In particular,

Zg(T)(k) = Zer(T') (k).

Proof. By [CGP15, Propositions A.2.5 and A.2.8|, the map Zg(T) — Z(T") is indeed a surjection
of connected, smooth, affine k-groups. For the claim about the kernel, we may replace G by the
preimage of Zg: (T') and then base change to k® to assume that T” is central in G’ and k is separably
closed (see §2.1.2 (6)). Then, for any cocharacter A\: G, , — T < G, by §2.6.1, we have

Ker(ﬂ-) = UKer(ﬂ')(_)‘) x ZKer(ﬂ’) (A) x UKer(ﬂ) ()‘)

as k-schemes. In particular, Ze(r)(A) inherits split unipotence from Ker(r), see §2.1.2 (6). Thus,
thanks to the exact sequence

l— ZKer(ﬂ') (>‘) - ZG<>‘) -G =1

(see §2.6.1) and the evident containment Zg(T) < Zg(A), we may replace G by Zg(\). Since k is
separably closed, if we iterate this for a well-chosen finite set of A’s, we reduce to when Zg(7T) = G.
Then the kernel in question is Ker(7), so is split unipotent. ]

The final input needed for the promised unramifiedness property of the Whitehead group is the
following extension of the existence of Levi subgroups [CGP15, Theorem 3.4.6] to the quasi-reductive
case. For the sake of focus on intended use and since our proof essentially combines heavy inputs
from [CGP15], we do not aim for a finer statement that would discuss uniqueness of Levi subgroups.

Lemma 7.1.5. For a quasi-reductive k-group G that has a split mazimal k-torus S < G, there exists
a split reductive k-subgroup 9 < G containing S such that % = (Gg)Prd.

Proof. 1f k is finite, then we may choose ¥ := G, so we assume that k is infinite. Then [CGP15,
Theorem C.2.30] supplies a split reductive k-subgroup ¢ containing S: the assumptions of loc. cit. are
met because G is quasi-reductive, see [CGP15, Proposition B.4.4, Theorem C.2.15, and bottom
of p. 630]. It remains to show that the map ¢: 4 — GP*? is injective: then, by the characterization
of our ¢4 given in [CGP15, Theorem C.2.30] (in particular, by its uniqueness aspect applied to
((¥) < GPd) and by [CGP15, Theorem 3.4.6], we will get that & = ((¥) satisfies % —> (Gg)Prd.

The injectivity of ¢+ is not completely general because in characteristic 2 some reductive groups do
have nontrivial normal unipotent subgroups, see [Vas05, Theorem 1.2|. Nevertheless, by [CGP15,
Proposition B.4.4], our S commutes with the wound unipotent %, ,(G), so also with Ker(¢).
The S-weight decomposition of Lie(¥) supplied by [CGP15, Theorem C.2.30| then shows that
Lie(Ker(¢)) < Lie(S). However, Ker(:) is unipotent, so Ker(:) n S = 0, and hence Lie(Ker(¢)) = 0.
We get that Ker(:) is étale, so, as a normal subgroup of a connected ¢, it must be central. Since ¢4
is reductive, its center is of multiplicative type, so our unipotent Ker(:) is trivial, as desired. O

Proposition 7.1.6. Suppose that G is quasi-semisimple, simply connected (see §2.5.2), and has a
split mazimal k-torus S, let O be a discrete valuation ring whose residue field is separable over k,
and set K := Frac(O). The Whitehead group W(K,Gg) is O-unramified in the sense that it is a
quotient of G(O), in fact, even of Zg(S)(O):

G(K) = G(K)"Z5(8)(0), equivalently, Zg(S)(O)— W(K,Gx).
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Proof. Granted the inputs established above, the argument is similar to the one given for semisimple
groups in [Gil09, lemme 4.5 (1)]. Namely, let S < G be a split maximal k-torus, so that, by (7.1.3.1),

G(K) = G(K)* Za(S)(K).

By [CGP15, Remark C.2.12 (1)], the k-group Zg(S) is quasi-reductive and, by Remark 4.4.3, so is
its central quotient Z;(S)/S. The latter contains no k-torus, so it must even be wound unipotent,
see §2.1.2 (10). In particular, Proposition 3.1.5 (b) ensures that (Zg(95)/S)(O) = (Za(S)/S)(K), so

Za(S)(K) = S(K)Za(5)(0).

It remains to show that S(K) ¢ G(K)", and for this we will use Lemma 7.1.5, according to
which our split maximal k-torus S is a maximal torus of a split reductive k-subgroup ¢ < G such
that % = (Gg)pred. This isomorphism and our assumptions imply that ¢ is semisimple, simply
connected. Then S(K) < 4(K)* by [BT73, corollaire 6.8, so that 4(K)" < G(K)* by §7.1.2. O

Remark 7.1.7. For Henselian O, analogously to semisimple groups treated in [Gil09, lemme 4.5 (1)],
there ought to be a more general version of Proposition 7.1.6 in which instead of having a split maximal
k-torus, our quasi-semisimple, simply connected G' merely has a sufficiently small pseudo-parabolic
K-subgroup. As for our argument, a thorny aspect of such a generalization, is that, in general, it
seems delicate to check that the split reductive subgroup supplied by [CGP15, Theorem C.2.30]
inherits the simple connectedness from G (compare with [BT72, corollaire 4.6] in the reductive case).

7.2. Sectionwise triviality of torsors over P}

The following Theorem 7.2.1 about A-sectionwise triviality of G-torsors over Py for smooth k-groups G
and semilocal k-algebras A is a critical final input for our Theorem 1.1.1. It both uses and generalizes
Theorem 5.2.4, which treated the case when A is a field, and it extends [CFQB, Theorem 3.5| (so
also the main result of [PS25]), which established a similar conclusion for torsors under reductive
groups and used it as an input to establish cases of the Grothendieck—Serre conjecture.

Theorem 7.2.1. For a smooth k-group G, a semilocal k-algebra A, and a G-torsor E over Py, if
s*(E) is trivial for a single s € Py (A), then it is trivial for every such s.

Proof. By decomposing into components, we may assume that Spec(A) is connected and, by using
the smoothness of G and replacing A by A4 also reduced (see [BC22, Theorem 2.1.6 (a)] and
[SP, Lemma OALI|). We may also assume that n > 0, so that P"} has at least three rational points
over every residue field of A. For two A-points of P";, then there is a third one disjoint from both.
Since two disjoint A-points lie on a unique P4, < P%, we lose no generality by assuming that n = 1.

Since A is semilocal, the A-automorphisms of PY act transitively on PL(A): every s € PL(A) is
disjoint from some s’ € AL (A4), so we may change coordinates to make s’ be {t = 0} and then make
s be {t = oo}. Thus, assuming that E[;_y is trivial, we need to argue that El,_gy is also trivial.

Corollary 5.1.4 allows us to replace G by G*°* to reduce to when G is connected smooth, affine, and
generated by tori. In addition, since split unipotent groups have no nontrivial torsors over affine
schemes, we may further replace G by G/Z%ys,1(G) to reduce to when G is also quasi-reductive. At
this point, §2.1.4 ensures that G/Z(G) is a torus, a quotient of any maximal k-torus T' < G. By
[CF23, Lemma 3.2], the (G/2(G))-torsor E over P} induced by E is the inflation of the G,,-torsor
0(1) along some A-homomorphism G, 4 — G/2(G). Thus, for a trivialization ¢ of E| 41y,
some g € (G/2(G))(A((t™1)) is such that the glueing of E|A}4 and the trivial (G/2(G))-torsor
over At~!] along the g-translate of the trivialization 7 of E)| A(¢-1) induced by ¢ gives the trivial
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(G/2(G))-torsor over P (for the relevant glueing technique that includes non-Noetherian A, see
[BC22, Lemma 2.2.11 (b)]) By [BC22, Lemma 3.1.6], we have

(G/2(G)(A(t™) = Xu(G/2(G))(A) x (G/2(G))(A[t™])
where a cocharacter a: G, 4 — G/2(G) maps to a(t™!) € (G/2(Q))(A(t™1). Elements of
(G/2(G))(A[t™1]) do not affect the isomorphism class of the glued (G/2(G))-torsor over P, so we
may assume that § = (¢~ !) for some such . Pulling E back along the d-th power map f;: IF’}4 — IF’}4
given by [z : y] — [z : y?] for d > 0 preserves both our assumption (the triviality of E|y_yy) and
the desired conclusion (the triviality of E|y_g}), and it replaces a(t™1) by at™) = ad(t™1), so we
have the liberty of replacing E by its pullback along any f;. For a sufficiently divisible d > 0, however,
a? lifts to a cocharacter &: G, a4 — T'. Thus, we may first replace I by its pullback along fy and
then by the glueing of E‘Ak and the trivial G-torsor over A[t~!] along the &(¢~!)-translate of ¢ to

reduce to when E is a trivial (G/2(G))-torsor. By the rigidity lemma [MFK94, Proposition 6.1], the
trivializations of E over IP’}4 are pulled back bijectively to those of E]{t:w}. In particular, F reduces
to a 2(G)-torsor over Pl whose restriction to {t = oo} is trivial, so we may replace G by 2(G).

We iterate these reductions—we replace G by 2(G), then 2(G) by 2(G)™", then 2(G)*" by
P(2(G)*"), and so on—until we are left with the case when G is quasi-semisimple (see §2.1.4). By
[CP16, Theorem 5.1.3], there then exist a commutative, affine k-group Z that has no nontrivial
unipotent k-subgroups, a quasi-semisimple, simply connected k-group é, and a central extension

157250501

over k. The structure theorem [DG70, chapitre IV, section 3, théoréme 1.1] for commutative, affine
k-groups ensures that Z is an extension of a unipotent k-group U by a k-group M of multiplicative
type. In addition, since éﬁ/%uj(éﬁ) is semisimple, M has no nontrivial k-subtori, so it is finite
(see [SGA 3q1, exposé XII, proposition 1.12]).

Liftings of £ to a G-torsor form a Z-gerbe 2 over P!, whose restriction to {t = oo} is trivial.
Moreover, Remark 5.1.3 ensures that 2 reduces to an M-gerbe .# over ]P’}L‘. By [CFQS, Lemma 3.3]
(with [CTS21, Theorem 6.1.3]), pulling back along the d-th power map f; makes .# descend to an
M-gerbe over A whenever d kills M. In effect, we may once more replace E by its pullback along fy
to make 2 descend to A. By the triviality at {t = oo}, this makes 2 (noncanonically) the trivial
Z-gerbe BZ, so that the map Z°(PY) —» & (A) given by restricting to ¢ = o0 is essentially surjective.
This implies that there is a lifting of E to a G-torsor E over P! such that E l(t=o0} is trivial. This

allows us to replace G by G to reduce to the case when G is quasi-semisimple, simply connected.

Once G is quasi-semisimple, simply connected, we let £/k be a finite, separable field extension such
that Gy has a split maximal ¢-torus T' < Gy, we set d := [{ : k], and we choose an ¢-cocharacter
At Gy, 0 — T < Gy such that Py, < Gy is a pseudo-Borel /-subgroup (see §2.6.2). Similarly to above,
we now replace E by its pullback along fgi: the point of this maneuver is that, by Theorem 5.2.4, then
for every residue field s of A, the (G, )%-torsor over P. induced by E reduces to the G,,-torsor &(d!)
along some k-cocharacter G, , — (G,)®°, so this (G )®*-torsor is trivial away from every divisor
of P! of degree < d. To construct a relevant such divisor, we choose a nonzero primitive element that
generates ¢/k, consider the resulting embedding Spec(ﬁ) < Gy, i, and let Y = Spec(A’) < Gy, 4 be
its A-(finite étale) base change, so that A’ =~ ¢ ®; A. The formal completion of P4 along Y has
a formal power series ring A'[7] as its coordinate ring. Moreover, since ¢/k is separable, we have
Yi,, = Spec(A’ ®4 km) = Spec({ ® k) for every maximal ideal m ¢ A, with ¢ ®y kny a finite product
of finite, separable field extensions of ky. Therefore, Proposition 7.1.6 (with §§2.6.1-2.6.2 and §7.1.2)
ensures that each coset in (Gg,, )¥((A' ®4 kn)(7)/(Gr, )Y ((A’ @4 km)[7]) is represented by a
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product of elements of (Ug, jarea(£A))((4" ®4 km)(7))). By §2.6.1,
1— U‘%’us,km(ka)(i)\) g Uka (i)\) g U(ka)qred(i)\) — 1
are short exact sequences of split unipotent ky-groups for every maximal m < A. The maps
(Ua (M) (A" ®a k) (1) = (Ug,,, yarea (FA)) (A" @4 k) (7))

are therefore surjective. In addition, the map A’((7)) — [[,(A’ ®4 kw)((7)) is surjective and this
surjectivity persists upon applying (Ug(+\))(—) because the ¢-schemes Ug(+\) are both isomorphic
to some A} (see §2.1.2 (6)). Thus, overall, the following map is surjective:

G(A(T) = T Gr) ¥ (A @a k) (T)/ (G ) (A @4 F)[7])- (7.2.1.1)

By construction, for every maximal ideal m < A, the (ka)qred—torsor over P,lgm induced by F trivializes
over P} \Yy,.. Thus, by patching with the trivial torsor over A'[7] (see [BC22, Lemma 2.2.11 (b)]),
the surjectivity (7.2.1.1) allows us to modify E along Y without changing E|P,14\Y’ thereby reducing us
to the case when E induces a trivial (Gy,, )9"®-torsor over IP’,lcm for every maximal ideal m < A. Since
split unipotent groups have no nontrivial torsors over P,lgm, this means that E induces a trivial Gy, -

torsor over IP’,lvmfor each m. Then, however, the deformation-theoretic [CFQS, Proposition 3.1] implies
that E is constant, so that El;;_q, is isomorphic to E|—.), and hence is trivial, as desired. O

The following consequence of Theorem 7.2.1 is inspired by [ées%b, Corollary 2.3 and Remark 2.4].

Corollary 7.2.2. For a smooth k-group G and a semilocal k-algebra A, no nontrivial G-torsor over
A trivializes over A((t)), in other words,

Ker(H'(A,G) — HY(A((t),G)) = {*}.

Proof. Let E be a G-torsor over A that trivializes over A((t)). By [BC22, Corollary 2.1.22 (b) (with
Example 2.1.18)|, this E trivializes already over A{t}[1]. Patching [MB96, Theorem 5.5 then gives
a G-torsor £ over P} that trivializes over P4\{t = 0} and satisfies £|;_; ~ E. At this point,
Theorem 7.2.1 implies that F is trivial. O

When A = k, we recover the following result of Gille [Gil24, Theorem 7.1], which generalized the
earlier [FG21, Theorem 5.4].

Corollary 7.2.3. For a k-group scheme G locally of finite type, we have
H'(k,G) — H'(k(t),G).

Proof. By twisting |Gir71, chapitre III, remarque 2.6.3] (with [SP, Lemmas 04SK and 0421] and
§2.1.1 for the representability of the resulting inner form of G), we only need to show that every
G-torsor E that trivializes over k((t)) is trivial. However, if E(k((t))) # &, then, by §2.2.1, our E
reduces to a G&*I-torsor over k that trivializes over k((t)). Since G&®¢ is k-smooth, Corollary 7.2.2
then implies that E is trivial, as desired. U

8. GENERICALLY TRIVIAL TORSORS UNDER CONSTANT GROUPS ARE ZARISKI LOCALLY TRIVIAL

In §8.1, we settle the Grothendieck—Serre question over an arbitrary base field, and then in §8.2 we

give various examples showing that our hypotheses are sharp. We conclude in §8.3 by using our main

result to establish the Iwasawa decomposition for arbitrary k-group schemes locally of finite type.
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8.1. Grothendieck—Serre for torsors under constant groups

With the inputs of the previous chapters, we are ready to establish our main result in Theorem 8.1.2.
The final stepping stone is the following standard lemma, which encapsulates the geometric arguments
that transform the Grothendieck-Serre problem to the study of torsors over the relative P!

Lemma 8.1.1. For a k-group scheme G locally of finite type, a geometrically reqular, semilocal
k-algebra R, and a generically trivial G-torsor E over R, there is a G-torsor £ over ]P’}% with
Eli—0y =~ E such that 5|P}?\Z is trivial for some R-finite closed Z = AL.

Proof. The argument is standard but appears in the literature only for reductive G (see [FP15],
[Pan20], [Ces22], [CF23], among others), so we give it in full. Theorem 3.2.2 (i) reduces E to a
generically trivial GO-torsor over R, so we lose no generality by assuming that G is connected, so of
finite type. A limit argument based on the Popescu theorem (see §1.7) then lets us assume that
R is the semilocal ring of a smooth, affine k-scheme X and that E spreads out to a G-torsor E
over X that trivializes away from some closed Y < X of codimension > 0. By decomposing X into
connected components, we may assume that X is integral of dimension d > 0. By the presentation
lemma [CTHK97, Theorem 3.1.1] (see also [Ces24, Lemma 8.1]), at the cost of shrinking X around
Spec(R), there are an affine open S Ag_l and a smooth morphism 7: X — S of relative dimension
1 for which Y is S-finite. By base changing along the map Spec(R) — S, we therefore obtain

(i) a smooth, affine R-scheme C' of pure relative dimension 1 (the base change of X);
(ii) a section s € C'(R) (obtained from the “diagonal” section Spec(R) — X);
(iii) an R-finite closed subscheme Z < C (the base change of Y);

(iv) a G-torsor £ over C such that s*€ =~ E and & trivializes over C\Z (the base change of E).

By |Ces22, Lemmas 6.1 and 6.3], we then reduce further to when there is a quasi-finite, flat R-
map C' — A}z that maps Z isomorphically onto an R-finite closed subscheme Z’ < A}z for which
Z=7 X AL C. By patching [Ces22, Lemma 7.1], then &£ descends to a G-torsor over A}, that is

trivial away from Z’ and whose s-pullback is F, so we may assume that C' = A}%. We then change
coordinates to make s be {t = 0} and patch £ with the trivial torsor over PL\Z to conclude. O

Theorem 8.1.2. Let G be a k-group scheme locally of finite type, let R be a geometrically regqular,
semilocal k-algebra, and let E be a generically trivial G-torsor over R. If either

(i) every k-torus of Gy lies in (G&°d)r (see Remark 2.2.13); or
(il) E is étale locally trivial;

then E is trivial.

Proof. Set K := Frac(R) and let E € E be the scheme-theoretic image of (Ef )84 € Ex. Since K /k
is separable, §2.2.1 ensures that the K-subgroup (G&"%)x < G agrees with (G )8 < G, so that
its action on E preserves (EK)gred. The formation of the scheme-theoretic image of a quasi-compact
morphism commutes with flat base change (see [SP, Lemma 089E]), so (Ef )8 x x (G&)k is
scheme-theoretically dense in E x g (G&°4)g. In particular, the action of (Ggred) r on E preserves E.
If F trivializes étale locally on R, then this commutation with flat base change also allows us to
check étale locally on R that E is even a G&"-torsor over R. Therefore, since every K-point of F
lies in (Ef)8"d, we have reduced (ii) to (i).
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As for the remaining case (i), Theorem 3.2.2 (i) reduces us to when G = G™!" that is, when
G is connected, smooth, and affine. Moreover, Lemma 8.1.1 supplies a G-torsor £ over IP}% with
Elft=0y ~ E such that 5|1P}{\Z is trivial for some R-finite closed Z = AL. Since Elft—coy 1s trivial,
Theorem 7.2.1 then implies that F is also trivial, as desired. O

8.2. Counterexamples to more general versions of the Grothendieck—Serre question

We illustrate the sharpness of the assumptions of Theorem 8.1.2: we give counterexamples to some
overly optimistic generalizations of the Grothendieck—Serre question. In Examples 8.2.1 and 8.2.2,
we show that, unlike in the reductive case, we cannot allow G to be defined merely over R even if we
assume that the group is smooth, affine, with connected fibers, in Example 8.2.3 we argue that a
straightforward reduction to the local case is unlikely to exist, and in Example 8.2.4 we recall that
we cannot drop the condition on the k-tori of G, lying in (G8™%)z. The connectedness of R-fibers is
important in these examples because it shows that the failure is not merely bootstrapped in some way
from the failure of (3.2.0.1) to hold for quasi-finite S-schemes that are not finite. It seems that prior
to these examples it was not known whether the Grothendieck—Serre type triviality of generically
trivial torsors holds for general smooth, affine groups with connected fibers over regular local rings,
although Colliot-Théléne-Sansuc [CTS87, Example 5.9] gave a smooth, affine counterexample over
R[z] (z) whose generic fiber is a torus and special fiber is G, r XR 12, R-

Example 8.2.1. Suppose that k is an imperfect, finitely generated field of characteristic p > 0 and
let ¢ € k[t]* be such that its class modulo ¢ is not a p-th power in k. As Gabber pointed out to
us, {z = aP + cy? +tz} < Gf’h K] is an example of a smooth, affine k[t]-group G with generic fiber
isomorphic to Gi,k((t)) (solve for z) and special fiber isomorphic to the product of G, ; and the
1-dimensional connected, smooth, wound unipotent k-group {x = 2P + cyP} < Gi - Consequently,

every G-torsor over k((t)) is trivial, yet [Ros24, Theorem 1.6] (with [BC22, Theorem 2.1.6 (b)])
ensures that G has infinitely many nontrivial torsors over k[t], so the triviality of generically trivial
torsors fails for G over k[t]. The k[t]-group G has a fiberwise constant reductive rank (equal to 0),
but its split unipotent rank is not fiberwise constant. However, by instead considering the product
of G and a smooth, affine k[t]-group G’ whose generic fiber is connected, 1-dimensional, wound
unipotent and special fiber is G, j (for instance, G’ could be {x = 2P + (1 + t)yP} < Gik[[t]]), we
obtain the same failure of triviality of generically trivial torsors under a smooth, affine k[t]-group
whose fibers are connected, unipotent, and now have constant split unipotent ranks.

Example 8.2.2. Gabber suggested the following further counterexample for nonconstant groups in
characteristic 0 that is based on dilatations and congruence subgroups.

Let T be a torus over QQ that is not retract rational in the sense that no nonempty open U < T
admits a factorization of idy as U — Ag — U, such a T exists by [Sca20, Theorems 1.1 and 1.3].
Concretely, by a result of Voskresenskii-Saltman, we may let T' be the kernel of the norm map
Resg/g(Gm) — Gy, for a (Z/2Z)*-extension K/Q (compare with [Sal84, Theorem 3.14]). By
[Gil09, Proposition 5.1, proof of 2)=-1)|, the failure of retract rationality of T" supplies an essentially
smooth, local Q-algebra R and an f € R for which the map T'(R) — T'(R/fR) is not surjective. Let
G be the R-group that is the dilatation (also called a Néron blowup) of Tk in the zero section of
Tr/sr (see [MRR23, Definition 3.1]): concretely, by [MRR23, Lemma 3.1, Theorem 3.2], the R-group
G is smooth, affine, with connected R-fibers and on the category of those R-algebras S in which f is
a nonzerodivisor, we have
G(S) = Ker(T(S) —» T(S/f9)).
For an o € T(R/fR), the dilatation E, of T in the image of the (R/fR)-point « is a G-torsor for the
étale topology that is trivial if and only if « lifts to T'(R), in particular, F, is not trivial for some «.
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However, E, is generically trivial, in fact, already FE,| R[] is trivial (note that f # 0 by our choice

of R and f). Thus, G has nontrivial but generically trivial torsors over R. Moreover, all of these
torsors are trivial over R/fR because [MRR23, Theorem 3.5 (1)] ensures that G sp ~ Gjlr;(/?}%, in
particular, this example is a Zariski rather than a Henselian phenomenon.

Example 8.2.3. The method of dilatations suggests the following example of a nontrivial but Zariski
locally trivial G-torsor over a semilocal, essentially smooth ring R. This rules out reductions from
semilocal to local regular rings in the Grothendieck—Serre problem. Many further similar examples
may be constructed by using [Sca23, théoréme 1.3].

Let t be the standard coordinate of IF’IlFQ, let R be the semilocal ring of G, r, at two distinct maximal
ideals m, m’ = Fo[t,t!], and let H < (Gi r be a smooth, affine R-subgroup cut out by the equation
r + 2% = ty*. By [Ros21, proof of Lemma 4.2|, this H has precisely two Fa(¢)-points: (0,0) and
(1,0), which both extend to R-points. In particular, its ky-point (0,0) lifts to an Ry-point, its
kw-point (1,0) lifts to an R,y-point, and together they assemble to a (kg X ky)-point « that does
not lift to any R-point of H. Let G be the smooth, affine R-group with connected R-fibers that is
the dilatation of H in the identity of Hy, xx_,. The dilatation of H in the (kyn x Ky )-point o is a
nontrivial G-torsor over R that trivializes over both Ry and R,y.

Example 8.2.4. In [FG21, Section 7.2|, Florence and Gille gave examples of affine k-groups G of
finite type with nontrivial but generically trivial G-torsors over k[t], which shows that the condition
on k-tori in Theorem 1.1.1 cannot be dropped. We now present a further such example related to
forms of pseudo-reductive groups.

By [CP16, Proposition 6.2.2 and Example 6.2.3|, for any pseudo-semisimple k-group ¢, the k-group
G = Aut,, () is affine, of finite type, and if 7 =~ Resy x(Hys) for a purely inseparable field
extension k'/k of degree p := char(k) and a nontrivial, semisimple k-group H, then G is also
not smooth. We now show that, for any pseudo-semisimple 7 of this form, G is not even a
normal subgroup of a smooth k-group, in fact, some k-torus of Gy does not lie in (G&°%); (see
Remark 2.2.13). For this, by Theorem 1.1.1, it suffices to exhibit a k[t]-group form J#"of ) for
which %’(( 0 = M) but A "% Hpq- Our candidate is
A= Res (k) (er—atv) k) (Hr[dl[e]/(2r—at)),  Where k' = k[y]/(y" — a)

for some a € k\kP. Since k'[t][x]/(zP — atP) ~ K'[t] ® k' , we have %,/[[t]] ~ Ky, so A is a k[t]-
form of Hpq. Similarly, k((t)[x]/(zP — at?) ~ k(1)) ® k', so H .y ~ ). Finally, " % Sy

(©)
since the k-group J”|i—0 = Res(x[z]/(2»))/k (Hk[2]/(z#)) s nOt pseudo-reductive (see Lemma 2.3.2).

8.3. The Iwasawa decomposition

We conclude by using the Grothendieck—Serre conclusion of Theorem &8.1.2 to prove the following
Iwasawa decomposition theorem for arbitrary k-group schemes locally of finite type.

Theorem 8.3.1 (Iwasawa Decomposition). For a discrete valuation ring O that is a geometrically
regular k-algebra, K := Frac(O), a k-group scheme G locally of finite type, and a pseudo-parabolic
k-subgroup P < G™1 of the smooth linear part of G, we have

G(K) = P(K)G(0), in particular, G(K) = G (K)G(O).

Proof. The pseudo-properness of the connected components of G/P supplied by Corollary 3.3.4 gives

(G/P)(0O) = (G/P)(K). Since, by Theorem 8.1.2 (and §2.6.2), generically trivial P-torsors over O

are trivial, we get the sought G(K) = P(K)G(O). O
61



Example 8.3.2. In the setting of Theorem 8.3.1, suppose that G is pseudo-reductive with a split
maximal k-torus S < G and that the residue field of O is separable over k. Let B < G be a
pseudo-Borel k-subgroup containing S and let U < B be its (split) unipotent k-radical (see §2.6.2).
By [CGP15, beginning of the proof of Theorem C.1.9] and §2.6.1, we have B = U % Zg(S) with
Z¢(5)/S wound unipotent. Thus, Proposition 3.1.5 (b) ensures that Z(S)(K) = X«(5)Za(5)(0)
where a cocharacter A\: G, , — S in X, (S5) is interpreted to give the K-point A(7) for a fixed
uniformizer 7w € O. Thus, overall, in this case the Iwasawa decomposition takes the form

G(K) = U(K)X4(S)G(O).
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