UNRAMIFIED GROTHENDIECK-SERRE FOR ISOTROPIC GROUPS

KESTUTIS CESNAVICIUS AND ROMAN FEDOROV

ABSTRACT. The Grothendieck—Serre conjecture predicts that every generically trivial torsor under
a reductive group G over a regular semilocal ring R is trivial. We establish this for unramified R
granted that G2 is totally isotropic, that is, has a “maximally transversal” parabolic R-subgroup. We
also use purity for the Brauer group to reduce the conjecture for unramified R to simply connected
G—a much less direct such reduction of Panin had been a step in solving the equal characteristic case
of Grothendieck—Serre. We base the group-theoretic aspects of our arguments on the geometry of the
stack Bung, instead of the affine Grassmannian used previously, and we quickly reprove the crucial
weak P!-invariance input: for any reductive group H over a semilocal ring A, every H-torsor & on
P satisfies &|(t=0y = &|{t=0}. For the geometric aspects, we develop reembedding and excision
techniques for relative curves with finiteness weakened to quasi-finiteness, thus overcoming a known
obstacle in mixed characteristic, and show that every generically trivial torsor over R under a totally
isotropic G trivializes over every affine open of Spec(R)\Z for some closed Z of codimension > 2.
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1. THE UNRAMIFIED TOTALLY ISOTROPIC CASE OF THE GROTHENDIECK—SERRE CONJECTURE

In this article, we solve a case of the following conjecture of Grothendieck and Serre [Ser58, page 31,
remarque|, [Gro58, pages 26-27, remarques 3|, |Gro68, remarques 1.11 a)| about triviality of torsors.

Conjecture 1.1 (Grothendieck—Serre). For a reductive group scheme over a regular semilocal ring
R, no nontrivial G-torsor over R trivializes over the total ring of fractions K := Frac(R), that is,

Ker(HY(R,G) — HY(K,G)) = {*}.
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Torsors occur naturally in many contexts, for instance, in studying conjugacy of sections. For
conjugacy problems, Conjecture 1.1 predicts that conjugacy over K of sections over R implies
conjugacy over R, granted that the centralizer group schemes are reductive and fiberwise connected.

The Grothendieck—Serre conjecture is a nonabelian avatar of Gersten injectivity conjectures for
various abelian cohomology theories of motivic flavor. Indeed, one may hope that H'(R, G) could be
described in terms of abelian cohomological invariants in the style of [Ser95, sections 6-10], at which
point Conjecture 1.1 would follow from these abelian counterparts. Such an approach is firmly out
of reach of available technology, but it is plausible that it could eventually be reversed, namely, that
Conjecture 1.1 may eventually be used to describe H!(R,G) by abelian cohomological invariants.

We settle the Grothendieck—Serre conjecture in the case when the regular ring R is unramified and
the group G is such that its adjoint quotient G®! has no anisotropic factors.

Theorem 1.2 (Theorem 4.3). Let R be a Noetherian semilocal ring that is flat and geometrically reg-
ular' over a Dedekind ring O, let K := Frac(R) be its fraction ring, and let G be a reductive R-group
such that G® is totally isotropic (see (1.3.1)). No nontrivial G-torsor over R trivializes over K,
that 1is,

Ker(H'(R,G) — H'(K,G)) = {s}.

The following are the cases in which the Grothendieck—Serre conjecture has been established.

(i) In equal characteristic, that is, when O in Theorem 1.2 is a field, the Grothendieck—Serre
conjecture was settled by Fedorov—Panin [FP15] and Panin [Pan20a|, with simplifications in
[Fed22] and significant special cases obtained in prior works [Oja80], [CTO92], [Rag94], [PS97],
[Zai00], [OP01], [OPZ04], [Pan05], [Zai05], [PPS09], [PS09], [Chel0], [PSV15], [Pan20b]; see

also [Pan22a] for a variant beyond connected reductive groups.

(ii) For regular semilocal R that are unramified, more precisely, that are as in Theorem 1.2, the
Grothendieck—Serre conjecture has been established for quasi-split G in [CCSQQa] (with a prior
more restrictive case in [Fed21]) and for G that descend to reductive O-groups in [GL24a| (with
subcases of this constant case already in [Pan19|, [GP23]). For further variants with, more
generally, O a semilocal Priifer ring of dimension < 1, see [GL24a|, |GL24b, Theorem 8.1|,
and [Kun23, Theorem A on page 24| (the latter with O a valuation ring of dimension < 1).

(iii) The conjecture is known in the case when R is of dimension < 1 by [Guo22| that built on
prior [Nis82] and [Nis84] (with special cases in [Har67]|, [BB70], [BT87], [PS16], [BVG14],
[BEF17], [BFFH19], and valuation ring variants in [Guo24| and |GL24a, Appendix A]). This
one-dimensional case implies the case when R is Henselian, see [CTS79, assertion 6.6.1].

(iv) The case when G is a torus was settled by Colliot-Théléne and Sansuc in [CTS78|, [CTS87].

(v) Sporadic cases with either G or R of specific form were settled in [Gro68, remarques 1.11 a)],
[0ja82], [Nis89], [BFFP22], [Fir23], [Pan22b].

For arguing Theorem 1.2, we only use the 1-dimensional case (iii), but not any of the other cases.
Throughout the works above, there are broadly two approaches to the Grothendieck—Serre conjecture:

e the geometric approach, which was pioneered by Colliot-Théléne—Ojanguren [CT092] and
then developed much further in the works that culminated in the results (i)—(ii); and

1We recall from [SP, Definition 0382] that the geometric regularity assumption means that R®y k' is a regular ring
for every finite extension k' of some residue field k of ©. By Popescu theorem [SP, Theorem 07GC], it is equivalent to
require that our regular semilocal R be a filtered direct limit of smooth O-algebras.
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e the group-theoretic approach, prevalent in (iii)—(v) and based on analyzing the structure of G.

The group-theoretic approach appeared earlier, and its ideas and results later fed into the geometric
approach, which analyzes the interaction of the geometry of R with the properties of G. Given a
generically trivial G-torsor E over R, the gist of the geometric approach is to explicate the geometry
of R via presentation lemmas of Gabber—Quillen type and to combine them with patching arguments
to eventually produce a G-torsor & over P} such that &lip—0y ~ £ and &[fy—qy is trivial. On the
other hand, results rooted in the geometry of the algebraic stack Bung parametrizing G-torsors over
the relative projective line imply that every family of G-torsors over ]P’}% is R-sectionwise constant, in
particular, that &|_o, ~ &|(1—xy}, see Theorem 3.5 below or [P525, Theorem 1.2]. Taken together,
this means that E' is trivial.

In this article, we develop the geometric approach further, the following being our main novelties.

(1) In comparison to equal characteristic, the main complication in the unramified mixed charac-
teristic case of the Grothendieck—Serre conjecture is that the base O of the projection that
we have no flexibility to “move” is now one-dimensional, which makes us lose one dimension
in geometric arguments. For instance, to start the geometric approach we now have to build
a closed Z < Spec R of codimension > 2 away from which our generically trivial G-torsor £
over R is “simpler,” whereas in equal characteristic (when O was a field) codimension > 1
sufficed and was straight-forward to arrange from generic triviality. In §2, we bypass this
problem: for any G and E, in Proposition 2.8, we build an open V < IP’}% containing both
Pépec( Rr)\z for some closed Z < Spec(R) of codimension > 2 and the sections {t = 0} and
{t = 0}, as well as a G-torsor & over V such that &|y_g; ~ E and &|g_q is trivial.

Consequently, F becomes “simpler” over Spec(R)\Z in the sense that it fits into a family of
G-torsors over Pépec( R\Z with a trivial fiber at infinity. For G with G4 totally isotropic, this
already implies that E trivializes over every affine (Spec(R)\Z)-scheme, see Theorem 4.2.

To build V', we use a quasi-finite version of the presentation lemma and find a way to carry
out the subsequent reembedding techniques with finiteness weakened to quasi-finiteness. In
contrast, building the desired Z of codimension > 2 was simpler in [Ces22a]: it sufficed to
combine the quasi-splitness assumption made there with the valuative criterion of properness.

(2) We take advantage of our & over V as in (1) in several different (and disjoint) ways.

Firstly, in §4, we use our & and V to carry out the geometric approach in full for totally
isotropic G: we settle the unramified case of the Grothendieck—Serre conjecture for such G in
Theorem 4.3. Roughly, & and V serve as witnesses of E being “simpler” over Spec(R)\Z, and
we carry them along the steps of the geometric approach to eventually build a G-torsor &
over PL (unrelated to &) such that F =0y =~ E and F|y_y is trivial. The R-sectionwise
constancy of families of G-torsors over IP’}Q applied to % then implies the triviality of E.

A crucial novel aspect of our implementation of the geometric approach is to carry along not
only Z, but also a closed Y < Spec(R) of codimension 1 containing it such that £ |Spec( R\Y
is trivial: Y is important for mitigating the loss of applicability of the excision lemma
for unipotent torsors [Ces22a, Lemma 7.2 (b)] to pass to Pk in our setting. Relatedly, in
Proposition 2.3 we generalize the mixed characteristic presentation lemma to track both Y
and Z.

Secondly, in §5, we combine the existence of & with the purity for the Brauer group (see
[Ces19]) and constancy for multiplicative group gerbes over P}, (see Lemma 3.3) to quickly
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reduce the unramified case of Grothendieck—Serre to simply connected groups. This method is
new even in equicharacteristic, where the corresponding result was the main goal of [Pan20b].

(3) For studying G-torsors over a relative P!, we base our arguments on the geometry of the
algebraic moduli stack Bung parametrizing such torsors. This replaces affine Grassmannian
inputs used in previous works starting with [FP15] and leads to clean, simple, broadly useful
geometric statements about Bung recorded in §3, for instance, Proposition 3.1 or Theorem 3.5.

Even though we limit ourselves to the totally isotropic unramified case, our results may also reach
most types of anisotropic reductive G over an unramified regular semilocal R as follows. First of
all, by passing to the simply connected case via Proposition 5.1 and decomposing into factors, we
may harmlessly assume that G has simple fibers. The main idea then comes from observing that if
G — G is an inclusion of a factor of a Levi subgroup of a larger reductive R-group G , then
HY(R,G) — HY(R,G) and HY(K,G)— H'(K,G),

see, for instance [Ces22b, equation (1.3.5.2)]. This reduces the Grothendieck-Serre conjecture for
G to that for CNJ; however, the latter is isotropic, so Theorem 1.2 applies to it. The focus then
shifts to realizing G inside some G in this way. Overall, this type of approach to anisotropic groups
was explored in [PPS09] in equal characteristic, but one may amplify it further by first combining
techniques of §2 with ideas from [Pan20b] to obtain the flexibility of varying G in isogenies or even
passing to studying generically isomorphic adjoint R-groups instead of torsors. Nevertheless, even
though we could reach most types of anisotropic G in this way, types such as Fy or Eg never occur

as Levis of larger reductive groups and seem too large to treat directly, which signals the need of
other ideas for arguing the remaining anisotropic case for unramified R in a clean conceptual way.

1.3. Notation and conventions. For a field k, we let k denote its algebraic closure. For a point s
of a scheme S (resp., a prime ideal p of a ring R), we let k, (resp., kp) denote its residue field viewed
as an algebra over S (resp., over R). We let Frac(—) denote both the total ring of fractions of a ring
and the function field of an integral scheme, depending on the context.

When it comes to reductive groups, we follow SGA 3, in particular, a reductive group over a scheme
S is a smooth, affine S-group scheme whose geometric fibers are connected reductive groups, see
[SGA 3111 new, exposé XIX, définition 2.7]. See also [Ces22b, Section 1.3] for a review of basic
reductive group notions and notations that we use freely. In particular, we write G for the derived
subgroup of a reductive group scheme G and we write H*¢ for the simply connected cover of a
semisimple group scheme H (see loc. cit. for a review). Similarly to [Ces22a, Definition 8.1] (or
[éesQQb, Section 1.3.6]), a semisimple S-group G is totally isotropic if in the canonical decomposition

Gad ~ Hie{An,Bnam,Gﬂ’ RGSSZ./S(GZ') (131)

of [SGA 3111 new, exposé XXIV, proposition 5.10 (i)], in which i ranges over the types of connected
Dynkin diagrams, S; is a finite étale S-scheme, and G; is an adjoint semisimple S;-group with simple
geometric fibers of type 4, Zariski locally on S each G; has a parabolic S;-subgroup that contains
no S;-fiber of Gy; intuitively, this amounts to requiring that Zariski locally on .S the group G itself
contain a proper (relative to each factor) parabolic subgroup.

We say that a reductive S-group G is simple if it is semisimple and the Dynkin diagrams of its
geometric S-fibers are all connected (some authors call such groups absolutely almost simple because
even in the case when S is a geometric point, G may still have nontrivial finite central subgroups).
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2. LIFTING TO A FAMILY OF TORSORS OVER P}, AWAY FROM A CLOSED OF CODIMENSION > 2

Our first goal is Proposition 2.8 below that builds a closed Z < Spec R of codimension = 2, away
from which our generically trivial G-torsor E over R simplifies. The construction of this Z ultimately
hinges on the quasi-finite version of the Gabber—Quillen presentation lemma in mixed characteristic
that we establish in Proposition 2.3. This proposition involves a scheme X that is smooth over a
semilocal Dedekind domain O and a finite set of points of X. We start with two lemmas that will
allow us to assume that all of these points specialize to closed points of some closed O-fiber of X.

Lemma 2.1. Let K be a field.

(i) The map sending a 1-dimensional semilocal Dedekind domain O with fraction field K to the
set of its localizations {On} at the mazimal ideals m < O gives a bijection between the set of
such subrings O of K and the set of finite sets of discrete valuations on K (encoded by their
corresponding valuation rings); the inverse of this bijection sends {On} to (| On.

(ii) For a subfield K' ¢ K and O as in (i), the ring O n K’ is a semilocal Dedekind domain with
fraction field K'.

(iii) Any O as in (1) is a filtered direct union of semilocal Dedekind subdomains whose fraction
fields are finitely generated over the prime field of K.

Proof. Part (i) is essentially a restatement of [Mat89, Theorem 12.2|. For part (ii) it is enough to
intersect the equality O = (1), Om with K’ (note that it might happen that O n K’ = K’, which is
still a Dedekind ring). Finally, part (iii) follows from part (ii). O

Lemma 2.2. Let O be a semilocal Dedekind domain whose fraction field K is finitely generated over
its prime field, let X be a smooth affine scheme of pure relative dimension d > 0 over O, and let
T1,...,Tn € X be finitely many points. There are a semilocal Dedekind domain O with fraction field
K such that O is a localization of O (equivalently, O <« O, see Lemma 2.1 (1)) and a smooth affine
O-scheme X of pure relative dimension d > 0 extending X such that each x; specializes to a closed
point of some closed 5-ﬁber of X.

Proof. If O is a field, then it suffices to take O := O and note that any finite type scheme over a
field, such as each closure {z;} c X, has a closed point, see [SP, Lemma 02J6]. In the remaining
case when O is 1-dimensional, the same argument shows that each x; specializes to a closed point of
its O-fiber of X, and thus also to the closed point of our sought X that we will build later. Thus,
we may assume that all the x; belong to the generic fiber Xg, in fact, that they are closed points
of Xk (we do not need to worry about the points lying in the closed fibers of X because they will
automatically lie in the closed fibers of X ).

To conclude, we will now follow the “glue in a new discrete valuation ring” argument given in the

proof of [Ces22a, Variant 3.7]. Namely, since the prime subfield of K is perfect, K is a separable

extension of its prime subfield, so [EGA IV, corollaire 17.15.9] and spreading out ensure that K
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is the fraction field of a domain A that is a smooth algebra either over Z or over some [F,. By
spreading out X and the z; and replacing A with its localization (that is still a smooth algebra
either over Z or [F,)), we may assume that X extends to a smooth affine A-scheme X of pure relative
dimension d > 0 and that each x; spreads out to an A-finite closed subscheme Z; — X. Since O is
1-dimensional, K is infinite, so A is positive dimensional (if A was zero dimensional, so a field, then,
since it is of finite type over Z, it would have to be a finite field). In particular, since A is of finite
type over Z, it has infinitely many prime ideals p of height 1, so for some such p the discrete valuation
subring A, < K is different from each On < K. Lemma 2.1 (i) ensures that O is a localization of
the semilocal Dedekind domain O := Ap n O with fraction field K and that, by glueing of X4, with

X, we obtain a smooth affine O-scheme X with )?@p ~ X4, and Xp = X. It remains to note that,

by construction of the Z;, each x; specializes to a closed point of the p-fiber of X. O

Proposition 2.3. Let X be a smooth affine scheme of pure relative dimension d > 0 over a Dedekind
ring O, let x1,...,xp, € X, and let Z 'Y < X be closed not containing any irreducible component
of any O-fiber of X. If either Z is of codimension = 2 in X or if O is 0-dimensional, then there are
an affine open X' < X containing all the x;, an affine open S < A‘é_l, and a smooth O-morphism
m: X' — S such that Y n X' is S-quasi-finite and Z n X' is S-finite.

Proof. With Y = Z| the claim was settled in [60822‘&, Proposition 4.1, Remark 4.3], in fact, it was
one of the main technical results of op. cit. We will obtain the general case by similar arguments.

By localizing at the images of the x1, ..., x, in Spec O and then spreading out, we may assume that
O is semilocal and then, by passing to components, that O is a domain. Moreover, by Lemma 2.1 (iii)
and a limit argument, we may assume that the fraction field K of O is finitely generated over its
prime field. We then enlarge O and X as in Lemma 2.2 (and replace Z and Y be their corresponding
closures in this larger X) to arrange that each xz; that lies in the generic O-fiber of X has a
specialization that lies in some closed O-fiber of X. By replacing such x; by these specializations,
we are therefore left with the case when each z; lies in some closed O-fiber of X and is a closed
point of X.

At this point, we embed X into an affine space over O and form the closure in the corresponding
projective space to build an open immersion X < X into a projective O-scheme X, which is flat
by [SP, Lemma 0539], of relative dimension d by [SP, Lemma 0D4J], and even of pure relative
dimension d by [SP, Lemma 02FZ]. In particular, by [SP, Lemma 0AFE] the local rings of X are all
of dimension < d + 1, so for an z € X of height h, every proper closed subset of the closure {r} = X
is of dimension < d — h (and is even of dimension < d — h — 1 if O is O0-dimensional). Since the
closure Z < X of Z is the union of the closures of the generic points of Z, all of which are of height
> 2 in X, this means that Z\Z is O-fiberwise of codimension > 2 in X (and is even of codimension
> 3 if O is O-dimensional). Similarly, letting % be the closure of Yy, in X, where m < Spec O is
the union of the closed points, we find that #\Yy, is O-fiberwise of codimension > 2 in X. We
replace the very ample line bundle O«(1) by its large power and apply [EGA I1I;, corollaire 2.2.4]
to force each global section of O _(n) to lift to a global section of Ox(n) for n > 0. By applying

[Ces22a, Proposition 3.6] (especially, its last aspect to handle disconnected m; the W there is our X
and the Y there is our Zp, U %) to the closed O-fibers of X and lifting the sections obtained to X,
we may even choose this large power so that there exist nonzero

ho € F(Y, ﬁy(l)), hy € F(Y, ﬁy(’wl)), coey hgoq € F(Y, ﬁy(ﬂ}d,l)) with  wy,...,wg_1 >0
such that the hypersurfaces H; := V(h;) = X satisfy the following properties.

(i) Hp does not contain 1, ... 2y,.
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(ii) The map 7: X\Ho — A% determined by the hy/h{*, ..., ha_1/hy*" is smooth at each ;.

(iii) (ZuZ)nHon...n Hy 1 =, in other words, Z U % does not meet the exceptional locus
of the weighted blowing up in the following diagram determined by the hg, ..., hg_1:

Y\H@C—> Bly(ho, ey hd—l)

Ad071(—> Po(1,wi, ..., wi_1)

(see [Ces22a, Section 3.5] for a review of the weighted blowup Bl (ho, - - ., hg—1); its formation
may not commute with base change to m, but the formation of 7 does).

(iv) Each (Z U %) n 7 (m(z;)) lies in X\ Hp.
(v) In fact, each (Z U ) n 7 !(n(x;)) also lies both in X and in the smooth locus of 7.

By (iii), each (Z U %) n 7 !(n(x;)) is a projective subscheme of X, in fact, by (iv), it is even a finite
collection of possibly nonreduced points: indeed, any component of dimension > 0 would still be
projective, and so could not lie in X\ Hy because the latter is affine. Thus, since 7 is projective, by
spreading out and the openness of the quasi-finite locus of a morphism [SP, Lemma 01TI] applied to
the projective morphism 7| _,, , there is an affine open S < Aé‘l containing all the m(z;) such that
(Zu#)n7m1(S) is S-quasi-finite, and hence, being projective, is even S-finite. By (iv), at the cost of
shrinking S around the 7(z;), we may then also ensure that (Zu%) "7 1(S) = (ZuZ)n7 1(S). At
the cost of further shrinking S around the 7(x;), we may then choose an affine open X’ ¢ X n7=1(S)
in the smoothness locus of 7 containing all the x; and all the (Z U %) "7 (7 (x;)) to make sure that
even (Z U %) n X' is S-finite (it suffices to first choose any affine open X’ containing the indicated
points and then base change to an affine open of S containing all the 7(z;) and not meeting the
image of ((Z U #) nm1(9))\X’, noting that this image is automatically closed due to finiteness).

Since (ZuZ)nX' = (ZUYn) N X', we get that Z n X’ is also S-finite. Thanks to [SP, Lemma 01T1]
again, we may then shrink S around the 7(x;) and replace X’ by a suitable affine open containing all
the x; and all the (Z U Yy) n7 (7 (z;)) to also make Y n X’ be S-quasi-finite (in addition to Z n X’
being S-finite, as ensured by repeating the parenthetical argument at the end of previous paragraph).
It remains to note that our smooth map X’ — S is of relative dimension 1 by a dimension count. [J

The following reembedding lemmas will help us to pass from the relative curve X’ — S of Proposi-
tion 2.3 to a relative affine line. They are more subtle than the versions given in [ées22a, Lemma 6.3]
or in prior references that developed the geometric approach to the Grothendieck—Serre conjecture
because now Y is merely quasi-finite. Relatedly, we do not know how to arrange that V = Ak.

Lemma 2.4. Let Y be a quasi-finite, separated scheme over a semilocal ring A and, for each mazximal
idealm c A, let ty: Yy, — A,lcm be a closed kn-immersion. There are principal affine opens Y' 'Y

andV < A}L‘, both containing all the Yy, , and a closed immersion 2 Y' — V extending all the iy.

Proof. Zariski Main Theorem [EGA IV, corollaire 18.12.13] gives an open immersion Y < Y into
an A-finite scheme Y = Spec(A) The union of the Y} is a closed subscheme of Y disjoint from
Y\Y Thus, some a, € A vanishes on Y\Y and is a unit on every Y}, and some a € A is a unit on

Y\Y and is such that a/aq on each Yy, is the ty-pullback of the standard coordinate of A,lgm. Jointly,
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@, asp do not vanish at any point of }N/, so they determine a map 7: Y — IF’}4 such that {a, = 0}
set-theoretically is the Z-pullback of infinity. By construction, 7 extends the v, and 7-1(A}) Y.

The schematic image of 7'is an A-finite closed subscheme Y < IP)}L‘: this is simpler when A is Noetherian,
but in general and more concretely, 7 factors through the affine complement Spec(B) of a hypersurface
in P4 disjoint from 2(Y) (such a hypersurface exists by the avoidance lemma [GLL15, Theorem 5.1]),
Y is cut out by Ker(B — A) because 7 is quasi-compact (see [SP, Lemma 01R8]), and the coordinate
ring A of Y is the image of B — A, which is automatically A-finite because B is of finite type over
A and A is A-finite. Thanks to this description, the image of the map Y — Y, which is finite by
[SP, Lemma 035D], contains every minimal prime of A, so this map is surjective. In particular, for
every maximal ideal m = A, the intersection Y N Al set-theoretically is Y%, (viewed inside A via
the monomorphism ¢y,), to the effect that, by the constructlon of 7, the finite map

TTHAY) - Y n AL (2.4.1)

is a closed immersion on ky-fibers. By the Nakayama lemma [SP, Lemma 00DV (6)], this finite
surjection that is injective on coordinate rings becomes also surjective on coordinate rings after
semilocalizing Y n Ay along the union of its ky-fibers. Thus, (2.4.1) becomes an isomorphism after
this semilocalization, so, by a limit argument, there is a principal affine open of Y n A,l4 containing
its ky-fibers over which the map (2.4.1) is an isomorphism. This means that, as claimed, there are a
principal affine open Y’ < Zﬁl(A}L‘) c Y containing all the Y}, , a principal affine open V = A}, and
a closed immersion ¢ :=7]ys: Y/ < V extending the tp. ]

To use Lemma 2.4 in practice, we need a criterion for the existence of the closed immersions ¢y,.
Lemma 2.6 below gives such a criterion in terms of the following set-theoretic obstruction.

Definition 2.5. Let A be a ring, let Y be a quasi-finite A-scheme, and let X be an A-scheme. There
is no finite field obstruction to embedding Y into X if for every maximal ideal m ¢ A with ky, finite
and every finite field extension k’/ky, the number of k’-points of Yy, does not exceed that of Xy, .

The condition is fibral, but it is convenient to allow an arbitrary A to simply be able to say that
there is no finite field obstruction to embedding Y into X over A.

Lemma 2.6. For a finite scheme Y over a field k and a nonempty open V. AL, there is a closed k-
immersion ¢: Y < V iff there is no finite field obstruction to it and'Y is a closed subscheme of some
smooth k-curve C, in which case we may choose i to extend any ty: Yo — V' for a closed Yo C Y.

Proof. The ‘only if’ is clear, so we fix closed immersions Y < C and ¢y as in the statement and
assume that there is no finite field obstruction. We may build ¢ one connected component of Y at a
time and shrink V' at each step, so we may assume that Y is connected with unique closed point y.
If k£ is finite, then the absence of the finite field obstruction allows us to choose a closed immersion
Ly y < V. If k is infinite, then, since every closed point of a smooth curve over k is also a closed
point of A} (see [Ces22a, Lemma 6.2]), we have a closed immersion ¢, : y < Al and the possibility
to change coordinates via t +— t + o for a € k allows us to assume that ¢, factors through V. In
other words, for all £ we have reduced to the case when Yy # (F.

In the case when the extension k,/k is separable, [EGA 1V, proposition 17.5.3] ensures that the

n-th infinitesimal neighborhood of y in C is k-isomorphic to Y;, := Spec(ky[z]/(z"*1)) over k (the

separability ensures that ky ®j ky has k, as a direct factor, so, by the invariance of the étale site

under nilpotents, it suffices to identify the n-th infinitesimal neighborhood after base changing C

along k — k,, that is, after reducing to the case k = k;, in which loc. cit. applies). This does not
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depend on C', and Y ~ Y,, for some n > 0. Thus, to extend our fixed ¢g to a desired ¢, by induction
on n = 0, we only need to argue that every k-automorphism of Y;, lifts to a k-automorphism of Y4 1.
For this, by base change along the inverse of the induced k-automorphism of k,, we may reduce
to the case when this induced automorphism is the identity of k,. This makes the automorphism
ky-linear, so we may replace k by k, and further reduce to the case when £, = k. In this case,
however, k-automorphisms of Y;, correspond to elements a1z + ... + apz™ € k[z]/(z™*!) with
a; € k and a; # 0, and such elements lift.

In the remaining case when k, (equivalently, k) is infinite and Yy # 7, it suffices to show that a
given closed immersion ¢o: Yy < V extends to a closed immersion of the square-zero infinitesimal
neighborhood ey, of Yy in C: by iterating this with Yj replaced by ey, and eventually restricting to
Y, we will obtain the desired ¢. By deformation theory, more precisely, by [[1105, Theorem 8.5.9 (a)],
the k-morphisms ey, — V that restrict to ¢y are parametrized by some affine space A{fv . Since ey,
is k-finite, the Nakayama lemma [SP, Lemma 00DV]| ensures that the locus parametrizing those
ey, — V that are closed immersions is an open ¥ < A]kv . Moreover, ¥ # (: indeed, we may check
this after base change to any field extension of k, and a suitable such base change reduces us to the
already settled case when k,/k is separable. Since k is infinite and ¥ c Aiv is nonempty, ¥ (k) # &.
Any k-point of ¥ corresponds to a sought closed immersion ey, < V that restricts to ¢g. U

The embedding lemmas above help us build the following excision squares that allow us to pass to A}L‘.

Lemma 2.7. Let C' be a smooth, affine scheme of pure relative dimension 1 over a semilocal ring A,
let Y < C be an A-quasi-finite closed subscheme, and let vy : Yy, — A}ﬁm for mazximal ideals m c A

be closed immersions. There are an affine open C' < C' containing the Yy, , an affine open V < A,l4,
and an étale A-morphism f: C' — V that embeds Y n C" as a closed Y' < V in such a way that

YnC'——=(C

oo
Ye—V

is a Cartestan square in which the left vertical arrow is an isomorphism, as indicated.

Proof. By the final aspect of Lemma 2.6, any fixed ¢, may be extended to any infinitesimal thickening
of Yy, in Ck, . In particular, we lose no generality by replacing Y by any of its infinitesimal
neighborhoods in C, so we may and do assume that each clopen of every Y}  is nonreduced. By
Lemma 2.4, there are principal affine opens Y/ < Y and V < Allél, both containing all the Y, and a
closed immersion ¢: Y/ < V extending the t,. Since Y’ < Y is a principal affine open, we may replace
C' by a principal affine open containing all the Yy, to reduce to Y/ =Y. By lifting the t-pullback of
the standard coordinate of A}L‘, we then extend ¢: Y — V to an A-morphism f: C — A}L‘.

By [SP, Lemma 01TI|, the quasi-finite locus of f is open, and the A-smoothness of C' together with
the nonreducedness of each clopen of every Y;, force this locus to contain all the Yy, : indeed, if C”
is an irreducible component of Cj,, containing a point of Yy, , then f|c is quasi-finite because f
cannot collapse C’ to a point of A}{m since fly, is a closed immersion and the components of Yy,
are nonreduced. Moreover, since C' and Ah are A-smooth, we may A-fiberwise apply the flatness
criterion [EGA IV, proposition 6.1.5] to see that f is A-fiberwise flat at the points of each Y, .
Thus, [EGA IV3, corollaire 11.3.11] implies that f itself is flat at the points of each Yj,,. Since
étaleness of a flat morphism may be checked fiberwise and all the components of all the Yj,  are
nonreduced, f|y, ~being closed immersions then implies that all the Y}, even lie in the étale locus
9
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of f. Consequently, we may replace Y and V', and then also C, by principal affine opens containing
all the Yy to reduce to the case when f is étale.

Finally, we replace C' by the f-preimage of V' to make f factor through V. Since a section of
separated étale morphism is a clopen immersion, f~1(f(Y)) =Y uY for some closed Y = C. By
inverting a function on C' that vanishes on Y but is a unit on Y, we get a desired affine open C’. [

We are ready to build the promised closed Z < Spec R of codimension > 2 away from which our
G-torsor is simpler: any V as in the following proposition contains Pépec( R\Z for some such Z.

Proposition 2.8. Let G be a reductive group over a Noetherian semilocal ring R that is flat and
geometrically reqular over some Dedekind ring. For a generically trivial G-torsor E over R, there are

(i) an open V < P}, containing all the height < 2 points and the sections {t = 0} and {t = w0};
(ii) a G-torsor & over V' that trivializes away from some R-quasi-finite closed of V' and is such that

Elgp—oy =~ B, Ely—ooy is trivial, and é"|P%raC<R) is trivial.

Proof. We first dispose of the condition that V' cover the height < 2 points, so we suppose that
V c IP’}2 is an open satisfying the other conditions, in particular, such that & trivializes away from
an R-quasi-finite closed %" < V' and also on Vgyac(r). By spreading out, & is trivial over Vg for some
dense open S < Spec(R). By patching with the trivial torsor over Pls, we may assume that V' contains

%rac( R) and is trivial thereon. The closure % — }P’ll12 of % is R-finite because

V < PL is R-fiberwise dense. By patching, & over V extends to a G-torsor over V U (PL\%) that
trivializes away from the R-quasi-finite closed %. Thus, we replace V by V U (PE\%) = PL\(Z\%)
to force V' to cover the height < 1 points of PL. At this point, by [CTS79, théoréme 6.13] (see also
[Ces22b, Section 1.3.9] for a recap) applied to the local rings of the generic points of PL\V and then
spreading out and patching, & over V extends to a G-torsor over some open of }P’E covering the
height < 2 points. Consequently, we may enlarge V' again to cover the height < 2 points.

PL, so also contains P

Having disposed of the codimension requirement, we let O be a Dedekind ring over which R is flat
and geometrically regular and decompose O and R into factors to force both of them to be domains.
We then combine Popescu’s [SP, Theorem 07GC| with a limit argument to reduce to the case when R
is the semilocal ring of a smooth, affine, integral O-scheme X. We spread out to assume that G and
E begin life over X. We may assume that X is of relative dimension d > 0 over O because else F is
trivial by the settled Dedekind case of the Grothendieck—Serre conjecture, see [Guo22, Theorem 1], a
case in which we may choose V' = IP’}Lz with & trivial.

More generally, we apply [Guo22, Theorem 1] to the semilocalization of X at the union of the generic
points of the closed O-fibers of X and use a limit argument to find a closed Y < X that contains no
irreducible component of any O-fiber of X and is such that E trivializes over X\Y. By Proposition 2.3
(applied with Z = ¢¥) and the fact that every open immersion S < A?{l is quasi-finite, at the cost
of shrinking X around Spec R we may find a smooth morphism X — A‘é_l of relative dimension 1
with respect to which Y is quasi-finite. Base change along Spec R — A?{l then gives

e a smooth, affine R-scheme C' of pure relative dimension 1 equipped with an s € C(R);
e a reductive C-group scheme ¢ with s*(%) = G and a ¢-torsor & over C with s*(&) = E,

e an R-quasi-finite closed subscheme %" = C' containing s such that &[c\a is trivial.
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We will gradually simplify the data of these C, s, ¢, &, and % over R to arrive at our V < P}%.

By [Li24, Proposition 7.4| and spreading out, there are a finite étale cover C' — C’ of some affine
open neighborhood C' < C of s, a lift 5€ C (R) of s, and a reductive group isomorphism Yr =G
whose §-pullback agrees with the identification s*(¢) = G. By replacing (C, s) by (C,3) and ¢, &,
% by their pullbacks to C , we therefore reduce to the case when & =~ G .

Since % is merely required to be R-quasi-finite (and not R-finite), we may replace C' by some affine
open containing s to arrange that set-theoretically %, = s, for every maximal ideal m < R. Since
#AL (kwm) > 2, this ensures that there is no finite field obstruction to embedding 2" L Spec R into
Al Therefore, Lemmas 2.6 and 2.7 give us an affine open C’ = C' 1 Ak, containing s L {t = 0}, an
affine open V < A}q, and an étale R-morphism f: C’ — V that fits into a Cartesian square

(& A C') L {t = 0}—s O

N
YV

for some closed subscheme %’/ < V. By patching the disjoint union of & over C’ nC and the trivial G-
torsor over O Ak, with the trivial G-torsor over V\@” (see, for instance, [Ces22b, Proposition 4.2.1]),
we therefore obtain a G-torsor &” over V' such that &”[yn\g is trivial and disjoint s, so € V(R) such
that s*(&”) = E and s§(&”) is trivial. By [Gil02, corollaire 3.10 (a)|, the triviality away from %
implies that &’ is also trivial over VErac(R)-

At this point, in the view of the initial reduction described in the first paragraph of the proof, we
have basically already constructed all the required data. To finish, we note that since R is semilocal,
the automorphism group of Pk acts transitively on PL(R). Thus, we may assume that sg is the
R-point {t = o0}. Since sq is disjoint from s, we then shift the coordinate of A}% to arrange that, in
addition, s is the R-point {t = 0}. O

3. TORSORS OVER P} VIA THE GEOMETRY OF Bung

To proceed further, we need to analyze the G-torsor & over V c JP’}2 obtained in Proposition 2.8.
An initial step to this and a general bedrock of the geometric approach to the Grothendieck—Serre
conjecture is the fact that a G-torsor on IP’% over a semilocal ring is A-sectionwise constant. This
constancy was recently established by Panin—Stavrova in [PS25], and we reprove and mildly generalize
their result in Theorem 3.5 below. The constancy comes from the following geometric property of the
algebraic stack Bung parametrizing G-bundles on }P’h, in addition, Proposition 3.1 simultaneously
reproves, strengthens, and explains its numerous special cases in [PSV15, Proposition 9.6], [Tsy19],
[Fed21, Proposition 2.2], [CesQQa, Lemma 8.3], and elsewhere. For a basic review of some properties
of algebraic stacks that are useful for studying torsors, see [éeslS, Appendix A].

Proposition 3.1. Let w: C' — S be a proper, flat, finitely presented scheme morphism and let G be
a flat, finitely presented, quasi-affine S-group. The restriction of scalars Bung := m«((BG)¢) is a
locally finitely presented algebraic S-stack with quasi-affine diagonal. The adjunction morphism

BG — Bung
(a) is a monomorphism of algebraic S-stacks if HO(Cs, Oc,) = ks for s € S;

(b) is an open immersion if H°(Cs, Oc,) = ks and H*(Cs, O¢,) = H*(Cs, 0c,) =0 for s€ S.
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When (b) holds with S quasi-compact, a G-torsor over C' descends to S iff it does so on the closed
S-fibers of C.

The main case of interest for us is C' = P§ but the proof is no more difficult in general.

Proof. By [SGA 31 new, exposé VIg, proposition 11.11 (i)<>(ii)], the quasi-affine S-group G has affine
fibers, so the algebraic stack BG has affine stabilizers. Thus, since BG is finitely presented and has
a quasi-affine diagonal (see [Ces15, Lemma A.2 (b)]), the representability of Bung by an algebraic
stack, as well as its geometric properties, follow from [HR19, Theorem 1.3]. Moreover, the final claim
about the closed S-fibers follows from (b) because any open containing all the closed points of a
quasi-compact scheme is the entire scheme (equivalently, a quasi-compact scheme has a closed point).

In (a), by base change and [SP, Lemma 04ZZ], it suffices to check the full faithfulness of BG — Bung
on S-points. For this, for any G-torsors E¥ and E’ over S, we need to check that

Tsome(E, E')(S) —> Isomg(E, E')(C). (3.1.1)

By working fpqc locally on S to trivialize E and E’, it is enough to argue that G(S) — G(C) and, by
also using [EGA 1V, corollaire 17.16.2], we may assume that C(S) # &, so that G(S) — G(C). For
the surjectivity, we may again work locally and now combine Noetherian approximation (with [I1105,
Corollary 8.3.11 (a)] to keep the assumption on H°) with the rigidity lemma [MFK94, Proposition 6.1]
to reduce to the case when S is the spectrum of a field k. In the field case, however, since morphisms
to an affine scheme correspond to ring homomorphisms induced on global sections, the assumption
H°(C, 0¢) = k and the affineness of G imply that every C-point of G descends to a k-point.

In (b), we already know from (a) that the map is a monomorphism, and hence is representable
by algebraic spaces by [SP, Lemmas 04Y5 and 04ZZ]. Thus, it suffices to check that it is formally
smooth: indeed, it will then be smooth by [SP, Lemmas 06Q6 and 0DPO0|, hence representable
by schemes by Rydh’s [SP, Lemmas 0B8A|, and so an open immersion by [SP, Theorem 025G].
Concretely, for the formal smoothness, given a square-zero thickening 7' < T” of affine S-schemes, we
need to argue that a G-torsor & over Cv descends to T” granted that its restriction to Cr descends
to a G-torsor E over T. Let J < Op be the ideal sheaf of T, so that J? = 0 and we may view J as
a quasi-coherent Op-module. By (a), we already know that, if a sought descent exists, it is unique
up to a unique isomorphism, so we may work fpqc locally on T” to assume that

HY(Cr,0c,) =~ H*(Cr, 0c,) =0

(see [I1105, Corollary 8.3.11]), that the co-Lie complex ¢g/7, controlling the deformations of E,
consists of free vector bundles placed in degrees —1 and 0 (see |I1172, équation (2.4.2.9), page 208|),
and, as in (a), that C(T") # . By [11105, equation (8.3.2.2) and Corollary 8.3.6.5 (a)] (we apply the
corollary to X := T and E := RI'(Cr, Oc,), with M :=J), the displayed vanishing ensures that

HY(Cr,J|cy) = HY(Cr, Ocy) ®p, J =0 and H*(Or, J|cp) = H*(Cr, Ocy) ey J = 0.

Consequently, the structure of g/ forces the vanishing
EthﬁcT (EE'/T‘CTa J‘CT) ~ (.

Thus, |I1172, théoréme 2.4.4, page 209] implies that & is the unique deformation of E|¢;, to a G-torsor
over Crr. Since the pullback of & along any T"-point of C' is another such deformation, & must
agree with this base change, so & is constant. ([l

Even when C = P}, the open immersion of Proposition 3.1 (b) is typically not closed, for instance,
this would contradict [Fed16, Theorems 3 (ii) and 5|. Nevertheless, it is closed when G is of
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multiplicative type, as follows from the following broadly useful and widely known lemma that
generalizes [GR18, Proposition 11.4.2|, [Fed22, Lemma 2.14|, and other results in the literature.

Lemma 3.2. For a finite type group M of multiplicative type over a scheme S, its cocharacter
S-scheme Xy (M) := Hom,,(Gm, M), and the S-stack Bunys parametrizing M-torsors over P4 with
d > 0, we have

Buny =~ BM xg X, (M), in particular, H'(P%, M)~ H'(S,M)® H°(S, X.(M));
if M is, in addition, finite, then Buny, = BM and, in particular, BM(S) — (BM)(P}).

Proof. For finite M, we have X, (M) = 0, so the claims about finite M follow from the rest.

The map BM xg X, (M) — Buny, is given on S-points as follows: a pair of an M-torsor E over S
and an S-morphism a: G,, s — Mg is sent to the contracted product” of F ‘Pg and the extension
along ahp% of the G,,-torsor corresponding to ¢ (1), and similarly for points valued in a variable
S-scheme S’. By the flexibility of base change to S’, it suffices to show that every M-torsor & over
IP’% arises from F and « as above that are uniquely determined up to a unique isomorphism.

Certainly, F is uniquely determined by E ~ p*(&) for a fixed p € P%(S), so, by twisting and using
the bijection M(S) — M(P%) that results as in (3.1.1), all we need to show is that & comes
from a unique a when p*(&) is trivialized. Due to this rigidification along p and the fact that, by
M (S) —> M(P%), isomorphisms of rigidified M-torsors over P¢ are unique if they exist, the claim is
fpqc local over S. Thus, we assume that S = Spec A is affine, then, by a limit argument, that A is
local, and, by decomposing M, that M is either G, g or uy,, 5. For G,,, the desired Hl(PdA, Gm) =7
holds when A is a field, so, by Proposition 3.1, also when A is local. The p,, case follows from this
by the sequence 0 — p,, — G, = G, — 0 and the isomorphism Gy, (A) — G, (P%). O

For finite groups M of multiplicative type, we may slightly extend Lemma 3.2 to gerbes as follows.
We recall that an M-gerbe is a stack that fppf locally on the base is isomorphic to the stack BM of
M-torsors and that up to equivalence M-gerbes are classified by H?ppf with coefficients in M, see
[Gir71, chapitre III, définition 2.1.1, section 2.1.1.2, corollaire 2.2.6; chapitre IV, théoréme 3.4.2 (i)].

Lemma 3.3. Let M be a finite group of multiplicative type over a scheme S and fiz a d > 0.

(a) For an M-gerbe M over IP’%, the s € S such that A trivializes over IP)%S form a clopen S 4 < S.

(b) Base change is an equivalence between the (2, 1)-category of M -gerbes over S and that of those
M -gerbes A over IP’dS with S, = S; in particular, each A trivializes fppf locally on S 4.

Proof. By descent, for both claims we may work fppf locally on S, so we may assume that M is a
product of various p,, g, in particular, that there are split S-tori 7' and 7" and an exact sequence

0->M-—->T-—->T —0.

By [Gab81, Chapter II, Part 2, Theorem 2 on page 193], each element of HQ(Pg,T)tors descends
to H%(S,T). Thus, by Lemma 3.2, in (a) we may fppf localize S further to reduce to the case
when the class of .# in H*(P%, M) comes from an S-point of the constant S-scheme X, (T")/X.(T).
By Lemma 3.2 again, the locus of S over which this S-point is the zero section is the sought S 4.
Moreover, we have simultaneously showed the last aspect of (b): . trivializes fppf locally on S .

2Since M is commutative, the contracted product of two M-torsors F1 and E2 may be defined simply as the
inflation of the (M x M)-torsor E1 x E3 to an M-torsor along the multiplication map M x M — M.
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For (b), we first note that for any S-scheme S’ the S’-endomorphisms of the trivial M-gerbe BM
are given by the contracted products with M-torsors over S’ (the relevant M-torsor over S’ is simply
the image of the trivial M-torsor under the endomorphism in question), to the effect that all such
endomorphisms are automorphisms and their groupoid is identified with (BM)(S’). Thus, the full
faithfulness in (b) follows from fppf descent and the equivalence (BM)(S’") — (BM)(P%,) supplied
by Lemma 3.2. The essential surjectivity then follows from descent and the already established last

aspect of (b). O

The following lemma is useful for lifting the structure group of a torsor over IP’% along an isogeny

GG It is, of course, possible to analyze the geometry of the map Bunx — Bung more thoroughly
but we do not pursue this here in order to keep our focus on what is needed for Theorem 3.5.

Lemma 3.4. For an isogeny GG of reductive S-groups, the image of the map Bungs — Bung

between algebraic S-stacks parametrizing torsors over P‘é with d > 0 is clopen. For any p € }P’g(S),
the following square is Cartesian:

Bung —— Im(Buny — Bung)

ong*(o@N)J J{é’nﬁp*(f)
BG—— > BG,

in particular, a G-torsor & over P‘é lifts to a G-torsor & iff it does so both on geometric S-fibers
and after pullback by the S-point p, in which case giving & amounts to giving p*(&).

Proof. Set M := Ker(é — @). For a G-torsor & over an S-scheme S’, the category that parametrizes
its liftings to a G-torsor over variable S’-schemes is an M-gerbe over S’ (see [Ces15, Proposition A.4 (d)
and its proof]), in particular, & lifts to a G-torsor iff this M-gerbe is trivial. Consequently,
Lemma 3.3 (a) implies that that image of the map Buny — Bung is clopen, whereas Lemma 3.3 (b)
implies that the depicted square is indeed Cartesian. U

We turn to the promised A-sectionwise constancy of G-torsors over IP’}4 for semilocal A. Our argument
for it is similar to that of the case treated by Panin-Stavrova in [PS25|, even if perhaps slicker
thanks to the geometric machinery above. In turn, their argument is slicker but somewhat similar
to Fedorov’s [Fed22, Theorem 6] that was mildly generalized in [CCS22b, Proposition 5.3.6]. The
general idea goes back at least to [PSV15], [FP15], and [Fed16].

Theorem 3.5. For a reductive group G over a semilocal ring A, every G-torsor & over IP"i is A-
sectionwise constant: up to isomorphism, the G-torsor s*(&) over A does not depend on s € P4(A).

Proof. We may assume that d > 0. The projective d-space over any field then has at least three
rational points (even }P’%z has three distinct rational points!), so IP’dA has an A-point that is disjoint
from any two fixed A-points. Moreover, two disjoint A-points lie on a uniquely determined ]P’lA c IP’ff‘.
Thus, overall we may assume that d = 1. Moreover, since A is semilocal, for any s € ]P’114 (A), there is
an s’ € AL (A) disjoint from s. Thus, we may change coordinates to first make s’ be {t = 0} and
then make s be {t = o0}, and hence reduce to showing that &|y_y) ~ &|—g. By then replacing G
by an inner twist, it even suffices to show that &|,_¢; is trivial granted that so is &|(—q-

Let .# be the Corad(G)-torsor over P4 obtained by inflating &. Lemma 3.2 ensures that F =0y

is trivial and that % comes from an element of X, (Corad(G))(A). Thus, since &'(1) pulls back to
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0 (d) under the map @g4: IF’}L‘ — IP}4 that raises the homogeneous coordinates to their d-th powers, by
choosing d to be the degree of the isogeny Rad(G) — Corad(G) and replacing & by ¢% (&) we reduce
to the case when . lifts to a Rad(G)-torsor over Pl that comes from an element of X, (Rad(G))(A),
in particular, that is A-sectionwise trivial. By twisting & by this Rad(G)-torsor, we therefore reduce
to the case when . is trivial. This means that & lifts to a G4°"-torsor over P, to the effect that we
have reduced to the case when G is semisimple. This reduction might force us to revert to showing
that &=} =~ &=} Without knowing that &|(_; is trivial, but we may afterwards again replace
G by an inner twist as in the first paragraph of the proof to still arrange that & \{t:oo} be trivial.

Once G is semisimple, we pullback by ¢4 again, with d now being the degree of the isogeny G*¢ — G:
by [Gil02, théoréme 3.8|, this has the advantage of ensuring that each &|p1 for s € S now lifts to
ks

a G®°-torsor over IP% . By Lemma 3.4, then & itself lifts to a G°-torsor over PL whose restriction

to infinity is trivial,sto the effect that we have reduced to the case when G is semisimple, simply
connected. Due to [SGA 3111 yew, exposé XXIV, section 5.3, propositions 5.10 (i), 8.4| (that is, the
analogue of (1.3.1)), we may then even assume that G is simple.

At this point, we begin the remaining argument by settling the isotropic case in the following claim.

Claim 3.5.1. Let A be a semilocal ring, let G be a simple, simply connected A-group that is isotropic
in the sense that it has an A-fiberwise proper parabolic A-subgroup, and let & be a G-torsor over
P} If &|g—oy is trivial, then £|A}; is also trivial, so that &|g—q, is trivial, too.

Proof. The assumptions on G ensure that the following map is surjective:

GAE)/GARED) — [ Glhn(1)/GEnt]), (3.5.2)
where m ranges over the maximal ideals of A, see [Ces22a, (2) in the proof of Proposition 8.4] (the
essential input here is the Borel-Tits theorem [Gil09, fait 4.3, lemme 4.5]; the displayed surjectivity
is also very close to [Fedl6, Proposition 7.1] and, implicitly, it is an important part of [FP15]).
Thanks to our assumption that &|g_qy is trivial, Henselian invariance [BC22, Theorem 2.1.6]
ensures that & is also trivial over A((t~1)). Now by patching for G-torsors [BC22, Lemma 2.2.11 (b)]
or [Fedl6, Proposition 4.4], the surjectivity (3.5.2) means that every G-torsor over | |, IP’}Cm that
is obtained by patching é”||_| Al with the trivial G-torsor at infinity lifts to a G-torsor over IP’}4
obtained by patching &| AL with the trivial G-torsor at infinity. However, & ||_| Al is trivial by
|Gil02, lemme 3.12], so we get that &[,1 extends to a G-torsor &' over PY such that &'\ pr_ and

&"|(t=c0} are both trivial. By Proposition 3.1, then &” itself is trivial, so that é"]A% is trivial, too. [

In the remaining case when our simple, simply connected A-group G is not isotropic, let us consider
any A-(finite étale) subscheme Y = Spec A" < Gy, 4 such that Gy is isotropic and for each maximal
ideal m < A with Gy, isotropic, Yy, has two disjoint nonempty clopens of coprime degrees over
km (we will later build such a Y'). We may apply the settled isotropic case after base change along
Y — Spec A, so, since Y Ai‘ gives rise to a Y-point of A%,, we see that &y is trivial. On the
other hand, (3.5.2) applied after such a base change gives

GA(w)/G(ATY]) = T GU(A" @ k) ()/G((A" ® k) [y]), (3.5.3)

where m still ranges over the maximal ideals of A. Since our choice of Y and [Gil02, théoréme 3.8] still

ensure that & ||_| (L \Yi) is trivial, analogously to the previous paragraph, this surjectivity implies

that &|p1,y extends to a G-torsor & over PL such that & |, pL_ s trivial. By Proposition 3.1 and

our triviality assumption on &|(_, this means that & \P% \v is trivial, so that &|(;—¢) is trivial, too.
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To conclude the proof, we now argue that Y as above exists. In fact, it suffices to find an A-(finite
étale) Y as above with the condition Y < G, 4 weakened to the condition that there be no finite
field obstruction to embedding Y into G, 4: the primitive element theorem for finite separable field
extensions will then imply that the embeddings Yy <— Gy, 1, exist for all maximal ideals m < A and
the Nakayama lemma will allow us to lift them to an embedding Y < G,, 4 < Al;. To find such a
Y, we first consider the projective, smooth A-scheme X that parametrizes parabolic subgroups of G
(see [SGA 3111 new, exposé XX VI, corollaire 3.5|), so that X (km) # & for every maximal ideal m < A
with Gy, isotropic. The projectivity and smoothness of X allow us to apply the Bertini theorem to
iteratively cut X by smooth hypersurfaces passing through specified ky-points of X for each m as
above to build an A-(finite étale) Yy = Spec(Ag) < X such that Yy(kn) # & for every maximal ideal
m < A with Gy, isotropic; alternatively, to build such a Yy we may apply [CchQb, Lemma 6.2.2],
whose proof gives this Bertini argument in detail. For each N > 1, consider a finite étale cover
YN — Yp defined by a monic polynomial fn(t) € Ap[t] of degree N whose reduction modulo each
maximal ideal n © Ay is a product of N distinct monic linear factors if ky, is infinite (resp., is
irreducible of degree N if ky is finite). The advantage of Yy is that there is no finite field obstruction
to embedding it into G,,, 4 granted that NV is large, in fact, the same even holds for Y := Yy 1 Yn41.
By construction, this Y is as required: Gy is isotropic (even Gy, is) and, for each maximal ideal
m < A with Gy, isotropic, Y%, has two disjoint clopens of degrees N and N + 1 over ky,. O

Remarks.

3.6. Theorem 3.5 fails beyond semilocal A. Indeed, among the rings of integers Ok of number
fields K for which the class number is not 1, one finds plenty of examples of nonprincipal
ideals I < Og. Since I is generated by two elements, there exists an s € IF%K(O k) such that
s*(0(1)) is isomorphic to I and so is nontrivial.

3.7. Even though we do not explicate this, the proof of Theorem 3.5 clearly also generalizes and
simplifies the aforementioned [Ces22b, Proposition 5.3.6] (so also [Fed22, Theorem 6]).

4. UNRAMIFIED GROTHENDIECK—SERRE IN THE TOTALLY ISOTROPIC CASE

We are ready to settle the unramified case of the Grothendieck—Serre conjecture for reductive groups
whose adjoint quotients are totally isotropic in Theorem 4.3 below (see §1.3 for a review of total
isotropicity). The final input to this is a study of torsors over Ah built on the corresponding study
of torsors over ]P’}4 carried out in §3. For us, a key advantage of Ah is that we no longer need to
restrict to semilocal A thanks to the following general form of Quillen patching due to Gabber (prior
versions [Mos08, Satz 3.5.1] or [AHW18, Theorem 3.2.5] would also suffice for our purposes).

Lemma 4.1 ([CesQQb, Corollary 5.1.5|). For a locally finitely presented group algebraic space G over
a ring A, a G-torsor (for fppf topology) on Al descends to A iff it does so Zariski locally on Spec A.

The following theorem is our key conclusion about torsors over A,l4 and is a positive answer to a
generalization of [Ces22b, Conjecture 3.5.1| of Horrocks type. In its statement, even when A is local,
we cannot drop total isotropicity, see [Fed16, Theorem 3 and what follows].

Theorem 4.2. For a reductive group G over a ring A with G totally isotropic, no nontrivial

G-torsor over AY trivializes over the punctured formal neighborhood A((t=1)) of the section at infinity;

equivalently, every G-torsor & over IP)}LX with c?]{tzoo} trivial restricts to the trivial torsor over A}L‘.
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Proof. The two formulations are equivalent due to Henselian invariance and patching for G-torsors,
see [BC22, Theorem 2.1.6 and Lemma 2.2.11 (b)]. Moreover, by base change along the map
Al ~ Spec(A[u]) — Spec A, we obtain a G-torsor &, over ]P),l4[u] with &, (4=} trivial such that the
restriction of &, to the “diagonal” section t = u of A}Ll[u] is &. Thus, by changing the coordinates of
P,l4[u] via [z : y] — [z — uy : y] and replacing A and & by A[u] and &,, respectively, we are left with

showing that our G-torsor & over P} with & |(t=o0 trivial is such that &|y_q is also trivial.

This last claim is insensitive to replacing & by its pullback along the map ¢g: ]P’}4 — ]P’Il4 given by
[z :y] — [2¢: y9] for a d > 0. We replace & by such a pullback with d being the degree of the
isogeny (G4°7)%¢ x rad(G) — G. Since the resulting pullback of @ (1) is &(d), by [Gil02, théoréme 3.8],
this ensures that each & ][P% for s € S now lifts to a ((G9)* x rad(G))-torsor over IP% .

The obtained fibral liftability and Lemma 3.4 imply that & itself lifts to a ((G9)* x rad(G))-torsor
over IP’}4 whose restriction to the section at infinity is trivial, to the effect that we have reduced to G
being either a torus or semisimple, simply connected. Moreover, in the toral case, & AL is trivial
by Lemma 3.2, so for the rest of proof we assume that G is semisimple, simply connected. Due to
[SGA 3111 new, exposé XXIV, section 5.3, proposition 5.10 (i), proposition 8.4] (compare with (1.3.1)
above), we may then even also assume that G is simple. Granted these reductions, we revert to
arguing the triviality of & AL For this, we first use Lemma 4.1 coupled with a limit argument to

reduce to the case when A is local. For local A, however, &| AL is trivial by Claim 3.5.1. O

We turn to the promised totally isotropic, unramified case of the Grothendieck—Serre conjecture.

Theorem 4.3. Let R be a Noetherian semilocal ring that is flat and geometrically reqular over some
Dedekind ring, let K := Frac(R) be its ring of fractions. The Grothendieck—Serre conjecture holds
for every reductive R-group G whose adjoint quotient G*d is totally isotropic, more precisely, for
every such G, we have

Ker(HY(R,G) — HY(K,G)) = {*}.

Proof. We let O be a Dedekind ring over which R is flat and geometrically regular, assume without
losing generality that O is semilocal, and decompose O and R into factors to make them domains.
We then combine Popescu’s [SP, Theorem 07GC| with a limit argument to reduce to when R is the
semilocal ring of a smooth, affine, integral O-scheme X. We spread out to ensure that our reductive
group G with G?? totally isotropic and the generically trivial torsor E that we wish to trivialize
both begin life over X.

By Proposition 2.8 and spreading out, we may replace X by an affine open containing Spec R to
arrange that there be a closed Z ¢ X of codimension > 2 (without loss of generality, cut out by a
regular sequence of length 2—this simplifies the spreading out), an open V' < IP’}( containing both
IP%(\Z and the X-points {t = 0} and {t = o}, and a G-torsor E over V such that E’{t:O} ~ F and
E |{(t=a0} 18 trivial. Since X is affine, there is a principal Cartier divisor Y = X containing Z and not
containing any generic point of any O-fiber of X. Since X\Y is affine, Theorem 4.2 ensures that
E‘Ak\y is trivial, so, by Theorem 4.2 again, so is E|P&\Y\{t=1}. By patching, then there is a G-torsor

E' over ]P%(\Y u (V\{t = 1}) that is trivial on IP%(\Y and agrees with E on V\{t = 1}. As in the proof

of Proposition 2.8, using [CTS79, théoréme 6.13] and spreading out, this E’ extends to a G-torsor
over IP%(\Z, U (V\{t = 1}) for some closed Z’ = Y of codimension > 2 in X containing Z. We replace

E by this extension of £/ and Z by Z' to assume that our E as above trivializes over IP%(\Y,
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If X is of dimension < 1, then F is trivial by [Guo22, Theorem 1], so we assume that X is of relative
dimension d > 0 over O. By Proposition 2.3, we may replace X by an affine open containing Spec R
to find an affine open S A%_l and a smooth map X — S of pure relative dimension 1 such that
Y n X is S-quasi-finite and Z n X is S-finite. The base change along Spec R — S then gives

e a smooth, affine R-scheme C' of pure relative dimension 1 equipped with an s € C(R);
e a reductive C-group scheme ¢ with s*(%) = G and a ¢-torsor & over C with s*(&) = E;
e an R-quasi-finite closed ¢ < C' and an R-finite closed 2 < %; and

o a Y-torsor & over IP%,\QF such that c5"~|{t=0} ~ &|c\# and both é"~|{t=oo} and gh@é\@ are trivial.

As in the proof of Proposition 2.8, we will gradually simplify these data to show that F is trivial. The
R-finiteness of Z, as opposed to R-quasi-finiteness as there, makes some of these simplifications easier,
but dragging & along complicates some others. To begin with, as there, we use [Li24, Proposition 7.4]
to replace C by a finite étale cover of some affine open neighborhood of Z U s to reduce to when
¥ ~ (G¢, compatibly with the identification after s-pullback. Similarly, by [CchQa, Lemma 6.1], we
may replace C' by a finite étale cover of some affine open neighborhood of % U s to reduce further
to when there is no finite field obstruction to embedding % U s into A}%. We then shrink C' around
Z U s to ensure that there is no finite field obstruction to embedding % U s into A}, either.

Lemmas 2.6 and 2.7 now ensure that at the cost of replacing C' by an affine open containing the
closed R-fibers of % U s (so also containing 2 U s), there are an affine open W < AL and an étale
R-morphism f: C' — W that embeds % U s excisively into W, so that we have a Cartesian square

W C

I

Y—— W
in which the horizontal maps are closed immersions. We wish to replace C' by W, and for this
we will now use excision (see [Ces22b, Proposition 4.2.1]) to descend & to PII/V\EZ" First of all, by
Proposition 3.1 (a) (by the full faithfulness conclusion applied to the automorphisms of the trivial
G-torsor), we have G(C\%) — G (Plc\@), so the set of trivializations of & ’]P’é .o aps bijectively
onto its counterpart for (& l¢t=c0})lcna- Thus, & |Plc » has a trivialization o whose restriction to the

infinity section extends to a trivialization of & |l{t=c0) Over all of C\Z". We use this a to descend

& |Pé » to a trivial G-torsor over IP"I,V\?]. By excision, the latter then extends uniquely to a G-torsor
&' over IP’Il/V\ 4 descending &. By excision and the choice of a, our trivialization of &’ ‘P‘l/v - restricts

to a trivialization of (g,’{t:oo})‘w\gy that extends to a trivialization of c§’~’|{t:m} over all of W\ 2.

At this point we have constructed a G-torsor & := & |(t=0) over W\ 2" whose base change to C\Z’
is g”|{t20} ~ £’|C\g. However, our étale map f: C' — W is excisive with respect to % as well, so, by
excision again, &’ extends to a G-torsor over all of W that descends &. We may therefore replace C
by W and & (resp., coz) by this extension (resp., by é"N’) to reduce to C being an affine open of AL.

Once C is an open of A}, however, the existence of an R-point s of C forces P}%\C to be R-finite.
The avoidance lemma [GLL15, Theorem 5.1] (recalled in [Ces22a, Lemma 3.1]) then supplies an
R-finite hypersurface H = C < P} containing 2. The complement C'\H is affine, so the triviality of

éa~|{t=w} and Theorem 4.2 ensure that éo~|A1C\H and thus also &|c\ g are trivial. In particular, since H
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is closed in ]P’}z, by patching, & extends to a G-torsor over IP’}% that is trivial at infinity. Theorem 3.5
then ensures that the pullback under s, that is, F, is trivial as well, as desired. ]

Remark 4.4. The proof of Theorem 4.3 uses the G-torsor E over IP%QZ as a “witness” of E being
simpler over X\Z. At the cost of first passing to simply connected groups via Proposition 5.1, one
can also carry out the proof with a “unipotent chain of torsors” as a witness. Namely, at the cost of
shrinking X around Spec R, one may fix sufficiently general opposite proper parabolic subgroups
Pt P~ < G and use the Borel-Tits theorem [Gil09, fait 4.3, lemme 4.5] (which needs both the total
isotropicity and the simply connectedness assumptions) to build a principal Cartier divisor Y < X, a
closed Z c Y of codimension > 2 in X, and a sequence Fy, ..., F, of G-torsors over X\Z such that

e ecach Ej; is trivialized over X\Y, the (X\Z)-group Autg(FE;) has opposite parabolic subgroups
P that under the trivialization over X\Y correspond to P | x\v, and the Autg(E;)-torsor
Isomg (E;, Eit1) for i < n reduces either to a %, (P;")-torsor or to a %, (P;”)-torsor over X\Z;

e Fjy is trivial and F, is the restriction of our generically trivial G-torsor E over X to X\Z.

Since torsors under unipotent radicals of parabolic subgroups trivialize over affine schemes (see
[SGA 3111 new, exposé XXVI, corollaire 2.5]), the existence of the “unipotent chain” FEy,...,E,
implies that F trivializes over every affine (X\Z)-scheme, and it is possible to carry out the proof of
Theorem 4.3 by dragging the chain Ej, ..., E, along in place of E in the intermediate steps.

For a systematic development of the notion of a unipotent chain of torsors, see [Fed23].

5. REDUCING TO SEMISIMPLE, SIMPLY CONNECTED GROUPS

We combine the work of §§2-3 with purity theorems for H<? with multiplicative group coefficients
(essentially, purity for the Brauer group [éesli)]) to reduce the unramified case of the Grothendieck—
Serre conjecture to simply connected G. The method is new even in equal characteristic, although
the corresponding reduction in equal characteristic was the main goal of the article [Pan20b].

Proposition 5.1. Let G be a reductive group over a Noetherian semilocal ring R that is flat and
geometrically reqular over some Dedekind ring. Every generically trivial G-torsor over R lifts to a
generically trivial (GT)*-torsor over R (with notation as in §1.3), so, setting K := Frac(R), we have

Ker(HY(R, (G¥)*°) — HY(K, (G¥)*)) = {+} — Ker(H'(R,G)— H(K,G)) = {x}.

Proof. For a generically trivial G-torsor E over R to be lifted to a generically trivial (G9")%-torsor,
Proposition 2.8 gives us an open V < P}, containing {¢t = 0} and {t = o0} with complement PL\V of
codimension > 3 in P} and a G-torsor & over V such that Elii=0y ~ E and &|y_qy is trivial. Tt
suffices to lift some twist of & by an R-sectionwise trivial Rad(G)-torsor over V to a (G9°7)*°-torsor
& over V with & l{t=c0} trivial: then & l¢t=0y Will lift £/ and be generically trivial by Theorem 3.5
applied with A = K.

Set Z := Ker((G9")** — @). By the codimension condition and purity [6824, Theorem 7.2.9],
H'(PL, Corad(G)) — H(V,Corad(G)) and H?*(Pk,Z) > H*(V,Z). (5.1.1)

In particular, the Corad(G)-torsor induced by & extends to a Corad(G)-torsor over Pk that is trivial

at infinity and hence, by Lemma 3.2, comes from &'(1) via a cocharacter G, g — Corad(G). Thus,

since Rad(G) — Corad(G) is an isogeny, as in the proof of Theorem 3.5, by pulling back along the

base change to V' of the map ¢g: P}% - IP’}% for some d > 0 such that 4 sends the homogeneous

coordinates of Pk to their d-th powers, we reduce to the case when the Corad(G)-torsor induced
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by & lifts to an R-sectionwise trivial Rad(G)-torsor. By twisting & by such a lift, we may assume
that & induces a trivial Corad(G)-torsor, so lifts to G4 -torsor over V. By [Gir71, chapitre III,
proposition 3.3.3 (iv)], the group Corad(G)(V') acts transitively on the set of isomorphism classes of
such lifts over V| and likewise after restricting to the infinity section. Thus, since this restriction
induces a surjection Corad(G)(V) —» Corad(G)(R), we may lift & to a G4*-torsor whose restriction
to infinity is trivial. In effect, we may replace G by G4 to reduce to the case when G is semisimple.

Once G is semisimple, the obstruction to lifting & to a G-torsor lies in H%(V, Z) =~ H*(PL, Z).

By replacing V' by its pullback by ¢, for some d > 0 and applying [Gil02, théoréme 3.8| as in the

proof of Theorem 3.5, we may arrange that the restriction &|p1 to the geometric generic fiber lifts
K

to a G*°-torsor over IP’%, in other words, that the obstruction in question vanishes after pullback to
]P’IF. By the triviality at infinity and Lemma 3.3, however, it then vanishes already over V, to the

effect that & lifts to a G*-torsor over V. By |[Gir71, chapitre III, proposition 3.4.5 (iv)|, the group
H'(V, Z) acts transitively on the set of isomorphism classes of such lifts. Thus, since restriction to

infinity induces a surjection H(V, Z) - H'(R, Z), a desired lift & indeed exists. O
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