Vector bundles and p-adic Galois representations

Laurent Fargues and Jean-Marc Fontaine

Abstract. Let F be a perfect field of characteristic $p>0$ complete with respect to a non trivial absolute value. Let E be a non archimedean locally compact field whose residue field is contained in F. To these data, we associate a "complete regular curve" $X=X_{F, E}$ defined over E. If \bar{F} is an algebraic closure of F and $H=\operatorname{Gal}(\bar{F} / F)$, there is an equivalence of categories between continuous finite dimensional E-linear representations of H and semistable vector bundles over X of slope 0 . To construct X we first construct the ring B of "rigid analytic functions of the variable π on the punctured unit disk $\{z \in F|0<|z|<1\} "$.

Let C be the p-adic completion of an algebraic closure \bar{K} of a p-adic field K. A classical construction from p-adic Hodge theory associates to C a field $F=F(C)$ as above and the group G_{K} acts on the curve $X=X_{F(C), \mathbb{Q}_{p}}$. We study G_{K}-equivariant vector bundles over X and classify those which are "de Rham". The two main theorems about p-adic de Rham representations are recovered by considering the special case of semistable vector bundles of slope 0 . This paper is a survey. Details and proofs will appear elsewhere.

1. Curves and vector bundles

1.1. General conventions and notations. If R is a commutative ring and M_{1}, M_{2} are R-modules, we denote by $\mathcal{L}_{R}\left(M_{1}, M_{2}\right)$ the R-module of R-linear maps $f: M_{1} \rightarrow M_{2}$.

If L is a field equipped with a non archimedean absolute value \| (or a valuation v), we denote $\mathcal{O}_{L}=\{x \in L| ||x| \leq 1\}$ (or $\left.v(x) \geq 0\right\}$) the corresponding valuation ring, \mathfrak{m}_{L} the maximal ideal of \mathcal{O}_{L} and $k_{L}=\mathcal{O}_{L} / \mathfrak{m}_{L}$ the residue field.

As usual, if X is a noetherian scheme, we view a vector bundle over X as a locally free coherent \mathcal{O}_{X}-module.

If a group G acts on the left on a noetherian scheme X, an \mathcal{O}_{X}-representation of G (resp. a G-equivariant vector bundle over X) is a coherent \mathcal{O}_{X}-module (resp. a vector bundle) \mathcal{F} equipped with a semi-linear action of G in the following sense:

- for all $g \in G$, if $g: X \xrightarrow{\sim} X$ is the action of g on X, one is given an isomorphism

$$
c_{g}: g^{*} \mathcal{F} \xrightarrow{\sim} \mathcal{F},
$$

- the following cocyle condition is satisfied

$$
c_{g_{2}} \circ g_{2}^{*} c_{g_{1}}=c_{g_{1} g_{2}}, \quad g_{1}, g_{2} \in G
$$

via the identification $g_{2}^{*}\left(g_{1}^{*} \mathcal{F}\right)=\left(g_{1} g_{2}\right)^{*} \mathcal{F}$.
If $X=\operatorname{Spec}(B)$ is affine, an \mathcal{O}_{X}-representation of G is nothing else than a finite type B-module equipped with a semi-linear left action of G.

In this paper, we use freely the formalism of tensor categories (for which we refer to [DM82]). For instance, if G is a group acting on a noetherian scheme X, equipped with the tensor product of the underlying \mathcal{O}_{X}-modules, the category $\operatorname{Rep}_{\mathcal{O}_{X}}(G)$ of \mathcal{O}_{X}-representations of G is an abelian tensor category, though the full sub-category $\operatorname{Bund}_{X}(G)$ of G-equivariant vector bundles is a rigid additive tensor category. If X is a smooth geometrically connected projective curve over a perfect field E, the full subcategory $\operatorname{Bund}_{X}^{0}(G)$ of G-equivariant vector bundles which are semistable of slope 0 is a tannakian E-linear category.
1.2. Complete regular curves. A regular curve X is a separated integral noetherian regular scheme of dimension 1. In other words, X is a separated connected scheme obtained by gluing a finite number of spectra of Dedekind rings.

Let X be a regular curve, $\mathcal{K}=\mathcal{O}_{X, \eta}$ its function field (i.e. the local ring at the generic point $\eta),|X|$ the set of closed point of X. For any $x \in|X|$, let v_{x} be the unique discrete valuation of \mathcal{K} such that

$$
v_{x}\left(\mathcal{K}^{*}\right)=\mathbb{Z} \text { and } \mathcal{O}_{X, x}=\left\{f \in \mathcal{K} \mid v_{x}(f) \geq 0\right\}
$$

The field \mathcal{K}, the set of closed points $|X|$ and the collection of valuations $\left(v_{x}\right)_{x \in|X|}$ on \mathcal{K} determine completely the curve X :
i) As a set, the underlying topological space is the disjoint union of $|X|$ and of a set consisting of a single element η.
ii) The non empty open subsets are the complements of the finite subsets of $|X|$. If U is one of them,

$$
\Gamma\left(U, \mathcal{O}_{X}\right)=\left\{f \in \mathcal{K} \mid v_{x}(f) \geq 0 \text { for all } x \in U \cap|X|\right\}
$$

If X is a regular curve, the group $\operatorname{Div}(X)$ of Weil divisors of X is the free abelian group generated by the $[x]$'s with $x \in|X|$. If $f \in \mathcal{K}^{*}$, the divisor of f is

$$
\operatorname{div}(f)=\sum_{x \in|X|} v_{x}(f)[x]
$$

If X is a regular curve, a coherent \mathcal{O}_{X}-module is a vector bundle if and only if it is torsion free.

A complete regular curve is a pair (X, deg) consisting of a regular curve X and a degree map

$$
\operatorname{deg}:|X| \rightarrow \mathbb{N}_{>0}
$$

such that, for any $f \in \mathcal{K}^{*}$,

$$
\begin{equation*}
\operatorname{deg}(\operatorname{div}(f))=\sum_{x \in|X|} v_{x}(f) \operatorname{deg}(x)=0 . \tag{1}
\end{equation*}
$$

If X is a complete regular curve, then $H^{0}\left(X, \mathcal{O}_{X}\right)$ is a field. We call it the field of definition of X.

Remark. Equipped with the usual definition of the degree, a smooth projective curve over a field is a complete regular curve. Its function field is finitely generated over its field of definition. It won't be the case for the curves we are going to construct.

Let X be a complete regular curve. Let \mathcal{F} be a coherent \mathcal{O}_{X}-module. The rank of \mathcal{F} is the dimension of its generic fiber \mathcal{F}_{η} over the function field. If r is the rank of \mathcal{F}, choose a vector bundle \mathcal{E} isomorphic to \mathcal{O}_{X}^{r} whose generic fiber \mathcal{E}_{η} is equal to \mathcal{F}_{η}. For each closed point $x \in|X|$, let \mathcal{F}_{x}^{\prime} (resp. $\mathcal{F}_{x}^{\prime \prime}$) the kernel (resp. the image) of the natural map $\mathcal{F}_{x} \rightarrow \mathcal{F}_{\eta}$. We set

$$
\lg _{x}(\mathcal{F} / \mathcal{E})=\lg _{x}\left(\mathcal{F}_{x}^{\prime}\right)+\lg _{x}\left(\mathcal{F}_{x}^{\prime \prime} / \mathcal{E}_{x}\right)
$$

where, if M is any $\mathcal{O}_{X, x}$-module of finite length, $\lg _{x}(M)$ is its length and

$$
\lg _{x}\left(\mathcal{F}_{x}^{\prime \prime} / \mathcal{E}_{x}\right)=\lg _{x}\left(\left(\mathcal{E}_{x}+\mathcal{F}_{x}^{\prime \prime}\right) / \mathcal{E}_{x}\right)-\lg _{x}\left(\left(\mathcal{E}_{x}+\mathcal{F}_{x}^{\prime \prime}\right) / \mathcal{F}_{x}^{\prime \prime}\right) .
$$

We have $\lg _{x}(\mathcal{F} / \mathcal{E})=0$ for almost all x. We define the degree of \mathcal{F}

$$
\operatorname{deg}(\mathcal{F})=\sum_{x \in|X|} \lg _{x}(\mathcal{F} / \mathcal{E}) \cdot \operatorname{deg}(x)
$$

Granting to (1), it is independent of the choice of \mathcal{E}. The degree may also be defined by:

$$
\operatorname{deg}(\mathcal{F})=\operatorname{deg}\left(\mathcal{F}_{\text {tor }}\right)+\operatorname{deg}\left(\operatorname{det}\left(\mathcal{F} / \mathcal{F}_{\text {tor }}\right)\right)
$$

where

- $\mathcal{F}_{\text {tor }}$ is the torsion part of \mathcal{F}, a finite direct sum of skyscrapers sheaves of finite length $\mathcal{O}_{X, x}$-modules, $x \in|X|$,
- $\operatorname{deg}\left(\mathcal{F}_{\text {tor }}\right)=\sum_{x \in|X|} \lg _{x}\left(\mathcal{F}_{x}\right) \cdot \operatorname{deg}(x)$,
- if \mathcal{L} is a line bundle $\operatorname{set} \operatorname{deg}(\mathcal{L})=\operatorname{deg}(\operatorname{div}(s))$ where s is any non-zero meromorphic section of $\mathcal{L}, \operatorname{div}(s)$ being the Weil divisor associated to s,
- $\operatorname{det}\left(\mathcal{F} / \mathcal{F}_{\text {tor }}\right)$ is the line bundle $\bigwedge^{\operatorname{rank}(\mathcal{F})}\left(\mathcal{F} / \mathcal{F}_{\text {tor }}\right)$.

The point is that, since X is complete, the degree function on line bundles

$$
\operatorname{deg}: \operatorname{Div}(X) \longrightarrow \mathbb{Z}
$$

factorizes through the group of principal divisors to give a degree function

$$
\operatorname{deg}: \operatorname{Div}(X) / \sim=\operatorname{Pic}(X) \longrightarrow \mathbb{Z}
$$

If \mathcal{F} is a non-zero coherent \mathcal{O}_{X}-module we define the slope of \mathcal{F} as

$$
\mu(\mathcal{F})=\operatorname{deg}(\mathcal{F}) / \operatorname{rank}(\mathcal{F}) \in \mathbb{Q} \cup\{+\infty\}
$$

(we have $\mu(F)=+\infty$ if and only if \mathcal{F} is torsion).
An \mathcal{O}_{X}-module \mathcal{F} is semistable (resp. stable) if $\mu\left(\mathcal{F}^{\prime}\right) \leq \mu(\mathcal{F})$ (resp. if \mathcal{F} is non-zero and if $\mu\left(\mathcal{F}^{\prime}\right)<\mu(\mathcal{F})$) for any proper $\mathcal{O}_{X^{-}}$-submodule \mathcal{F}^{\prime}. A non-zero $\mathcal{O}_{X^{-}}$ module is semistable of slope $+\infty$ if and only if it is a torsion module.

The Harder-Narasimhan theorem holds:
Theorem 1.1. Let \mathcal{F} be a non-zero coherent \mathcal{O}_{X}-module. There is a unique filtration

$$
0=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots \subset \mathcal{F}_{i-1} \subset \mathcal{F}_{i} \subset \ldots \subset \mathcal{F}_{m-1} \subset \mathcal{F}_{m}=\mathcal{F}
$$

by \mathcal{O}_{X}-submodules with $\mathcal{F}_{i} / \mathcal{F}_{i-1} \neq 0$, semistable, and

$$
\mu\left(\mathcal{F}_{1} / \mathcal{F}_{0}\right)>\mu\left(\mathcal{F}_{2} / \mathcal{F}_{1}\right)>\ldots>\mu\left(\mathcal{F}_{m} / \mathcal{F}_{m-1}\right)
$$

Moreover, for each $\lambda \in \mathbb{Q} \cup\{+\infty\}$, the full sub-category Bund ${ }_{X}^{\lambda}$ of the category of coherent \mathcal{O}_{X}-modules whose objects are those which are semistable of slope λ is an abelian E-linear category.

We see that, \mathcal{F} is a vector bundle if and only if $\mu\left(\mathcal{F}_{1} / \mathcal{F}_{0}\right) \neq+\infty$. In this case, the \mathcal{F}_{i} 's are strict vector subbundles, i.e. the quotients $\mathcal{F} / \mathcal{F}_{i}$'s are torsion free, hence also vector bundles. If, instead, the torsion sub-module $\mathcal{F}_{\text {tor }}$ is not 0 , then $\mathcal{F}_{\text {tor }}=\mathcal{F}_{1}$.

2. Bounded analytic functions

2.1. The field $\mathcal{E}_{F, E}$. We fix a non archimedean locally compact field E. We denote by p the characteristic of k_{E} and q the number of elements of k_{E}. We denote by v_{E} the valuation of E normalized by $v_{E}\left(E^{*}\right)=\mathbb{Z}$.

Let F be any perfect field containing k_{E}. We denote by $\mathcal{E}_{F, E}$ the unique (up to a unique isomorphism) field extension of E, complete with respect to a discrete valuation v extending v_{E} such that
i) $v\left(\mathcal{E}_{F, E}^{*}\right)=v_{E}\left(E^{*}\right)=\mathbb{Z}$,
ii) F is the residue field of $\mathcal{E}_{F, E}$.

There is a unique section of the projection $\mathcal{O}_{\mathcal{E}_{F, E}} \rightarrow F$ which is multiplicative. We denote it

$$
a \mapsto[a] .
$$

If we choose a uniformizing parameter π of E, any element $f \in \mathcal{E}_{F, E}$ may be written uniquely

$$
f=\sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n} \text { with the } a_{n} \in F,
$$

and $f \in E$ if and only if all the a_{n} 's are in k_{E}.
We see that, if E is of characteristic p, the map $a \mapsto[a]$ is an homomorphism of rings. If we use it to identify F with a subfield of \mathcal{E}, i.e. if we set $[a]=a$ for all $a \in F$, we get

$$
E=k_{E}((\pi)) \text { and } \mathcal{E}_{F, E}=F((\pi)) .
$$

Otherwise, E is a finite extension of \mathbb{Q}_{p}. If $W(F)$ (resp. $\left.W\left(k_{E}\right)\right)$ is the ring of Witt vectors with coefficients in F (resp. k_{E}), we see that $\mathcal{E}_{F, E}$ can be identified with $E \otimes_{W\left(k_{E}\right)} W(F)$ and that, for all $a \in F$,

$$
[a]=1 \otimes(a, 0,0, \ldots, 0, \ldots)
$$

2.2. Three sub-rings of $\mathcal{E}_{F, E}$. We now fix the perfect field F containing k_{E} and we assume F to be complete for a given non trivial absolute value ||. Observe that, as F is perfect, the valuation group is p-divisible, hence the valuation is not discrete.

If there is no risk of confusion, we set $\mathcal{E}=\mathcal{E}_{F, E}$. We still choose a uniformizing parameter π of E. The following subsets of \mathcal{E}

$$
B^{b}=B_{F, E}^{b}=\left\{\sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n} \mid \text { there exists } C \text { such that }\left|a_{n}\right| \leq C, \forall n\right\},
$$

$$
\begin{aligned}
& B^{b,+}=B_{F, E}^{b,+}=\left\{\sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n} \mid a_{n} \in \mathcal{O}_{F}, \forall n\right\} \\
& \text { and } A=A_{F, E}=\left\{\sum_{n=0}^{+\infty}\left[a_{n}\right] \pi^{n} \mid a_{n} \in \mathcal{O}_{F}, \forall n\right\}
\end{aligned}
$$

are \mathcal{O}_{E}-subalgebras of \mathcal{E} and are independent of π. If a is any non-zero element of the maximal ideal \mathfrak{m}_{F} of \mathcal{O}_{F}, we have

$$
B^{b,+}=A\left[\frac{1}{\pi}\right] \text { and } B^{b}=B^{b,+}\left[\frac{1}{[a]}\right]
$$

When $\operatorname{char}(E)=p$, the ring B^{b} may be viewed as the ring of rigid analytic functions

$$
f: \Delta=\{z \in F|0<|z|<1\} \rightarrow F
$$

which are such that $\pi^{n} f$ is analytic and bounded on $\{z \in F|0 \leq|z|<1\}$, for $n \gg 0$.
2.3. Prime ideals of finite degree. We set $\mathcal{E}_{0}=\mathcal{E}_{k_{F}, E}$.

The projection $\mathcal{O}_{F} \rightarrow k_{F}$, which we denote as $a \mapsto \tilde{a}$, induces an augmentation map

$$
\varepsilon: B^{b,+} \rightarrow \mathcal{E}_{0} \text { sending } \sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n} \text { to } \sum_{n \gg-\infty}\left[\tilde{a}_{n}\right] \pi^{n} .
$$

We have $\varepsilon(A)=\mathcal{O}_{\mathcal{E}_{0}}$. We say that $\xi \in A$ is primitive if $\xi \notin \pi A$ and $\varepsilon(\xi) \neq 0$. The degree of a primitive element ξ is

$$
\operatorname{deg}(\xi)=v_{\pi}(\varepsilon(\xi)) \in \mathbb{N}
$$

We see that A is a local ring whose invertible elements are exactly the primitive elements of degree 0 . A primitive element $\xi \in A$ is irreducible if $\operatorname{deg}(\xi)>0$ and ξ can't be written as the product of two primitive elements of degree >0. In particular, any primitive element of degree 1 is irreducible.

We say that two primitive irreducible elements ξ and ξ^{\prime} are associated (we write $\xi \sim \xi^{\prime}$) if there exists η primitive of degree 0 such that $\xi^{\prime}=\xi \eta$. This is an equivalence relation and we set

$$
\left|Y_{F, E}\right|=|Y|=\{\text { primitive irreducible elements }\} / \sim .
$$

If $y \in|Y|$ is the class of ξ, we set $\operatorname{deg}(y)=\operatorname{deg}(\xi)$.
We say that an ideal \mathfrak{a} of $A, B^{b,+}$ or B^{b} is of finite degree if it is a principal ideal which is generated by a primitive element ξ of A. The degree of such an \mathfrak{a} is the degree of ξ.

Proposition 2.3.1. Let $y \in|Y|$ be the class of a primitive irreducible element ξ. The ideal $\mathfrak{p}_{y}\left(\right.$ resp. $\mathfrak{p}_{y}^{b,+}$, resp. $\left.\mathfrak{p}_{y}^{b}\right)$ of $A\left(\right.$ resp. $B^{b,+}$, resp. $\left.B^{b}\right)$ generated by ξ is prime and depends only on y. The map

$$
y \mapsto \mathfrak{p}_{y}\left(\text { resp. } y \mapsto \mathfrak{p}_{y}^{b,+}, \text { resp. } y \mapsto \mathfrak{p}_{y}^{b}\right)
$$

induces a bijection between $|Y|$ and the set of prime ideals of finite degree of A (resp. $B^{b,+}$, resp. B^{b}).

To describe what are the quotients of these rings by a prime ideal of finite degree, it is convenient to introduce the notion of p-perfect field.
2.4. p-perfect fields. A p-perfect field is a field L complete with respect to a non trivial non archimedean absolute value $\|$ whose residue field k_{L} is of characteristic p and which is such that the endomorphism $x \mapsto x^{p}$ of $\mathcal{O}_{L} / p \mathcal{O}_{L}$ is surjective.

If L is the fraction field of a complete discrete valuation ring, we see that L is a p-perfect field if and only if k_{L} is perfect of characteristic p and \mathfrak{m}_{L} is generated by p.

A strictly p-perfect field is a p-perfect field L such that \mathcal{O}_{L} is not a discrete valuation ring.

Let L be a field complete with respect to a non trivial non archimedean absolute value, with $\operatorname{char}\left(k_{L}\right)=p$ and \mathcal{O}_{L} not a discrete valuation ring. It is easy to see that

- if a is any element of the maximal ideal \mathfrak{m}_{L} of \mathcal{O}_{L} such that $p \in(a)$, then L is strictly p-perfect if and only if the map

$$
\mathcal{O}_{L} /(a) \mapsto \mathcal{O}_{L} /(a) \text { sending } x \text { to } x^{p}
$$

is onto,

- if L is of characteristic p, L is strictly p-perfect if and only L is perfect.

Let L be a p-perfect field. We consider the set

$$
F(L)=\left\{x=\left(x^{(n)}\right)_{n \in \mathbb{N}} \mid x^{(n)} \in L \text { and }\left(x^{(n+1)}\right)^{p}=x^{(n)}\right\} .
$$

If $x, y \in F(L)$, we set

$$
(x+y)^{(n)}=\lim _{m \mapsto+\infty}\left(x^{(n+m)}+y^{(n+m)}\right)^{p^{m}},(x y)^{(n)}=x^{(n)} y^{(n)}
$$

(it is easy to see that the limit above exists).
Proposition 2.4.1. Let L be a p-perfect field. Then $F(L)$ is a perfect field of characteristic p, complete with respect to the absolute value $\|$ defined by $|x|=\left|x^{(0)}\right|$. Moreover
i) If $\mathfrak{a} \subset \mathfrak{m}_{L}$ is a finite type (i.e. principal) ideal of \mathcal{O}_{L} containing p and if $u \mapsto \tilde{u}$ denote the projection $\mathcal{O}_{L} \rightarrow \mathcal{O}_{L} / \mathfrak{a}$, the map

$$
\mathcal{O}_{F(L)} \rightarrow \underset{n \in \mathbb{N}}{\lim } \mathcal{O}_{L} / \mathfrak{a}
$$

(with transition maps $\left.v \mapsto v^{p}\right)$ sending $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ to $\left(\widetilde{x^{(n)}}\right)_{n \in \mathbb{N}}$ is an isomorphism of topological rings.
ii) If L contains E as a closed subfield, the map

$$
\theta_{L, E}: B_{F(L), E}^{b} \rightarrow L
$$

sending $\sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n}$ to $\sum_{n \gg-\infty} a_{n}^{(0)} \pi^{n}$ is a surjective homomorphism of E algebras (independent of the choice of π). Moreover,
(1) If \mathcal{O}_{L} is a discrete valuation ring, $F(L)$ is the residue field of L equipped with the trivial valuation and $\theta_{L, E}$ is an isomorphism.
(2) If L is strictly p-perfect, we have $|F(L)|=|L|$ and the kernel of $\theta_{L, E}$ is a prime ideal of $B_{F(L), E}^{b}$ of degree 1 . We have

$$
\theta_{L, E}\left(B_{F(L), E}^{b,+}\right)=L \quad \text { and } \quad \theta_{L, E}\left(A_{F(L), E}\right)=\mathcal{O}_{L}
$$

Remarks. (1) If L is of characteristic p, the map $x \mapsto x^{(0)}$ is a canonical isomorphism of the field $F(L)$ onto the residue field of L if L is not strictly p-perfect and onto L otherwise. Then, all the results are obvious. If L is strictly p-perfect and if λ is the unique element of $F(L)$ such that $\lambda^{(0)}=\pi$, then $\pi-[\lambda]$ is a generator of $\operatorname{ker} \theta_{L, E}$.
(2) If L is strictly perfect of characteristic 0 , it's not always true that there exists $\lambda \in F(L)$ such that $\pi-[\lambda]$ is a generator of $\operatorname{ker} \theta_{L, E}$ (which is equivalent to saying that $\lambda^{(0)}=\pi$). This is true if F is algebraically closed, but such a λ is not unique !
All the ideals of degree 1 are obtained by this construction: Let \mathcal{L} be the set of isomorphism classes of pairs (L, ι) where L is a p-perfect field containing E as a closed subfield and $\iota: F(L) \rightarrow F$ is an isomorphism of topological fields. If (L, ι) is such a pair, let $\theta_{L}: B^{b} \rightarrow L$ be the homomorphism deduced from $\theta_{L, E}: B_{F(L), E}^{b} \rightarrow L$ by transport de structure.

Proposition 2.4.2. The map $\mathcal{L} \rightarrow\{$ ideals of degree 1$\}$ sending the class of (L, ι) to the kernel of θ_{L} is bijective.

2.5. Algebraic extensions of strictly p-perfect fields.

Proposition 2.5.1. Let L_{0} be a strictly p-perfect field containing E as a closed subfield, $F_{0}=F\left(L_{0}\right)$ and \mathfrak{m} the kernel of the map $\theta_{L_{0}, E}: B_{F_{0}, E}^{b} \rightarrow L_{0}$.
i) If L is a finite extension of L_{0}, then L is strictly p-perfect and $F(L)$ is a finite extension of $F\left(L_{0}\right)$ of the same degree.
ii) If F is a finite extension of F_{0}, the ideal $B_{F, E}^{b} \mathfrak{m}$ of $B_{F, E}^{b}$ is maximal and the quotient of $B_{F, E}^{b}$ by this ideal is a finite extension of L_{0} of the same degree.

The functor $L \rightarrow F(L)$ is an equivalence of categories between finite extensions of L_{0} and finite extensions of F_{0}. The functor $F \mapsto B_{F, E}^{b} / B_{F, E}^{b} \mathfrak{m}$ is a quasi-inverse.

Remark. This equivalence extends in an obvious way to étale algebras. Hence, we see that the small étale site of L_{0} can be identified with the small étale site of F_{0}.
2.6. Finite divisors. We can now give a complete description of the prime ideals of finite degree.

Proposition 2.6.1. If F is algebraically closed, a primitive element is irreducible if and only if it is of degree 1.

Proposition 2.6.2. Let $y \in|Y|, d=\operatorname{deg}(y), \xi=\sum_{n=0}^{+\infty}\left[c_{n}\right] \pi^{n}$ a primitive element lifting $y, L_{y}=B^{b} / \mathfrak{p}_{y}^{b}$ and $\theta_{y}: B^{b} \rightarrow L_{y}$ the projection. We set $\|y\|=$ $\left|c_{0}\right|^{1 / d}$. Then:
i) The ideals \mathfrak{p}_{y}^{b} and $\mathfrak{p}_{y}^{b,+}$ are maximal and

$$
B^{b,+} / \mathfrak{p}_{y}^{b,+}=L_{y}
$$

ii) There is a unique absolute value $\left|\left.\right|_{y}\right.$ on the field L_{y} such that $| \theta_{y}([a])|y=|a|$ for all $a \in F$. Equipped with this absolute value, L_{y} is a p-perfect field containing E as a closed subfield. Moreover $|\pi|_{y}=\|y\|$.
iii) The map $F \rightarrow F\left(L_{y}\right)$ sending a to $\left(\theta_{y}\left(\left[a^{p^{-n}}\right]\right)_{n \in \mathbb{N}}\right.$ is a continuous homomorphism of topological fields identifying $F\left(L_{y}\right)$ with a finite extension of F of degree d.
v) The ring A / \mathfrak{p}_{y} is a \mathcal{O}_{E}-subalgebra of $\mathcal{O}_{L_{y}}$ whose fraction field is L_{y}.

We define the group $\operatorname{Div}_{f}(Y)$ of finite divisors of Y as the free abelian group with basis the $[y]$'s for $y \in|Y|$. Hence any finite divisor may be written uniquely

$$
D=\sum_{y \in|Y|} n_{y}[y] \text { with the } n_{y} \in \mathbb{Z} \text {, almost all } 0 .
$$

The degree of such a D is $\sum_{y \in|Y|} n_{y} \operatorname{deg}(y)$.
We denote $\operatorname{Div}_{f}^{+}(Y)$ the monoïd of finite effective divisors, i.e. of divisors $D=\sum n_{y}[y]$ with $n_{y} \geq 0$ for all y. From the previous proposition, one deduces:

Corollary 2.6.1. The map from $\operatorname{Div}_{f}^{+}(Y)$ to the multiplicative monoïd of ideals of finite degree of A (resp. $B^{b,+}$, resp. B^{b}) sending $\sum_{y \in|Y|} n_{y}[y]$ onto $\prod_{y \in|Y| \mid}\left(\mathfrak{p}_{y}\right)^{n_{y}}\left(\right.$ resp. $\prod_{y \in|Y|}\left(\mathfrak{p}_{y}^{b,+}\right)^{n_{y}}$, resp. $\left.\prod_{y \in|Y|}\left(\mathfrak{p}_{y}^{b}\right)^{n_{y}}\right)$ is an isomorphism of monoïds.

3. The rings of rigid analytic functions

3.1. Norms and completions. For $f=\sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n} \in B^{b}$, and $0<\rho<$ 1, we define

$$
|f|_{\rho}=\max _{n \in \mathbb{Z}}\left|a_{n}\right| \rho^{n}
$$

We also set
$|f|_{0}=q^{-r}$ if r is the smallest integer such that $a_{r} \neq 0$, and $|f|_{1}=\sup _{n \in \mathbb{Z}}\left|a_{n}\right|$.
For any $\rho \in[0,1]$, the map $f \mapsto|f|_{\rho}$ is a multiplicative norm on B^{b}, i.e. we have

$$
|f+g|_{\rho} \leq \max \left\{|f|_{\rho},|g|_{\rho}\right\},|f g|_{\rho}=|f|_{\rho}|g|_{\rho} \text { and }|f|_{\rho}=0 \Longleftrightarrow f=0
$$

For any non empty interval $I \subset[0,1]$, we denote

$$
B_{I}=B_{F, E, I}
$$

the completion of B^{b} for the family of the $\left|\left.\right|_{\rho}\right.$'s for $\rho \in I^{1}$.
Proposition 3.1.1. Let $I \subset[0,1]$ be a non empty interval. For any $\rho \in I,| |_{\rho}$ is a norm on B_{I} (i.e., if $b \in B_{I}$ is $\neq 0$, then $|b|_{\rho} \neq 0$). Moreover:
i) If $J \subset I$ is an interval, the induced map

$$
B_{I} \rightarrow B_{J}
$$

is a continuous injective map.
ii) If $I=\left[\rho_{1}, \rho_{2}\right]$ is a non empty closed interval contained in $\left[0,1\left[\right.\right.$, then B_{I} is a Banach E-algebra: if we set

$$
A_{F, E, I}^{b}=A_{I}^{b}=\left\{\left.f \in B^{b,+}| | f\right|_{\rho_{1}} \leq 1 \text { and }|f|_{\rho_{2}} \leq 1\right\}
$$

then $B_{I}=A_{I}[1 / \pi]$ where $A_{I}=A_{F, E, I}$ is the π-adic completion of A_{I}^{b}.

[^0]iii) If $I \subset\left[0,1\left[\right.\right.$ is not restricted to $[0]=\{0\}$, then B_{I} is a Fréchet- E-algebra (inverse limit of Banach E-algebras): If \mathcal{I}_{I} is the set of closed intervals contained in I, the map
$$
B_{I} \rightarrow \underset{J \in \mathcal{I}_{I}}{\lim _{J}} B_{J}
$$
is a homeomorphism of topological rings.
iv) We have $B_{[0,1]}=B^{b}$ and $B_{[0]}=\mathcal{E}$.

In what follow, if $J \subset I$, we use the injective map $B_{I} \rightarrow B_{J}$ to identify B_{I} with a subring of B_{J}.

If $I \subset\left[0,1\left[\right.\right.$ contains 0 then B_{I} can be identified with a subring of \mathcal{E} :

$$
B_{I}=\left\{\sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n} \in \mathcal{E}\left|\forall \rho \in I,\left|a_{n}\right| \rho^{n} \rightarrow 0 \text { for } n \rightarrow+\infty\right\} .\right.
$$

If $I \subset[0,1[$ contains 0 , we set

$$
B_{F, E, I}^{+}=B_{I}^{+}=\left\{\left.b \in B_{I}| | b\right|_{0} \leq 1\right\}=B_{I} \cap \mathcal{O}_{\mathcal{E}}
$$

Similarly if $I \subset[0,1]$ contains 1 , we set

$$
B_{I}^{+}=\left\{\left.b \in B_{I}| | b\right|_{1} \leq 1\right\} .
$$

We have

$$
B_{[0,1]}^{+}=B^{b,+} \text { and } A=B^{b,+} \cap \mathcal{O}_{\mathcal{E}}=\left\{b \in B^{b}=\left.B_{[0,1]}| | b\right|_{0} \leq 1 \text { and }|b|_{1} \leq 1\right\}
$$

We also write

$$
B_{F, E}^{+}=B^{+}=B_{] 0,1]}^{+} \text {and } B_{F, E}=B=B_{] 0,1[} .
$$

If $\operatorname{char}(E)=p$ and if $I \subset] 0,1\left[\right.$ the ring B_{I} can be identified with the ring of rigid analytic functions

$$
f:\{z \in F \text { with }|z| \in I\} \rightarrow F
$$

In particular $B:=B_{] 0,1[}$ is the ring of rigid analytic functions on the punctured open unit disk.

Similarly, if $\operatorname{char}(E)=p$ and if $0 \in I \subset\left[0,1\left[\right.\right.$, then B_{I}^{+}may be identified with the ring of analytic functions

$$
f:\{z \in F \text { with }|z| \in I\} \rightarrow F
$$

though B_{I} is the ring of meromorphic rigid analytic functions in the same range, with no pole away from 0 .

Remark. Let $I \subset] 0,1\left[\right.$. Let $\left(a_{n}\right)_{n \in \mathbb{Z}}$ be elements in F such that, for all $\rho \in I$, we have $\left|a_{n}\right| \rho^{n} \rightarrow 0$ whenever $n \rightarrow+\infty$ and also when $n \rightarrow-\infty$. Then the series

$$
\sum_{n \in \mathbb{Z}}\left[a_{n}\right] \pi^{n}
$$

converges (in both directions) to an element of B_{I}. If $\operatorname{char}(E)=p$, any element of B_{I} may be written uniquely like that. If $\operatorname{char}(E)=0$, we don't know if it is always possible and, when it is possible, we don't know if this writing is unique (but it seems unlikely in general).
3.2. Newton polygons. Let v the valuation of F normalized by $|a|=q^{-v(a)}$ for all $a \in F$. Let $I \subset[0,1]$ be an interval containing 0 . The map

$$
\left(a_{n}\right)_{n \in \mathbb{Z}} \longmapsto \sum_{n \in \mathbb{Z}}\left[a_{n}\right] \pi^{n}
$$

is a bijection between the set of sequences $\left(a_{n}\right)_{n \in \mathbb{Z}}$ of elements of F such that
i) $a_{n}=0$ for $n \ll 0$,
ii) for all $\rho \in I, a_{n} \rho^{n} \rightarrow 0$ for $n \rightarrow+\infty$
and B_{I}. If $f=\sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n} \in B_{I}$ is non-zero, the Newton polygon of f is the convex hull $\operatorname{Newt}(f)$ of the points of the real plane of coordinates $\left(n, v\left(a_{n}\right)\right)$ for $n \in \mathbb{Z}$. If $J \subset I$ is an interval, $\operatorname{Newt}_{J}(f)$ is the sub-polygon of $\operatorname{Newt}(f)$ obtained by deleting all segments whose slopes s are such that $q^{s} \notin I$.

Proposition 3.2.1. Let $I \subset[0,1]$ be an interval and let \bar{I} be the smallest interval containing I and 0 . Then $B_{\bar{I}}$ is a dense subring of B_{I}. If $f \in B_{I}$ and if $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of elements of $B_{\bar{I}}$ converging to f, then the sequence $\left(\operatorname{Newt}_{I}\left(f_{n}\right)\right)_{n \in \mathbb{N}}$ has a limit, i.e., for any closed interval $J \subset I$, the sequence of the $\operatorname{Newt}_{J}\left(f_{n}\right)$ is stationary. This limit is independent of the choice of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$.

We call this limit $\operatorname{Newt}_{I}(f)$.
3.3. Divisors. For any interval $I \subset[0,1]$ different from $\emptyset,\{1\}$, we set

$$
\left|Y_{I}\right|=\{y \in|Y||\|y \mid\| \in I\}
$$

and we define the group $\operatorname{Div}\left(Y_{I}\right)$ of divisors of $Y_{I}{ }^{2}$:
i) If I is closed and $I \subset[0,1[$, we set

$$
\operatorname{Div}\left(Y_{I}\right)=\left\{\sum_{y \in\left|Y_{I}\right|} n_{y}[y] \mid n_{y}=0 \text { for almost all } y\right\}
$$

ii) If $I \subset\left[0,1\left[\right.\right.$ is not closed and if \mathcal{J}_{I} denote the set of closed ideals $J \subset I$, we set

$$
\operatorname{Div}\left(Y_{I}\right)=\left\{\sum_{y \in\left|Y_{I}\right|} n_{y}[y] \mid \forall J \in \mathcal{J}_{I}, n_{y}=0 \text { for almost all } y \text { with }\|y\| \in J\right\} .
$$

iii) If $1 \in I$, we define I^{\prime} as the complement of 1 in I, we choose $\rho_{0} \in I^{\prime}$ and we set

$$
\operatorname{Div}\left(Y_{I}\right)=\left\{\sum_{y \in\left|Y_{I}\right|} n_{y}[y] \in \operatorname{Div}\left(Y_{I^{\prime}}\right) \mid \sum_{\|y\| \geq \rho_{0}} n_{y} \log (\|y\|)>-\infty\right\}
$$

(independent of the choice of ρ_{0}).
For any I, we denote by $\operatorname{Div}^{+}\left(Y_{I}\right)$ the monoïd of effective divisors i.e. of divisors $D=\sum n_{y}[y] \in \operatorname{Div}\left(Y_{I}\right)$ such that $n_{y} \geq 0$ for all y.

[^1]3.4. Closed ideals. For any $y \in|Y|$, we choose a primitive element ξ_{y} representing y.

Proposition 3.4.1. Let $I \subset[0,1]$ be a non empty interval and $y \in|Y|$. If $\|y\| \notin I$, then ξ_{y} is invertible in B_{I}. If $\|y\| \in I$ and if $L_{y}=B^{b} /\left(\xi_{y}\right)$, the projection of B^{b} to L_{y} extends by continuity to a surjective homomorphism of E-algebras

$$
\theta_{y}: B_{I} \rightarrow L_{y}
$$

whose kernel is the maximal ideal generated by ξ_{y}.
The map

$$
y \mapsto \mathfrak{m}_{I, y}=\text { ideal of } B_{I} \text { generated by } \xi_{y}
$$

is an injective map from $\left|Y_{I}\right|$ to the set of maximal ideals of B_{I}.
Theorem 3.1. Let $I \subset[0,1]$ an interval different from $\emptyset,\{1\}$. For any $y \in\left|Y_{I}\right|$, we have $\cap_{n \in \mathbb{N}}\left(\mathfrak{m}_{I, y}\right)^{n}=0$. Let $f \in B_{I}$ a non-zero element. For any $y \in\left|Y_{I}\right|$, let $v_{y}(f)$ be the biggest integer n such that $f \in\left(\mathfrak{m}_{y}\right)^{n}$. Then

$$
\operatorname{div}(f)=\sum_{y \in\left|Y_{I}\right|} v_{y}(f)[y] \in \operatorname{Div}^{+}\left(Y_{I}\right)
$$

Moreover, for any $\rho=q^{-r} \in I$ with $r>0$, the length $\mu_{\rho}(f)$ of the projection on the horizontal axis of the segment of $\operatorname{Newt}_{I}(f)$ of slope $-r$ is finite and

$$
\sum_{\|y\|=\rho} v_{y}(f) \operatorname{deg}(y)=\mu_{\rho}(f)
$$

Corollary 3.4.1. Let $I \subset[0,1]$ an interval different from $\emptyset,\{1\}$. Then:
i) Any non-zero closed prime ideal of B_{I} is maximal and principal.
ii) The map $\left|Y_{I}\right| \rightarrow\left\{\right.$ closed maximal ideals of $\left.B_{I}\right\}$ sending y to $\mathfrak{m}_{I, y}$ is a bijection.
iii) If $I \subset\left[0,1\left[\right.\right.$ and is closed, any ideal of B_{I} is closed and B_{I} is a principal domain.

Proposition 3.4.2. Let $I \subset[0,1[$ a non empty interval. For any non-zero closed ideal \mathfrak{a} of B_{I} and any $y \in\left|Y_{I}\right|$, let $v_{y}(\mathfrak{a})$ the biggest integer $n \leq 0$ such that $\mathfrak{a} \subset\left(\mathfrak{m}_{I, y}\right)^{n}$. Then

$$
\operatorname{div}(\mathfrak{a})=\sum_{y \in\left|Y_{I}\right|} v_{y}(\mathfrak{a})[y] \in \operatorname{Div}^{+}\left(Y_{I}\right)
$$

The map

$$
\left\{\text { non-zero closed ideals of } B_{I}\right\} \rightarrow \operatorname{Div}^{+}\left(Y_{I}\right),
$$

so defined, is an isomorphism of monoïds.
Remark 3.4.1. Let $I \subset[0,1[$ an interval different from $\emptyset,\{1\}$.

- If I is closed, we see that $\operatorname{Div}\left(Y_{I}\right)$ is nothing but the group of divisors of the regular curve $Y_{I}=\operatorname{Spec}\left(B_{I}\right)$ and that $\left|Y_{I}\right|$ may be identified to the set of closed points of Y_{I}.
- Otherwise, we may consider the inductive system of regular curves

$$
Y_{I}=\left(Y_{J}=\operatorname{Spec} B_{J}\right)_{J \in \mathcal{I}_{I}}
$$

If $J_{1} \subset J_{2}$ belong to \mathcal{I}_{I}, we have morphisms of abelian groups

$$
\operatorname{Div}\left(Y_{J_{1}}\right) \rightarrow \operatorname{Div}\left(Y_{J_{2}}\right) \text { and } \operatorname{Div}\left(Y_{J_{2}}\right) \rightarrow \operatorname{Div}\left(Y_{J_{1}}\right)
$$

induced by the fact that, if \mathfrak{a} is a non-zero ideal of $B_{J_{1}}$ then $\mathfrak{a} \cap B_{J_{2}}$ is a non-zero ideal of $B_{J_{2}}$, though, if \mathfrak{b} is a non zero ideal of $B_{J_{2}}$, then $B_{J_{1}} \mathfrak{b}$ is a non zero ideal of $B_{J_{1}}$. We see that $\operatorname{Div}\left(Y_{I}\right)$ is the inverse limit of the $\operatorname{Div}\left(Y_{J}\right)$ for $J \in \mathcal{I}_{I}$. The direct limit of these groups consists of the subgroup

$$
\operatorname{Div}_{f}\left(Y_{I}\right)=\left\{\sum_{y \in\left|Y_{I}\right|} n_{y}[y] \in \operatorname{Div}\left(Y_{I}\right) \mid n_{y}=0 \text { for almost all } y \in\left|Y_{I}\right|\right\}
$$

3.5. Factorization. From the above proposition, we see that the analogue in this context of the classical question "does there exist an analytic function which has a given set of zeros with fixed multiplicities " becomes the question:
"Let $D \in \operatorname{Div}^{+}\left(Y_{I}\right)$. Does there exist $f \in B_{I}$ such that $\operatorname{div}(f)=D$?"
The answer to this question is "yes for any D " if and only if any closed ideal is principal.

The answer to this question is obviously "yes" if $I \subset[0,1[$ is closed. This is also "yes" if $I=] 0, \rho]$ for some $\rho \in] 0,1[$ (see cor. 3.5.1 below). But it is "no" in general.

Recall that one says that the field F is spherically complete if the intersection of any decreasing sequence of non empty balls contained in F is non empty.

For instance, if k is an algebraically closed field of characteristic p,
i) the completion of an algebraic closure of the field $k((u))$ is not spherically complete,
ii) If G is a divisible totally ordered abelian group (e.g. $G=\mathbb{Q}$ or \mathbb{R}), we may consider the subset F of all formal series of the form

$$
f=\sum_{g \in G} a_{g} g \quad \text { with } a_{g} \in k
$$

such that the support of f

$$
\operatorname{supp}(f)=\left\{g \in G \mid a_{g} \neq 0\right\}
$$

is a well ordered subset of G. Then, with the obvious addition, multiplication and absolute value, F is an algebraically closed field which is spherically complete [Poo93].

Proposition 3.5.1. Let $I \subset[0,1[$ be a non closed interval. Then:
i) If F is not spherically complete, there are closed ideals of B_{I} which are not principal.
ii) If F is spherically complete and char $(E)=p$, any closed ideal of B_{I} is principal.

It is likely that (ii) remains true whenever $\operatorname{char}(E)=0$.
Without any assumption on F, if I is an interval whose closure contains 0 , any divisor

$$
\sum_{y \in\left|Y_{I}\right|} n_{y}[y]
$$

such that $n_{y}=0$ if $\|y\| \geq \rho$ for $\rho \in I$ big enough, is the divisor of a function. More precisely, for any $y \in\left|Y_{I}\right|$ we denote by d_{y} the degree of y and we choose a π-primitive element ξ (i.e. an element $\xi_{y} \in A$ such that $\left|\xi_{y}-\pi^{d_{y}}\right|_{1}<1$) representing y (one can show that such an element always exists). Then:

Proposition 3.5.2. Let $\bar{I} \subset[0,1]$ an interval containing 0 , not reduced to $\{0\}$, and I the complement of $\{0\}$ in \bar{I}. Let

$$
D=\sum_{y \in\left|Y_{I}\right|} n_{y}[y] \in \operatorname{Div}^{+}\left(Y_{I}\right) .
$$

i) For any $\rho \in I$, the infinite product

$$
f_{\leq \rho}=\prod_{\|y\| \leq \rho} \frac{\xi_{y}}{\pi^{d_{y}}}
$$

converges in $B_{j 0,1]}^{+} \subset B_{I}$ and $\operatorname{div}\left(f_{\leq \rho}\right)=\sum_{\|y\| \leq \rho} n_{y}[y]$.
ii) If there exists $f \in B_{I}$ such that $\operatorname{div}(f)=D$ then $f=f_{\leq_{\rho}} f_{>\rho}$ for some $f_{>\rho} \in B_{\bar{I}}$ and $\operatorname{div}\left(f_{>\rho}\right)=\sum_{\|y\|>\rho} n_{y}[y]$.

In particular, if $I=] 0,1\left[, f_{>\rho} \in B_{[0,1[}^{b}\right.$. In this case, $f \in B_{] 0,1]}\left(\operatorname{resp} B_{] 0,1]}^{+}\right)$if and only if $f_{>\rho} \in B^{b}$ (resp. $B^{b,+}$).

Corollary 3.5.1. i) If $I=] 0, \rho]$ for some $\rho \in] 0,1\left[\right.$, any closed ideal of B_{I} is principal.
ii) An ideal of $B_{[0,1[}$ or of $B_{[0,1]}$ is closed if and only if it is an intersection of principal ideals.
3.6. Units. The ring A is a local ring. Therefore, if \mathfrak{m}_{A} is its maximal ideal, the multiplicative group A^{*} of invertible elements of A is the complement of \mathfrak{m}_{A} in A. With obvious notations, we have also

$$
A^{*}=\left[\mathcal{O}_{F}^{*}\right] \times \mathcal{U}_{F} \quad \text { with } \quad \mathcal{U}_{F}=\left\{1+\sum_{n=1}^{\infty}\left[a_{n}\right] \pi^{n} \mid a_{n} \in \mathcal{O}_{F}\right\}
$$

We have also

$$
\left(B^{b,+}\right)^{*}=\pi^{\mathbb{Z}} \times A^{*}=\pi^{\mathbb{Z}} \times\left[\mathcal{O}_{F}^{*}\right] \times \mathcal{U}_{F} \text { and }\left(B^{b}\right)^{*}=\pi^{\mathbb{Z}} \times\left[F^{*}\right] \times \mathcal{U}_{F}
$$

If f is an invertible element of $B_{] 0,1[}$ we must have $\operatorname{div}(f)=0$, which implies that $f \in B^{b}$. Therefore,

$$
\left(B_{\mathrm{j} 0,1[}\right)^{*}=\left(B_{\mathrm{j} 0,1]}\right)^{*}=\left(B^{b}\right)^{*} \text { and }\left(B^{+}\right)^{*}=\left(B^{b,+}\right)^{*}
$$

4. The curve X in the case where F is algebraically closed

4.1. Construction of the curve. The Frobenius automorphism φ on B^{b} is the unique E-automorphism which is continuous for $\left|\left.\right|_{0}\right.$ and induces $x \mapsto x^{q}$ on F. It satisfies

$$
\varphi\left(\sum_{n \gg-\infty}\left[a_{n}\right] \pi^{n}\right)=\sum_{n \gg-\infty}\left[a_{n}^{q}\right] \pi^{n} .
$$

For any $f \in B^{b}$ and any $\rho \in[0,1]$, we have $|\varphi(f)|_{\rho^{q}}=\left(|f|_{\rho}\right)^{q}$. This implies that φ extends by continuity to an automorphism (still denoted φ) of $B=B_{00,1[}$.

We consider the graded E-algebra

$$
P_{\pi}=P_{F, E, \pi}=\bigoplus_{d \in \mathbb{N}} P_{\pi, d} \text { with } P_{\pi, d}=P_{F, E, \pi, d}=\left\{b \in B \mid \varphi(b)=\pi^{d} b\right\}
$$

The natural map $P_{\pi} \rightarrow B$ is injective and we use it to identify P_{π} with a subring of B. We have $P_{\pi} \subset B^{+}$.

We define the scheme

$$
X=X_{F, E}=\operatorname{Proj} P_{\pi}
$$

One can show that X is independent of the choice of π : If π^{\prime} is another uniformizing parameter of E and if $X^{\prime}=\operatorname{Proj} P_{\pi^{\prime}}$, the function field of X^{\prime} (viewed as a subfield of the fraction field of B) is the function field \mathcal{K} of X and the set of closed points of X^{\prime} (viewed as a subset of the set of normalized discrete valuations on \mathcal{K}) is the set of closed points of X.

On the other hand, the line bundles

$$
\mathcal{O}_{X}(d)_{\pi}=\bigoplus_{n \in \mathbb{Z}} P_{\pi, n+d}
$$

(with the convention that $P_{\pi, m}=0$ for $m<0$) depend on the choice of π.
We have

$$
P_{\pi, 0}=\{u \in B \mid \varphi(u)=u\}=E
$$

4.2. The Lubin-Tate formal group. Set

$$
\ell_{\pi}(X)=\sum_{n=0}^{+\infty} \frac{X^{q^{n}}}{\pi^{n}} \in E[[X]]
$$

and $\Phi_{\pi}(X, Y) \in E[[X, Y]]$ the unique formal power series $\equiv X+Y$ $\left(\bmod (X, Y)^{2}\right)$ such that

$$
\ell_{\pi}\left(\Phi_{\pi}(X, Y)\right)=\ell_{\pi}(X)+\ell_{\pi}(Y)
$$

Then, $\Phi_{\pi}(X, Y) \in \mathcal{O}_{E}[[X, Y]]$ and defines a one parameter formal group law over \mathcal{O}_{E} which is a Lubin-Tate formal group over \mathcal{O}_{E} associated to the uniformizing parameter π ([LT65], [Ser67], §3).

For any linearly topologized complete \mathcal{O}_{E}-algebra Λ, we may consider the topological \mathcal{O}_{E}-module $\Phi_{\pi}(\Lambda)$: The underlying topological space is the topological space underlying the ideal of elements of Λ which are topologically nilpotent, with the addition $(x, y) \mapsto \Phi_{\pi}(x, y)$ and the multiplication by $\alpha \in \mathcal{O}_{E}$ given by $x \mapsto f_{\pi, \alpha}(x)$ where $f_{\pi, \alpha}(X) \in \mathcal{O}_{E}[[X]]$ is the unique power series $\equiv \alpha X\left(\bmod X^{2}\right)$ such that $\ell_{\pi}\left(f_{\alpha}(X)\right)=\alpha \ell_{\pi}(X)$.

Let C be an algebraically closed field containing E, complete for an absolute value extending the given absolute value on E. We may consider the Tate module

$$
T_{C}\left(\Phi_{\pi}\right)=\mathcal{L}_{\mathcal{O}_{E}}\left(E / \mathcal{O}_{E}, \Phi_{\pi}\left(\mathcal{O}_{C}\right)\right)
$$

This is a free- \mathcal{O}_{E}-module of rank one. If we denote by $\Phi_{\pi}\left(\mathcal{O}_{\bar{E}}\right)$ the inductive limit (or the union) of the $\Phi_{\pi}\left(\mathcal{O}_{E^{\prime}}\right)$, for E^{\prime} varying through the finite extensions of E contained in C, we have also $T_{C}(\Phi)=\mathcal{L}_{\mathcal{O}_{E}}\left(E / \mathcal{O}_{E}, \Phi_{\pi}\left(\mathcal{O}_{\bar{E}}\right)\right)$.

If $V_{C}\left(\Phi_{\pi}\right)$ is the one dimensional E-vector space $E \otimes \mathcal{O}_{E} T_{C}\left(\Phi_{\pi}\right)$, we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow V_{C}\left(\Phi_{\pi}\right) \rightarrow \mathcal{L}_{\mathcal{O}_{E}}\left(E, \Phi_{\pi}\left(\mathcal{O}_{C}\right)\right) \rightarrow C \rightarrow 0 \tag{1}
\end{equation*}
$$

where the map $\mathcal{L}_{\mathcal{O}_{E}}\left(E, \Phi_{\pi}\left(\mathcal{O}_{C}\right)\right) \rightarrow C$ is $f \mapsto \ell_{\pi}(f(1))$.
The perfectness of \mathcal{O}_{F} implies that multiplication by π on the \mathcal{O}_{E}-module $\Phi_{\pi}\left(\mathcal{O}_{F}\right)$ is bijective, so $\Phi_{\pi}\left(\mathcal{O}_{F}\right)$ is an E-vector space. We see that $\Phi_{\pi}\left(\mathcal{O}_{F}\right)$ depends
only on the special fiber $\Phi_{\pi, k_{E}}$ of Φ_{π} (a formal \mathcal{O}_{E}-module over the residue field k_{E} of \mathcal{O}_{E}).

Proposition 4.2.1. For any x in the maximal ideal \mathfrak{m}_{F} of \mathcal{O}_{F}, the series $\sum_{n \in \mathbb{Z}} \pi^{-n}\left[x^{q^{n}}\right]$ converges in B and its sum $L_{\pi}(x)$ belongs to $P_{\pi, 1}$. The map

$$
L_{\pi}: \Phi_{\pi}\left(\mathcal{O}_{F}\right) \rightarrow P_{\pi, 1}
$$

so defined is an isomorphism of topological E-vector spaces.
Remark. This construction can be generalized: For $d \in \mathbb{N}$, one may interpret P_{d} as being "the sections over \mathcal{O}_{F} of an E-sheaf $S_{E, \pi}^{d}$ for the syntomic topology over k_{E} ".

In the rest of the section 4, we assume F algebraically closed.
The automorphism φ generates a torsion free cyclic group $\varphi^{\mathbb{Z}}$ of automorphisms of B. This group acts also on $|Y|$ and on $\operatorname{Div}(Y)=\operatorname{Div}\left(Y_{[0,1[}\right)$. If $\lambda, \lambda^{\prime}$ are non-zero elements of \mathfrak{m}_{F} such that $\pi-[\lambda]$ and $\pi-\left[\lambda^{\prime}\right]$ have the same image in $|Y|$, this implies that $|\lambda|=\left|\lambda^{\prime}\right|$. If $\pi-[\lambda]$ is a lifting of $y \in|Y|$ and $n \in \mathbb{Z}$ then $\pi-\left[\lambda^{q^{n}}\right]$ is a lifting of $\varphi^{n}(y)$, so if $y \in|Y|$ then the $\varphi^{n}(y)$'s for $n \in \mathbb{Z}$ are all distinct.

This implies that it is possible to choose for each $y \in|Y|$ an element $\lambda_{y} \in \mathfrak{m}_{F}$ such that $\pi-\left[\lambda_{y}\right]$ is a lifting of y and, for all y,

$$
\lambda_{\varphi(y)}=\left(\lambda_{y}\right)^{q} .
$$

We make such a choice once and for all. If $y \in|Y|$, the field

$$
L_{y}=B^{b} /\left(\pi-\left[\lambda_{y}\right]\right)=B^{+} /\left(\pi-\left[\lambda_{y}\right]\right)=B /\left(\pi-\left[\lambda_{y}\right]\right)
$$

is algebraically closed. The multiplicative map $\mathcal{O}_{F} \rightarrow \mathcal{O}_{L_{y}}$ sending a to $\theta_{y}([a])$ induces, by passing to the quotients, an isomorphism of rings

$$
\mathcal{O}_{F} / \lambda_{y} \mathcal{O}_{F} \rightarrow \mathcal{O}_{L_{y}} / \pi \mathcal{O}_{L_{y}} .
$$

Moreover, φ induces a canonical isomorphism $L_{y} \rightarrow L_{\varphi(y)}$.
For any linearly topologized complete \mathcal{O}_{E}-algebra Λ, we denote $\mathcal{V}_{E, \pi}(\Lambda)$ the E-vector space $\mathcal{L}_{\mathcal{O}_{E}}\left(E, \Phi_{\pi}(\Lambda)\right)$.

Proposition 4.2.2. Let $y \in|Y|$. The natural maps

$$
\begin{aligned}
\mathcal{V}_{E, \pi}\left(\mathcal{O}_{C}\right) & \rightarrow \mathcal{V}_{E, \pi}\left(\mathcal{O}_{L_{y}} / \pi \mathcal{O}_{L_{y}}\right) \leftarrow \mathcal{V}_{E, \pi}\left(\mathcal{O}_{F} / \lambda_{y} \mathcal{O}_{F}\right) \leftarrow \mathcal{V}_{E, \pi}\left(\mathcal{O}_{F}\right) \\
& \rightarrow \Phi_{\pi}\left(\mathcal{O}_{F}\right) \rightarrow P_{\pi, 1}
\end{aligned}
$$

are all isomorphisms.
ii) We have a commutative diagram

$$
\begin{array}{ccccccccc}
0 & \rightarrow & V_{C}\left(\Phi_{\pi}\right) & \rightarrow & \mathcal{V}_{E, \pi}\left(\mathcal{O}_{C}\right) & \rightarrow & C & \rightarrow & 0 \\
0 & & \downarrow & P_{\pi, 1} \stackrel{\downarrow}{n} \operatorname{ker} \theta_{y} & \rightarrow & \rightarrow & P_{\pi, 1} & \rightarrow & C
\end{array}
$$

where the lines are exact and the vertical arrows are isomorphisms.
Remark. There is an explicit way to construct a generator t of $P_{\pi, 1} \cap \operatorname{ker} \theta_{y}$: From the fact that F is algebraically closed, one deduces easily that one can find $t_{+} \in A$ not divisible by π such that

$$
\varphi\left(t_{+}\right)=\left(\pi-\left[\lambda_{y}\right]\right) t_{+} .
$$

On the other hand the infinite product

$$
t_{-}=\prod_{n=0}^{+\infty}\left(1-\frac{\left[\lambda_{y}^{q^{n}}\right]}{\pi}\right)
$$

converges in B^{+}. We may take $t=t_{-} t_{+}$.
4.3. Divisors of X. Let $\operatorname{Div}(Y)_{\varphi=1}$ the subgroup of $\operatorname{Div}(Y)$ consisting of the divisors D such that $\varphi(D)=D$ and $\operatorname{Div}^{+}(Y)_{\varphi=1}$ the submonoïd of $\operatorname{Div}^{+}(Y)$ consisting of effective divisors such that $\varphi(D)=D$.

If $D=\sum_{y \in|Y|} n_{y}[y] \in \operatorname{Div}(Y)$ we have $\varphi(D)=\sum_{y \in|Y|} n_{y}[\varphi(y)]$, therefore $D \in \operatorname{Div}(X)$ if and only if $n_{y}=n_{\varphi(y)}$ for all y.

Choose $\rho \in] 0,1[$. As $\left.] \rho^{q}, \rho\right] \subset\left[\rho^{q}, \rho\right]$, we have $n_{y}=0$ for almost all y such that $\rho^{q}<\|y\| \leq \rho$. On the other hand, for any $y \in|Y|$, there is a unique $n \in \mathbb{Z}$ such that $\rho^{q}<\left\|\varphi^{n}(y)\right\| \leq \rho$. Therefore:

Proposition 4.3.1. For any $y \in Y$, set $\left.\delta(y)=\sum_{n \in \mathbb{Z}}\left[\varphi^{n}(y)\right]\right) \in \operatorname{Div}(Y)_{\varphi=1}$ and

$$
\Delta=\{D \in \operatorname{Div}(Y) \mid \text { there exists } y \in|Y| \text { such that } D=\delta(y)\}
$$

Then $\operatorname{Div}(Y)_{\varphi=1}\left(\right.$ resp. $\left.\operatorname{Div}^{+}(Y)_{\varphi=1}\right)$ is a free abelian group (resp. monoïd) and the elements of Δ form a basis.

Proposition 4.3.2. i) Let $y \in|Y|$ and t a generator of $E_{y}=P_{\pi, 1} \cap \mathfrak{m}_{y}$. Then

$$
\operatorname{div}(t)=\delta(y)
$$

ii) Let $d \in \mathbb{N}_{>0}$ and $u \in P_{\pi, d}$ non zero. There exists $t_{1}, t_{2}, \ldots, t_{d} \in P_{\pi, 1}$ such that

$$
u=t_{1} t_{2} \ldots t_{d}
$$

Moreover, if $t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{d}^{\prime} \in P_{\pi, 1}$ are such that $u=t_{1}^{\prime} t_{2}^{\prime} \ldots t_{d}^{\prime}$, there exists $\sigma \in \mathfrak{S}_{d}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \in E^{*}$ such that $t_{i}^{\prime}=\lambda_{i} t_{\sigma(i)}$ for all i.

This proposition is an easy consequence of what we already know: (i) is formal. To prove (ii), we observe that the ideal generated by u is fixed by φ^{n} for all $n \in \mathbb{Z}$, hence $\operatorname{div}(u) \in \operatorname{div}^{+}(Y)_{\varphi=1}$. Therefore we can write

$$
\operatorname{div}(u)=D_{1}+D_{2}+\ldots+D_{r}
$$

with $D_{i} \in \Delta$. If $D_{i}=\delta\left(y_{i}\right)$, if \mathfrak{m}_{i} is the maximal ideal of B corresponding to y_{i} and if t_{i} is a generator of $P_{F, 1} \cap \mathfrak{m}_{i}$, then we must have

$$
u=\lambda t_{1} t_{2} \ldots t_{r}
$$

with $\lambda \in B^{*}$. Therefore, we must have $r=d$ and $\varphi(\lambda)=\lambda$, hence $\lambda \in E^{*}$. The assertion follows.

An easy consequence of this proposition is the following result:
Theorem 4.1. Let $|X|$ be the set of closed points of X and set $\operatorname{deg}(x)=1$ for all $x \in|X|$. Then X is a complete curve whose field of definition is E. Moreover:
i) Let $D \in \Delta, t \in P_{\pi, 1}$ non-zero such that $\operatorname{div}(t)=D, y \in|Y|$ such that $D=\delta(y)$ and $L_{D}=L_{y}$. Then
a) the homogeneous ideal of P_{π} generated by t defines a closed point x_{D} of X whose local ring is a discrete valuation ring and residue field is L_{D},
b) the complement of x_{D} in X is an affine scheme which is the spectrum of a principal domain.
ii) The map $D \mapsto x_{F}$ is a bijection $\Delta \rightarrow|X|$ inducing canonical isomorphisms

$$
\operatorname{Div}(Y)_{\varphi=1} \rightarrow \operatorname{Div}(X) \text { and } \operatorname{Div}^{+}(Y)_{\varphi=1} \rightarrow \operatorname{Div}^{+}(X) .
$$

4.4. Vector bundles. For each $d \in \mathbb{Z}, \mathcal{O}_{X}(d)_{\pi}$ is a line bundle of degree d. Proposition 4.3.2 implies trivially:

Proposition 4.4.1. We have

$$
\operatorname{Pic}^{0}(X)=0,
$$

i.e., for any $d \in \mathbb{Z}$, a line bundle \mathcal{L} is of degree d if and only $\mathcal{L} \simeq \mathcal{O}_{X}(d)_{\pi}$.

In particular, if π^{\prime} is any other uniformizing parameter, $\mathcal{O}_{X}(1)_{\pi^{\prime}}$ is isomorphic (not canonically) to $\mathcal{O}_{X}(1)_{\pi}{ }^{3}$.

Let h be a positive integer. We may consider

$$
X_{h}=\operatorname{Proj} \bigoplus_{d \in \mathbb{N}} P_{h, \pi, d} \text { with } P_{h, \pi, d}=\left\{\varphi^{h}(u)=\pi^{d} u\right\} .
$$

If E_{h} denotes the unramified extension of E whose residue field is the unique extension of degree h of the residue field k_{E} of E which is contained in F, we see that $X_{h}=X_{F, E, h}$. It is a complete regular curve whose field of definition is E_{h}.

If $x \in P_{\pi, d}$ then $x \in P_{h, \pi, d h}$. It it easy to see that the induced map

$$
\oplus P_{\pi, d} \rightarrow \oplus P_{h, \pi, d}
$$

induces a morphism

$$
\nu_{h}: X_{h} \rightarrow X
$$

which is a cyclic cover of degree h identifying $X_{F, h}$ with $X \times_{\text {Spec } E}$ Spec E_{h}.
For each $\lambda \in \mathbb{Q}$, if $\lambda=d / h$, with $d, h \in \mathbb{Z}$ relatively prime and $h>0$, we set

$$
\mathcal{O}_{X}(\lambda)_{\pi}=\left(\nu_{h}\right)_{*}\left(\mathcal{O}_{X_{F, h}}(d)_{\pi}\right) .
$$

This is a vector bundle over X of rank h and degree d, hence of slope λ.
Theorem 4.2. For any non-zero coherent \mathcal{O}_{X}-module \mathcal{F}, the Harder-Narasimhan filtration on \mathcal{F} splits (non canonically). Moreover, if $\lambda \in \mathbb{Q}$, then \mathcal{F} is stable (resp. semistable) of slope λ if and only if $\mathcal{F} \simeq \mathcal{O}_{X}(\lambda)_{\pi}$ (resp. there is an integer $n>0$ such that $\left.\mathcal{F} \simeq \mathcal{O}_{X}(\lambda)_{\pi}^{\oplus n}\right)$.

Corollary 4.4.1. The functor
$\{$ finite dimensional E-vector spaces $\} \rightarrow$
$\{$ semistable vector bundles of slope 0 over $X\}$
sending V to $V \otimes_{E} \mathcal{O}_{X}$ is an equivalence of tannakian categories. The functor

$$
\mathcal{F} \mapsto H^{0}(X, \mathcal{F})
$$

is a quasi-inverse.
The proof of the theorem is easily reduced to the proof of the corollary. By dévissage, one sees that it is enough to prove the following statement:

[^2]Lemme 4.2.1. Let h be a positive integer and \mathcal{F} be a vector bundle extension of $\mathcal{O}_{X}(1)$ by $\mathcal{O}_{X}(-1 / h)$. Then

$$
H^{0}(X, \mathcal{F}) \neq 0
$$

This lemma can be deduced by elementary manipulations on modifications of vector bundles from:

Proposition 4.4.2. Let h be a positive integer and

$$
0 \rightarrow \mathcal{F}^{\prime} \rightarrow \mathcal{F} \rightarrow \mathcal{E} \rightarrow 0
$$

a short exact sequence of coherent \mathcal{O}_{X}-modules, with \mathcal{E} torsion of length 1 . Then:
i) If $\mathcal{F} \simeq \mathcal{O}_{X}(1 / h)$, then $\mathcal{F}^{\prime} \simeq \mathcal{O}_{X}^{h}$.
ii) If $\mathcal{F}^{\prime} \simeq \mathcal{O}_{X}^{h}$, then $\mathcal{F} \simeq \mathcal{O}_{X}(1 / r) \oplus \mathcal{O}_{X}^{h-r}$ for some r with $1 \leq r \leq h$.

Let C be the residue field of X at the closed point which is the support of \mathcal{E}. This is an algebraically closed extension of E, complete with respect to an absolute value extending the given absolute value on E. This proposition can be translated:
i) in terms of Banach-Colmez spaces over C, i.e. the "Espaces de Banach de dimension finie" introduced by Colmez [Col02],
ii) or in terms of free B-modules equipped with a φ-semi-linear automorphism,
iii) or in terms of Barsotti-Tate groups over \mathcal{O}_{C}.

This leads to three different proofs of the proposition which becomes a consequence of the work of Colmez (loc. cit.) or of Kedlaya ([Ke05], [Ke08]) or of a result of Laffaille ([Laf79], also proved in [GH94]) for the first part and of Drinfel'd ([Dr76], also proved in [Laf85]) for the second part.

A consequence of the previous theorem is that the geometric étale π_{1} of the curve X is trivial. More precisely:

Proposition 4.4.3. Let $X^{\prime} \rightarrow X$ be a finite étale morphism and $E^{\prime}=$ $H^{0}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\right)$. The natural morphism

$$
X^{\prime} \rightarrow X \times_{\text {Spec } E} S p e c E^{\prime}
$$

is an isomorphism.
4.5. The topology on \mathcal{O}_{X}. The multiplicative norms $\left|\left.\right|_{\rho}\right.$ for $0<\rho<1$ extend to the fraction field of B. For each open subset U of X, we endow the ring $\Gamma\left(U, \mathcal{O}_{X}\right) \subset \operatorname{Frac}(B)$ with the topology defined by the restriction of this family of norms. The transition maps

$$
\Gamma\left(U, \mathcal{O}_{X}\right) \rightarrow \Gamma\left(V, \mathcal{O}_{X}\right)
$$

for $V \subset U$ open is obviously continuous. This endows \mathcal{O}_{X} with a natural structure of sheaf of locally convex E-algebras ${ }^{4}$ which plays an important role in the study of O_{X}-representations of certain topological groups.

[^3]4.6. \mathcal{O}_{X}-representations. We denote by \mathcal{G}_{F} the group of continuous automorphisms of the field F (an automorphism of the field F is continuous if and only if it sends the valuation of F to a a strictly positive multiple of it). We equip \mathcal{G}_{F} and its subgroups with the pointwise convergence topology, that is to say the weakest topology making the applications
\[

$$
\begin{array}{rll}
\mathcal{G}_{F} & \longrightarrow F \\
g & \longmapsto g(x)
\end{array}
$$
\]

continuous when x goes through F. If $F=\widehat{\overline{F_{0}}}$ where F_{0} is complete valued then $\operatorname{Gal}\left(\overline{F_{0}} \mid F_{0}\right) \subset \mathcal{G}_{F}$ is a closed subgroup and the induced topology on $\operatorname{Gal}\left(\overline{F_{0}} \mid F_{0}\right)$ is the usual profinite topology. By functoriality, \mathcal{G}_{F} acts on X. We'll need slightly more. The action of \mathcal{G}_{F} on \mathcal{O}_{X} is continuous, i.e., for any open subset U of X, the subgroup

$$
\mathcal{G}_{F, U}=\left\{g \in \mathcal{G}_{F} \mid g(U)=U\right\}
$$

is a closed subgroup of \mathcal{G}_{F} and the natural map

$$
\mathcal{G}_{F, U} \times \Gamma\left(U, \mathcal{O}_{X}\right) \rightarrow \Gamma\left(U, \mathcal{O}_{X}\right)
$$

is continuous.
Let H be any closed subgroup of \mathcal{G}_{F}. We explained in $\S 1.1$ what is a $\mathcal{O}_{X^{-}}$ representations of H. We now use the topology on the sheaf \mathcal{O}_{X} to put a continuity condition on these representations. More precisely if \mathcal{E} is an \mathcal{O}_{X}-representation of H we require, for any open subset U of X, the natural map

$$
H_{U} \times \Gamma(U, \mathcal{E}) \rightarrow \Gamma(U, \mathcal{E})
$$

(where $H_{U}=\{h \in H \mid h(U)=U\}$) to be continuous.
From now on an \mathcal{O}_{X}-representation of H will mean a continuous one.

5. Galois descent

5.1. The curve X when F may not be algebraically closed. We don't assume anymore F algebraically closed and we consider the curve

$$
X=X_{F, E}=\operatorname{Proj} P_{\pi}
$$

We choose an algebraic closure \bar{F} of F and we set $H=\operatorname{Gal}(\bar{F} / F)$. The absolute value \| of F extends uniquely to \bar{F} and to its completion \widetilde{F} (which is algebraically closed). We set

$$
\widetilde{B}=B_{\widetilde{F}, E}, \widetilde{P}_{\pi}=P_{\widetilde{F}, E, \pi}, \text { and } \widetilde{X}=X_{\widetilde{F}, E}=\operatorname{Proj} \widetilde{P}_{\pi}
$$

The action of H on \bar{F} extends uniquely to a continuous action on \widetilde{F} and by functoriality to a continuous action on \widetilde{B} and \widetilde{P}_{π}. As we may identify H with a closed subgroup of the group $\mathcal{G}_{\widetilde{F}}$ of continuous automorphisms of the field \widetilde{F}, H also acts on the curve \widetilde{X}.

Theorem 5.1. i) The natural maps

$$
B \rightarrow \widetilde{B}^{H} \text { and } P_{\pi} \rightarrow \widetilde{P}_{\pi}^{H}
$$

are isomorphisms.
ii) The map $P_{\pi} \rightarrow \widetilde{P}_{\pi}$ induces a morphism of schemes

$$
\nu: \widetilde{X} \rightarrow X
$$

independent of the choice of π.
iii) Define the degree of any closed point $x \in X$ by

$$
\operatorname{deg}(x)=\text { cardinality of } \nu^{-1}(x) .
$$

Then X is a complete regular curve defined over E.
iv) The morphism ν induces an isomorphism

$$
\operatorname{Div}(X) \rightarrow(\operatorname{Div}(\widetilde{X}))^{H}
$$

Let H^{*} be the group of characters of H, i.e. the group of continuous homomorphisms from H to the multiplicative group E^{*} of E. If $D \in \operatorname{Div}^{+}(X)=\left(\operatorname{Div}^{+}(\widetilde{X})\right)^{H}$ is an effective divisor of degree $d \in \mathbb{N}$ and if $u \in \widetilde{P}_{\pi, d}$ is a generator of the homogeneous ideal of \widetilde{P} corresponding to D, there is $\xi_{D} \in H^{*}$ such that, for all $h \in H$,

$$
h(u)=\xi_{D}(h) u
$$

and ξ_{D} is independent of the choice of u. The map $D \mapsto \xi_{D}$ extends uniquely to an homomorphism of groups

$$
\operatorname{Div}(X) \rightarrow H^{*}
$$

This map induces an isomorphism

$$
\operatorname{Pic}^{0}(X) \rightarrow H^{*} .
$$

More precisely,
Proposition 5.1.1. Let $\mathcal{K}=\mathcal{O}_{X, \eta}$ the function field of X. The sequence

$$
0 \rightarrow E^{*} \rightarrow \mathcal{K}^{*} \rightarrow \operatorname{Div}(X) \rightarrow \mathbb{Z} \times H^{*} \rightarrow 0
$$

where $\operatorname{Div}(X) \rightarrow \mathbb{Z} \times H^{*}$ is the map sending D to $\left(\operatorname{deg}(D), \xi_{D}\right)$, is exact.
Moreover, for all $\xi_{0} \in H^{*}$, there exists an infinite set of effective divisors D of degree 1 such that $\xi_{D}=\xi_{0}$.

If \mathcal{F} is a coherent \mathcal{O}_{X}-module (resp. a vector bundle over X), then $\nu^{*} \mathcal{F}$ may be viewed as an $\mathcal{O}_{\tilde{X}}$-representation of H (resp. an H equivariant vector bundle over \widetilde{X}).

Conversely, if \mathcal{E} is an $\mathcal{O}_{\tilde{X}}$-representation of H, we define the \mathcal{O}_{X}-module \mathcal{E}^{H} by setting, for all open subset U of X

$$
\Gamma\left(U, \mathcal{E}^{H}\right)=\Gamma\left(\nu^{-1}(U), \mathcal{E}\right)^{H}
$$

(and obvious restriction maps).
Theorem 5.2. The functor

$$
\nu^{*}:\left\{\text { coherent } \mathcal{O}_{X} \text {-modules }\right\} \rightarrow\left\{\mathcal{O}_{\tilde{X}} \text {-representations of } H\right\}
$$

is an equivalence of tensor categories, respecting the rank, the degree and the HarderNarasimhan filtration.

For any $\mathcal{O}_{\tilde{X}}$-representation \mathcal{E} of H, the \mathcal{O}_{X}-module \mathcal{E}^{H} is coherent. The functor

$$
\mathcal{E} \mapsto \mathcal{E}^{H}
$$

is a quasi-inverse of the functor $\mathcal{F} \mapsto \nu^{*} \mathcal{F}$.
5.2. The étale fundamental group. Let F^{\prime} be a finite extension of F and E^{\prime} be a finite extension of E.

- When, the residue field $k_{E^{\prime}}$ is embedded in k_{F} we have defined the curve $X_{F^{\prime}, E^{\prime}}$ and the natural morphism

$$
X_{F, E^{\prime}} \longrightarrow X_{F^{\prime}, E} \otimes_{E} E^{\prime}
$$

is an isomorphism.

- Therefore, we may define in general the curve $X_{F^{\prime}, E^{\prime}}$ by

$$
X_{F^{\prime}, E^{\prime}}=X_{F^{\prime}, E} \otimes_{E} E^{\prime}
$$

We have

$$
X_{F^{\prime}, E}=\operatorname{Proj} P_{F^{\prime}, E, \pi}
$$

and the obvious map $P_{F, E, \pi} \rightarrow P_{F^{\prime}, E, \pi}$ induces a morphism

$$
X_{F^{\prime}, E} \rightarrow X
$$

which is a finite étale cover of X of degree $\left[F^{\prime}: F\right]$, independent of the choice of π. Therefore

$$
X_{F^{\prime}, E^{\prime}} \rightarrow X
$$

is a finite étale cover of X of degree $\left[F^{\prime}: F\right] .\left[E^{\prime}: E\right]$.
Choose a closed point $\widetilde{x}=\operatorname{Spec} C$ of \widetilde{X}. Then C is algebraically closed and we denote by \bar{x} the geometric point of X

$$
\text { Spec } C \rightarrow \tilde{X} \rightarrow X
$$

Let \mathcal{I} the set of pairs (F^{\prime}, E^{\prime}) with F^{\prime} be a finite Galois extension of F contained in the field $F(C)$ introduced in $\S 2.4$ and E^{\prime} a finite Galois extension of E contained in C.

The inclusion $F^{\prime} \rightarrow F(C)$ induces an extension of the morphism

$$
\bar{x}: \operatorname{Spec} C \rightarrow X
$$

to a morphism of X-schemes

$$
\text { Spec } C \rightarrow X_{F^{\prime}, E},
$$

which, using the inclusion $E^{\prime} \rightarrow C$, extends also to a morphism of X-schemes

$$
\text { Spec } C \rightarrow X_{F^{\prime}, E^{\prime}} .
$$

Proposition 5.2.1. For each $\left(F^{\prime}, E^{\prime}\right) \in \mathcal{I}$, the morphism $X_{F^{\prime}, E^{\prime}} \rightarrow X$ is a finite étale Galois cover whose Galois group is $\operatorname{Gal}\left(F^{\prime} / F\right) \times \operatorname{Gal}\left(E^{\prime} / E\right)$.

Moreover the projective system

$$
\left(X_{F^{\prime}, E^{\prime}} \rightarrow X\right)_{\left(F^{\prime}, E^{\prime}\right) \in \mathcal{I}}
$$

(with obvious transition maps) induces an isomorphism

$$
\pi_{1}^{e t}(X, \bar{x}) \rightarrow \operatorname{Gal}\left(E^{s} / E\right) \times \operatorname{Gal}(\bar{F} / F),
$$

where E^{s} (resp. \bar{F}) denote the separable closure of E in C (resp. of F in $F(C)$).
In particular, the geometric étale π_{1} of X may be identified with $\operatorname{Gal}(\bar{F} / F)$.

6. de Rham G_{K}-equivariant vector bundles

In this section, K is a field of characteristic 0 which is the fraction field of a complete discrete valuation ring \mathcal{O}_{K} whose residue field k is perfect of characteristic $p>0$. We choose an algebraic closure \bar{K} of K and we set $G_{K}=\operatorname{Gal}(\bar{K} / K)$. We denote by C the completion of \bar{K}. This is an algebraically closed field, therefore it is a strictly p-perfect field and the field $F=F(C)$ is algebraically closed.
6.1. The curve $X=X_{F(C), \mathbb{Q}_{p}}$. We consider the curve

$$
X=X_{F, \mathbb{Q}_{p}}
$$

We set

$$
B=B_{F, \mathbb{Q}_{p}} \text { and } B^{+}=B_{F, \mathbb{Q}_{p}}^{+} .
$$

We have

$$
X=\operatorname{Proj} P_{p} \text { with } P_{p}=\bigoplus_{d \in \mathbb{N}} P_{p, d} \text { and } P_{p, d}=\left\{u \in B \mid \varphi(u)=p^{d} u\right\}
$$

The natural map $P_{p} \rightarrow B$ is injective, with image contained in B^{+}, and we identify P_{p} with its image.

As $F=F(C)$, we have a canonical continuous surjective homomorphism of \mathbb{Q}_{p}-algebras

$$
\theta: B \rightarrow C
$$

(the restriction of θ to B^{b} is the map $\sum_{n \ggg-\infty}\left[a_{n}\right] p^{n} \mapsto \sum_{n \gg-\infty} a_{n}^{(0)} p^{n}$).
We fix $\varpi \in F$ such that $\varpi^{(0)}=p$. Then the kernel of θ is the principal ideal generated by $p-[\varpi]$. As usual in p-adic Hodge theory [Fon94a], we denote $B_{d R}^{+}$ the completion of $B^{b,+}$ for the $(p-[\varpi])$-adic topology. This is also the completion of B (or of B^{+}) for the ker θ-adic topology. As θ is G_{K}-equivariant, the action of G_{K} on B extends to $B_{d R}^{+}$.

As usual (loc. cit.), we fix $\varepsilon \in F$ such that $\varepsilon^{(0)}=1$ and $\varepsilon^{(1)} \neq 1$. We set

$$
t=\log ([\varepsilon])=\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{([\varepsilon]-1)^{n}}{n} \in B^{+}
$$

Then t is a generator of the \mathbb{Q}_{p}-line $P_{p, 1} \cap \operatorname{ker} \theta$. The homogeneous ideal of P_{p} generated by t defines a closed point ∞ of X which is the image in $|X|$ of the maximal ideal $\operatorname{ker} \theta$ of B.

Therefore ∞ is fixed under G_{K}, its residue field is C and the completion of the discrete valuation ring $\mathcal{O}_{X, \infty}$ is $B_{d R}^{+}$. We set

$$
X_{e}=X \backslash\{\infty\}
$$

This is an affine open subset, stable under G_{K}. We see that

$$
B_{e}:=\Gamma\left(X_{e}, \mathcal{O}_{X}\right)=\left\{\text { homogeneous elements of degree } 0 \text { of } P_{p}\left[\frac{1}{t}\right]\right\}
$$

is a principal ideal domain. We set

$$
B_{c r}=B^{+}\left[\frac{1}{t}\right]
$$

The Frobenius φ on B^{+}extends uniquely to an automorphism of $B_{c r}$ and we have

$$
B_{e}=\left\{b \in B_{c r} \mid \varphi(b)=b\right\} .
$$

Remark. The ring B^{+}is sometimes denoted $\widetilde{\mathbf{B}}_{\text {rig }}^{+}$(e.g. [Ber02], $\S 1$ where $F=$ $F(C)$ is denoted $\widetilde{\mathbf{E}}$, though A is denoted $\widetilde{\mathbf{A}}$ and $B^{b,+}$ is denoted $\widetilde{\mathbf{B}}^{+}$). Traditionally [Fon94a], one defines the ring $A_{\text {cris }}$ as the p-adic completion of the divided power envelop of the ring A with respect to the ideal generated by $p-[\varpi]$ and $B_{\text {cris }}^{+}=A_{\text {cris }}[1 / p]$. The inclusion of $A[1 / p]=B^{b,+}$ into B^{+}extends by continuity to a canonical injective map from B^{+}into $B_{c r i s}^{+}$. Hence, we may identify B^{+}with a subring of $B_{c r i s}^{+}$and $B^{+}[1 / t]$ with a subring of $B_{\text {cris }}=B_{\text {cris }}^{+}[1 / t]$. We then have

$$
B^{+}=\cap_{n \in \mathbb{N}} \varphi^{n}\left(B_{\text {cris }}^{+}\right) \text {and } B^{+}\left[\frac{1}{t}\right]=\cap_{n \in \mathbb{N}} \varphi^{n}\left(B_{\text {cris }}\right) \text {, }
$$

so, we have also

$$
B_{e}=\left\{b \in B_{\text {cris }} \mid \varphi(b)=b\right\}
$$

and the definition of B_{e} given here agrees with the definition of [FP94], chap.I, §3.3.
6.2. B_{e}-representations of G_{K}. Recall that a B_{e}-representation of G_{K} is a B_{e}-module of finite type equipped with a semi-linear and continuous action of G_{K}. Those are the (continuous) $\mathcal{O}_{X_{e}}$-representations of G_{K}. They form an abelian category. A G_{K}-equivariant vector bundle over Spec B_{e} is a B_{e}-representation of G_{K} such that the underlying B_{e}-module is locally free, hence free as B_{e} is a principal domain. It turns out that this condition is automatic:

Proposition 6.2.1. The B_{e}-module underlying any B_{e}-representation of G_{K} is torsion free. The category of B_{e}-representations of G_{K} is an abelian category.

Granted what we already know, the proof of this proposition is easy: The second assertion results from the first. To show the first assertion, it is enough to show, that if V is a B_{e}-representation of G_{K} such that the underlying B_{e}-module is a torsion module, then $V=0$. We observe that the annihilator of V is a non-zero ideal \mathfrak{a} stable under G_{K}. Then \mathfrak{a} is the product of finitely many maximal ideals. If \mathfrak{m} is one of them, for all $g \in G_{K}, g(\mathfrak{m})$ must contain \mathfrak{a}. But the maximal ideals corresponds to the closed points of $X_{e}=X \backslash\{\infty\}$ and one can show that ∞, which is fixed under G_{K}, is the unique closed point of X whose orbit under G_{K} is finite. Therefore $\mathfrak{a}=B_{e}$ and $V=0$.

Remarks. (1) This result implies that the tensor category of B_{e}-representations is a tannakian \mathbb{Q}_{p}-linear category.
(2) It is easy to see that $B_{e}^{*}=\mathbb{Q}_{p}^{*}$. This implies that any continuous 1-cocycle

$$
\alpha: G_{K} \rightarrow\left(B_{e}\right)^{*}
$$

takes its values in \mathbb{Q}_{p}^{*}. It means that, if V is a one dimensional B_{e}-representation, the \mathbb{Q}_{p}-line generated by a basis of V over B_{e} is stable under G_{K}. In other words, any one dimensional B_{e}-representation of G_{K} comes by scalar extension from a one dimensional p-adic representation of G_{K}.
6.3. Vector bundles and their cohomology. Let \mathcal{F} be a coherent $\mathcal{O}_{X^{-}}$ module. Then

- the B_{e}-module

$$
\mathcal{F}_{e}=\Gamma\left(X_{e}, \mathcal{F}\right)
$$

is of finite type,

- the completion $\mathcal{F}_{d R}^{+}$of the fiber at ∞ is a $B_{d R^{\prime}}^{+}$-module of finite type,
- we have a canonical isomorphism

$$
\iota_{\mathcal{F}}: B_{d R} \otimes_{B_{e}} \mathcal{F}_{e} \rightarrow B_{d R} \otimes_{B_{d R}^{+}} \mathcal{F}_{d R}^{+}
$$

With an obvious definition for the morphisms, the triples

$$
\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}, \iota \mathcal{F}\right)
$$

with \mathcal{F}_{e} a B_{e}-module of finite type, $\mathcal{F}_{d R}^{+}$a $B_{d R}^{+}$-module of finite type and

$$
\iota_{\mathcal{F}}: B_{d R} \otimes_{B_{e}} \mathcal{F}_{e} \rightarrow B_{d R} \otimes_{B_{d R}^{+}} \mathcal{F}_{d R}^{+}
$$

an isomorphism of $B_{d R^{\prime}}^{+}$-modules form a tensor abelian category. The correspondence

$$
\mathcal{F} \mapsto\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}, \iota_{\mathcal{F}}\right)
$$

just defined induces a tensor equivalence of categories. We use it to identify these two categories.

Then $\mathcal{F}=\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}, \iota_{\mathcal{F}}\right)$ is a vector bundle if and only if \mathcal{F}_{e} is free over B_{e} and $\mathcal{F}_{d R}^{+}$is free over $B_{d R}^{+}$. In this case, to give $\iota_{\mathcal{F}}$ is the same as giving an isomorphism from $\mathcal{F}_{d R}^{+}$onto a $B_{d R}^{+}$-lattice of $B_{d R} \otimes_{B_{e}} \mathcal{F}_{e}$, i.e. a sub- $B_{d R}^{+}$-module of finite type generating $B_{d R} \otimes_{B_{e}} \mathcal{F}_{e}$ as a $B_{d R}$ vector space.

Therefore, we may as well see a vector bundle over X as a pair

$$
\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}\right)
$$

where \mathcal{F}_{e} is a free B_{e}-module of finite rank and $\mathcal{F}_{d R}^{+}$is a $B_{d R}^{+}$-lattice in $\mathcal{F}_{d R}=$ $B_{d R} \otimes_{B_{e}} \mathcal{F}_{e}$.

The cohomology of \mathcal{F} is easy to compute: we have an exact sequence

$$
0 \rightarrow H^{0}(X, \mathcal{F}) \rightarrow \mathcal{F}_{e} \oplus \mathcal{F}_{d R}^{+} \rightarrow \mathcal{F}_{d R} \rightarrow H^{1}(X, \mathcal{F}) \rightarrow 0
$$

where the middle map is $\left(b, b^{\prime}\right) \mapsto b-b^{\prime}$. In the special case of \mathcal{O}_{X}, we have $H^{0}\left(X, \mathcal{O}_{X}\right)=\mathbb{Q}_{p}$ and $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, giving rise to the "fundamental exact sequence of p-adic Hodge theory"

$$
0 \rightarrow \mathbb{Q}_{p} \rightarrow B_{e} \oplus B_{d R}^{+} \rightarrow B_{d R} \rightarrow 0
$$

6.4. G_{K}-equivariant vector bundles. As ∞ is stable under G_{K}, we see that:

- We may identity the abelian tensor category of \mathcal{O}_{X}-representations of G_{K} with the category of triples

$$
\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}, \iota_{\mathcal{F}}\right)
$$

where
i) \mathcal{F}_{e} is a B_{e}-representation of G_{K},
ii) $\mathcal{F}_{d R}^{+}$is a $B_{d R}$-representation of G_{K},
iii)

$$
\iota_{\mathcal{F}}: B_{d R} \otimes_{B_{e}} \mathcal{F}_{e} \rightarrow B_{d R} \otimes_{B_{d R}^{+}} \mathcal{F}_{d R}^{+}
$$

is a $G_{K^{-}}$-equivariant isomorphism of $B_{d R}$ vector spaces.

- We may identify the category of G_{K}-equivariant vector bundles over X to the category of pairs

$$
\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}\right)
$$

where
i) \mathcal{F}_{e} is a B_{e}-representation of G_{K},
ii) $\mathcal{F}_{d R}^{+}$is a G_{K}-stable $B_{d R}^{+}$-lattice in $\mathcal{F}_{d R}=B_{d R} \otimes_{B_{e}} \mathcal{F}_{e}$.

The category of such pairs has already been considered by Berger [Ber08].

Remark. Let \mathcal{F} be an \mathcal{O}_{X}-representation of G_{K}. The fact that ∞ is the only closed point of X whose orbit under G_{K} is finite implies that the torsion of \mathcal{F}, if any, is concentrated at ∞. If \mathcal{F} is a vector bundle, i.e. is torsion free and if \mathcal{G} is a G_{K}-equivariant modification of \mathcal{F} (i.e. \mathcal{F} and \mathcal{G} have the same generic fiber), we have $\mathcal{G}_{e}=\mathcal{F}_{e}$ though $\mathcal{G}_{d R}^{+}$may be any G_{K}-stable $B_{d R}^{+}$-lattice of $\mathcal{F}_{d R}$.
6.5. The hierarchy of \mathcal{O}_{X}-representations. Let $B^{\text {? }}$ be any topological ring equipped with a continuous action of G_{K}. We say that a $B^{\text {? }}$-representation V of G_{K} is trivial if the natural map

$$
B^{?} \otimes_{\left(B^{?}\right)^{G_{K}}} V^{G_{K}} \rightarrow V
$$

is an isomorphism.
We introduce the ring

$$
B_{l c r}=B_{c r}[\log ([\varpi])]
$$

of polynomials in the indeterminate $\log ([\varpi])$ with coefficients in $B_{c r}$.
Consider the continuous maps

$$
\chi: G_{K} \rightarrow \mathbb{Z}_{p}^{*} \text { and } \eta: G_{K} \rightarrow \mathbb{Z}_{p}
$$

such that, for all $g \in \mathcal{G}_{K}$,

$$
g(t)=\chi(g) t \text { and } g(\varpi)=\varpi \varepsilon^{\eta(g)} .
$$

The action of G_{K} on B^{+}extends to $B_{l c r}$ by setting, for all $g \in G_{K}$,

$$
g\left(\frac{1}{t}\right)=\frac{1}{\chi(g) t} \text { and } g(\log ([\varpi])=\log ([\varpi])+\eta(g) t
$$

We say that a B_{e}-representation V is de Rham (resp. log-crystalline, resp. crystalline) if the representation $B_{d R} \otimes_{B_{e}} V$ (resp. $B_{l c r} \otimes_{B_{e}} V$, resp. $B_{c r} \otimes_{B_{e}} V$) is trivial. We say that V is potentially log-crystalline if there is a finite extension L of K contained in \bar{K} such that V, viewed as a B_{e}-representation of $G_{L}=\operatorname{Gal}(\bar{K} / L)$ is log-crystalline.

For any property which makes sense for a B_{e}-representation, we say that a G_{K}-equivariant vector bundle $\mathcal{F}=\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}\right)$over X_{E} satisfies this property if \mathcal{F}_{e} does.

The following result is easy to prove:
Proposition 6.5.1. Let

$$
0 \rightarrow \mathcal{F}^{\prime} \rightarrow \mathcal{F} \rightarrow \mathcal{F}^{\prime \prime} \rightarrow 0
$$

a short exact sequence of B_{e}-representations or of G_{K}-equivariant vector bundles. If \mathcal{F} is de Rham (resp. potentially log-crystalline, resp. log-crystalline, resp. crystalline), so are \mathcal{F}^{\prime} and $\mathcal{F}^{\prime \prime}$.

Therefore we may say that an \mathcal{O}_{X}-representation of G_{K} is de Rham (resp. potentially log-crystalline, resp. log-crystalline, resp. crystalline) if it is isomorphic to a quotient of a G_{K}-equivariant vector bundle which has this property.

It is easy to show (see more details in $\S 6.7$ below) that:

- if \mathcal{F}_{1} and \mathcal{F}_{2} are two \mathcal{O}_{X}-representations of G_{K} having one of those four properties, then any sub- \mathcal{O}_{X}-representation of \mathcal{F}_{1}, any quotient of \mathcal{F}_{1}, the representation $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$ and $\mathcal{L}_{\mathcal{O}_{X}}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ have the same properties,
- we have the implications

$$
\begin{aligned}
\text { crystalline } & \Longrightarrow \text { log-crystalline } \Longrightarrow \text { potentially log-crystalline } \\
& \Longrightarrow \text { de Rham. }
\end{aligned}
$$

It is a deep result (see $\S 7$ below) that, conversely, any de Rham \mathcal{O}_{X}-representation is potentially log-crystalline.
6.6. Log-crystalline B_{e}-representations and (φ, N)-modules. Let $K_{0}=$ Frac $W(k)$. One can show that

$$
\left(B_{l c r}\right)^{G_{K}}=K_{0} .
$$

If V is any B_{e}-representation of G_{K}, we set

$$
\mathcal{D}_{l c r}(V)=\left(B_{l c r} \otimes_{B_{e}} V\right)^{G_{K}} .
$$

This is a K_{0}-vector space and we denote

$$
\alpha_{V}: B_{l c r} \otimes_{K_{0}} \mathcal{D}_{l c r}(V) \rightarrow B_{l c r} \otimes_{B_{e}} V
$$

the $B_{l c r}$-linear map deduced by scalar extension from the inclusion $\mathcal{D}_{l c r}(V) \subset$ $B_{l c r} \otimes_{B_{e}} V$.

By definition V is log-crystalline if and only if α_{V} is bijective. It is not hard to see that α_{V} is injective, that the dimension over K_{0} of $\mathcal{D}_{l c r}(V)$ is \leq the rank of V over B_{e} and that equality holds if and only if α_{V} is bijective (this last statement comes from the fact that any B_{e}-representation of G_{K} of rank one comes, by scalar extension, from a one dimensional p-adic representation of G_{K} and that any non-zero element $b \in B_{l c r}$ such that the \mathbb{Q}_{p}-vector space generated by b is stable under G_{K} is invertible).

The Frobenius φ on B_{+}extends to $B_{l c r}$ by setting

$$
\varphi\left(\frac{1}{t}\right)=\frac{1}{p t} \quad \text { and } \varphi(\log ([\varpi]))=p \log ([\varpi])
$$

One denotes $N: B_{l c r} \rightarrow B_{l c r}$ the unique B^{+}-derivation such that $N(\log ([\varpi]))=$ -1 . We get

$$
N \varphi=p \varphi N
$$

The action of φ and of N commute with the action of G_{K}. On K_{0} we have $N=0$ and the Frobenius φ is the absolute Frobenius, i.e. the unique continuous automorphism inducing $x \mapsto x^{p}$ on the residue field.

A (φ, N)-module over k is a finite dimensional K_{0}-vector space D equipped with two operators

$$
\varphi, N: D \rightrightarrows D
$$

with φ semi-linear with respect to the action of φ on K_{0} and bijective, $N K_{0}$-linear and $N \varphi=p \varphi N$.

With an obvious definition of the morphisms, the (φ, N)-modules over k form an abelian category $\operatorname{Mod}(\varphi, N)_{k}$. It has an obvious structure of a tannakian $\mathbb{Q}_{p^{-}}$ linear category.

Let V be a B_{e}-representation of G_{K}. The free $B_{l c r}$-module $B_{l c r} \otimes_{B_{e}} V$ is equipped with operators φ and N by setting

$$
\varphi(b \otimes v)=\varphi(b) \otimes v \text { and } N(b \otimes v)=N b \otimes v \quad \text { if } b \in B_{l c r} \text { and } v \in V
$$

commuting with the action of G_{K}. Therefore

$$
\mathcal{D}_{l c r}(V)=\left(B_{l c r} \otimes_{B_{e}} V\right)^{G_{K}}
$$

is stable under φ and N and becomes a (φ, N)-module over k.
If D is a (φ, N)-module over k, then G_{K}, φ and N act on $B_{l c r} \otimes_{K_{0}} D$ via

$$
\begin{aligned}
g(b \otimes x) & =g(b) \otimes x, \varphi(b \otimes x)=\varphi(b) \otimes \varphi(x) N(b \otimes x) \\
& =N b \otimes x+b \otimes N x \text { for } g \in G_{K}, b \in B_{l c r}, x \in D .
\end{aligned}
$$

It is easy to see that the B_{e}-module

$$
\mathcal{V}_{l c r}(D)=\left\{v \in B_{l c r} \otimes_{K_{0}} D \mid \varphi_{E}(v)=v \text { and } N v=0\right\}
$$

is free of rank equal to the dimension of D over K_{0}, hence is a B_{e}-representation of G_{K}.

Let $\operatorname{Rep}_{B_{e}, l c r}\left(G_{K}\right)$ be the full sub-category of the category $\operatorname{Rep}_{B_{e}}\left(G_{K}\right)$ of B_{e}-representations of G_{K} whose objects are the representations which are logcrystalline. The proof of the following statement is straightforward and formal:

Theorem 6.1. For any (φ, N)-module D over k, the B_{e}-representation $\mathcal{V}_{l c r}(D)$ of G_{K} is log-crystalline. The functor

$$
\mathcal{V}_{l c r}: \operatorname{Mod}(\varphi, N)_{k} \rightarrow \operatorname{Rep}_{B_{e}, l c r}\left(G_{K}\right)
$$

is an equivalence of categories and the functor

$$
V \mapsto \mathcal{D}_{l c r}(V)
$$

is a quasi-inverse.
Remarks. (1) It is easy to see that a B_{e}-representation V of G_{K} is crystalline if and only if it is log-crystalline and $N=0$ on $\mathcal{D}_{l c r}(V)$.
(2) The relation $N \varphi=p \varphi N$ implies that N is nilpotent on any object of $\operatorname{Mod}(\varphi, N)_{k}$ and that the kernel of N is a sub-object.

In particular, the semi-simplification of a log-crystalline B_{e}-representation of G_{K} is a crystalline B_{e}-representation of G_{K}. If k is algebraically closed, the full sub-category $\operatorname{Mod}(\varphi)_{k}$ of $\operatorname{Mod}(\varphi, N)_{k}$ whose objects are those on which $N=0$ is semi-simple ([Man63], §2). Therefore a B_{e}-representation of G_{K} is crystalline if and only if it is log-crystalline and semi-simple.
(3) The category $\operatorname{Rep}_{B_{e}, l c r}\left(G_{K}\right)$ is a tannakian subcategory of $\operatorname{Rep}_{B_{e}}\left(G_{K}\right)$, i.e. it is stable under taking sub-objects, quotients, direct sums, tensor products, internal hom and contains the unit representation B_{e}. The functor $\mathcal{V}_{\text {lcr }}$ is an equivalence of tannakian categories.

Let $I_{K} \subset G_{K}$ the inertia subgroup. We have $C^{I_{K}}=\widehat{K}_{n r}$, the p-adic completion of the maximal unramified extension of K contained in \bar{K}. The algebraic closure of $\widehat{K}_{n r}$ in C is a dense subfield of C and I_{K} can be identified with the Galois group of this algebraic closure over $\widehat{K}_{n r}$.

If V is any B_{e}-representation of G_{K}, denote by $\operatorname{Res}_{I_{K}}(V)$ the B_{e}-representation of I_{K} which is V with the action of I_{K} deduced from the inclusion of I_{K} into G_{K}.

If \bar{k} is the residue field of $\widehat{K}_{n r}$, and $G_{k}=\operatorname{Gal}(\bar{k} / k)=G_{K} / I_{K}$, we have

$$
\mathcal{D}_{l c r}(V)=\left(\mathcal{D}_{l c r}\left(\operatorname{Res}_{I_{K}}(V)\right)\right)^{G_{k}} .
$$

From the fact that, if $\widehat{K}_{0, n r}$ is the fraction field of $W(\bar{k})$ and D is a finite dimensional $\widehat{K}_{0, n r}$ vector space equipped with a semi-linear and continuous action of G_{k}, the natural map

$$
\widehat{K}_{0, n r} \otimes_{K_{0}} D^{G_{k}} \rightarrow D
$$

is an isomorphism, we deduce:
Proposition 6.6.1. Let V be a B_{e}-representation of G_{K}. Then V is logcrystalline if and only if $\operatorname{Res}_{I_{K}}(V)$ is log-crystalline.
6.7. Log-crystalline vector bundles and filtered (φ, N)-modules. As B^{+}is separated for the ker θ-adic topology, we may view B^{+}as a subring of $B_{d R}^{+}$ and $B_{c r}=B^{+}[1 / t]$ as a sub B_{e}-algebra of $B_{d R}=B_{d R}^{+}[1 / t]$.

Extending the p-adic $\operatorname{logarithm}$ by deciding that $\log (p)=0$, one can identify $B_{l c r}$ with a sub- $B_{c r}$-algebra of $B_{d R}$ by setting

$$
\log ([\varpi])=\log ([\varpi] / p)=-\sum_{n=1}^{+\infty} \frac{(p-[\varpi])^{n}}{n p^{n}}
$$

If $\mathcal{F}=\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}\right)$is a G_{K}-equivariant vector bundle over X, and if $\mathcal{F}_{d R}=$ $B_{d R} \otimes_{B_{e}} \mathcal{F}_{e}=B_{d R} \otimes_{B_{d R}^{+}} \mathcal{F}_{d R}^{+}$, we set

$$
\mathcal{D}_{l c r}(\mathcal{F})=\mathcal{D}_{l c r}\left(\mathcal{F}^{e}\right)=\left(B_{l c r} \otimes_{B_{e}} \mathcal{F}^{e}\right)^{G_{K}} \text { and } \mathcal{D}_{d R}(\mathcal{F})=\left(\mathcal{F}_{d R}\right)^{G_{K}}
$$

If \mathcal{F} is of rank r, then:
i) $\mathcal{D}_{\text {lcr }}(\mathcal{F})$ is a (φ, N)-module over K_{0} whose dimension over K_{0} is $\leq r$ with equality if and only if \mathcal{F} is log-crystalline.
ii) The natural map

$$
B_{d R} \otimes_{K} D_{d R}(\mathcal{F}) \rightarrow \mathcal{F}_{d R}
$$

is always injective, therefore the K-vector space $D_{d R}(\mathcal{F})$ is of dimension $\leq r$ with equality if and only if \mathcal{F} is de Rham.

We see also that $\mathcal{D}_{d R}(\mathcal{F})$ is a filtered K-vector space, i.e. a finite dimensional K-vector space Δ equipped with a decreasing filtration, indexed by \mathbb{Z}, by sub K vector spaces

$$
\ldots \supset F^{i-1} \Delta \supset F^{i} \Delta \supset F^{i+1} \Delta \supset \ldots
$$

such that $F^{i} \Delta=0$ for $i \gg 0$ and $=\Delta$ for $i \ll 0$: The filtration is defined by

$$
F^{i} \mathcal{D}_{d R}(\mathcal{F})=\left(F^{i} B_{d R} \otimes_{B_{d R}^{+}} \mathcal{F}_{d R}^{+}\right)^{G_{K}}
$$

where $F^{i} B_{d R}=B_{d R}^{+} t^{i}$ is the fractional ideal of the discrete valuation ring $B_{d R}^{+}$ which is the $i^{t h}$ power of its maximal ideal.

The inclusion $K \otimes_{K_{0}} B_{l c r} \rightarrow B_{d R}$ induces an injective map

$$
K \otimes_{K_{0}} \mathcal{D}_{l c r}(\mathcal{F}) \rightarrow \mathcal{D}_{d R}(\mathcal{V})
$$

For dimension reasons, if \mathcal{F} is log-crystalline, this map is an isomorphism, \mathcal{F} is de Rham and the pair $\mathcal{D}_{l c r, K}(\mathcal{F})$ consisting of $\mathcal{D}_{l c r}(\mathcal{F})$ and the filtration on $K \otimes_{K_{0}} \mathcal{D}_{l c r}(\mathcal{F})$ induced by this isomorphism is a filtered (φ, N)-module over K (cf. [Fon94b]), i.e. it is a finite dimensional K_{0}-vector space D, equipped with operators φ, N giving to D the structure of a (φ, N)-module over k, plus a filtration F (i.e. a structure of filtered K vector space) on the K vector space $D_{K}=K \otimes_{K_{0}} D$.

A morphism of filtered (φ, N)-modules over K

$$
f:(D, F) \rightarrow\left(D^{\prime}, F\right)
$$

is a K_{0}-linear map commuting with φ and N and such that, if $f_{K}: D_{K} \rightarrow D_{K}^{\prime}$ is the K-linear map deduced from f by scalar extension, then $f_{K}\left(F^{i} D_{K}\right) \subset F^{i} D_{K}^{\prime}$ for all $i \in \mathbb{Z}$.

The category $\operatorname{MF}_{K}(\varphi, N)$ of filtered (φ, N)-modules over K is an additive $\mathbb{Q}_{p^{-}}$ linear category.

If there is no risk of confusion on the filtration, we write $D=(D, F)$ for any object (D, F) of $\mathrm{MF}_{K}(\varphi, N)$. The following result is now obvious:

Theorem 6.2. The functor

$$
\mathcal{D}_{l c r, K}:\left\{\text { log-cryst. } G_{K} \text {-equiv. vector bundles over } X\right\} \rightarrow \operatorname{MF}_{K}(\varphi, N)
$$

is an equivalence of categories. A quasi-inverse is given by the functor $\mathcal{F}_{\text {lcr }}$ defined by

$$
\mathcal{F}_{l c r, K}(D)=\left(\mathcal{V}_{l c r}(D), F^{0}\left(B_{d R} \otimes_{K} D_{K}\right)\right)
$$

where $\mathcal{V}_{\text {lcr }}(D)$ is the B_{e}-representation of G_{K} associated to the (φ, N)-module over k underlying D and

$$
\left.F^{0}\left(B_{d R} \otimes_{K} D_{K}\right)\right)=\sum_{i \in \mathbb{Z}} F^{i} B_{d R} \otimes_{K} F^{-i} D_{K} \subset B_{d R} \otimes_{K} D_{K}=B_{d R} \otimes_{B_{e}} \mathcal{V}_{l c r}(D)
$$

Remarks. (1) We say that a sequence of morphisms of log-crystalline $G_{K^{-}}$ equivariant vector bundles over X is exact if the underlying sequence of \mathcal{O}_{X}-modules is exact. Similarly we say that a sequence of morphisms

$$
\ldots \rightarrow\left(D^{\prime}, F\right) \rightarrow(D, F) \rightarrow\left(D^{\prime \prime}, F\right) \rightarrow \ldots
$$

of $\operatorname{MF}_{K}(\varphi, N)$ is exact if, for any $i \in \mathbb{Z}$, the induced sequence of K-vector spaces

$$
\ldots F^{i} D_{K}^{\prime} \rightarrow F^{i} D_{K} \rightarrow F^{i} D_{K}^{\prime \prime} \ldots
$$

is exact.
With these definitions (or rather with the restriction of this definition to short exact sequences) these two categories are exact categories ([Qui73], §2). The functors $\mathcal{D}_{l c r, K}$ and $\mathcal{F}_{l c r, K}$ turn exact sequences into exact sequences.
(2) The category of G_{K}-equivariant vector bundles over X and the category $\mathrm{MF}_{K}(\varphi, N)$ both have a natural structure of a \mathbb{Q}_{p}-linear tensor category ([Fon94b], $\S 4.3 .4$, for the later). The functors $\mathcal{F}_{l c r, K}$ and $\mathcal{V}_{l c r, K}$ are tensor functors.
(3) Let \mathcal{F} be a log-crystalline G_{K}-equivariant vector bundle over X and let $D=\mathcal{D}_{l c r}(V)$. If \mathcal{G} is a G_{K}-equivariant modification of \mathcal{F}, then \mathcal{G} is still \log crystalline and $\mathcal{D}_{l c r}(\mathcal{G})=D$. Therefore, to give such a modification is the same as changing the filtration on D_{K}.
(4) We have a functor $D \rightarrow\left(D, F_{\text {triv }}\right)$ from the category of (φ, N)-modules over k to $\mathrm{MF}_{K}(\varphi, N)$ consisting of adding to a (φ, N)-module D the trivial filtration on D_{K} (i.e. $F_{t r i v}^{i} D_{K}=D_{K}$ if $i \leq 0$ and 0 if $i>0$).
(5) Let D be a (φ, N)-module over k, and choose a basis $e_{1}, e_{2}, \ldots, e_{r}$ of D over K_{0}. If we set $\varphi\left(e_{j}\right)=\sum_{i=1}^{r} a_{i j} e_{i}$, the p-adic valuation of the determinant of the matrix of the $a_{i j}$ is independent of the choice of the basis and is denoted $t_{N}(D)$. It is easy to see that

$$
\operatorname{rank} \mathcal{V}_{l c r, K}\left(D, F_{t r i v}\right)=\operatorname{dim}_{K_{0}} D \text { and } \operatorname{deg} \mathcal{V}_{l c r, K}\left(D, F_{\text {triv }}\right)=-t_{N}(D)
$$

If now F is a filtration on D, so that $\mathcal{V}_{l c r, K}(D, F)$ is a modification of $\mathcal{V}_{l c r, K}\left(D, F_{\text {triv }}\right)$, it's easily to see that, if $t_{H}(D, F)=\sum_{i \in \mathbb{Z}} i \cdot \operatorname{dim}_{K}\left(F^{i} D_{K} / F^{i+1} D_{K}\right)$, then

$$
\begin{aligned}
& \operatorname{rank} \mathcal{V}_{l c r, K}(D, F)=\operatorname{rank} \mathcal{V}_{l c r, K}\left(D, F_{\text {triv }}\right) \\
& \text { and } \operatorname{deg} \mathcal{V}_{l c r}(D, F)=\operatorname{deg} \mathcal{V}_{l c r, K}\left(D, F_{\text {triv }}\right)+t_{H}(D, F) .
\end{aligned}
$$

This remark suggests to define the rank, the degree and the slope of a non-zero filtered (φ, N)-module (D, F) over K by

$$
\begin{aligned}
\operatorname{rank}(D, F) & =\operatorname{dim}_{K_{0}} D, \operatorname{deg}(D, F)=t_{H}(D, F)-t_{N}(D) \text { and } \mu(D, F) \\
& =\frac{\operatorname{deg}(D, F)}{\operatorname{rank}(D, F)}
\end{aligned}
$$

Let $f:\left(D^{\prime}, F\right) \rightarrow(D, F)$ a morphism of $\operatorname{MF}_{K}(\varphi, N)$, with $f_{K}: D_{K}^{\prime} \rightarrow D_{K}$ the underlying K-linear map. We say that f is strict if it is strictly compatible to the filtrations, i.e. if $f_{K}\left(F^{i} D_{K}^{\prime}\right)=F^{i} D_{K} \cap f_{K}\left(D_{K}^{\prime}\right)$ for all $i \in \mathbb{Z}$. If f_{K} is injiective, it is equivalent to saying that f fits into a short exact sequence of $\operatorname{MF}_{K}(\varphi, N)$

$$
0 \rightarrow\left(D^{\prime}, F\right) \rightarrow(D, F) \rightarrow\left(D^{\prime \prime}, F\right) \rightarrow 0
$$

A sub-object $\left(D^{\prime}, F\right)$ of a filtered (φ, N)-module (D, F) is a morphism $\left(D^{\prime}, F\right) \rightarrow$ (D, F) such that the (φ, N)-module D^{\prime} is a sub-object of D.

The strict sub-objects of an object (D, F) correspond bijectively to the subobjects of the underlying (φ, N)-module via the map

$$
D^{\prime} \mapsto\left(D^{\prime}, F\right) \text { with } F^{i} D_{K}^{\prime}=F^{i} D_{K} \cap D_{K}^{\prime} \text { for all } i \in \mathbb{Z}
$$

If $\left(D^{\prime}, F\right)$ is such a sub-object, the quotient $(D, F) /\left(D^{\prime}, F\right)$ is the cokernel of $\left(D^{\prime}, F\right) \rightarrow(D, F)$.

We say that a filtered (φ, N)-module (D, F) is semistable if, for any non-zero sub-object $\left(D^{\prime}, F\right)$ of (D, F), we have $\mu\left(D^{\prime}, F\right) \leq \mu(D, F)$. It is enough to check it for strict sub-objects.

The following assertion is entirely formal:
Proposition 6.7.1. i) For any non-zero filtered (φ, N)-module D over K, there is a unique filtration (called the Harder-Narasimhan filtration) by strict sub-objects

$$
0=D_{0} \subset D_{1} \subset \ldots \subset D_{i-1} \subset D_{i} \subset \ldots \subset D_{m-1} \subset D_{m}=D
$$

with each D_{i} / D_{i-1} non-zero and semistable such that

$$
\mu\left(D_{1} / D_{0}\right)>\mu\left(D_{2} / D_{1}\right)>\ldots>\mu\left(D_{m} / D_{m-1}\right)
$$

ii) The functors $\mathcal{D}_{l c r, K}$ and $\mathcal{V}_{l c r, K}$ respect the rank, the degree, the slope and the Harder-Narasimhan filtration.
6.8. p-adic Hodge theory. The corollary 4.4.1 implies that we have an equivalence of tannakian categories between p-adic representations (i.e. $\mathbb{Q}_{p^{-}}$ representations) of G_{K} and G_{K}-equivariant vector bundles over X which are semistable of slope 0 :

$$
\begin{aligned}
& V \rightarrow \mathcal{F}(V)=\mathcal{O}_{X} \otimes_{\mathbb{Q}_{p}} V=\left(B_{e} \otimes_{\mathbb{Q}_{p}} V, B_{d R}^{+} \otimes_{\mathbb{Q}_{p}} V\right) \\
& \quad\left(\text { with } \mathcal{F} \mapsto V(\mathcal{F})=H^{0}(X, \mathcal{F}) \text { as a quasi-inverse }\right) .
\end{aligned}
$$

We say that V is de Rham (resp. potentially log-crystalline, resp. log-crystalline, resp. crystalline if $\mathcal{F}(V)$ has this property.

Classically one introduces [Fon94a] the ring

$$
B_{s t}=B_{\text {cris }}[\log [\varpi]] .
$$

If V is a p-adic representation of G_{K}, one says that V is de Rham (resp. crystalline, resp. semistable, resp. potentially semistable) if $B_{d R} \otimes_{\mathbb{Q}_{p}} V$ is trivial (resp. $B_{\text {cris }} \otimes_{\mathbb{Q}_{p}} V$ is trivial, resp. $B_{s t} \otimes_{\mathbb{Q}_{p}} V$ is trivial, resp. there is a finite extension L of K contained in \bar{K} such that V is semistable as a p-adic representation of G_{L}).

The origin of this terminology lies in the facts that, if Z is any proper and smooth variety over $K, i \in \mathbb{N}$ and $V=H_{e t t}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right)$, then ([Fa89], [Ts99], [Ni08])

- the p-adic representation V is de Rham and the filtered K-vector space $D_{d R}(V)=\mathcal{D}_{d R}(\mathcal{F}(V))$ can be identified with

$$
H_{d R}^{i}(Z)=\mathbb{H}^{i}\left(Z, \Omega_{Z / K}^{\bullet}\right)
$$

equipped with the Hodge filtration,

- if there exists \mathcal{Z} over \mathcal{O}_{K} proper and smooth such that

$$
\text { Spec } K \times_{\text {Spec }} \mathcal{O}_{K} \mathcal{Z}=Z,
$$

then V is crystalline and $D_{\text {cris }}(V)=\mathcal{D}_{\text {lcr }}(\mathcal{F}(V))$ is the $i^{\text {th }}$-crystalline cohomology group of the special fiber of \mathcal{Z} (equality respecting the Frobenius and compatible with the filtration via the de Rham comparison isomorphism),

- if there exists \mathcal{Z} over \mathcal{O}_{K} proper and semistable such that

$$
\text { Spec } K \times_{\text {Spec }} \mathcal{O}_{K} \mathcal{Z}=Z,
$$

then V is semistable and $D_{s t}(V)=\mathcal{D}_{l c r}(\mathcal{F}(V))$ is the $i^{\text {th }}$-log-crystalline cohomology group of the \log special fiber of \mathbb{Z} (equality respecting φ and N and compatible with the filtration via the de Rham comparison isomorphism).

It is easy to check that

- the definition given in $\S 6.5$ of a de Rham and of a crystalline p-adic representation agrees with the classical definition,
- a p-adic representation V is log-crystalline (resp. potentially log-crystalline) if and only if it is semistable (resp. potentially semistable).

We made this change of terminology to avoid confusion between the two notion of semistability (semistable model of a variety and semistable vector bundle).

As a corollary of the proposition 6.7.1, denoting $\operatorname{Rep}_{\mathbb{Q}_{p}, l c r}\left(G_{K}\right)$ the full subcategory of the category $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K}\right)$ of p-adic representations of G_{K} whose objects are the log-crystalline ones and $\operatorname{MF}_{K}^{0}(\varphi, N)$ the full sub-category of $\mathrm{MF}_{K}(\varphi, N)$ whose objects are those which are semistable of slope 0 , we get:

Theorem 6.3. For any p-adic log-crystalline representation of G_{K},

$$
D_{l c r, K}(V)=\mathcal{D}_{l c r, K}\left(\mathcal{O}_{X} \otimes V\right)
$$

is a filtered (φ, N)-module over K which is semistable of slope 0 .
The category $\operatorname{Rep}_{\mathbb{Q}_{p}, l c r}\left(G_{K}\right)$ is a tannakian subcategory of $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K}\right)$ and

$$
D_{l c r, K}: \operatorname{Rep}_{\mathbb{Q}_{p}, l c r}\left(G_{K}\right) \rightarrow \operatorname{MF}_{K}^{0}(\varphi, N)
$$

is an equivalence of tensor categories. The functor

$$
V_{l c r, K}: \operatorname{MF}_{K}^{0}(\varphi, N) \rightarrow \operatorname{Rep}_{\mathbb{Q}_{p}, l c r}\left(G_{K}\right),
$$

defined by

$$
V_{l c r, K}(D)=\Gamma\left(X, \mathcal{V}_{l c r, K}(D)\right)
$$

is a quasi-inverse.
This important result of p-adic Hodge theory was first proved in [CF00] where a filtered (φ, N)-module over K is said to be weakly admissible whenever it is semistable of slope 0 .

7. de Rham $=$ potentially log-crystalline

To finish, we explain the main lines of the proof of:
Theorem 7.1. Any p-adic representation of G_{K}, any B_{e}-representation of G_{K} or any G_{K}-equivariant vector bundle over X is de Rham if and only if it is potentially log-crystalline.

The case of p-adic representations is another important result of p-adic Hodge theory. The first proof was given by Berger [Ber02] relying on Crew's conjecture first proved by André [An02] and Mebkhout [Meb02].

We know that the condition of the theorem is sufficient and it is obviously enough to show that, if \mathcal{V} is a B_{e}-representation of G_{K} which is de Rham, then \mathcal{V} is potentially log-crystalline.

We first reduce the proof to the case where k is algebraically closed: Let $\widehat{K}_{n r} \subset C$ the p-adic closure of the maximal unramified extension $K_{n r}$ of K contained in \bar{K}. Let $\overline{\widehat{K}}_{n r}$ the algebraic closure of $\widehat{K}_{n r}$. Then $\overline{\widehat{K}}_{n r}$ is stable under the action of the inertia subgroup I_{K} of G_{K}. This gives an identification of I_{K} to the Galois $\operatorname{group} \operatorname{Gal}\left(\overline{\widehat{K}}_{n r} / \widehat{K}_{n r}\right)$.

Proposition 7.2. Let \mathcal{V} be a B_{e}-representation of G_{K}. Then \mathcal{V} is logcrystalline if and only if \mathcal{V} is log-crystalline as a representation of $I_{K}=\operatorname{Gal}\left(\widehat{\widehat{K}}_{n r} / \widehat{K}_{n r}\right)$.

Let \bar{k} be the residue field of $\widehat{K}_{n r}$ and $\widehat{K}_{0, n r}$ the fraction field of $W(\bar{k})$. The $\operatorname{group} \operatorname{Gal}(\bar{k} / k)=G_{K} / I_{K}$ acts semi-linearly on the finite dimensional $\widehat{K}_{0, n r}$ vector space

$$
\mathcal{D}_{l c r, n r}(\mathcal{V})=\left(B_{l c r} \otimes_{B_{e}} \mathcal{V}\right)^{I_{K}}
$$

and we have

$$
\mathcal{D}_{l c r}(\mathcal{V})=\left(D_{l c r, n r}(\mathcal{V})\right)^{G_{k}}
$$

It is well known that, if n is any positive integer, the pointed set $H_{\text {cont }}^{1}\left(G_{k}, G L_{n}\left(\widehat{K}_{0, n r}\right)\right)$ is trivial. This implies that the natural map

$$
\widehat{K}_{0, n r} \otimes_{K_{0}} \mathcal{D}_{l c r}(\mathcal{V}) \rightarrow \mathcal{D}_{l c r, n r}(\mathcal{V})
$$

is an isomorphism. Therefore $\operatorname{dim}_{K_{0}} \mathcal{D}_{l c r}(\mathcal{V})=\operatorname{dim}_{\widehat{K}_{0, n r}} \mathcal{D}_{l c r, n r}(\mathcal{V})$.
If r is the rank of \mathcal{V} over B_{e}, then \mathcal{V} is log-crystalline as a B_{e}-representation of $G_{K}\left(\right.$ resp. $\left.I_{K}\right)$ if and only if $\operatorname{dim}_{K_{0}} \mathcal{D}_{l c r}(\mathcal{V})=r\left(\right.$ resp. $\left.\operatorname{dim}_{\widehat{K}_{0, n r}} \mathcal{D}_{l c r, n r}(\mathcal{V})=r\right)$. The proposition follows.

From now on, we assume k algebraically closed.

Let E be a finite extension of \mathbb{Q}_{p} and $\tau: E \rightarrow K$ a \mathbb{Q}_{p}-embedding. We choose a uniformizing parameter π of E. For $d \in \mathbb{N}$, we consider the 1-dimensional E representations of G_{K}

$$
E\{d\}_{\tau}=\operatorname{Symm}_{E}^{d} V_{C}\left(\Phi_{\pi}\right) \text { and } E\{-d\}_{\tau}=\text { the } E \text {-dual of } E\{d\}_{\tau}
$$

where $V_{C}\left(\Phi_{\pi}\right)$ is the 1-dimensional representation associated to the Lubin-Tate formal group Φ_{π} (§4.2). If we use τ to see E as a closed subfield of C, then $V_{C}\left(\Phi_{\pi}\right)=E \otimes T_{\pi}\left(\Phi_{\pi}\right)$ where

$$
T_{\pi}\left(\Phi_{\pi}\right)=\underset{n \in \mathbb{N}}{\lim _{n}} \Phi_{\pi}\left(\mathcal{O}_{C}\right)_{\pi^{n}}
$$

is the Tate module of Φ_{π}.
We say that a E-representation V of G_{K} is τ-ordinary if there is a decreasing filtration $\left(F_{\tau}^{d} V\right)_{d \in \mathbb{Z}}$ of V by sub- E-vector spaces stable under G_{K} such that $F^{d} V_{\tau}=V$ for $d \ll 0, F_{\tau}^{d} V=0$ for $d \gg 0$, each $F_{\tau}^{d} V$ is stable under G_{K} and G_{K} acts trivially on $\left(F_{\tau}^{d} V / F_{\tau}^{d+1} V\right) \otimes_{E} E\{-d\}_{\tau}$.

If π^{\prime} is an other uniformizing parameter of E, then $V_{C}\left(\Phi_{\pi}^{\prime}\right)$ and $V_{C}\left(\Phi_{\pi}\right)$ are isomorphic. Therefore, the condition of being τ-ordinary is independent of the choice of π.

The theorem follows from these three propositions:
Proposition 7.3. Any B_{e}-representation \mathcal{V} of G_{K} which is potentially de Rham (i.e. de Rham as a representation of G_{L} for a suitably chosen finite extension L of K contained in \bar{K}) is de Rham.

Proposition 7.4. Let $\tau: E \rightarrow \mathcal{K}$ be a \mathbb{Q}_{p}-embedding of a finite extension E of \mathbb{Q}_{p} into K. Any E-representation of G_{K} which is τ-ordinary is log-crystalline.

Proposition 7.5. Let \mathcal{V} be a B_{e}-representation of G_{K} which is de Rham. There exists an integer $h_{\mathcal{V}} \geq 1$ such that, for any finite extension E of \mathbb{Q}_{p} of degree divisible by $h_{\mathcal{V}}$ and any embedding $\tau: E \rightarrow \bar{K}$, one can find

1) a finite extension L of K contained in \bar{K} and containing $\tau(E)$,
2) a τ-ordinary E-representation V of $G_{L}=\operatorname{Gal}(\bar{K} / L)$,
3) a G_{L}-equivariant $B_{e} \otimes_{\mathbb{Q}_{p}}$ E-linear bijection

$$
B_{e} \otimes_{\mathbb{Q}_{p}} V \simeq E \otimes_{\mathbb{Q}_{p}} \mathcal{V}
$$

The field \bar{K} is naturally embedded into $B_{d R}$ and the proposition 7.3 becomes a formal consequence of the fact that, for any positive integer n, the pointed set $H^{1}\left(G_{K}, G L_{n}(\bar{K})\right)$ is trivial.

The proof of the proposition 7.4 relies on some hard computation in Galois cohomology which can be done using the techniques of Herr [He98] to compute Galois cohomology by the way of the theory of (ϕ, Γ)-modules [Fon90]. This computation has been done by Berger showing a much more general result : any extension of two semi-stable E-representations which is de Rham is semistable (unpublished, see also [Ber02], §6).

The proof of the proposition 7.5 runs as follows:
Say that a $G_{K^{-}}$-equivariant vector bundle $\mathcal{F}=\left(\mathcal{F}_{e}, \mathcal{F}_{d R}^{+}\right)$is trivial at ∞ if it is de Rham and $\mathcal{F}_{d R}^{+}=B_{d R}^{+} \otimes_{K} \mathcal{D}_{d R}(\mathcal{F})$.

To any B_{e}-representation \mathcal{W} of G_{K} which is de Rham, setting $\mathcal{D}_{d R}(\mathcal{W})=$ $\left(B_{d R} \otimes_{B_{e}} \mathcal{W}\right)^{G_{K}}$, one can associate to \mathcal{W} the G_{K}-equivariant vector bundle

$$
\widetilde{\mathcal{W}}=\left(\mathcal{W}, B_{d R}^{+} \otimes_{K} \mathcal{D}_{d R}(\mathcal{W})\right)
$$

which is trivial at ∞. The correspondence $\mathcal{W} \mapsto \widetilde{\mathcal{W}}$ is a functor inducing a tensor equivalence between the category of de Rham $B_{e^{-}}$-representations of G_{K} and $G_{K^{-}}$ equivariant vector bundles over X which are trivial at ∞.

If \mathcal{F} is any de Rham G_{K}-equivariant vector bundle over X, then $\widetilde{\mathcal{F}}_{e}$ is a modification of \mathcal{F} and \mathcal{F} is trivial at ∞ if and only if $\widetilde{\mathcal{F}}_{e}=\mathcal{F}$.

Let

$$
0=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots \subset \mathcal{F}_{i-1} \subset \mathcal{F}_{i} \subset \ldots \subset \mathcal{F}_{m-1} \subset \mathcal{F}_{m}=\widetilde{\mathcal{V}}
$$

be the Harder-Narasimhan filtration of $\widetilde{\mathcal{V}}$. By unicity of this filtration, each \mathcal{F}_{i} is stable under G_{K}. Setting $\mathcal{V}_{i}=\left(\mathcal{F}_{i}\right)_{e}$, we get a decreasing filtration

$$
0=\mathcal{V}_{0} \subset \mathcal{V}_{1} \subset \ldots \subset \mathcal{V}_{i-1} \subset \mathcal{V}_{i} \subset \ldots \subset \mathcal{V}_{m-1} \subset \mathcal{V}_{m}=\mathcal{V}
$$

by sub- B_{e}-representations of G_{K}. For $1 \leq i \leq m, \mathcal{F}_{i}$ and $\overline{\mathcal{F}}_{i}=\mathcal{F}_{i} / \mathcal{F}_{i-1}$ are trivial at ∞ (we have $\mathcal{F}_{i}=\widetilde{\mathcal{V}}_{i}$ and $\overline{\mathcal{F}}_{i}=\widetilde{\overline{\mathcal{V}}}_{i}$, where $\overline{\mathcal{V}}_{i}=\mathcal{V}_{i} / \mathcal{V}_{i-1}$).

Let μ_{i} be the slope of the semistable vector bundle $\overline{\mathcal{F}}_{i}$ and let $h_{\mathcal{V}}$ be the smallest positive integer such that

$$
h_{\mathcal{V}} \cdot \mu_{i} \in \mathbb{Z} \text { for } 1 \leq i \leq m
$$

Let E be a finite extension of \mathbb{Q}_{p} of degree h divisible by $h_{\mathcal{V}}, \tau$ a \mathbb{Q}_{p}-embedding of E into \bar{K} and K^{\prime} a finite extension of K contained in \bar{K} and containing $\tau(E)$. The curve $X_{E}=X_{F, E}$ is a cyclic étale cover of X of degree h equipped with an action of $G_{K^{\prime}}$ and the natural morphism $\nu: X_{E} \rightarrow X$ is $G_{K^{\prime}}$-equivariant.

Choose a uniformizing parameter π of E. For each $d \in \mathbb{Z}$, the line bundle $\mathcal{O}_{X_{E}}(d)_{\pi}$ is equipped with an action of $G_{K^{\prime}}$ and

$$
\mathcal{O}_{X}(d / h)_{\pi}=\nu_{*} \mathcal{O}_{X_{E}}(d)_{\pi}
$$

is a $G_{K^{\prime}}$-equivariant vector bundle over X which is semistable of slope d / h. For $1 \leq i \leq m$, the $G_{K^{\prime}}$-equivariant vector bundle

$$
\mathcal{G}_{i}=\operatorname{Hom}\left(\mathcal{O}_{X}\left(\mu_{i}\right)_{\pi}, \overline{\mathcal{F}}_{i}\right)
$$

is semistable of slope 0 , hence $W_{i}=H^{0}\left(X, \mathcal{G}_{i}\right)$ is a p-adic representation of $G_{K^{\prime}}$ and $\mathcal{G}_{i}=\mathcal{O}_{X} \otimes_{\mathbb{Q}_{p}} W_{i}$.

On the other hand, $\mathcal{G}_{i}=\widetilde{\mathcal{W}}_{i}$ where \mathcal{W}_{i} is the de Rham B_{e}-representation of $G_{K^{\prime}}$

$$
\mathcal{W}_{i}=\mathcal{L}_{B_{e}}\left(\Gamma\left(X_{e}, \mathcal{O}_{X}\left(\mu_{i}\right)_{\pi}\right), \mathcal{V}_{i}\right),
$$

hence \mathcal{G}_{i} is trivial at ∞. Therefore, the natural map

$$
B_{d R}^{+} \otimes_{K}\left(B_{d R} \otimes_{\mathbb{Q}_{p}} W_{i}\right)^{G_{K^{\prime}}} \rightarrow B_{d R}^{+} \otimes_{\mathbb{Q}_{p}} W_{i}
$$

is an isomorphism. A fortiori, the natural map

$$
\left.C \otimes_{K}\left(C \otimes_{\mathbb{Q}_{p}} W_{i}\right)^{G_{K^{\prime}}}\right) \rightarrow C \otimes_{\mathbb{Q}_{p}} W_{i}
$$

is an isomorphism (i.e. the p-adic representation W_{i} of $G_{K^{\prime}}$ is Hodge-Tate, with all its Hodge-Tate weights equal to 0). A deep result of Sen [Sen73] implies that $G_{K^{\prime}}$ acts on W_{i} through a finite quotient. Therefore, one can find a finite extension L of K^{\prime} contained in \bar{K} such that G_{L} acts trivially on each W_{i}. One easily checks
that it implies the existence of a positive integer r_{i} and of an isomorphism of $G_{L^{-}}$ equivariant vector bundles

$$
f_{i}:\left(\mathcal{O}_{X}\left(\mu_{i}\right)_{\pi}\right)^{r_{i}} \rightarrow E \otimes \otimes_{\mathbb{Q}_{p}} \overline{\mathcal{F}}_{i} .
$$

For all $d \in \mathbb{Z}$, there is a canonical isomorphism

$$
\left(\mathcal{O}_{X}(d / h)_{\pi}\right)_{e} \simeq B_{e} \otimes_{\mathbb{Q}_{p}} E\{d\}_{\pi}
$$

and therefore, for $1 \leq i \leq m$, if $\mu_{i}=d_{i} / h$, we get a G_{L}-equivariant $B_{e} \otimes_{\mathbb{Q}_{p}}$-linear bijection

$$
B_{e} \otimes_{\mathbb{Q}_{p}}\left(E\left\{d_{i}\right\}\right)^{r_{i}} \simeq E \otimes_{\mathbb{Q}_{p}} \overline{\mathcal{V}}_{i}
$$

In particular, this concludes the proof when $m=1$. Assume $m \geq 2$. By induction, we may assume there is a τ-ordinary representation V^{\prime} of G_{L} and a G_{L}-equivariant $B_{e} \otimes_{\mathbb{Q}_{p}}$-linear bijection

$$
B_{e} \otimes_{\mathbb{Q}_{p}} V^{\prime} \simeq E \otimes_{\mathbb{Q}_{p}} \mathcal{V}_{m-1}
$$

Set $B_{e, E}=B_{e} \otimes_{\mathbb{Q}_{p}} E$. We get an exact sequence of $B_{e, E}$-representations of G_{L}

$$
0 \rightarrow B_{e, E} \otimes_{E} V^{\prime} \rightarrow E \otimes_{\mathbb{Q}_{p}} \mathcal{V} \rightarrow B_{e, E} \otimes_{E}\left(E\left\{d_{m}\right\}\right)^{r_{m}} \rightarrow 0
$$

Twisting by $E\left\{-d_{m}\right\}$, we are reduced to show, that, if we have a short exact sequence of $B_{e, E}$-representations of G_{L}

$$
\begin{equation*}
0 \rightarrow B_{e, E} \otimes_{E} W^{\prime} \rightarrow \mathcal{W} \rightarrow B_{e, E} \rightarrow 0 \tag{*}
\end{equation*}
$$

with W^{\prime} a τ-ordinary E-representation of G_{L}, then \mathcal{W} comes by scalar extension from an E-representation of G_{L} which is an extension of E by W^{\prime}. Setting

$$
B_{d R, E}=E \otimes_{\mathbb{Q}_{p}} B_{d R}, B_{d R, E}^{+}=E \otimes_{\mathbb{Q}_{p}} B_{d R}^{+} \text {and } \widetilde{B}_{d R, E}=B_{d R, E} / B_{d R, E}^{+}
$$

we get from the fundamental exact sequence ($\S 6.3$), a short exact sequence

$$
0 \rightarrow E \rightarrow B_{e, E} \rightarrow \widetilde{B}_{d R, E} \rightarrow 0
$$

Tensoring with W^{\prime}, we get an exact sequence

$$
0 \rightarrow W^{\prime} \rightarrow B_{e, E} \otimes_{E} W^{\prime} \rightarrow \widetilde{B}_{d R, E} \otimes_{E} W^{\prime} \rightarrow 0
$$

inducing an exact sequence of continuous G_{L}-cohomology

$$
\begin{aligned}
\ldots & \rightarrow H_{c o n t}^{1}\left(G_{L}, W^{\prime}\right) \rightarrow H_{c o n t}^{1}\left(G_{L}, B_{e, E} \otimes_{E} W^{\prime}\right) \\
& \rightarrow H_{\text {cont }}^{1}\left(G_{L}, \widetilde{B}_{d R, E} \otimes_{E} W^{\prime}\right) \rightarrow \ldots
\end{aligned}
$$

The short exact sequence ($*$) defines an element $c \in H_{c o n t}^{1}\left(G_{L}, B_{e, E} \otimes_{E} W^{\prime}\right)$. What we need to show is that c comes from an element of $H_{\text {cont }}^{1}\left(G_{L}, W^{\prime}\right)$ or equivalently goes to 0 in $H_{\text {cont }}^{1}\left(G_{L}, \tilde{B}_{d R, E} \otimes W^{\prime}\right)$. The map

$$
H_{\text {cont }}^{1}\left(G_{L}, B_{e, E} \otimes_{E} W^{\prime}\right) \rightarrow H_{c o n t}^{1}\left(G_{L}, \widetilde{B}_{d R, E} \otimes_{E} W^{\prime}\right)
$$

factors through $H_{\text {cont }}^{1}\left(G_{L}, B_{d R, E} \otimes_{E} W^{\prime}\right)$ and this comes from the fact that the extension is de Rham which means that the image of c is already 0 in $H_{\text {cont }}^{1}\left(G_{L}, B_{d R, E} \otimes_{E} W^{\prime}\right)$.

Remark. Let \mathcal{F} a de Rham G_{K} equivariant vector bundle over X. Choose a finite Galois extension L of K contained in \bar{K} such that \mathcal{F} is log-crystalline as a G_{L}-vector bundle. Then the (φ, N) module over L

$$
\mathcal{D}_{l c r, L}(\mathcal{F})
$$

is equipped with an action of $G_{L / K}$ defined in an obvious way. This give to $\mathcal{D}_{l c r, L}(\mathcal{F})$ the structure of what can be called a filtered $\left(\varphi, N, G_{L / K}\right)$-module over K. The inductive limit (in a straightforward way) of the categories of filtered ($\varphi, N, G_{L / K}$)modules over K, when L runs through all the finite Galois extensions of K contained in \bar{K}, is the category

$$
M F_{K}\left(\varphi, N, G_{K}\right)
$$

of filtered $\left(\varphi, N, G_{K}\right)$-modules over K. This is, in an obvious way, a \mathbb{Q}_{p}-linear tensor category, with an obvious definition of the rank, the degree and the slope of any non-zero object. The Harder-Narasimhan filtration of any object can be defined.

We see that the $\mathcal{D}_{l c r, L}$'s induce a tensor equivalence of categories
de Rham G_{K}-equivariant vector bundles over $X \Longleftrightarrow \operatorname{Mod}_{K}(\varphi, N, G)$ respecting rank, degree, slopes and the Harder-Narasimhan filtration.

The restriction of this equivalence to semistable vector bundles of slope 0 leads to the "classical" equivalence ([Fon94b], [Ber02]) of categories between de Rham p-adic representations of G_{K} and "weakly admissible" (or semistable of slope 0) filtered $\left(\varphi, N, G_{K}\right)$-modules over K.

References

[An02] Y. André, Filtrations de type Hasse-Arf et monodromie p-adique, Invent. Math. 148 (2002), 285-317.
[Ber02] L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219-284.
[Ber08] L. Berger, Construction de (φ, Γ)-modules : représentations p-adiques et B-paires, Algebra Number Theory 2 (2008), 91-120.
[Col02] P. Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), 331-439.
[CF00] P. Colmez \& J.-M. Fontaine, Construction des représentations p-adiques semi-stables, Invent. Math. 140 (2000), 1-43.
[DM82] P. Deligne \& J.S. Milne, Tannakian categories, in Hodge Cycles, Motives and Shimura Varieties (P. Deligne et al, ed.), Lecture Notes in Math., no. 900, Springer, 1982, pp. 101228.
[Dr76] V. Drinfel'd, Coverings of p-adic symmetric domains, Funkcional. Anal. i Prilozen. 10 (1976), 29-40.
[Fa89] G. Faltings, Crystalline cohomology and p-adic Galois representations, Algebraic analysis, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, 1989, pp. 2580.
[Fon90] J.-M. Fontaine, Représentations p-adiques des corps locaux, 1ère partie, in The Grothendieck Festschrift (P. Cartier et al., ed.), vol. II, Progress in Math., no. 87, Birkhaüser, Boston, 1990, pp. 249-309.
[Fon94a] J.-M. Fontaine, Le corps des périodes p-adiques, in Périodes p-adiques, Astérisque 223, Soc. Math. France, 1994, pp. 59-111.
[Fon94b] J.-M. Fontaine, Représentations p-adiques semi-stables, Périodes p-adiques, Astérisque 223, Soc. Math. France, 1994, pp. 113-184.
[FP94] J.-M. Fontaine, et B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L in Motives, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 599-706.
[GH94] B. Gross \& M. Hopkins, Equivariant vector bundles on the Lubin-Tate moduli space, in Topology and representation theory, Contemp. Math., 158, Amer. Math. Soc.,1994, pp. 23-88.
[He98] L. Herr, Sur la cohomologie galoisienne des corps p-adiques, Bull. Soc. Math. France 126 (1998), 563-600.
[Ke05] K. Kedlaya, Slope filtrations revisited, Doc. Math. 10 (2005), 447-525.
[Ke08] K. Kedlaya, Slope filtrations for relative Frobenius, in Représentations p-adiques de groupes p-adiques. I. Astérisque 319 (2008), pp. 259-301.
[Laf79] G. Laffaille, Construction de groupes p-divisibles. Le cas de dimension 1. Journées de Géométrie Algébrique de Rennes, Vol. III, pp. 103-123, Astérisque, 65, Soc. Math. France, Paris, 1979.
[Laf85] G. Laffaille, Groupes p-divisibles et corps gauches, Compositio Math. 56 (1985), 221232.
[LT65] J. Lubin \& J. Tate, Formal complex multiplication in local fields, Annals of Math. 81 (1965), 380-387.
[Man63] Y. Manin, Theory of commutative formal groups over fields of finite characteristic, Russian Math. Surveys 18 (1963), 1-83.
[Man65] Y. Manin, Modular Fuchsiani, Annali Scuola Norm. Sup. Pisa Ser. III 18 (1965), 113126.
[Meb02] Z. Mebkhout, Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique, Invent. Math. 148 (2002), 319-351.
[Ni08] W. Niziol, Semistable conjecture via K-theory, Duke Math. J. 141 (2008), 151-178.
[Poo93] B. Poonen, Maximally complete fields, Ens. Math. 39 (1993), 87-106.
[Qui73] D. Quillen, Higher algebraic K-theory I, in Algebraic K-theory I, Lecture Notes in Math., no. 341, Springer, 1973, pp. 77.
[Sen73] S. Sen, Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of Math. (2) 97 (1973), 160-170.
[Ser67] J.-P. Serre, Local class field theory, in Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.), Academic Press, London, 1967, pp. 128-161.
[Tat67] J. Tate, p-Divisible groups, in Proc. Conf. on Local Fields (T.A. Springer, ed.), Springer, 1967, pp. 158-183.
[Ts99] T. Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), 233-411.

[^0]: ${ }^{1}$ Say that a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence over the interval I if for any $\rho \in I$ and any $\epsilon>0$, there exists N such that $\left|f_{m}-f_{n}\right|_{\rho}<\epsilon$ if m and n are $\geq N$. Say that two Cauchy sequences $\left(f_{n}\right)_{n \in \mathbb{N}}$ and $\left(g_{n}\right)_{n \in \mathbb{N}}$ are equivalent if, for any $\rho \in I$ and any $\epsilon>0$, there exists N such that $\left|f_{n}-g_{n}\right|_{\rho}<\epsilon$ if $n \geq N$. An element of $B_{F, E, I}$ may be viewed as an equivalence class of Cauchy sequences over I.

[^1]: ${ }^{2}$ See the remark 3.4 .1 below for a geometric interpretation of these constructions.

[^2]: ${ }^{3}$ When F is not algebraically closed, this result remains true if and only if the residue field k_{F} of F is algebraically closed.

[^3]: ${ }^{4}$ A locally convex E-vector space is a topological E-vector space whose topology can be defined by a family of semi-norms.

