$\rm AMS/IP$ Studies in Advanced Mathematics Volume 51, 2011

Vector bundles and *p*-adic Galois representations

Laurent Fargues and Jean-Marc Fontaine

ABSTRACT. Let F be a perfect field of characteristic p > 0 complete with respect to a non trivial absolute value. Let E be a non archimedean locally compact field whose residue field is contained in F. To these data, we associate a "complete regular curve" $X = X_{F,E}$ defined over E. If \overline{F} is an algebraic closure of F and $H = \operatorname{Gal}(\overline{F}/F)$, there is an equivalence of categories between continuous finite dimensional E-linear representations of H and semistable vector bundles over X of slope 0. To construct X we first construct the ring B of "rigid analytic functions of the variable π on the punctured unit disk $\{z \in F \mid 0 < |z| < 1\}$ ".

Let C be the p-adic completion of an algebraic closure \overline{K} of a p-adic field K. A classical construction from p-adic Hodge theory associates to C a field F = F(C) as above and the group G_K acts on the curve $X = X_{F(C),\mathbb{Q}_p}$. We study G_K -equivariant vector bundles over X and classify those which are "de Rham". The two main theorems about p-adic de Rham representations are recovered by considering the special case of semistable vector bundles of slope 0. This paper is a survey. Details and proofs will appear elsewhere.

1. Curves and vector bundles

1.1. General conventions and notations. If R is a commutative ring and M_1, M_2 are R-modules, we denote by $\mathcal{L}_R(M_1, M_2)$ the R-module of R-linear maps $f: M_1 \to M_2$.

If L is a field equipped with a non archimedean absolute value || (or a valuation v), we denote $\mathcal{O}_L = \{x \in L | | |x| \leq 1\}$ (or $v(x) \geq 0\}$) the corresponding valuation ring, \mathfrak{m}_L the maximal ideal of \mathcal{O}_L and $k_L = \mathcal{O}_L/\mathfrak{m}_L$ the residue field.

As usual, if X is a noetherian scheme, we view a vector bundle over X as a locally free coherent \mathcal{O}_X -module.

If a group G acts on the left on a noetherian scheme X, an \mathcal{O}_X -representation of G (resp. a G-equivariant vector bundle over X) is a coherent \mathcal{O}_X -module (resp. a vector bundle) \mathcal{F} equipped with a semi-linear action of G in the following sense:

• for all $g \in G$, if $g : X \xrightarrow{\sim} X$ is the action of g on X, one is given an isomorphism

$$c_g: g^* \mathcal{F} \xrightarrow{\sim} \mathcal{F},$$

©2011 American Mathematical Society and International Press

• the following cocyle condition is satisfied

$$c_{g_2} \circ g_2^* c_{g_1} = c_{g_1g_2}, \quad g_1, g_2 \in G$$

via the identification $g_2^*(g_1^*\mathcal{F}) = (g_1g_2)^*\mathcal{F}$.

If X = Spec(B) is affine, an \mathcal{O}_X -representation of G is nothing else than a finite type B-module equipped with a semi-linear left action of G.

In this paper, we use freely the formalism of tensor categories (for which we refer to [**DM82**]). For instance, if G is a group acting on a noetherian scheme X, equipped with the tensor product of the underlying \mathcal{O}_X -modules, the category $\operatorname{Rep}_{\mathcal{O}_X}(G)$ of \mathcal{O}_X -representations of G is an abelian tensor category, though the full sub-category $Bund_X(G)$ of G-equivariant vector bundles is a rigid additive tensor category. If X is a smooth geometrically connected projective curve over a perfect field E, the full subcategory $Bund_X^0(G)$ of G-equivariant vector bundles which are semistable of slope 0 is a tannakian E-linear category.

1.2. Complete regular curves. A regular curve X is a separated integral noetherian regular scheme of dimension 1. In other words, X is a separated connected scheme obtained by gluing a finite number of spectra of Dedekind rings.

Let X be a regular curve, $\mathcal{K} = \mathcal{O}_{X,\eta}$ its function field (i.e. the local ring at the generic point η), |X| the set of closed point of X. For any $x \in |X|$, let v_x be the unique discrete valuation of \mathcal{K} such that

$$v_x(\mathcal{K}^*) = \mathbb{Z}$$
 and $\mathcal{O}_{X,x} = \{f \in \mathcal{K} \mid v_x(f) \ge 0\}$.

The field \mathcal{K} , the set of closed points |X| and the collection of valuations $(v_x)_{x \in |X|}$ on \mathcal{K} determine completely the curve X:

i) As a set, the underlying topological space is the disjoint union of |X| and of a set consisting of a single element η .

ii) The non empty open subsets are the complements of the finite subsets of |X|. If U is one of them,

 $\Gamma(U, \mathcal{O}_X) = \left\{ f \in \mathcal{K} \mid v_x(f) \ge 0 \text{ for all } x \in U \cap |X| \right\}.$

If X is a regular curve, the group Div(X) of Weil divisors of X is the free abelian group generated by the [x]'s with $x \in |X|$. If $f \in \mathcal{K}^*$, the divisor of f is

$$\operatorname{div}(f) = \sum_{x \in |X|} v_x(f)[x] \; .$$

If X is a regular curve, a coherent \mathcal{O}_X -module is a vector bundle if and only if it is torsion free.

A complete regular curve is a pair (X, \deg) consisting of a regular curve X and a degree map

$$\deg:|X|\to\mathbb{N}_{>0}$$

such that, for any $f \in \mathcal{K}^*$,

(1)
$$\deg(\operatorname{div}(f)) = \sum_{x \in |X|} v_x(f) \operatorname{deg}(x) = 0 .$$

If X is a complete regular curve, then $H^0(X, \mathcal{O}_X)$ is a field. We call it the *field* of definition of X.

REMARK. Equipped with the usual definition of the degree, a smooth projective curve over a field is a complete regular curve. Its function field is finitely generated over its field of definition. It won't be the case for the curves we are going to construct.

Let X be a complete regular curve. Let \mathcal{F} be a coherent \mathcal{O}_X -module. The rank of \mathcal{F} is the dimension of its generic fiber \mathcal{F}_{η} over the function field. If r is the rank of \mathcal{F} , choose a vector bundle \mathcal{E} isomorphic to \mathcal{O}_X^r whose generic fiber \mathcal{E}_η is equal to \mathcal{F}_η . For each closed point $x \in |X|$, let \mathcal{F}'_x (resp. \mathcal{F}''_x) the kernel (resp. the image) of the natural map $\mathcal{F}_x \to \mathcal{F}_\eta$. We set

$$\lg_x(\mathcal{F}/\mathcal{E}) = \lg_x(\mathcal{F}'_x) + \lg_x(\mathcal{F}''_x/\mathcal{E}_x)$$

where, if M is any $\mathcal{O}_{X,x}$ -module of finite length, $\lg_x(M)$ is its length and

$$g_x(\mathcal{F}''_x/\mathcal{E}_x) = \lg_x((\mathcal{E}_x + \mathcal{F}''_x)/\mathcal{E}_x) - \lg_x((\mathcal{E}_x + \mathcal{F}''_x)/\mathcal{F}''_x) .$$

We have $lq_x(\mathcal{F}/\mathcal{E}) = 0$ for almost all x. We define the degree of \mathcal{F}

$$\deg(\mathcal{F}) = \sum_{x \in |X|} \lg_x(\mathcal{F}/\mathcal{E}). \deg(x) .$$

Granting to (1), it is independent of the choice of \mathcal{E} . The degree may also be defined by:

$$\deg(\mathcal{F}) = \deg(\mathcal{F}_{tor}) + \deg(\det(\mathcal{F}/\mathcal{F}_{tor}))$$

where

- \mathcal{F}_{tor} is the torsion part of \mathcal{F} , a finite direct sum of skyscrapers sheaves of finite length $\mathcal{O}_{X,x}$ -modules, $x \in |X|$,
- deg(F_{tor}) = ∑_{x∈|X|} lg_x(F_x). deg(x),
 if L is a line bundle set deg(L) = deg(div(s)) where s is any non-zero meromorphic section of L, div(s) being the Weil divisor associated to s,
 det(F/F_{tor}) is the line bundle ∧^{rank(F)}(F/F_{tor}).

The point is that, since X is complete, the degree function on line bundles

$$\deg: \operatorname{Div}(X) \longrightarrow \mathbb{Z}$$

factorizes through the group of principal divisors to give a degree function

$$\deg: \operatorname{Div}(X)/\!\sim = \operatorname{Pic}(X) \longrightarrow \mathbb{Z}$$

If \mathcal{F} is a non-zero coherent \mathcal{O}_X -module we define the *slope* of \mathcal{F} as

$$\mu(\mathcal{F}) = \deg(\mathcal{F}) / \operatorname{rank}(\mathcal{F}) \in \mathbb{Q} \cup \{+\infty\}$$

(we have $\mu(F) = +\infty$ if and only if \mathcal{F} is torsion).

An \mathcal{O}_X -module \mathcal{F} is *semistable* (resp. *stable*) if $\mu(\mathcal{F}') \leq \mu(\mathcal{F})$ (resp. if \mathcal{F} is non-zero and if $\mu(\mathcal{F}') < \mu(\mathcal{F})$ for any proper \mathcal{O}_X -submodule \mathcal{F}' . A non-zero \mathcal{O}_X module is semistable of slope $+\infty$ if and only if it is a torsion module.

The Harder-Narasimhan theorem holds:

THEOREM 1.1. Let \mathcal{F} be a non-zero coherent \mathcal{O}_X -module. There is a unique filtration

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_{i-1} \subset \mathcal{F}_i \subset \ldots \subset \mathcal{F}_{m-1} \subset \mathcal{F}_m = \mathcal{F}_m$$

by \mathcal{O}_X -submodules with $\mathcal{F}_i/\mathcal{F}_{i-1} \neq 0$, semistable, and

 $\mu(\mathcal{F}_1/\mathcal{F}_0) > \mu(\mathcal{F}_2/\mathcal{F}_1) > \ldots > \mu(\mathcal{F}_m/\mathcal{F}_{m-1}) .$

Moreover, for each $\lambda \in \mathbb{Q} \cup \{+\infty\}$, the full sub-category $Bund_X^{\lambda}$ of the category of coherent \mathcal{O}_X -modules whose objects are those which are semistable of slope λ is an abelian E-linear category.

We see that, \mathcal{F} is a vector bundle if and only if $\mu(\mathcal{F}_1/\mathcal{F}_0) \neq +\infty$. In this case, the \mathcal{F}_i 's are strict vector subbundles, i.e. the quotients $\mathcal{F}/\mathcal{F}_i$'s are torsion free, hence also vector bundles. If, instead, the torsion sub-module \mathcal{F}_{tor} is not 0, then $\mathcal{F}_{tor} = \mathcal{F}_1$.

2. Bounded analytic functions

2.1. The field $\mathcal{E}_{F,E}$. We fix a non archimedean locally compact field E. We denote by p the characteristic of k_E and q the number of elements of k_E . We denote by v_E the valuation of E normalized by $v_E(E^*) = \mathbb{Z}$.

Let F be any perfect field containing k_E . We denote by $\mathcal{E}_{F,E}$ the unique (up to a unique isomorphism) field extension of E, complete with respect to a discrete valuation v extending v_E such that

i) $v(\mathcal{E}_{F,E}^*) = v_E(E^*) = \mathbb{Z},$

ii) F is the residue field of $\mathcal{E}_{F,E}$.

There is a unique section of the projection $\mathcal{O}_{\mathcal{E}_{F,E}} \to F$ which is multiplicative. We denote it

$$a \mapsto [a]$$

If we choose a uniformizing parameter π of E, any element $f \in \mathcal{E}_{F,E}$ may be written uniquely

$$f = \sum_{n \gg -\infty} [a_n] \pi^n$$
 with the $a_n \in F$,

and $f \in E$ if and only if all the a_n 's are in k_E .

We see that, if E is of characteristic p, the map $a \mapsto [a]$ is an homomorphism of rings. If we use it to identify F with a subfield of \mathcal{E} , i.e. if we set [a] = a for all $a \in F$, we get

$$E = k_E((\pi))$$
 and $\mathcal{E}_{F,E} = F((\pi))$.

Otherwise, E is a finite extension of \mathbb{Q}_p . If W(F) (resp. $W(k_E)$) is the ring of Witt vectors with coefficients in F (resp. k_E), we see that $\mathcal{E}_{F,E}$ can be identified with $E \otimes_{W(k_E)} W(F)$ and that, for all $a \in F$,

$$[a] = 1 \otimes (a, 0, 0, \dots, 0, \dots)$$
.

2.2. Three sub-rings of $\mathcal{E}_{F,E}$. We now fix the perfect field F containing k_E and we assume F to be complete for a given non trivial absolute value | |. Observe that, as F is perfect, the valuation group is p-divisible, hence the valuation is not discrete.

If there is no risk of confusion, we set $\mathcal{E} = \mathcal{E}_{F,E}$. We still choose a uniformizing parameter π of E. The following subsets of \mathcal{E}

$$B^{b} = B^{b}_{F,E} = \left\{ \sum_{n \gg -\infty} [a_{n}]\pi^{n} \mid \text{ there exists } C \text{ such that } |a_{n}| \leq C, \forall n \right\},\$$

VECTOR BUNDLES AND p-ADIC GALOIS REPRESENTATIONS

$$B^{b,+} = B^{b,+}_{F,E} = \left\{ \sum_{n \gg -\infty} [a_n] \pi^n \mid a_n \in \mathcal{O}_F, \ \forall n \right\}$$

and $A = A_{F,E} = \left\{ \sum_{n=0}^{+\infty} [a_n] \pi^n \mid a_n \in \mathcal{O}_F, \ \forall n \right\}$

are \mathcal{O}_E -subalgebras of \mathcal{E} and are independent of π . If a is any non-zero element of the maximal ideal \mathfrak{m}_F of \mathcal{O}_F , we have

$$B^{b,+} = A[\frac{1}{\pi}]$$
 and $B^b = B^{b,+}[\frac{1}{[a]}]$.

When $\operatorname{char}(E) = p$, the ring B^b may be viewed as the ring of rigid analytic functions

$$f: \Delta = \left\{ z \in F \mid 0 < |z| < 1 \right\} \to F$$

which are such that $\pi^n f$ is analytic and bounded on $\{z \in F \mid 0 \le |z| < 1\}$, for $n \gg 0$.

2.3. Prime ideals of finite degree. We set $\mathcal{E}_0 = \mathcal{E}_{k_F,E}$.

The projection $\mathcal{O}_F \to k_F$, which we denote as $a \mapsto \tilde{a}$, induces an augmentation map

$$\varepsilon: B^{b,+} \to \mathcal{E}_0$$
 sending $\sum_{n \gg -\infty} [a_n] \pi^n$ to $\sum_{n \gg -\infty} [\tilde{a}_n] \pi^n$.

We have $\varepsilon(A) = \mathcal{O}_{\mathcal{E}_0}$. We say that $\xi \in A$ is *primitive* if $\xi \notin \pi A$ and $\varepsilon(\xi) \neq 0$. The *degree* of a primitive element ξ is

$$\deg(\xi) = v_{\pi}(\varepsilon(\xi)) \in \mathbb{N}$$
.

We see that A is a local ring whose invertible elements are exactly the primitive elements of degree 0. A primitive element $\xi \in A$ is *irreducible* if deg $(\xi) > 0$ and ξ can't be written as the product of two primitive elements of degree > 0. In particular, any primitive element of degree 1 is irreducible.

We say that two primitive irreducible elements ξ and ξ' are associated (we write $\xi \sim \xi'$) if there exists η primitive of degree 0 such that $\xi' = \xi \eta$. This is an equivalence relation and we set

$$|Y_{F,E}| = |Y| = \{\text{primitive irreducible elements}\}/\sim$$
.

If $y \in |Y|$ is the class of ξ , we set $\deg(y) = \deg(\xi)$.

(

We say that an ideal \mathfrak{a} of A, $B^{b,+}$ or B^b is of finite degree if it is a principal ideal which is generated by a primitive element ξ of A. The degree of such an \mathfrak{a} is the degree of ξ .

PROPOSITION 2.3.1. Let $y \in |Y|$ be the class of a primitive irreducible element ξ . The ideal \mathfrak{p}_y (resp. $\mathfrak{p}_y^{b,+}$, resp. \mathfrak{p}_y^b) of A (resp. $B^{b,+}$, resp. B^b) generated by ξ is prime and depends only on y. The map

$$y \mapsto \mathfrak{p}_y \ (\ resp. \ y \mapsto \mathfrak{p}_y^{b,+}, \ resp. \ y \mapsto \mathfrak{p}_y^b \)$$

induces a bijection between |Y| and the set of prime ideals of finite degree of A (resp. $B^{b,+}$, resp. B^{b}).

To describe what are the quotients of these rings by a prime ideal of finite degree, it is convenient to introduce the notion of p-perfect field.

L. FARGUES AND J.-M. FONTAINE

2.4. *p*-perfect fields. A *p*-perfect field is a field *L* complete with respect to a non trivial non archimedean absolute value | | whose residue field k_L is of characteristic *p* and which is such that the endomorphism $x \mapsto x^p$ of $\mathcal{O}_L/p\mathcal{O}_L$ is surjective.

If L is the fraction field of a complete discrete valuation ring, we see that L is a p-perfect field if and only if k_L is perfect of characteristic p and \mathfrak{m}_L is generated by p.

A strictly p-perfect field is a p-perfect field L such that \mathcal{O}_L is not a discrete valuation ring.

Let L be a field complete with respect to a non trivial non archimedean absolute value, with $\operatorname{char}(k_L) = p$ and \mathcal{O}_L not a discrete valuation ring. It is easy to see that

– if a is any element of the maximal ideal \mathfrak{m}_L of \mathcal{O}_L such that $p \in (a)$, then L is strictly p-perfect if and only if the map

$$\mathcal{O}_L/(a) \mapsto \mathcal{O}_L/(a)$$
 sending x to x^p

is onto,

- if L is of characteristic p, L is strictly p-perfect if and only L is perfect.

Let L be a p-perfect field. We consider the set

$$F(L) = \left\{ x = (x^{(n)})_{n \in \mathbb{N}} \mid x^{(n)} \in L \text{ and } (x^{(n+1)})^p = x^{(n)} \right\}.$$

If $x, y \in F(L)$, we set

$$(x+y)^{(n)} = \lim_{m \to +\infty} (x^{(n+m)} + y^{(n+m)})^{p^m}, \ (xy)^{(n)} = x^{(n)}y^{(n)}$$

(it is easy to see that the limit above exists).

PROPOSITION 2.4.1. Let L be a p-perfect field. Then F(L) is a perfect field of characteristic p, complete with respect to the absolute value || defined by $|x| = |x^{(0)}|$. Moreover

i) If $\mathfrak{a} \subset \mathfrak{m}_L$ is a finite type (i.e. principal) ideal of \mathcal{O}_L containing p and if $u \mapsto \tilde{u}$ denote the projection $\mathcal{O}_L \to \mathcal{O}_L/\mathfrak{a}$, the map

$$\mathcal{O}_{F(L)} \to \lim_{\substack{\leftarrow n \in \mathbb{N}}} \mathcal{O}_L/\mathfrak{a}$$

(with transition maps $v \mapsto v^p$) sending $(x^{(n)})_{n \in \mathbb{N}}$ to $(x^{(n)})_{n \in \mathbb{N}}$ is an isomorphism of topological rings.

ii) If L contains E as a closed subfield, the map

$$\theta_{L,E}: B^b_{F(L),E} \to L$$

sending $\sum_{n\gg-\infty} [a_n]\pi^n$ to $\sum_{n\gg-\infty} a_n^{(0)}\pi^n$ is a surjective homomorphism of E-algebras (independent of the choice of π). Moreover,

- (1) If \mathcal{O}_L is a discrete valuation ring, F(L) is the residue field of L equipped with the trivial valuation and $\theta_{L,E}$ is an isomorphism.
- (2) If L is strictly p-perfect, we have |F(L)| = |L| and the kernel of $\theta_{L,E}$ is a prime ideal of $B^b_{F(L),E}$ of degree 1. We have

$$\theta_{L,E}(B^{b,+}_{F(L),E}) = L \text{ and } \theta_{L,E}(A_{F(L),E}) = \mathcal{O}_L.$$

6

- REMARKS. (1) If L is of characteristic p, the map $x \mapsto x^{(0)}$ is a canonical isomorphism of the field F(L) onto the residue field of L if L is not strictly p-perfect and onto L otherwise. Then, all the results are obvious. If L is strictly p-perfect and if λ is the unique element of F(L) such that $\lambda^{(0)} = \pi$, then $\pi [\lambda]$ is a generator of ker $\theta_{L,E}$.
- (2) If L is strictly perfect of characteristic 0, it's not always true that there exists $\lambda \in F(L)$ such that $\pi [\lambda]$ is a generator of ker $\theta_{L,E}$ (which is equivalent to saying that $\lambda^{(0)} = \pi$). This is true if F is algebraically closed, but such a λ is not unique !

All the ideals of degree 1 are obtained by this construction: Let \mathcal{L} be the set of isomorphism classes of pairs (L, ι) where L is a *p*-perfect field containing Eas a closed subfield and $\iota : F(L) \to F$ is an isomorphism of topological fields. If (L, ι) is such a pair, let $\theta_L : B^b \to L$ be the homomorphism deduced from $\theta_{L,E} : B^b_{F(L),E} \to L$ by transport de structure.

PROPOSITION 2.4.2. The map $\mathcal{L} \to \{ \text{ideals of degree 1} \}$ sending the class of (L, ι) to the kernel of θ_L is bijective.

2.5. Algebraic extensions of strictly *p*-perfect fields.

PROPOSITION 2.5.1. Let L_0 be a strictly p-perfect field containing E as a closed subfield, $F_0 = F(L_0)$ and \mathfrak{m} the kernel of the map $\theta_{L_0,E} : B^b_{F_0,E} \to L_0$.

i) If L is a finite extension of L_0 , then L is strictly p-perfect and F(L) is a finite extension of $F(L_0)$ of the same degree.

ii) If F is a finite extension of F_0 , the ideal $B^b_{F,E}\mathfrak{m}$ of $B^b_{F,E}$ is maximal and the quotient of $B^b_{F,E}$ by this ideal is a finite extension of L_0 of the same degree.

The functor $L \to F(L)$ is an equivalence of categories between finite extensions of L_0 and finite extensions of F_0 . The functor $F \mapsto B^b_{F,E}/B^b_{F,E}\mathfrak{m}$ is a quasi-inverse.

REMARK. This equivalence extends in an obvious way to étale algebras. Hence, we see that the small étale site of L_0 can be identified with the small étale site of F_0 .

2.6. Finite divisors. We can now give a complete description of the prime ideals of finite degree.

PROPOSITION 2.6.1. If F is algebraically closed, a primitive element is irreducible if and only if it is of degree 1.

PROPOSITION 2.6.2. Let $y \in |Y|$, $d = \deg(y)$, $\xi = \sum_{n=0}^{+\infty} [c_n] \pi^n$ a primitive element lifting y, $L_y = B^b/\mathfrak{p}_y^b$ and $\theta_y : B^b \to L_y$ the projection. We set $||y|| = |c_0|^{1/d}$. Then:

i) The ideals \mathfrak{p}_y^b and $\mathfrak{p}_y^{b,+}$ are maximal and

$$B^{b,+}/\mathfrak{p}_y^{b,+}=L_y$$
.

ii) There is a unique absolute value $| |_y$ on the field L_y such that $|\theta_y([a])|_y = |a|$ for all $a \in F$. Equipped with this absolute value, L_y is a p-perfect field containing E as a closed subfield. Moreover $|\pi|_y = ||y||$.

iii) The map $F \to F(L_y)$ sending a to $(\theta_y([a^{p^{-n}}])_{n \in \mathbb{N}})$ is a continuous homomorphism of topological fields identifying $F(L_y)$ with a finite extension of F of degree d.

v) The ring A/\mathfrak{p}_y is a \mathcal{O}_E -subalgebra of \mathcal{O}_{L_y} whose fraction field is L_y .

We define the group $\text{Div}_f(Y)$ of *finite divisors of* Y as the free abelian group with basis the [y]'s for $y \in |Y|$. Hence any finite divisor may be written uniquely

$$D = \sum_{y \in |Y|} n_y[y]$$
 with the $n_y \in \mathbb{Z}$, almost all 0.

The degree of such a D is $\sum_{y \in |Y|} n_y \deg(y)$.

We denote $\operatorname{Div}_{f}^{+}(Y)$ the monoïd of *finite effective divisors*, i.e. of divisors $D = \sum n_{y}[y]$ with $n_{y} \geq 0$ for all y. From the previous proposition, one deduces:

COROLLARY 2.6.1. The map from $\operatorname{Div}_{f}^{+}(Y)$ to the multiplicative monoïd of ideals of finite degree of A (resp. $B^{b,+}$, resp. B^{b}) sending $\sum_{y \in |Y|} n_{y}[y]$ onto $\prod_{y \in |Y|} (\mathfrak{p}_{y})^{n_{y}}$ (resp. $\prod_{y \in |Y|} (\mathfrak{p}_{y}^{b,+})^{n_{y}}$, resp. $\prod_{y \in |Y|} (\mathfrak{p}_{y}^{b})^{n_{y}}$) is an isomorphism of monoïds.

3. The rings of rigid analytic functions

3.1. Norms and completions. For $f = \sum_{n \gg -\infty} [a_n] \pi^n \in B^b$, and $0 < \rho < 1$, we define

$$|f|_{\rho} = \max_{n \in \mathbb{Z}} |a_n| \rho^n .$$

We also set

 $|f|_0 = q^{-r}$ if r is the smallest integer such that $a_r \neq 0$, and $|f|_1 = \sup_{n \in \mathbb{Z}} |a_n|$.

For any $\rho \in [0,1]$, the map $f \mapsto |f|_{\rho}$ is a *multiplicative norm* on B^b , i.e. we have

 $|f+g|_{\rho} \leq \max\{|f|_{\rho}, |g|_{\rho}\} \ , \ |fg|_{\rho} = |f|_{\rho}|g|_{\rho} \ \text{ and } \ |f|_{\rho} = 0 \iff f = 0 \ .$

For any non empty interval $I \subset [0, 1]$, we denote

$$B_I = B_{F,E,I}$$

the completion of B^b for the family of the $| |_{\rho}$'s for $\rho \in I^{-1}$.

PROPOSITION 3.1.1. Let $I \subset [0,1]$ be a non empty interval. For any $\rho \in I$, $||_{\rho}$ is a norm on B_I (i.e., if $b \in B_I$ is $\neq 0$, then $|b|_{\rho} \neq 0$). Moreover:

i) If $J \subset I$ is an interval, the induced map

$$B_I \to B_J$$

is a continuous injective map.

ii) If $I = [\rho_1, \rho_2]$ is a non empty closed interval contained in [0, 1[, then B_I is a Banach E-algebra: if we set

$$A^{b}_{F,E,I} = A^{b}_{I} = \left\{ f \in B^{b,+} \mid |f|_{\rho_{1}} \le 1 \text{ and } |f|_{\rho_{2}} \le 1 \right\} ,$$

then $B_I = A_I[1/\pi]$ where $A_I = A_{F,E,I}$ is the π -adic completion of A_I^b .

¹Say that a sequence $(f_n)_{n \in \mathbb{N}}$ is a Cauchy sequence over the interval I if for any $\rho \in I$ and any $\epsilon > 0$, there exists N such that $|f_m - f_n|_{\rho} < \epsilon$ if m and n are $\geq N$. Say that two Cauchy sequences $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are equivalent if, for any $\rho \in I$ and any $\epsilon > 0$, there exists Nsuch that $|f_n - g_n|_{\rho} < \epsilon$ if $n \geq N$. An element of $B_{F,E,I}$ may be viewed as an equivalence class of Cauchy sequences over I.

iii) If $I \subset [0,1[$ is not restricted to $[0] = \{0\}$, then B_I is a Fréchet-E-algebra (inverse limit of Banach E-algebras): If \mathcal{I}_I is the set of closed intervals contained in I, the map

$$B_I \to \lim_{\substack{\leftarrow \\ J \in \mathcal{I}_I}} B_J$$

is a homeomorphism of topological rings.

iv) We have $B_{[0,1]} = B^b$ and $B_{[0]} = \mathcal{E}$.

In what follow, if $J \subset I$, we use the injective map $B_I \to B_J$ to identify B_I with a subring of B_J .

If $I \subset [0, 1]$ contains 0 then B_I can be identified with a subring of \mathcal{E} :

$$B_I = \left\{ \sum_{n \gg -\infty} [a_n] \pi^n \in \mathcal{E} \mid \forall \ \rho \in I, \ |a_n| \rho^n \to 0 \text{ for } n \to +\infty \right\} \,.$$

If $I \subset [0, 1]$ contains 0, we set

$$B_{F,E,I}^+ = B_I^+ = \{ b \in B_I \mid |b|_0 \le 1 \} = B_I \cap \mathcal{O}_{\mathcal{E}}$$

Similarly if $I \subset [0, 1]$ contains 1, we set

$$B_I^+ = \{ b \in B_I \mid |b|_1 \le 1 \}$$
.

We have

$$B_{[0,1]}^+ = B^{b,+} \text{ and } A = B^{b,+} \cap \mathcal{O}_{\mathcal{E}} = \left\{ b \in B^b = B_{[0,1]} \mid |b|_0 \le 1 \text{ and } |b|_1 \le 1 \right\}$$

We also write

$$B_{F,E}^+ = B^+ = B_{[0,1]}^+$$
 and $B_{F,E} = B = B_{[0,1[}$

If char(E) = p and if $I \subset]0,1[$ the ring B_I can be identified with the ring of rigid analytic functions

$$f: \left\{ z \in F \text{ with } |z| \in I \right\} \to F$$

In particular $B := B_{]0,1[}$ is the ring of rigid analytic functions on the punctured open unit disk.

Similarly, if char(E) = p and if $0 \in I \subset [0, 1[$, then B_I^+ may be identified with the ring of analytic functions

$$f: \{z \in F \text{ with } |z| \in I\} \to F$$
,

though B_I is the ring of meromorphic rigid analytic functions in the same range, with no pole away from 0.

REMARK. Let $I \subset]0,1[$. Let $(a_n)_{n\in\mathbb{Z}}$ be elements in F such that, for all $\rho \in I$, we have $|a_n|\rho^n \to 0$ whenever $n \to +\infty$ and also when $n \to -\infty$. Then the series

$$\sum_{n\in\mathbb{Z}} [a_n]\pi^n$$

converges (in both directions) to an element of B_I . If char(E) = p, any element of B_I may be written uniquely like that. If char(E) = 0, we don't know if it is always possible and, when it is possible, we don't know if this writing is unique (but it seems unlikely in general).

3.2. Newton polygons. Let v the valuation of F normalized by $|a| = q^{-v(a)}$ for all $a \in F$. Let $I \subset [0, 1]$ be an interval containing 0. The map

$$(a_n)_{n\in\mathbb{Z}}\longmapsto\sum_{n\in\mathbb{Z}}[a_n]\pi^n$$

is a bijection between the set of sequences $(a_n)_{n\in\mathbb{Z}}$ of elements of F such that i) $a_n = 0$ for $n \ll 0$,

ii) for all $\rho \in I$, $a_n \rho^n \to 0$ for $n \to +\infty$

and B_I . If $f = \sum_{n \gg -\infty} [a_n] \pi^n \in B_I$ is non-zero, the Newton polygon of f is the convex hull Newt(f) of the points of the real plane of coordinates $(n, v(a_n))$ for $n \in \mathbb{Z}$. If $J \subset I$ is an interval, Newt $_J(f)$ is the sub-polygon of Newt(f) obtained by deleting all segments whose slopes s are such that $q^s \notin I$.

PROPOSITION 3.2.1. Let $I \subset [0,1]$ be an interval and let \overline{I} be the smallest interval containing I and 0. Then $B_{\overline{I}}$ is a dense subring of B_I . If $f \in B_I$ and if $(f_n)_{n \in \mathbb{N}}$ is a sequence of elements of $B_{\overline{I}}$ converging to f, then the sequence $(\operatorname{Newt}_I(f_n))_{n \in \mathbb{N}}$ has a limit, i.e., for any closed interval $J \subset I$, the sequence of the $\operatorname{Newt}_J(f_n)$ is stationary. This limit is independent of the choice of the sequence $(f_n)_{n \in \mathbb{N}}$.

We call this limit $\operatorname{Newt}_I(f)$.

3.3. Divisors. For any interval $I \subset [0, 1]$ different from $\emptyset, \{1\}$, we set

$$|Y_I| = \{y \in |Y| \mid ||y|| \in I\}$$

and we define the group $\text{Div}(Y_I)$ of divisors of Y_I^2 :

i) If I is closed and $I \subset [0, 1[$, we set

$$\operatorname{Div}(Y_I) = \left\{ \sum_{y \in |Y_I|} n_y[y] \mid n_y = 0 \text{ for almost all } y \right\}.$$

ii) If $I \subset [0, 1[$ is not closed and if \mathcal{J}_I denote the set of closed ideals $J \subset I$, we set

$$\operatorname{Div}(Y_I) = \left\{ \sum_{y \in |Y_I|} n_y[y] \mid \forall J \in \mathcal{J}_I, n_y = 0 \text{ for almost all } y \text{ with } ||y|| \in J \right\}.$$

iii) If $1 \in I$, we define I' as the complement of 1 in I, we choose $\rho_0 \in I'$ and we set

$$\operatorname{Div}(Y_I) = \left\{ \sum_{y \in |Y_I|} n_y[y] \in \operatorname{Div}(Y_{I'}) \mid \sum_{||y|| \ge \rho_0} n_y \log(||y||) > -\infty \right\}$$

(independent of the choice of ρ_0).

For any *I*, we denote by $\operatorname{Div}^+(Y_I)$ the monoïd of *effective divisors* i.e. of divisors $D = \sum n_y[y] \in \operatorname{Div}(Y_I)$ such that $n_y \ge 0$ for all *y*.

²See the remark 3.4.1 below for a geometric interpretation of these constructions.

3.4. Closed ideals. For any $y \in |Y|$, we choose a primitive element ξ_y representing y.

PROPOSITION 3.4.1. Let $I \subset [0,1]$ be a non empty interval and $y \in |Y|$. If $||y|| \notin I$, then ξ_y is invertible in B_I . If $||y|| \in I$ and if $L_y = B^b/(\xi_y)$, the projection of B^b to L_y extends by continuity to a surjective homomorphism of E-algebras

$$\theta_y: B_I \to L_y$$

whose kernel is the maximal ideal generated by ξ_y .

The map

 $y \mapsto \mathfrak{m}_{I,y} = \text{ideal of } B_I \text{ generated by } \xi_y$ is an injective map from $|Y_I|$ to the set of maximal ideals of B_I .

THEOREM 3.1. Let $I \subset [0,1]$ an interval different from \emptyset , $\{1\}$. For any $y \in |Y_I|$, we have $\bigcap_{n \in \mathbb{N}} (\mathfrak{m}_{I,y})^n = 0$. Let $f \in B_I$ a non-zero element. For any $y \in |Y_I|$, let $v_y(f)$ be the biggest integer n such that $f \in (\mathfrak{m}_y)^n$. Then

$$\operatorname{div}(f) = \sum_{y \in |Y_I|} v_y(f)[y] \in \operatorname{Div}^+(Y_I)$$

Moreover, for any $\rho = q^{-r} \in I$ with r > 0, the length $\mu_{\rho}(f)$ of the projection on the horizontal axis of the segment of Newt_I(f) of slope -r is finite and

$$\sum_{||y||=\rho} v_y(f) \deg(y) = \mu_\rho(f)$$

COROLLARY 3.4.1. Let $I \subset [0,1]$ an interval different from $\emptyset, \{1\}$. Then:

i) Any non-zero closed prime ideal of B_I is maximal and principal.

ii) The map $|Y_I| \rightarrow \{$ closed maximal ideals of $B_I \}$ sending y to $\mathfrak{m}_{I,y}$ is a bijection.

iii) If $I \subset [0,1[$ and is closed, any ideal of B_I is closed and B_I is a principal domain.

PROPOSITION 3.4.2. Let $I \subset [0,1[$ a non empty interval. For any non-zero closed ideal \mathfrak{a} of B_I and any $y \in |Y_I|$, let $v_y(\mathfrak{a})$ the biggest integer $n \leq 0$ such that $\mathfrak{a} \subset (\mathfrak{m}_{I,y})^n$. Then

$$\operatorname{div}(\mathfrak{a}) = \sum_{y \in |Y_I|} v_y(\mathfrak{a})[y] \in \operatorname{Div}^+(Y_I) \;.$$

The map

{non-zero closed ideals of B_I } \rightarrow Div⁺(Y_I),

so defined, is an isomorphism of monoïds.

REMARK 3.4.1. Let $I \subset [0, 1]$ an interval different from \emptyset , $\{1\}$.

- If I is closed, we see that $\text{Div}(Y_I)$ is nothing but the group of divisors of the regular curve $Y_I = \text{Spec}(B_I)$ and that $|Y_I|$ may be identified to the set of closed points of Y_I .

- Otherwise, we may consider the inductive system of regular curves

$$Y_I = (Y_J = \operatorname{Spec} B_J)_{J \in \mathcal{I}_I}$$
.

If $J_1 \subset J_2$ belong to \mathcal{I}_I , we have morphisms of abelian groups

 $\operatorname{Div}(Y_{J_1}) \to \operatorname{Div}(Y_{J_2})$ and $\operatorname{Div}(Y_{J_2}) \to \operatorname{Div}(Y_{J_1})$

induced by the fact that, if \mathfrak{a} is a non-zero ideal of B_{J_1} then $\mathfrak{a} \cap B_{J_2}$ is a non-zero ideal of B_{J_2} , though, if \mathfrak{b} is a non zero ideal of B_{J_2} , then $B_{J_1}\mathfrak{b}$ is a non zero ideal of B_{J_1} . We see that $\text{Div}(Y_I)$ is the inverse limit of the $\text{Div}(Y_J)$ for $J \in \mathcal{I}_I$. The direct limit of these groups consists of the subgroup

$$\operatorname{Div}_f(Y_I) = \left\{ \sum_{y \in |Y_I|} n_y[y] \in \operatorname{Div}(Y_I) \middle| n_y = 0 \text{ for almost all } y \in |Y_I| \right\} \,.$$

3.5. Factorization. From the above proposition, we see that the analogue in this context of the classical question "does there exist an analytic function which has a given set of zeros with fixed multiplicities" becomes the question:

"Let $D \in \text{Div}^+(Y_I)$. Does there exist $f \in B_I$ such that div(f) = D?"

The answer to this question is "yes for any D" if and only if any closed ideal is principal.

The answer to this question is obviously "yes" if $I \subset [0, 1[$ is closed. This is also "yes" if $I =]0, \rho]$ for some $\rho \in]0, 1[$ (see cor. 3.5.1 below). But it is "no" in general.

Recall that one says that the field F is *spherically complete* if the intersection of any decreasing sequence of non empty balls contained in F is non empty.

For instance, if k is an algebraically closed field of characteristic p,

i) the completion of an algebraic closure of the field k((u)) is not spherically complete,

ii) If G is a divisible totally ordered abelian group (e.g. $G = \mathbb{Q}$ or \mathbb{R}), we may consider the subset F of all formal series of the form

$$f = \sum_{g \in G} a_g g \quad ext{with } a_g \in k \; ,$$

such that the support of f

$$\operatorname{supp}(f) = \{g \in G \mid a_g \neq 0\}$$

is a well ordered subset of G. Then, with the obvious addition, multiplication and absolute value, F is an algebraically closed field which is spherically complete **[Poo93]**.

PROPOSITION 3.5.1. Let $I \subset [0, 1]$ be a non closed interval. Then:

i) If F is not spherically complete, there are closed ideals of B_I which are not principal.

ii) If F is spherically complete and char(E) = p, any closed ideal of B_I is principal.

It is likely that (ii) remains true whenever char(E) = 0.

Without any assumption on F, if I is an interval whose closure contains 0, any divisor

$$\sum_{y \in |Y_I|} n_y[y]$$

such that $n_y = 0$ if $||y|| \ge \rho$ for $\rho \in I$ big enough, is the divisor of a function. More precisely, for any $y \in |Y_I|$ we denote by d_y the degree of y and we choose a π -primitive element ξ (i.e. an element $\xi_y \in A$ such that $|\xi_y - \pi^{d_y}|_1 < 1$) representing y (one can show that such an element always exists). Then:

PROPOSITION 3.5.2. Let $\overline{I} \subset [0,1]$ an interval containing 0, not reduced to $\{0\}$, and I the complement of $\{0\}$ in \overline{I} . Let

$$D = \sum_{y \in |Y_I|} n_y[y] \in \operatorname{Div}^+(Y_I) \ .$$

i) For any $\rho \in I$, the infinite product

$$f_{\leq \rho} = \prod_{||y|| \leq \rho} \frac{\xi_y}{\pi^{d_y}}$$

converges in $B_{]0,1]}^+ \subset B_I$ and $\operatorname{div}(f_{\leq \rho}) = \sum_{||y|| \leq \rho} n_y[y]$. ii) If there exists $f \in B_I$ such that $\operatorname{div}(f) = D$ then $f = f_{\leq \rho} f_{>\rho}$ for some $f_{>\rho} \in B_{\overline{I}}$ and $\operatorname{div}(f_{>\rho}) = \sum_{||y||>\rho} n_y[y].$

In particular, if $I =]0, 1[, f_{>\rho} \in B^b_{[0,1[}$. In this case, $f \in B_{]0,1]}$ (resp $B^+_{]0,1]}$) if and only if $f_{>\rho} \in B^b$ (resp. $B^{b,+}$).

COROLLARY 3.5.1. i) If $I = [0, \rho]$ for some $\rho \in [0, 1[$, any closed ideal of B_I is principal.

ii) An ideal of $B_{[0,1]}$ or of $B_{[0,1]}$ is closed if and only if it is an intersection of principal ideals.

3.6. Units. The ring A is a local ring. Therefore, if \mathfrak{m}_A is its maximal ideal, the multiplicative group A^* of invertible elements of A is the complement of \mathfrak{m}_A in A. With obvious notations, we have also

$$A^* = [\mathcal{O}_F^*] \times \mathcal{U}_F \quad \text{with} \quad \mathcal{U}_F = \left\{ 1 + \sum_{n=1}^{\infty} [a_n] \pi^n \mid a_n \in \mathcal{O}_F \right\} \,.$$

We have also

 $(B^{b,+})^* = \pi^{\mathbb{Z}} \times A^* = \pi^{\mathbb{Z}} \times [\mathcal{O}_F^*] \times \mathcal{U}_F$ and $(B^b)^* = \pi^{\mathbb{Z}} \times [F^*] \times \mathcal{U}_F$.

If f is an invertible element of $B_{[0,1[}$ we must have $\operatorname{div}(f) = 0$, which implies that $f \in B^b$. Therefore,

$$(B_{]0,1[})^* = (B_{]0,1]})^* = (B^b)^*$$
 and $(B^+)^* = (B^{b,+})^*$.

4. The curve X in the case where F is algebraically closed

4.1. Construction of the curve. The Frobenius automorphism φ on B^b is the unique *E*-automorphism which is continuous for $| |_0$ and induces $x \mapsto x^q$ on *F*. It satisfies

$$\varphi\Big(\sum_{n\gg-\infty} [a_n]\pi^n\Big) = \sum_{n\gg-\infty} [a_n^q]\pi^n \; .$$

For any $f \in B^b$ and any $\rho \in [0,1]$, we have $|\varphi(f)|_{\rho^q} = (|f|_{\rho})^q$. This implies that φ extends by continuity to an automorphism (still denoted φ) of $B = B_{[0,1[}$.

We consider the graded E-algebra

$$P_{\pi} = P_{F,E,\pi} = \bigoplus_{d \in \mathbb{N}} P_{\pi,d} \quad \text{with} \quad P_{\pi,d} = P_{F,E,\pi,d} = \left\{ b \in B \mid \varphi(b) = \pi^d b \right\} \,.$$

The natural map $P_{\pi} \to B$ is injective and we use it to identify P_{π} with a subring of B. We have $P_{\pi} \subset B^+$.

L. FARGUES AND J.-M. FONTAINE

We define the scheme

$$X = X_{F,E} = \operatorname{Proj} P_{\pi}$$
.

One can show that X is independent of the choice of π : If π' is another uniformizing parameter of E and if $X' = \operatorname{Proj} P_{\pi'}$, the function field of X' (viewed as a subfield of the fraction field of B) is the function field \mathcal{K} of X and the set of closed points of X' (viewed as a subset of the set of normalized discrete valuations on \mathcal{K}) is the set of closed points of X.

On the other hand, the line bundles

$$\mathcal{O}_X(d)_{\pi} = \bigoplus_{n \in \mathbb{Z}} \mathcal{P}_{\pi, n+d}$$

(with the convention that $P_{\pi,m} = 0$ for m < 0) depend on the choice of π .

We have

$$P_{\pi,0} = \left\{ u \in B \mid \varphi(u) = u \right\} = E .$$

4.2. The Lubin-Tate formal group. Set

$$\ell_{\pi}(X) = \sum_{n=0}^{+\infty} \frac{X^{q^n}}{\pi^n} \in E[[X]]$$

and $\Phi_{\pi}(X,Y) \in E[[X,Y]]$ the unique formal power series $\equiv X + Y \pmod{(X,Y)^2}$ such that

$$_{\pi}(\Phi_{\pi}(X,Y)) = \ell_{\pi}(X) + \ell_{\pi}(Y) .$$

Then, $\Phi_{\pi}(X, Y) \in \mathcal{O}_{E}[[X, Y]]$ and defines a one parameter formal group law over \mathcal{O}_{E} which is a Lubin-Tate formal group over \mathcal{O}_{E} associated to the uniformizing parameter π ([**LT65**], [**Ser67**], §3).

For any linearly topologized complete \mathcal{O}_E -algebra Λ , we may consider the topological \mathcal{O}_E -module $\Phi_{\pi}(\Lambda)$: The underlying topological space is the topological space underlying the ideal of elements of Λ which are topologically nilpotent, with the addition $(x, y) \mapsto \Phi_{\pi}(x, y)$ and the multiplication by $\alpha \in \mathcal{O}_E$ given by $x \mapsto f_{\pi,\alpha}(x)$ where $f_{\pi,\alpha}(X) \in \mathcal{O}_E[[X]]$ is the unique power series $\equiv \alpha X \pmod{X^2}$ such that $\ell_{\pi}(f_{\alpha}(X)) = \alpha \ell_{\pi}(X)$.

Let C be an algebraically closed field containing E, complete for an absolute value extending the given absolute value on E. We may consider the Tate module

$$T_C(\Phi_\pi) = \mathcal{L}_{\mathcal{O}_E}(E/\mathcal{O}_E, \Phi_\pi(\mathcal{O}_C))$$
.

This is a free- \mathcal{O}_E -module of rank one. If we denote by $\Phi_{\pi}(\mathcal{O}_{\overline{E}})$ the inductive limit (or the union) of the $\Phi_{\pi}(\mathcal{O}_{E'})$, for E' varying through the finite extensions of E contained in C, we have also $T_C(\Phi) = \mathcal{L}_{\mathcal{O}_E}(E/\mathcal{O}_E, \Phi_{\pi}(\mathcal{O}_{\overline{E}}))$.

If $V_C(\Phi_{\pi})$ is the one dimensional *E*-vector space $E \otimes_{\mathcal{O}_E} T_C(\Phi_{\pi})$, we have a short exact sequence

(1)
$$0 \to V_C(\Phi_\pi) \to \mathcal{L}_{\mathcal{O}_E}(E, \Phi_\pi(\mathcal{O}_C)) \to C \to 0$$

where the map $\mathcal{L}_{\mathcal{O}_E}(E, \Phi_{\pi}(\mathcal{O}_C)) \to C$ is $f \mapsto \ell_{\pi}(f(1))$.

The perfectness of \mathcal{O}_F implies that multiplication by π on the \mathcal{O}_E -module $\Phi_{\pi}(\mathcal{O}_F)$ is bijective, so $\Phi_{\pi}(\mathcal{O}_F)$ is an *E*-vector space. We see that $\Phi_{\pi}(\mathcal{O}_F)$ depends

only on the special fiber Φ_{π,k_E} of Φ_{π} (a formal \mathcal{O}_E -module over the residue field k_E of \mathcal{O}_E).

PROPOSITION 4.2.1. For any x in the maximal ideal \mathfrak{m}_F of \mathcal{O}_F , the series $\sum_{n\in\mathbb{Z}}\pi^{-n}[x^{q^n}]$ converges in B and its sum $L_{\pi}(x)$ belongs to $P_{\pi,1}$. The map

$$L_{\pi}: \Phi_{\pi}(\mathcal{O}_F) \to P_{\pi,1}$$

so defined is an isomorphism of topological E-vector spaces.

REMARK. This construction can be generalized: For $d \in \mathbb{N}$, one may interpret P_d as being "the sections over \mathcal{O}_F of an E-sheaf $S^d_{E,\pi}$ for the syntomic topology over k_E ".

In the rest of the section 4, we assume F algebraically closed.

The automorphism φ generates a torsion free cyclic group $\varphi^{\mathbb{Z}}$ of automorphisms of B. This group acts also on |Y| and on $\text{Div}(Y) = \text{Div}(Y_{[0,1[}))$. If λ, λ' are non-zero elements of \mathfrak{m}_F such that $\pi - [\lambda]$ and $\pi - [\lambda']$ have the same image in |Y|, this implies that $|\lambda| = |\lambda'|$. If $\pi - [\lambda]$ is a lifting of $y \in |Y|$ and $n \in \mathbb{Z}$ then $\pi - [\lambda^{q^n}]$ is a lifting of $\varphi^n(y)$, so if $y \in |Y|$ then the $\varphi^n(y)$'s for $n \in \mathbb{Z}$ are all distinct.

This implies that it is possible to choose for each $y \in |Y|$ an element $\lambda_y \in \mathfrak{m}_F$ such that $\pi - [\lambda_y]$ is a lifting of y and, for all y,

$$\lambda_{\varphi(y)} = (\lambda_y)^q$$

We make such a choice once and for all. If $y \in |Y|$, the field

$$L_y = B^b / (\pi - [\lambda_y]) = B^+ / (\pi - [\lambda_y]) = B / (\pi - [\lambda_y])$$

is algebraically closed. The multiplicative map $\mathcal{O}_F \to \mathcal{O}_{L_y}$ sending a to $\theta_y([a])$ induces, by passing to the quotients, an isomorphism of rings

$$\mathcal{O}_F / \lambda_y \mathcal{O}_F \to \mathcal{O}_{L_y} / \pi \mathcal{O}_{L_y}$$

Moreover, φ induces a canonical isomorphism $L_y \to L_{\varphi(y)}$. For any linearly topologized complete \mathcal{O}_E -algebra Λ , we denote $\mathcal{V}_{E,\pi}(\Lambda)$ the *E*-vector space $\mathcal{L}_{\mathcal{O}_E}(E, \Phi_{\pi}(\Lambda))$.

PROPOSITION 4.2.2. Let $y \in |Y|$. The natural maps

$$\mathcal{V}_{E,\pi}(\mathcal{O}_C) \to \mathcal{V}_{E,\pi}(\mathcal{O}_{L_y}/\pi\mathcal{O}_{L_y}) \leftarrow \mathcal{V}_{E,\pi}(\mathcal{O}_F/\lambda_y\mathcal{O}_F) \leftarrow \mathcal{V}_{E,\pi}(\mathcal{O}_F) \to \Phi_{\pi}(\mathcal{O}_F) \to P_{\pi,1}$$

are all isomorphisms.

ii) We have a commutative diagram

where the lines are exact and the vertical arrows are isomorphisms.

REMARK. There is an explicit way to construct a generator t of $P_{\pi,1} \cap \ker \theta_y$: From the fact that F is algebraically closed, one deduces easily that one can find $t_+ \in A$ not divisible by π such that

$$\varphi(t_+) = (\pi - [\lambda_y])t_+ \; .$$

On the other hand the infinite product

$$t_{-} = \prod_{n=0}^{+\infty} \left(1 - \frac{[\lambda_y^{q^n}]}{\pi} \right)$$

converges in B^+ . We may take $t = t_- t_+$.

4.3. Divisors of X. Let $\operatorname{Div}(Y)_{\varphi=1}$ the subgroup of $\operatorname{Div}(Y)$ consisting of the divisors D such that $\varphi(D) = D$ and $\operatorname{Div}^+(Y)_{\varphi=1}$ the submonoïd of $\operatorname{Div}^+(Y)$ consisting of effective divisors such that $\varphi(D) = D$.

If $D = \sum_{y \in |Y|} n_y[y] \in \text{Div}(Y)$ we have $\varphi(D) = \sum_{y \in |Y|} n_y[\varphi(y)]$, therefore $D \in \text{Div}(X)$ if and only if $n_y = n_{\varphi(y)}$ for all y. Choose $\rho \in]0, 1[$. As $]\rho^q, \rho] \subset [\rho^q, \rho]$, we have $n_y = 0$ for almost all y such that

Choose $\rho \in [0, 1[$. As $|\rho^q, \rho] \subset |\rho^q, \rho]$, we have $n_y = 0$ for almost all y such that $\rho^q < ||y|| \le \rho$. On the other hand, for any $y \in |Y|$, there is a unique $n \in \mathbb{Z}$ such that $\rho^q < ||\varphi^n(y)|| \le \rho$. Therefore:

Proposition 4.3.1. For any $y \in Y$, set $\delta(y) = \sum_{n \in \mathbb{Z}} [\varphi^n(y)]) \in \text{Div}(Y)_{\varphi=1}$ and

$$\Delta = \{ D \in \operatorname{Div}(Y) \mid \text{ there exists } y \in |Y| \text{ such that } D = \delta(y) \}$$

Then $\operatorname{Div}(Y)_{\varphi=1}$ (resp. $\operatorname{Div}^+(Y)_{\varphi=1}$) is a free abelian group (resp. monoïd) and the elements of Δ form a basis.

PROPOSITION 4.3.2. i) Let $y \in |Y|$ and t a generator of $E_y = P_{\pi,1} \cap \mathfrak{m}_y$. Then $\operatorname{div}(t) = \delta(y)$.

ii) Let $d \in \mathbb{N}_{>0}$ and $u \in P_{\pi,d}$ non zero. There exists $t_1, t_2, \ldots, t_d \in P_{\pi,1}$ such that

$$u = t_1 t_2 \dots t_d$$

Moreover, if $t'_1, t'_2, \ldots, t'_d \in P_{\pi,1}$ are such that $u = t'_1 t'_2 \ldots t'_d$, there exists $\sigma \in \mathfrak{S}_d$ and $\lambda_1, \lambda_2, \ldots, \lambda_d \in E^*$ such that $t'_i = \lambda_i t_{\sigma(i)}$ for all i.

This proposition is an easy consequence of what we already know: (i) is formal. To prove (ii), we observe that the ideal generated by u is fixed by φ^n for all $n \in \mathbb{Z}$, hence $\operatorname{div}(u) \in \operatorname{div}^+(Y)_{\varphi=1}$. Therefore we can write

$$\operatorname{div}(u) = D_1 + D_2 + \ldots + D_r$$

with $D_i \in \Delta$. If $D_i = \delta(y_i)$, if \mathfrak{m}_i is the maximal ideal of *B* corresponding to y_i and if t_i is a generator of $P_{F,1} \cap \mathfrak{m}_i$, then we must have

$$u = \lambda t_1 t_2 \dots t_r$$

with $\lambda \in B^*$. Therefore, we must have r = d and $\varphi(\lambda) = \lambda$, hence $\lambda \in E^*$. The assertion follows.

An easy consequence of this proposition is the following result:

THEOREM 4.1. Let |X| be the set of closed points of X and set $\deg(x) = 1$ for all $x \in |X|$. Then X is a complete curve whose field of definition is E. Moreover: i) Let $D \in \Delta$, $t \in P_{\pi,1}$ non-zero such that $\operatorname{div}(t) = D$, $y \in |Y|$ such that $D = \delta(y)$ and $L_D = L_y$. Then

a) the homogeneous ideal of P_{π} generated by t defines a closed point x_D of X whose local ring is a discrete valuation ring and residue field is L_D ,

b) the complement of x_D in X is an affine scheme which is the spectrum of a principal domain.

ii) The map $D \mapsto x_F$ is a bijection $\Delta \to |X|$ inducing canonical isomorphisms $\operatorname{Div}(Y)_{\varphi=1} \to \operatorname{Div}(X)$ and $\operatorname{Div}^+(Y)_{\varphi=1} \to \operatorname{Div}^+(X)$.

4.4. Vector bundles. For each $d \in \mathbb{Z}$, $\mathcal{O}_X(d)_{\pi}$ is a line bundle of degree d. Proposition 4.3.2 implies trivially:

PROPOSITION 4.4.1. We have

$$Pic^0(X) = 0 ,$$

i.e., for any $d \in \mathbb{Z}$, a line bundle \mathcal{L} is of degree d if and only $\mathcal{L} \simeq \mathcal{O}_X(d)_{\pi}$.

In particular, if π' is any other uniformizing parameter, $\mathcal{O}_X(1)_{\pi'}$ is isomorphic (not canonically) to $\mathcal{O}_X(1)_{\pi^3}$.

Let h be a positive integer. We may consider

$$X_h = \operatorname{Proj} \bigoplus_{d \in \mathbb{N}} P_{h,\pi,d}$$
 with $P_{h,\pi,d} = \left\{ \varphi^h(u) = \pi^d u \right\}$.

If E_h denotes the unramified extension of E whose residue field is the unique extension of degree h of the residue field k_E of E which is contained in F, we see that $X_h = X_{F,E,h}$. It is a complete regular curve whose field of definition is E_h .

If $x \in P_{\pi,d}$ then $x \in P_{h,\pi,dh}$. It it easy to see that the induced map

$$\oplus P_{\pi,d} \to \oplus P_{h,\pi,d}$$

induces a morphism

$$\nu_h: X_h \to X$$

which is a cyclic cover of degree h identifying $X_{F,h}$ with $X \times_{\text{Spec } E} \text{Spec } E_h$. For each $\lambda \in \mathbb{Q}$, if $\lambda = d/h$, with $d, h \in \mathbb{Z}$ relatively prime and h > 0, we set

$$\mathcal{O}_X(\lambda)_\pi = (\nu_h)_* \big(\mathcal{O}_{X_{F,h}}(d)_\pi \big)$$

This is a vector bundle over X of rank h and degree d, hence of slope λ .

THEOREM 4.2. For any non-zero coherent \mathcal{O}_X -module \mathcal{F} , the Harder-Narasimhan filtration on \mathcal{F} splits (non canonically). Moreover, if $\lambda \in \mathbb{Q}$, then \mathcal{F} is stable (resp. semistable) of slope λ if and only if $\mathcal{F} \simeq \mathcal{O}_X(\lambda)_{\pi}$ (resp. there is an integer n > 0such that $\mathcal{F} \simeq \mathcal{O}_X(\lambda)_{\pi}^{\oplus n}$).

COROLLARY 4.4.1. The functor

 $\{finite \ dimensional \ E-vector \ spaces\} \rightarrow$

 $\{semistable \ vector \ bundles \ of \ slope \ 0 \ over \ X\}$

sending V to $V \otimes_E \mathcal{O}_X$ is an equivalence of tannakian categories. The functor

 $\mathcal{F} \mapsto H^0(X, \mathcal{F})$

is a quasi-inverse.

The proof of the theorem is easily reduced to the proof of the corollary. By dévissage, one sees that it is enough to prove the following statement:

³When F is not algebraically closed, this result remains true if and only if the residue field k_F of F is algebraically closed.

LEMME 4.2.1. Let h be a positive integer and \mathcal{F} be a vector bundle extension of $\mathcal{O}_X(1)$ by $\mathcal{O}_X(-1/h)$. Then

$$H^0(X,\mathcal{F}) \neq 0$$
.

This lemma can be deduced by elementary manipulations on modifications of vector bundles from:

PROPOSITION 4.4.2. Let h be a positive integer and

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{E} \to 0$$

a short exact sequence of coherent \mathcal{O}_X -modules, with \mathcal{E} torsion of length 1. Then: i) If $\mathcal{F} \simeq \mathcal{O}_X(1/h)$, then $\mathcal{F}' \simeq \mathcal{O}_X^h$.

ii) If $\mathcal{F}' \simeq \mathcal{O}_X^h$, then $\mathcal{F} \simeq \mathcal{O}_X(1/r) \oplus \mathcal{O}_X^{h-r}$ for some r with $1 \le r \le h$.

Let C be the residue field of X at the closed point which is the support of \mathcal{E} . This is an algebraically closed extension of E, complete with respect to an absolute value extending the given absolute value on E. This proposition can be translated:

i) in terms of *Banach-Colmez spaces* over C, i.e. the "Espaces de Banach de dimension finie" introduced by Colmez [**Col02**],

ii) or in terms of free *B*-modules equipped with a φ -semi-linear automorphism, iii) or in terms of Barsotti-Tate groups over \mathcal{O}_C .

This leads to three different proofs of the proposition which becomes a consequence of the work of Colmez (*loc. cit.*) or of Kedlaya ([Ke05], [Ke08]) or of a result of Laffaille ([Laf79], also proved in [GH94]) for the first part and of Drinfel'd ([Dr76], also proved in [Laf85]) for the second part.

A consequence of the previous theorem is that the geometric étale π_1 of the curve X is trivial. More precisely:

PROPOSITION 4.4.3. Let $X' \to X$ be a finite étale morphism and $E' = H^0(X', \mathcal{O}_{X'})$. The natural morphism

$$X' \to X \times_{\text{Spec } E} SpecE'$$

is an isomorphism.

4.5. The topology on \mathcal{O}_X . The multiplicative norms $| |_{\rho}$ for $0 < \rho < 1$ extend to the fraction field of B. For each open subset U of X, we endow the ring $\Gamma(U, \mathcal{O}_X) \subset \operatorname{Frac}(B)$ with the topology defined by the restriction of this family of norms. The transition maps

$$\Gamma(U, \mathcal{O}_X) \to \Gamma(V, \mathcal{O}_X)$$

for $V \subset U$ open is obviously continuous. This endows \mathcal{O}_X with a natural structure of sheaf of locally convex *E*-algebras ⁴ which plays an important role in the study of \mathcal{O}_X -representations of certain topological groups.

 $^{{}^{4}\}mathrm{A}$ locally convex E-vector space is a topological E-vector space whose topology can be defined by a family of semi-norms.

4.6. \mathcal{O}_X -representations. We denote by \mathcal{G}_F the group of continuous automorphisms of the field F (an automorphism of the field F is continuous if and only if it sends the valuation of F to a strictly positive multiple of it). We equip \mathcal{G}_F and its subgroups with the pointwise convergence topology, that is to say the weakest topology making the applications

$$\begin{array}{cccc} \mathcal{G}_F & \longrightarrow & F \\ g & \longmapsto & g(x) \end{array}$$

continuous when x goes through F. If $F = \widehat{F_0}$ where F_0 is complete valued then $\operatorname{Gal}(\overline{F_0}|F_0) \subset \mathcal{G}_F$ is a closed subgroup and the induced topology on $\operatorname{Gal}(\overline{F_0}|F_0)$ is the usual profinite topology. By functoriality, \mathcal{G}_F acts on X. We'll need slightly more. The action of \mathcal{G}_F on \mathcal{O}_X is *continuous*, i.e., for any open subset U of X, the subgroup

$$\mathcal{G}_{F,U} = \left\{ g \in \mathcal{G}_F \mid g(U) = U \right\}$$

is a closed subgroup of \mathcal{G}_F and the natural map

$$\mathcal{G}_{F,U} \times \Gamma(U, \mathcal{O}_X) \to \Gamma(U, \mathcal{O}_X)$$

is continuous.

Let H be any closed subgroup of \mathcal{G}_F . We explained in §1.1 what is a \mathcal{O}_X -representations of H. We now use the topology on the sheaf \mathcal{O}_X to put a continuity condition on these representations. More precisely if \mathcal{E} is an \mathcal{O}_X -representation of H we require, for any open subset U of X, the natural map

$$H_U \times \Gamma(U, \mathcal{E}) \to \Gamma(U, \mathcal{E})$$

(where $H_U = \{h \in H \mid h(U) = U\}$) to be continuous.

From now on an \mathcal{O}_X -representation of H will mean a continuous one.

5. Galois descent

5.1. The curve X when F may not be algebraically closed. We don't assume anymore F algebraically closed and we consider the curve

$$X = X_{F,E} = \operatorname{Proj} P_{\pi}$$

We choose an algebraic closure \overline{F} of F and we set $H = \operatorname{Gal}(\overline{F}/F)$. The absolute value | | of F extends uniquely to \overline{F} and to its completion \widetilde{F} (which is algebraically closed). We set

$$\widetilde{B} = B_{\widetilde{F},E}$$
, $\widetilde{P}_{\pi} = P_{\widetilde{F},E,\pi}$, and $\widetilde{X} = X_{\widetilde{F},E} = \operatorname{Proj} \widetilde{P}_{\pi}$.

The action of H on \overline{F} extends uniquely to a continuous action on \widetilde{F} and by functoriality to a continuous action on \widetilde{B} and \widetilde{P}_{π} . As we may identify H with a closed subgroup of the group $\mathcal{G}_{\widetilde{F}}$ of continuous automorphisms of the field \widetilde{F} , Halso acts on the curve \widetilde{X} .

THEOREM 5.1. i) The natural maps

$$B \to \widetilde{B}^H$$
 and $P_\pi \to \widetilde{P}_\pi^H$

are isomorphisms.

ii) The map $P_{\pi} \to \widetilde{P}_{\pi}$ induces a morphism of schemes

 $\nu:\widetilde{X}\to X$

independent of the choice of π .

iii) Define the degree of any closed point $x \in X$ by

 $\deg(x) = cardinality of \nu^{-1}(x)$.

Then X is a complete regular curve defined over E. iv) The morphism ν induces an isomorphism

$$\operatorname{Div}(X) \to (\operatorname{Div}(X))^H$$

Let H^* be the group of characters of H, i.e. the group of continuous homomorphisms from H to the multiplicative group E^* of E. If $D \in \text{Div}^+(X) = (\text{Div}^+(\widetilde{X}))^H$ is an effective divisor of degree $d \in \mathbb{N}$ and if $u \in \widetilde{P}_{\pi,d}$ is a generator of the homogeneous ideal of \widetilde{P} corresponding to D, there is $\xi_D \in H^*$ such that, for all $h \in H$,

$$h(u) = \xi_D(h)u$$

and ξ_D is independent of the choice of u. The map $D \mapsto \xi_D$ extends uniquely to an homomorphism of groups

$$\operatorname{Div}(X) \to H^*$$
.

This map induces an isomorphism

$$Pic^0(X) \to H^*$$
.

More precisely,

PROPOSITION 5.1.1. Let $\mathcal{K} = \mathcal{O}_{X,\eta}$ the function field of X. The sequence

$$0 \to E^* \to \mathcal{K}^* \to \operatorname{Div}(X) \to \mathbb{Z} \times H^* \to 0$$
,

where $\operatorname{Div}(X) \to \mathbb{Z} \times H^*$ is the map sending D to $(\operatorname{deg}(D), \xi_D)$, is exact.

Moreover, for all $\xi_0 \in H^*$, there exists an infinite set of effective divisors D of degree 1 such that $\xi_D = \xi_0$.

If \mathcal{F} is a coherent \mathcal{O}_X -module (resp. a vector bundle over X), then $\nu^* \mathcal{F}$ may be viewed as an $\mathcal{O}_{\widetilde{X}}$ -representation of H (resp. an H equivariant vector bundle over \widetilde{X}).

Conversely, if \mathcal{E} is an $\mathcal{O}_{\widetilde{X}}$ -representation of H, we define the \mathcal{O}_X -module \mathcal{E}^H by setting, for all open subset U of X

$$\Gamma(U, \mathcal{E}^H) = \Gamma(\nu^{-1}(U), \mathcal{E})^H$$

(and obvious restriction maps).

THEOREM 5.2. The functor

$$\nu^*: \{ \text{coherent } \mathcal{O}_X \text{-modules } \} \to \{ \mathcal{O}_{\widetilde{X}} \text{-representations of } H \}$$

is an equivalence of tensor categories, respecting the rank, the degree and the Harder-Narasimhan filtration.

For any $\mathcal{O}_{\widetilde{X}}$ -representation \mathcal{E} of H, the \mathcal{O}_X -module \mathcal{E}^H is coherent. The functor

 $\mathcal{E}\mapsto \mathcal{E}^H$

is a quasi-inverse of the functor $\mathcal{F} \mapsto \nu^* \mathcal{F}$.

5.2. The étale fundamental group. Let F' be a finite extension of F and E' be a finite extension of E.

– When, the residue field $k_{E'}$ is embedded in k_F we have defined the curve $X_{F',E'}$ and the natural morphism

$$X_{F,E'} \longrightarrow X_{F',E} \otimes_E E'$$

is an isomorphism.

– Therefore, we may define in general the curve $X_{F',E'}$ by

$$X_{F',E'} = X_{F',E} \otimes_E E' \; .$$

We have

$$X_{F',E} = \operatorname{Proj} P_{F',E,\pi}$$

and the obvious map $P_{F,E,\pi} \to P_{F',E,\pi}$ induces a morphism

$$X_{F',E} \to X$$

which is a finite étale cover of X of degree [F':F], independent of the choice of π . Therefore

$$X_{F',E'} \to X$$

is a finite étale cover of X of degree [F':F].[E':E].

Choose a closed point $\tilde{x} = \text{Spec } C$ of \tilde{X} . Then C is algebraically closed and we denote by \overline{x} the geometric point of X

Spec
$$C \to \widetilde{X} \to X$$
.

Let \mathcal{I} the set of pairs (F', E') with F' be a finite Galois extension of F contained in the field F(C) introduced in §2.4 and E' a finite Galois extension of E contained in C.

The inclusion $F' \to F(C)$ induces an extension of the morphism

$$\overline{x} : \text{Spec } C \to X$$

to a morphism of X-schemes

Spec
$$C \to X_{F',E}$$
,

which, using the inclusion $E' \to C$, extends also to a morphism of X-schemes

Spec
$$C \to X_{F',E'}$$

PROPOSITION 5.2.1. For each $(F', E') \in \mathcal{I}$, the morphism $X_{F',E'} \to X$ is a finite étale Galois cover whose Galois group is $\operatorname{Gal}(F'/F) \times \operatorname{Gal}(E'/E)$.

Moreover the projective system

$$(X_{F',E'} \to X)_{(F',E') \in \mathcal{I}}$$

(with obvious transition maps) induces an isomorphism

$$\pi_1^{et}(X,\overline{x}) \to \operatorname{Gal}(E^s/E) \times \operatorname{Gal}(\overline{F}/F)$$
,

where E^s (resp. \overline{F}) denote the separable closure of E in C (resp. of F in F(C)).

In particular, the geometric étale π_1 of X may be identified with $\operatorname{Gal}(\overline{F}/F)$.

L. FARGUES AND J.-M. FONTAINE

6. de Rham G_K -equivariant vector bundles

In this section, K is a field of characteristic 0 which is the fraction field of a complete discrete valuation ring \mathcal{O}_K whose residue field k is perfect of characteristic p > 0. We choose an algebraic closure \overline{K} of K and we set $G_K = \operatorname{Gal}(\overline{K}/K)$. We denote by C the completion of \overline{K} . This is an algebraically closed field, therefore it is a strictly *p*-perfect field and the field F = F(C) is algebraically closed.

6.1. The curve $X = X_{F(C),\mathbb{Q}_p}$. We consider the curve

$$X = X_{F,\mathbb{Q}_p}$$

We set

$$B = B_{F,\mathbb{Q}_p}$$
 and $B^+ = B^+_{F,\mathbb{Q}_p}$.

We have

$$X = \operatorname{Proj} P_p \text{ with } P_p = \bigoplus_{d \in \mathbb{N}} P_{p,d} \text{ and } P_{p,d} = \left\{ u \in B \mid \varphi(u) = p^d u \right\} \,.$$

The natural map $P_p \to B$ is injective, with image contained in B^+ , and we identify P_p with its image.

As F = F(C), we have a canonical continuous surjective homomorphism of \mathbb{Q}_p -algebras

 $\theta:B\to C$

(the restriction of θ to B^b is the map $\sum_{n \gg -\infty} [a_n] p^n \mapsto \sum_{n \gg -\infty} a_n^{(0)} p^n$). We fix $\varpi \in F$ such that $\varpi^{(0)} = p$. Then the kernel of θ is the principal ideal generated by $p - [\varpi]$. As usual in *p*-adic Hodge theory [Fon94a], we denote B_{dR}^+ the completion of $B^{b,+}$ for the $(p-[\varpi])$ -adic topology. This is also the completion of B (or of B^+) for the ker θ -adic topology. As θ is G_K -equivariant, the action of G_K on B extends to B_{dR}^+ .

As usual (*loc. cit.*), we fix $\varepsilon \in F$ such that $\varepsilon^{(0)} = 1$ and $\varepsilon^{(1)} \neq 1$. We set

$$t = \log([\varepsilon]) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{([\varepsilon]-1)^n}{n} \in B^+$$
.

Then t is a generator of the \mathbb{Q}_p -line $P_{p,1} \cap \ker \theta$. The homogeneous ideal of P_p generated by t defines a closed point ∞ of X which is the image in |X| of the maximal ideal ker θ of B.

Therefore ∞ is fixed under G_K , its residue field is C and the completion of the discrete valuation ring $\mathcal{O}_{X,\infty}$ is B_{dR}^+ . We set

$$X_e = X \setminus \{\infty\} \ .$$

This is an affine open subset, stable under G_K . We see that

 $B_e := \Gamma(X_e, \mathcal{O}_X) = \left\{ \text{homogeneous elements of degree 0 of } P_p[\frac{1}{t}] \right\}$

is a principal ideal domain. We set

$$B_{cr} = B^+ \left[\frac{1}{t} \right] \, .$$

The Frobenius φ on B^+ extends uniquely to an automorphism of B_{cr} and we have

$$B_e = \left\{ b \in B_{cr} \mid \varphi(b) = b \right\}$$

REMARK. The ring B^+ is sometimes denoted $\widetilde{\mathbf{B}}_{rig}^+$ (e.g. [**Ber02**], §1 where F = F(C) is denoted $\widetilde{\mathbf{E}}$, though A is denoted $\widetilde{\mathbf{A}}$ and $B^{b,+}$ is denoted $\widetilde{\mathbf{B}}^+$). Traditionally [**Fon94a**], one defines the ring A_{cris} as the *p*-adic completion of the divided power envelop of the ring A with respect to the ideal generated by $p - [\varpi]$ and $B_{cris}^+ = A_{cris}[1/p]$. The inclusion of $A[1/p] = B^{b,+}$ into B^+ extends by continuity to a canonical injective map from B^+ into B_{cris}^+ . Hence, we may identify B^+ with a subring of B_{cris}^+ and $B^+[1/t]$ with a subring of $B_{cris} = B_{cris}^+[1/t]$. We then have

$$B^+ = \bigcap_{n \in \mathbb{N}} \varphi^n(B_{cris}^+)$$
 and $B^+[\frac{1}{t}] = \bigcap_{n \in \mathbb{N}} \varphi^n(B_{cris})$,

so, we have also

$$B_e = \left\{ b \in B_{cris} \mid \varphi(b) = b \right\}$$

and the definition of B_e given here agrees with the definition of [**FP94**], chap.I, §3.3.

6.2. B_e -representations of G_K . Recall that a B_e -representation of G_K is a B_e -module of finite type equipped with a semi-linear and continuous action of G_K . Those are the (continuous) \mathcal{O}_{X_e} -representations of G_K . They form an abelian category. A G_K -equivariant vector bundle over Spec B_e is a B_e -representation of G_K such that the underlying B_e -module is locally free, hence free as B_e is a principal domain. It turns out that this condition is automatic:

PROPOSITION 6.2.1. The B_e -module underlying any B_e -representation of G_K is torsion free. The category of B_e -representations of G_K is an abelian category.

Granted what we already know, the proof of this proposition is easy: The second assertion results from the first. To show the first assertion, it is enough to show, that if V is a B_e -representation of G_K such that the underlying B_e -module is a torsion module, then V = 0. We observe that the annihilator of V is a non-zero ideal \mathfrak{a} stable under G_K . Then \mathfrak{a} is the product of finitely many maximal ideals. If \mathfrak{m} is one of them, for all $g \in G_K$, $g(\mathfrak{m})$ must contain \mathfrak{a} . But the maximal ideals corresponds to the closed points of $X_e = X \setminus \{\infty\}$ and one can show that ∞ , which is fixed under G_K , is the unique closed point of X whose orbit under G_K is finite. Therefore $\mathfrak{a} = B_e$ and V = 0.

REMARKS. (1) This result implies that the tensor category of B_e -representations is a tannakian \mathbb{Q}_p -linear category.

(2) It is easy to see that $B_e^* = \mathbb{Q}_p^*$. This implies that any continuous 1-cocycle

$$\alpha: G_K \to (B_e)^*$$

takes its values in \mathbb{Q}_p^* . It means that, if V is a one dimensional B_e -representation, the \mathbb{Q}_p -line generated by a basis of V over B_e is stable under G_K . In other words, any one dimensional B_e -representation of G_K comes by scalar extension from a one dimensional p-adic representation of G_K .

6.3. Vector bundles and their cohomology. Let \mathcal{F} be a coherent \mathcal{O}_X -module. Then

– the B_e -module

$$\mathcal{F}_e = \Gamma(X_e, \mathcal{F})$$

is of finite type,

– the completion \mathcal{F}_{dR}^+ of the fiber at ∞ is a B_{dR}^+ -module of finite type,

- we have a canonical isomorphism

 $\iota_{\mathcal{F}}: B_{dR} \otimes_{B_e} \mathcal{F}_e \to B_{dR} \otimes_{B_{dR}^+} \mathcal{F}_{dR}^+$

With an obvious definition for the morphisms, the triples

$$(\mathcal{F}_e, \mathcal{F}_{dR}^+, \iota_{\mathcal{F}})$$

with \mathcal{F}_e a B_e -module of finite type, \mathcal{F}_{dR}^+ a B_{dR}^+ -module of finite type and

$$\iota_{\mathcal{F}}: B_{dR} \otimes_{B_e} \mathcal{F}_e \to B_{dR} \otimes_{B_{dB}^+} \mathcal{F}_{dR}^+$$

an isomorphism of B_{dR}^+ -modules form a tensor abelian category. The correspondence

$$\mathcal{F} \mapsto (\mathcal{F}_e, \mathcal{F}_{dR}^+, \iota_{\mathcal{F}})$$

just defined induces a tensor equivalence of categories. We use it to identify these two categories.

Then $\mathcal{F} = (\mathcal{F}_e, \mathcal{F}_{dR}^+, \iota_{\mathcal{F}})$ is a vector bundle if and only if \mathcal{F}_e is free over B_e and \mathcal{F}_{dR}^+ is free over B_{dR}^+ . In this case, to give $\iota_{\mathcal{F}}$ is the same as giving an isomorphism from \mathcal{F}_{dR}^+ onto a B_{dR}^+ -lattice of $B_{dR} \otimes_{B_e} \mathcal{F}_e$, i.e. a sub- B_{dR}^+ -module of finite type generating $B_{dR} \otimes_{B_e} \mathcal{F}_e$ as a B_{dR} vector space.

Therefore, we may as well see a vector bundle over X as a pair

$$(\mathcal{F}_e, \mathcal{F}_{dR}^+)$$

where \mathcal{F}_e is a free B_e -module of finite rank and \mathcal{F}_{dR}^+ is a B_{dR}^+ -lattice in \mathcal{F}_{dR} = $B_{dR} \otimes_{B_e} \mathcal{F}_e.$

The cohomology of \mathcal{F} is easy to compute: we have an exact sequence

$$0 \to H^0(X, \mathcal{F}) \to \mathcal{F}_e \oplus \mathcal{F}_{dR}^+ \to \mathcal{F}_{dR} \to H^1(X, \mathcal{F}) \to 0$$

where the middle map is $(b, b') \mapsto b - b'$. In the special case of \mathcal{O}_X , we have $H^0(X, \mathcal{O}_X) = \mathbb{Q}_p$ and $H^1(X, \mathcal{O}_X) = 0$, giving rise to the "fundamental exact sequence of *p*-adic Hodge theory'

$$0 \to \mathbb{Q}_p \to B_e \oplus B_{dR}^+ \to B_{dR} \to 0$$
.

6.4. G_K -equivariant vector bundles. As ∞ is stable under G_K , we see that:

We may identity the abelian tensor category of \mathcal{O}_X -representations of G_K with the category of triples

$$(\mathcal{F}_e, \mathcal{F}_{dR}^+, \iota_{\mathcal{F}})$$

where

i) \mathcal{F}_e is a B_e -representation of G_K ,

ii) \mathcal{F}_{dR}^+ is a B_{dR} -representation of G_K ,

iii)
$$\iota_{\mathcal{F}}: B_{dR} \otimes_{B_e} \mathcal{F}_e \to B_{dR} \otimes_{B_{dR}^+} \mathcal{F}_{dR}^+$$

is a G_K -equivariant isomorphism of B_{dR} vector spaces.

– We may identify the category of G_K -equivariant vector bundles over X to the category of pairs

$$(\mathcal{F}_e, \mathcal{F}_{dR}^+)$$

where

i) \mathcal{F}_e is a B_e -representation of G_K , ii) \mathcal{F}_{dR}^+ is a G_K -stable B_{dR}^+ -lattice in $\mathcal{F}_{dR} = B_{dR} \otimes_{B_e} \mathcal{F}_e$. The category of such pairs has already been considered by Berger [**Ber08**].

REMARK. Let \mathcal{F} be an \mathcal{O}_X -representation of G_K . The fact that ∞ is the only closed point of X whose orbit under G_K is finite implies that the torsion of \mathcal{F} , if any, is concentrated at ∞ . If \mathcal{F} is a vector bundle, i.e. is torsion free and if \mathcal{G} is a G_K -equivariant modification of \mathcal{F} (i.e. \mathcal{F} and \mathcal{G} have the same generic fiber), we have $\mathcal{G}_e = \mathcal{F}_e$ though \mathcal{G}_{dR}^+ may be any G_K -stable B_{dR}^+ -lattice of \mathcal{F}_{dR} .

6.5. The hierarchy of \mathcal{O}_X -representations. Let $B^?$ be any topological ring equipped with a continuous action of G_K . We say that a $B^?$ -representation V of G_K is *trivial* if the natural map

$$B^? \otimes_{(B^?)^{G_K}} V^{G_K} \to V$$

is an isomorphism.

We introduce the ring

$$B_{lcr} = B_{cr}[\log([\varpi])]$$

of polynomials in the indeterminate $\log([\varpi])$ with coefficients in B_{cr} .

Consider the continuous maps

$$\chi: G_K \to \mathbb{Z}_p^*$$
 and $\eta: G_K \to \mathbb{Z}_p$

such that, for all $g \in \mathcal{G}_K$,

$$g(t) = \chi(g)t$$
 and $g(\varpi) = \varpi \varepsilon^{\eta(g)}$.

The action of G_K on B^+ extends to B_{lcr} by setting, for all $g \in G_K$,

$$g(\frac{1}{t}) = \frac{1}{\gamma(q)t}$$
 and $g(\log([\varpi])) = \log([\varpi]) + \eta(g)t$

We say that a B_e -representation V is de Rham (resp. log-crystalline, resp. crystalline) if the representation $B_{dR} \otimes_{B_e} V$ (resp. $B_{lcr} \otimes_{B_e} V$, resp. $B_{cr} \otimes_{B_e} V$) is trivial. We say that V is potentially log-crystalline if there is a finite extension L of K contained in \overline{K} such that V, viewed as a B_e -representation of $G_L = \operatorname{Gal}(\overline{K}/L)$ is log-crystalline.

For any property which makes sense for a B_e -representation, we say that a G_K -equivariant vector bundle $\mathcal{F} = (\mathcal{F}_e, \mathcal{F}_{dR}^+)$ over X_E satisfies this property if \mathcal{F}_e does.

The following result is easy to prove:

PROPOSITION 6.5.1. Let

 $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$

a short exact sequence of B_e -representations or of G_K -equivariant vector bundles. If \mathcal{F} is de Rham (resp. potentially log-crystalline, resp. log-crystalline, resp. crystalline), so are \mathcal{F}' and \mathcal{F}'' .

Therefore we may say that an \mathcal{O}_X -representation of G_K is de Rham (resp. potentially log-crystalline, resp. log-crystalline, resp. crystalline) if it is isomorphic to a quotient of a G_K -equivariant vector bundle which has this property.

It is easy to show (see more details in §6.7 below) that:

- if \mathcal{F}_1 and \mathcal{F}_2 are two \mathcal{O}_X -representations of G_K having one of those four properties, then any sub- \mathcal{O}_X -representation of \mathcal{F}_1 , any quotient of \mathcal{F}_1 , the representation $\mathcal{F}_1 \otimes \mathcal{F}_2$ and $\mathcal{L}_{\mathcal{O}_X}(\mathcal{F}_1, \mathcal{F}_2)$ have the same properties,

- we have the implications

It is a deep result (see §7 below) that, conversely, any de Rham \mathcal{O}_X -representation is potentially log-crystalline.

6.6. Log-crystalline B_e -representations and (φ, N) -modules. Let $K_0 =$ Frac W(k). One can show that

$$(B_{lcr})^{G_K} = K_0 \; .$$

If V is any B_e -representation of G_K , we set

$$\mathcal{D}_{lcr}(V) = (B_{lcr} \otimes_{B_e} V)^{G_K}$$

This is a K_0 -vector space and we denote

 α_V

$$: B_{lcr} \otimes_{K_0} \mathcal{D}_{lcr}(V) \to B_{lcr} \otimes_{B_e} V$$

the B_{lcr} -linear map deduced by scalar extension from the inclusion $\mathcal{D}_{lcr}(V) \subset B_{lcr} \otimes_{B_e} V$.

By definition V is log-crystalline if and only if α_V is bijective. It is not hard to see that α_V is injective, that the dimension over K_0 of $\mathcal{D}_{lcr}(V)$ is \leq the rank of V over B_e and that equality holds if and only if α_V is bijective (this last statement comes from the fact that any B_e -representation of G_K of rank one comes, by scalar extension, from a one dimensional *p*-adic representation of G_K and that any non-zero element $b \in B_{lcr}$ such that the \mathbb{Q}_p -vector space generated by *b* is stable under G_K is invertible).

The Frobenius φ on B_+ extends to B_{lcr} by setting

$$\varphi(\frac{1}{t}) = \frac{1}{nt}$$
 and $\varphi(\log([\varpi])) = p \log([\varpi])$.

One denotes $N: B_{lcr} \to B_{lcr}$ the unique B^+ -derivation such that $N(\log([\varpi])) = -1$. We get

$$N\varphi = p\varphi N$$

The action of φ and of N commute with the action of G_K . On K_0 we have N = 0 and the Frobenius φ is the absolute Frobenius, i.e. the unique continuous automorphism inducing $x \mapsto x^p$ on the residue field.

A (φ, N) -module over k is a finite dimensional K_0 -vector space D equipped with two operators

$$\varphi, N: D \rightrightarrows D$$

with φ semi-linear with respect to the action of φ on K_0 and bijective, $N K_0$ -linear and $N\varphi = p\varphi N$.

With an obvious definition of the morphisms, the (φ, N) -modules over k form an abelian category $Mod(\varphi, N)_k$. It has an obvious structure of a tannakian \mathbb{Q}_p linear category.

Let V be a B_e -representation of G_K . The free B_{lcr} -module $B_{lcr} \otimes_{B_e} V$ is equipped with operators φ and N by setting

 $\varphi(b \otimes v) = \varphi(b) \otimes v$ and $N(b \otimes v) = Nb \otimes v$ if $b \in B_{lcr}$ and $v \in V$,

26

commuting with the action of G_K . Therefore

 $\mathcal{D}_{lcr}(V) = (B_{lcr} \otimes_{B_e} V)^{G_K}$

is stable under φ and N and becomes a (φ, N) -module over k.

If D is a (φ, N) -module over k, then G_K , φ and N act on $B_{lcr} \otimes_{K_0} D$ via

$$g(b \otimes x) = g(b) \otimes x , \varphi(b \otimes x) = \varphi(b) \otimes \varphi(x) \quad N(b \otimes x)$$
$$= Nb \otimes x + b \otimes Nx \text{ for } g \in G_K, b \in B_{lcr}, x \in D$$

It is easy to see that the B_e -module

$$\mathcal{V}_{lcr}(D) = \left\{ v \in B_{lcr} \otimes_{K_0} D \mid \varphi_E(v) = v \text{ and } Nv = 0 \right\}$$

is free of rank equal to the dimension of D over K_0 , hence is a B_e -representation of G_K .

Let $\operatorname{Rep}_{B_e,lcr}(G_K)$ be the full sub-category of the category $\operatorname{Rep}_{B_e}(G_K)$ of B_e -representations of G_K whose objects are the representations which are logcrystalline. The proof of the following statement is straightforward and formal:

THEOREM 6.1. For any (φ, N) -module D over k, the B_e -representation $\mathcal{V}_{lcr}(D)$ of G_K is log-crystalline. The functor

$$\mathcal{V}_{lcr}: Mod(\varphi, N)_k \to \operatorname{Rep}_{B_e, lcr}(G_K)$$

is an equivalence of categories and the functor

 $V \mapsto \mathcal{D}_{lcr}(V)$

is a quasi-inverse.

REMARKS. (1) It is easy to see that a B_e -representation V of G_K is crystalline if and only if it is log-crystalline and N = 0 on $\mathcal{D}_{lcr}(V)$.

(2) The relation $N\varphi = p\varphi N$ implies that N is nilpotent on any object of $Mod(\varphi, N)_k$ and that the kernel of N is a sub-object.

In particular, the semi-simplification of a log-crystalline B_e -representation of G_K is a crystalline B_e -representation of G_K . If k is algebraically closed, the full sub-category $Mod(\varphi)_k$ of $Mod(\varphi, N)_k$ whose objects are those on which N = 0 is semi-simple ([**Man63**], §2). Therefore a B_e -representation of G_K is crystalline if and only if it is log-crystalline and semi-simple.

(3) The category $\operatorname{Rep}_{B_e,lcr}(G_K)$ is a tannakian subcategory of $\operatorname{Rep}_{B_e}(G_K)$, i.e. it is stable under taking sub-objects, quotients, direct sums, tensor products, internal hom and contains the unit representation B_e . The functor \mathcal{V}_{lcr} is an equivalence of tannakian categories.

Let $I_K \subset G_K$ the inertia subgroup. We have $C^{I_K} = \hat{K}_{nr}$, the *p*-adic completion of the maximal unramified extension of *K* contained in \overline{K} . The algebraic closure of \hat{K}_{nr} in *C* is a dense subfield of *C* and I_K can be identified with the Galois group of this algebraic closure over \hat{K}_{nr} .

If V is any B_e -representation of G_K , denote by $Res_{I_K}(V)$ the B_e -representation of I_K which is V with the action of I_K deduced from the inclusion of I_K into G_K .

If k is the residue field of K_{nr} , and $G_k = \text{Gal}(k/k) = G_K/I_K$, we have

$$\mathcal{D}_{lcr}(V) = (\mathcal{D}_{lcr}(Res_{I_K}(V)))^{G_k} .$$

From the fact that, if $\hat{K}_{0,nr}$ is the fraction field of $W(\bar{k})$ and D is a finite dimensional $\hat{K}_{0,nr}$ vector space equipped with a semi-linear and continuous action of G_k , the natural map

$$\widehat{K}_{0,nr} \otimes_{K_0} D^{G_k} \to D$$

is an isomorphism, we deduce:

PROPOSITION 6.6.1. Let V be a B_e -representation of G_K . Then V is logcrystalline if and only if $\operatorname{Res}_{I_K}(V)$ is log-crystalline.

6.7. Log-crystalline vector bundles and filtered (φ, N) -modules. As B^+ is separated for the ker θ -adic topology, we may view B^+ as a subring of B_{dR}^+ and $B_{cr} = B^+[1/t]$ as a sub B_e -algebra of $B_{dR} = B_{dR}^+[1/t]$.

Extending the *p*-adic logarithm by deciding that $\log(p) = 0$, one can identify B_{lcr} with a sub- B_{cr} -algebra of B_{dR} by setting

$$\log([\varpi]) = \log([\varpi]/p) = -\sum_{n=1}^{+\infty} \frac{(p - [\varpi])^n}{np^n}$$

If $\mathcal{F} = (\mathcal{F}_e, \mathcal{F}_{dR}^+)$ is a G_K -equivariant vector bundle over X, and if $\mathcal{F}_{dR} = B_{dR} \otimes_{B_e} \mathcal{F}_e = B_{dR} \otimes_{B_{dR}^+} \mathcal{F}_{dR}^+$, we set

$$\mathcal{D}_{lcr}(\mathcal{F}) = \mathcal{D}_{lcr}(\mathcal{F}^e) = (B_{lcr} \otimes_{B_e} \mathcal{F}^e)^{G_K} \text{ and } \mathcal{D}_{dR}(\mathcal{F}) = (\mathcal{F}_{dR})^{G_K}$$

If \mathcal{F} is of rank r, then:

i) $\mathcal{D}_{lcr}(\mathcal{F})$ is a (φ, N) -module over K_0 whose dimension over K_0 is $\leq r$ with equality if and only if \mathcal{F} is log-crystalline.

ii) The natural map

$$B_{dR} \otimes_K D_{dR}(\mathcal{F}) \to \mathcal{F}_{dR}$$

is always injective, therefore the K-vector space $D_{dR}(\mathcal{F})$ is of dimension $\leq r$ with equality if and only if \mathcal{F} is de Rham.

We see also that $\mathcal{D}_{dR}(\mathcal{F})$ is a *filtered K-vector space*, i.e. a finite dimensional *K*-vector space Δ equipped with a decreasing filtration, indexed by \mathbb{Z} , by sub *K* vector spaces

$$\ldots \supset F^{i-1}\Delta \supset F^i\Delta \supset F^{i+1}\Delta \supset \ldots$$

such that $F^i \Delta = 0$ for $i \gg 0$ and $= \Delta$ for $i \ll 0$: The filtration is defined by

$$F^i \mathcal{D}_{dR}(\mathcal{F}) = (F^i B_{dR} \otimes_{B^+_{dR}} \mathcal{F}^+_{dR})^{G_K}$$

where $F^i B_{dR} = B_{dR}^+ t^i$ is the fractional ideal of the discrete valuation ring B_{dR}^+ which is the *i*th power of its maximal ideal.

The inclusion $K \otimes_{K_0} B_{lcr} \to B_{dR}$ induces an injective map

$$K \otimes_{K_0} \mathcal{D}_{lcr}(\mathcal{F}) \to \mathcal{D}_{dR}(\mathcal{V})$$

For dimension reasons, if \mathcal{F} is log-crystalline, this map is an isomorphism, \mathcal{F} is de Rham and the pair $\mathcal{D}_{lcr,K}(\mathcal{F})$ consisting of $\mathcal{D}_{lcr}(\mathcal{F})$ and the filtration on $K \otimes_{K_0} \mathcal{D}_{lcr}(\mathcal{F})$ induced by this isomorphism is a filtered (φ, N) -module over K (cf. [Fon94b]), i.e. it is a finite dimensional K_0 -vector space D, equipped with operators φ, N giving to D the structure of a (φ, N) -module over k, plus a filtration F (i.e. a structure of filtered K vector space) on the K vector space $D_K = K \otimes_{K_0} D$.

A morphism of filtered (φ, N) -modules over K

$$f: (D, F) \to (D', F)$$

is a K_0 -linear map commuting with φ and N and such that, if $f_K : D_K \to D'_K$ is the K-linear map deduced from f by scalar extension, then $f_K(F^iD_K) \subset F^iD'_K$ for all $i \in \mathbb{Z}$.

The category $MF_K(\varphi, N)$ of filtered (φ, N) -modules over K is an additive \mathbb{Q}_p -linear category.

If there is no risk of confusion on the filtration, we write D = (D, F) for any object (D, F) of $MF_K(\varphi, N)$. The following result is now obvious:

THEOREM 6.2. The functor

 $\mathcal{D}_{lcr,K}$: {log-cryst. G_K -equiv. vector bundles over X} \rightarrow MF_K(φ , N)

is an equivalence of categories. A quasi-inverse is given by the functor \mathcal{F}_{lcr} defined by

$$\mathcal{F}_{lcr,K}(D) = (\mathcal{V}_{lcr}(D), F^0(B_{dR} \otimes_K D_K))$$

where $\mathcal{V}_{lcr}(D)$ is the B_e -representation of G_K associated to the (φ, N) -module over k underlying D and

$$F^{0}(B_{dR} \otimes_{K} D_{K})) = \sum_{i \in \mathbb{Z}} F^{i} B_{dR} \otimes_{K} F^{-i} D_{K} \subset B_{dR} \otimes_{K} D_{K} = B_{dR} \otimes_{B_{e}} \mathcal{V}_{lcr}(D) .$$

REMARKS. (1) We say that a sequence of morphisms of log-crystalline G_K equivariant vector bundles over X is *exact* if the underlying sequence of \mathcal{O}_X -modules
is exact. Similarly we say that a sequence of morphisms

$$\dots \to (D', F) \to (D, F) \to (D'', F) \to \dots$$

of $MF_K(\varphi, N)$ is *exact* if, for any $i \in \mathbb{Z}$, the induced sequence of K-vector spaces

$$\dots F^i D'_K \to F^i D_K \to F^i D''_K \dots$$

is exact.

With these definitions (or rather with the restriction of this definition to short exact sequences) these two categories are exact categories ([Qui73], §2). The functors $\mathcal{D}_{lcr,K}$ and $\mathcal{F}_{lcr,K}$ turn exact sequences into exact sequences.

(2) The category of G_K -equivariant vector bundles over X and the category $MF_K(\varphi, N)$ both have a natural structure of a \mathbb{Q}_p -linear tensor category ([Fon94b], §4.3.4, for the later). The functors $\mathcal{F}_{lcr,K}$ and $\mathcal{V}_{lcr,K}$ are tensor functors.

(3) Let \mathcal{F} be a log-crystalline G_K -equivariant vector bundle over X and let $D = \mathcal{D}_{lcr}(V)$. If \mathcal{G} is a G_K -equivariant modification of \mathcal{F} , then \mathcal{G} is still log-crystalline and $\mathcal{D}_{lcr}(\mathcal{G}) = D$. Therefore, to give such a modification is the same as changing the filtration on D_K .

(4) We have a functor $D \to (D, F_{triv})$ from the category of (φ, N) -modules over k to $MF_K(\varphi, N)$ consisting of adding to a (φ, N) -module D the trivial filtration on D_K (i.e. $F_{triv}^i D_K = D_K$ if $i \leq 0$ and 0 if i > 0).

(5) Let D be a (φ, N) -module over k, and choose a basis e_1, e_2, \ldots, e_r of D over K_0 . If we set $\varphi(e_j) = \sum_{i=1}^r a_{ij}e_i$, the *p*-adic valuation of the determinant of the matrix of the a_{ij} is independent of the choice of the basis and is denoted $t_N(D)$. It is easy to see that

 $\operatorname{rank} \mathcal{V}_{lcr,K}(D, F_{triv}) = \dim_{K_0} D \text{ and } \operatorname{deg} \mathcal{V}_{lcr,K}(D, F_{triv}) = -t_N(D).$

If now F is a filtration on D, so that $\mathcal{V}_{lcr,K}(D,F)$ is a modification of $\mathcal{V}_{lcr,K}(D,F_{triv})$, it's easily to see that, if $t_H(D,F) = \sum_{i \in \mathbb{Z}} i.\operatorname{dim}_K(F^i D_K / F^{i+1} D_K)$, then

rank $\mathcal{V}_{lcr,K}(D,F) = \operatorname{rank} \mathcal{V}_{lcr,K}(D,F_{triv})$

and deg
$$\mathcal{V}_{lcr}(D, F) = \deg \mathcal{V}_{lcr,K}(D, F_{triv}) + t_H(D, F)$$

This remark suggests to define the *rank*, the *degree* and the *slope* of a non-zero filtered (φ, N) -module (D, F) over K by

$$\operatorname{rank}(D, F) = \dim_{K_0} D, \ \deg(D, F) = t_H(D, F) - t_N(D) \text{ and } \mu(D, F)$$
$$= \frac{\deg(D, F)}{\operatorname{rank}(D, F)}.$$

Let $f: (D', F) \to (D, F)$ a morphism of $\operatorname{MF}_K(\varphi, N)$, with $f_K: D'_K \to D_K$ the underlying K-linear map. We say that f is *strict* if it is strictly compatible to the filtrations, i.e. if $f_K(F^iD'_K) = F^iD_K \cap f_K(D'_K)$ for all $i \in \mathbb{Z}$. If f_K is injlective, it is equivalent to saying that f fits into a short exact sequence of $\operatorname{MF}_K(\varphi, N)$

$$0 \to (D', F) \to (D, F) \to (D'', F) \to 0$$
.

A sub-object (D', F) of a filtered (φ, N) -module (D, F) is a morphism $(D', F) \to (D, F)$ such that the (φ, N) -module D' is a sub-object of D.

The strict sub-objects of an object (D, F) correspond bijectively to the subobjects of the underlying (φ, N) -module via the map

$$D' \mapsto (D', F)$$
 with $F^i D'_K = F^i D_K \cap D'_K$ for all $i \in \mathbb{Z}$.

If (D', F) is such a sub-object, the quotient (D, F)/(D', F) is the cokernel of $(D', F) \to (D, F)$.

We say that a filtered (φ, N) -module (D, F) is *semistable* if, for any non-zero sub-object (D', F) of (D, F), we have $\mu(D', F) \leq \mu(D, F)$. It is enough to check it for strict sub-objects.

The following assertion is entirely formal:

PROPOSITION 6.7.1. i) For any non-zero filtered (φ, N) -module D over K, there is a unique filtration (called the Harder-Narasimhan filtration) by strict sub-objects

$$0 = D_0 \subset D_1 \subset \ldots \subset D_{i-1} \subset D_i \subset \ldots \subset D_{m-1} \subset D_m = D$$

with each D_i/D_{i-1} non-zero and semistable such that

$$\mu(D_1/D_0) > \mu(D_2/D_1) > \ldots > \mu(D_m/D_{m-1})$$
.

ii) The functors $\mathcal{D}_{lcr,K}$ and $\mathcal{V}_{lcr,K}$ respect the rank, the degree, the slope and the Harder-Narasimhan filtration.

6.8. *p*-adic Hodge theory. The corollary 4.4.1 implies that we have an equivalence of tannakian categories between *p*-adic representations (i.e. \mathbb{Q}_p -representations) of G_K and G_K -equivariant vector bundles over X which are semistable of slope 0:

$$V \to \mathcal{F}(V) = \mathcal{O}_X \otimes_{\mathbb{Q}_p} V = (B_e \otimes_{\mathbb{Q}_p} V, B^+_{dR} \otimes_{\mathbb{Q}_p} V)$$

(with $\mathcal{F} \mapsto V(\mathcal{F}) = H^0(X, \mathcal{F})$ as a quasi-inverse).

We say that V is de Rham (resp. potentially log-crystalline, resp. log-crystalline, resp. crystalline if $\mathcal{F}(V)$ has this property.

Classically one introduces [Fon94a] the ring

$$B_{st} = B_{cris}[\log[\varpi]] \; .$$

If V is a p-adic representation of G_K , one says that V is de Rham (resp. crystalline, resp. semistable, resp. potentially semistable) if $B_{dR} \otimes_{\mathbb{Q}_p} V$ is trivial (resp. $B_{cris} \otimes_{\mathbb{Q}_p} V$ is trivial, resp. $B_{st} \otimes_{\mathbb{Q}_p} V$ is trivial, resp. there is a finite extension L of K contained in \overline{K} such that V is semistable as a p-adic representation of G_L).

The origin of this terminology lies in the facts that, if Z is any proper and smooth variety over $K, i \in \mathbb{N}$ and $V = H^i_{\acute{e}t}(Z_{\overline{K}}, \mathbb{Q}_p)$, then ([**Fa89**], [**Ts99**], [**Ni08**])

– the *p*-adic representation V is de Rham and the filtered K-vector space $D_{dR}(V) = \mathcal{D}_{dR}(\mathcal{F}(V))$ can be identified with

$$\mathcal{H}^i_{dR}(Z) = \mathbb{H}^i(Z, \Omega^{\bullet}_{Z/K})$$

equipped with the Hodge filtration,

– if there exists \mathcal{Z} over \mathcal{O}_K proper and smooth such that

Spec
$$K \times_{\text{Spec } \mathcal{O}_K} \mathcal{Z} = Z$$
,

then V is crystalline and $D_{cris}(V) = \mathcal{D}_{lcr}(\mathcal{F}(V))$ is the *i*th-crystalline cohomology group of the special fiber of \mathcal{Z} (equality respecting the Frobenius and compatible with the filtration via the de Rham comparison isomorphism),

– if there exists \mathcal{Z} over \mathcal{O}_K proper and semistable such that

Spec
$$K \times_{\text{Spec } \mathcal{O}_K} \mathcal{Z} = Z$$
,

then V is semistable and $D_{st}(V) = \mathcal{D}_{lcr}(\mathcal{F}(V))$ is the *ith*-log-crystalline cohomology group of the log special fiber of \mathbb{Z} (equality respecting φ and N and compatible with the filtration via the de Rham comparison isomorphism).

It is easy to check that

– the definition given in $\S6.5$ of a de Rham and of a crystalline *p*-adic representation agrees with the classical definition,

- a *p*-adic representation V is log-crystalline (resp. potentially log-crystalline) if and only if it is semistable (resp. potentially semistable).

We made this change of terminology to avoid confusion between the two notion of semistability (semistable model of a variety and semistable vector bundle).

As a corollary of the proposition 6.7.1, denoting $\operatorname{Rep}_{\mathbb{Q}_p,lcr}(G_K)$ the full subcategory of the category $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ of *p*-adic representations of G_K whose objects are the log-crystalline ones and $\operatorname{MF}^0_K(\varphi, N)$ the full sub-category of $\operatorname{MF}_K(\varphi, N)$ whose objects are those which are semistable of slope 0, we get:

THEOREM 6.3. For any p-adic log-crystalline representation of G_K ,

$$D_{lcr,K}(V) = \mathcal{D}_{lcr,K}(\mathcal{O}_X \otimes V)$$

is a filtered (φ, N) -module over K which is semistable of slope 0.

The category $\operatorname{Rep}_{\mathbb{Q}_p,lcr}(G_K)$ is a tannakian subcategory of $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ and

$$D_{lcr,K} : \operatorname{Rep}_{\mathbb{Q}_p, lcr}(G_K) \to \operatorname{MF}^0_K(\varphi, N)$$

is an equivalence of tensor categories. The functor

 $V_{lcr,K}$: MF⁰_K(φ, N) \rightarrow Rep_{$\mathbb{O}_n, lcr}(G_K) ,</sub>$

 $defined \ by$

$$V_{lcr,K}(D) = \Gamma(X, \mathcal{V}_{lcr,K}(D))$$
,

is a quasi-inverse.

This important result of *p*-adic Hodge theory was first proved in **[CF00]** where a filtered (φ, N) -module over K is said to be *weakly admissible* whenever it is semistable of slope 0.

7. de Rham = potentially log-crystalline

To finish, we explain the main lines of the proof of:

THEOREM 7.1. Any p-adic representation of G_K , any B_e -representation of G_K or any G_K -equivariant vector bundle over X is de Rham if and only if it is potentially log-crystalline.

The case of *p*-adic representations is another important result of *p*-adic Hodge theory. The first proof was given by Berger [Ber02] relying on Crew's conjecture first proved by André [An02] and Mebkhout [Meb02].

We know that the condition of the theorem is sufficient and it is obviously enough to show that, if \mathcal{V} is a B_e -representation of G_K which is de Rham, then \mathcal{V} is potentially log-crystalline.

We first reduce the proof to the case where k is algebraically closed: Let $\widehat{K}_{nr} \subset C$ the p-adic closure of the maximal unramified extension K_{nr} of K contained in \overline{K} . Let $\overline{\widehat{K}}_{nr}$ the algebraic closure of \widehat{K}_{nr} . Then $\overline{\widehat{K}}_{nr}$ is stable under the action of the inertia subgroup I_K of G_K . This gives an identification of I_K to the Galois group $\operatorname{Gal}(\overline{\widehat{K}}_{nr}/\widehat{K}_{nr})$.

PROPOSITION 7.2. Let \mathcal{V} be a B_e -representation of G_K . Then \mathcal{V} is logcrystalline if and only if \mathcal{V} is log-crystalline as a representation of $I_K = \text{Gal}(\overline{\widehat{K}}_{nr}/\widehat{K}_{nr})$.

Let \overline{k} be the residue field of \widehat{K}_{nr} and $\widehat{K}_{0,nr}$ the fraction field of $W(\overline{k})$. The group $\operatorname{Gal}(\overline{k}/k) = G_K/I_K$ acts semi-linearly on the finite dimensional $\widehat{K}_{0,nr}$ vector space

$$\mathcal{D}_{lcr,nr}(\mathcal{V}) = (B_{lcr} \otimes_{B_e} \mathcal{V})^{I_K}$$

and we have

$$\mathcal{D}_{lcr}(\mathcal{V}) = (D_{lcr,nr}(\mathcal{V}))^{G_k} \,.$$

It is well known that, if n is any positive integer, the pointed set $H_{cont}^1(G_k, GL_n(\widehat{K}_{0,nr}))$ is trivial. This implies that the natural map

$$K_{0,nr} \otimes_{K_0} \mathcal{D}_{lcr}(\mathcal{V}) \to \mathcal{D}_{lcr,nr}(\mathcal{V})$$

is an isomorphism. Therefore $\dim_{K_0} \mathcal{D}_{lcr}(\mathcal{V}) = \dim_{\widehat{K}_{0,nr}} \mathcal{D}_{lcr,nr}(\mathcal{V}).$

If r is the rank of \mathcal{V} over B_e , then \mathcal{V} is log-crystalline as a B_e -representation of G_K (resp. I_K) if and only if $\dim_{K_0} \mathcal{D}_{lcr}(\mathcal{V}) = r$ (resp. $\dim_{\widehat{K}_{0,nr}} \mathcal{D}_{lcr,nr}(\mathcal{V}) = r$). The proposition follows.

From now on, we assume k algebraically closed.

32

Let E be a finite extension of \mathbb{Q}_p and $\tau : E \to K$ a \mathbb{Q}_p -embedding. We choose a uniformizing parameter π of E. For $d \in \mathbb{N}$, we consider the 1-dimensional Erepresentations of G_K

$$E\{d\}_{\tau} = \operatorname{Symm}_{E}^{d} V_{C}(\Phi_{\pi})$$
 and $E\{-d\}_{\tau} = \operatorname{the} E\operatorname{-dual} \operatorname{of} E\{d\}_{\tau}$

where $V_C(\Phi_{\pi})$ is the 1-dimensional representation associated to the Lubin-Tate formal group Φ_{π} (§4.2). If we use τ to see E as a closed subfield of C, then $V_C(\Phi_{\pi}) = E \otimes T_{\pi}(\Phi_{\pi})$ where

$$T_{\pi}(\Phi_{\pi}) = \lim_{\substack{\longleftarrow \\ n \in \mathbb{N}}} \Phi_{\pi}(\mathcal{O}_{C})_{\pi^{n}}$$

is the Tate module of Φ_{π} .

We say that a *E*-representation *V* of G_K is τ -ordinary if there is a decreasing filtration $(F_{\tau}^d V)_{d \in \mathbb{Z}}$ of *V* by sub-*E*-vector spaces stable under G_K such that $F^d V_{\tau} = V$ for $d \ll 0$, $F_{\tau}^d V = 0$ for $d \gg 0$, each $F_{\tau}^d V$ is stable under G_K and G_K acts trivially on $(F_{\tau}^d V/F_{\tau}^{d+1}V) \otimes_E E\{-d\}_{\tau}$.

If π' is an other uniformizing parameter of E, then $V_C(\Phi'_{\pi})$ and $V_C(\Phi_{\pi})$ are isomorphic. Therefore, the condition of being τ -ordinary is independent of the choice of π .

The theorem follows from these three propositions:

PROPOSITION 7.3. Any B_e -representation \mathcal{V} of G_K which is potentially de Rham (i.e. de Rham as a representation of G_L for a suitably chosen finite extension L of K contained in \overline{K}) is de Rham.

PROPOSITION 7.4. Let $\tau : E \to \mathcal{K}$ be a \mathbb{Q}_p -embedding of a finite extension E of \mathbb{Q}_p into K. Any E-representation of G_K which is τ -ordinary is log-crystalline.

PROPOSITION 7.5. Let \mathcal{V} be a B_e -representation of G_K which is de Rham. There exists an integer $h_{\mathcal{V}} \geq 1$ such that, for any finite extension E of \mathbb{Q}_p of degree divisible by $h_{\mathcal{V}}$ and any embedding $\tau : E \to \overline{K}$, one can find

1) a finite extension L of K contained in \overline{K} and containing $\tau(E)$,

2) a τ -ordinary E-representation V of $G_L = \operatorname{Gal}(\overline{K}/L)$,

3) a G_L -equivariant $B_e \otimes_{\mathbb{Q}_p} E$ -linear bijection

$$B_e \otimes_{\mathbb{Q}_p} V \simeq E \otimes_{\mathbb{Q}_p} \mathcal{V}$$
.

The field \overline{K} is naturally embedded into B_{dR} and the proposition 7.3 becomes a formal consequence of the fact that, for any positive integer n, the pointed set $H^1(G_K, GL_n(\overline{K}))$ is trivial.

The proof of the proposition 7.4 relies on some hard computation in Galois cohomology which can be done using the techniques of Herr [**He98**] to compute Galois cohomology by the way of the theory of (ϕ, Γ) -modules [**Fon90**]. This computation has been done by Berger showing a much more general result : any extension of two semi-stable *E*-representations which is de Rham is semistable (unpublished, see also [**Ber02**], §6).

The proof of the proposition 7.5 runs as follows:

Say that a G_K -equivariant vector bundle $\mathcal{F} = (\mathcal{F}_e, \mathcal{F}_{dR}^+)$ is trivial at ∞ if it is de Rham and $\mathcal{F}_{dR}^+ = B_{dR}^+ \otimes_K \mathcal{D}_{dR}(\mathcal{F})$.

L. FARGUES AND J.-M. FONTAINE

To any B_e -representation \mathcal{W} of G_K which is de Rham, setting $\mathcal{D}_{dR}(\mathcal{W}) = (B_{dR} \otimes_{B_e} \mathcal{W})^{G_K}$, one can associate to \mathcal{W} the G_K -equivariant vector bundle

$$\mathcal{W} = (\mathcal{W}, B_{dR}^+ \otimes_K \mathcal{D}_{dR}(\mathcal{W}))$$

which is trivial at ∞ . The correspondence $\mathcal{W} \mapsto \mathcal{W}$ is a functor inducing a tensor equivalence between the category of de Rham B_e -representations of G_K and G_K -equivariant vector bundles over X which are trivial at ∞ .

If \mathcal{F} is any de Rham G_K -equivariant vector bundle over X, then $\widetilde{\mathcal{F}}_e$ is a modification of \mathcal{F} and \mathcal{F} is trivial at ∞ if and only if $\widetilde{\mathcal{F}}_e = \mathcal{F}$.

Let

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_{i-1} \subset \mathcal{F}_i \subset \ldots \subset \mathcal{F}_{m-1} \subset \mathcal{F}_m = \mathcal{V}$$

be the Harder-Narasimhan filtration of \mathcal{V} . By unicity of this filtration, each \mathcal{F}_i is stable under G_K . Setting $\mathcal{V}_i = (\mathcal{F}_i)_e$, we get a decreasing filtration

$$\mathcal{V} = \mathcal{V}_0 \subset \mathcal{V}_1 \subset \ldots \subset \mathcal{V}_{i-1} \subset \mathcal{V}_i \subset \ldots \subset \mathcal{V}_{m-1} \subset \mathcal{V}_m = \mathcal{V}_m$$

by sub- B_e -representations of G_K . For $1 \le i \le m$, \mathcal{F}_i and $\overline{\mathcal{F}}_i = \mathcal{F}_i/\mathcal{F}_{i-1}$ are trivial at ∞ (we have $\mathcal{F}_i = \widetilde{\mathcal{V}}_i$ and $\overline{\mathcal{F}}_i = \widetilde{\overline{\mathcal{V}}}_i$, where $\overline{\mathcal{V}}_i = \mathcal{V}_i/\mathcal{V}_{i-1}$).

Let μ_i be the slope of the semistable vector bundle $\overline{\mathcal{F}}_i$ and let $h_{\mathcal{V}}$ be the smallest positive integer such that

$$h_{\mathcal{V}}.\mu_i \in \mathbb{Z}$$
 for $1 \leq i \leq m$.

Let E be a finite extension of \mathbb{Q}_p of degree h divisible by $h_{\mathcal{V}}$, $\tau \in \mathbb{Q}_p$ -embedding of E into \overline{K} and K' a finite extension of K contained in \overline{K} and containing $\tau(E)$. The curve $X_E = X_{F,E}$ is a cyclic étale cover of X of degree h equipped with an action of $G_{K'}$ and the natural morphism $\nu : X_E \to X$ is $G_{K'}$ -equivariant.

Choose a uniformizing parameter π of E. For each $d \in \mathbb{Z}$, the line bundle $\mathcal{O}_{X_E}(d)_{\pi}$ is equipped with an action of $G_{K'}$ and

$$\mathcal{O}_X(d/h)_\pi = \nu_* \mathcal{O}_{X_E}(d)_\pi$$

is a $G_{K'}$ -equivariant vector bundle over X which is semistable of slope d/h. For $1 \leq i \leq m$, the $G_{K'}$ -equivariant vector bundle

$$\mathcal{G}_i = Hom(\mathcal{O}_X(\mu_i)_{\pi}, \overline{\mathcal{F}}_i)$$

is semistable of slope 0, hence $W_i = H^0(X, \mathcal{G}_i)$ is a *p*-adic representation of $G_{K'}$ and $\mathcal{G}_i = \mathcal{O}_X \otimes_{\mathbb{Q}_p} W_i$.

On the other hand, $\mathcal{G}_i = \widetilde{\mathcal{W}_i}$ where \mathcal{W}_i is the de Rham B_e -representation of $G_{K'}$

$$\mathcal{W}_i = \mathcal{L}_{B_e}(\Gamma(X_e, \mathcal{O}_X(\mu_i)_{\pi}), \mathcal{V}_i) ,$$

hence \mathcal{G}_i is trivial at ∞ . Therefore, the natural map

$$B^+_{dR} \otimes_K (B_{dR} \otimes_{\mathbb{Q}_p} W_i)^{G_{K'}} \to B^+_{dR} \otimes_{\mathbb{Q}_p} W_i$$

is an isomorphism. A fortiori, the natural map

$$C \otimes_K (C \otimes_{\mathbb{Q}_p} W_i)^{G_{K'}}) \to C \otimes_{\mathbb{Q}_p} W_i$$

is an isomorphism (i.e. the *p*-adic representation W_i of $G_{K'}$ is Hodge-Tate, with all its Hodge-Tate weights equal to 0). A deep result of Sen [Sen73] implies that $G_{K'}$ acts on W_i through a finite quotient. Therefore, one can find a finite extension Lof K' contained in \overline{K} such that G_L acts trivially on each W_i . One easily checks

34

that it implies the existence of a positive integer r_i and of an isomorphism of G_L -equivariant vector bundles

$$f_i: (\mathcal{O}_X(\mu_i)_\pi)^{r_i} \to E \otimes_{\mathbb{Q}_p} \overline{\mathcal{F}}_i$$
.

For all $d \in \mathbb{Z}$, there is a canonical isomorphism

$$(\mathcal{O}_X(d/h)_\pi)_e \simeq B_e \otimes_{\mathbb{Q}_n} E\{d\}_\pi$$

and therefore, for $1 \leq i \leq m$, if $\mu_i = d_i/h$, we get a G_L -equivariant $B_e \otimes_{\mathbb{Q}_p}$ -linear bijection

$$B_e \otimes_{\mathbb{Q}_p} (E\{d_i\})^{r_i} \simeq E \otimes_{\mathbb{Q}_p} \overline{\mathcal{V}}_i$$
.

In particular, this concludes the proof when m = 1. Assume $m \ge 2$. By induction, we may assume there is a τ -ordinary representation V' of G_L and a G_L -equivariant $B_e \otimes_{\mathbb{Q}_n}$ -linear bijection

$$B_e \otimes_{\mathbb{Q}_p} V' \simeq E \otimes_{\mathbb{Q}_p} \mathcal{V}_{m-1}$$

Set $B_{e,E} = B_e \otimes_{\mathbb{Q}_p} E$. We get an exact sequence of $B_{e,E}$ -representations of G_L

$$0 \to B_{e,E} \otimes_E V' \to E \otimes_{\mathbb{Q}_p} \mathcal{V} \to B_{e,E} \otimes_E (E\{d_m\})^{r_m} \to 0 \ .$$

Twisting by $E\{-d_m\}$, we are reduced to show, that, if we have a short exact sequence of $B_{e,E}$ -representations of G_L

(*)
$$0 \to B_{e,E} \otimes_E W' \to \mathcal{W} \to B_{e,E} \to 0$$

with W' a τ -ordinary *E*-representation of G_L , then \mathcal{W} comes by scalar extension from an *E*-representation of G_L which is an extension of *E* by W'. Setting

 $B_{dR,E} = E \otimes_{\mathbb{Q}_p} B_{dR}$, $B_{dR,E}^+ = E \otimes_{\mathbb{Q}_p} B_{dR}^+$ and $\widetilde{B}_{dR,E} = B_{dR,E}/B_{dR,E}^+$,

we get from the fundamental exact sequence $(\S 6.3)$, a short exact sequence

$$0 \to E \to B_{e,E} \to B_{dR,E} \to 0$$

Tensoring with W', we get an exact sequence

 $0 \to W' \to B_{e,E} \otimes_E W' \to \widetilde{B}_{dR,E} \otimes_E W' \to 0 ,$

inducing an exact sequence of continuous G_L -cohomology

$$\dots \to H^{1}_{cont}(G_{L}, W') \to H^{1}_{cont}(G_{L}, B_{e,E} \otimes_{E} W')$$
$$\to H^{1}_{cont}(G_{L}, \widetilde{B}_{dR,E} \otimes_{E} W') \to \dots$$

The short exact sequence (*) defines an element $c \in H^1_{cont}(G_L, B_{e,E} \otimes_E W')$. What we need to show is that c comes from an element of $H^1_{cont}(G_L, W')$ or equivalently goes to 0 in $H^1_{cont}(G_L, \tilde{B}_{dR,E} \otimes W')$. The map

$$H^1_{cont}(G_L, B_{e,E} \otimes_E W') \to H^1_{cont}(G_L, \widetilde{B}_{dR,E} \otimes_E W')$$

factors through $H^1_{cont}(G_L, B_{dR,E} \otimes_E W')$ and this comes from the fact that the extension is de Rham which means that the image of c is already 0 in $H^1_{cont}(G_L, B_{dR,E} \otimes_E W')$.

REMARK. Let \mathcal{F} a de Rham G_K equivariant vector bundle over X. Choose a finite Galois extension L of K contained in \overline{K} such that \mathcal{F} is log-crystalline as a G_L -vector bundle. Then the (φ, N) module over L

$$\mathcal{D}_{lcr,L}(\mathcal{F})$$

is equipped with an action of $G_{L/K}$ defined in an obvious way. This give to $\mathcal{D}_{lcr,L}(\mathcal{F})$ the structure of what can be called a *filtered* $(\varphi, N, G_{L/K})$ -module over K. The inductive limit (in a straightforward way) of the categories of filtered $(\varphi, N, G_{L/K})$ modules over K, when L runs through all the finite Galois extensions of K contained in \overline{K} , is the category

$$MF_K(\varphi, N, G_K)$$

of filtered (φ , N, G_K)-modules over K. This is, in an obvious way, a \mathbb{Q}_p -linear tensor category, with an obvious definition of the rank, the degree and the slope of any non-zero object. The Harder-Narasimhan filtration of any object can be defined. We see that the $\mathcal{D}_{lcr,L}$'s induce a tensor equivalence of categories

de Rham G_K -equivariant vector bundles over $X \iff Mod_K(\varphi, N, G)$

respecting rank, degree, slopes and the Harder-Narasimhan filtration.

The restriction of this equivalence to semistable vector bundles of slope 0 leads to the "classical" equivalence ([**Fon94b**], [**Ber02**]) of categories between de Rham *p*-adic representations of G_K and "weakly admissible" (or semistable of slope 0) filtered (φ , N, G_K)-modules over K.

References

- [An02] Y. André, Filtrations de type Hasse-Arf et monodromie p-adique, Invent. Math. 148 (2002), 285–317.
- [Ber02] L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219–284.
- [Ber08] L. Berger, Construction de (φ, Γ) -modules : représentations p-adiques et B-paires, Algebra Number Theory 2 (2008), 91–120.
- [Col02] P. Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), 331–439.
- [CF00] P. Colmez & J.-M. Fontaine, Construction des représentations p-adiques semi-stables, Invent. Math. 140 (2000), 1–43.
- [DM82] P. Deligne & J.S. Milne, *Tannakian categories*, in Hodge Cycles, Motives and Shimura Varieties (P. Deligne et al, ed.), Lecture Notes in Math., no. 900, Springer, 1982, pp. 101– 228.
- [Dr76] V. Drinfel'd, Coverings of p-adic symmetric domains, Funkcional. Anal. i Prilozen. 10 (1976), 29–40.
- [Fa89] G. Faltings, Crystalline cohomology and p-adic Galois representations, Algebraic analysis, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, 1989, pp. 25– 80.
- [Fon90] J.-M. Fontaine, Représentations p-adiques des corps locaux, 1ère partie, in The Grothendieck Festschrift (P. Cartier et al., ed.), vol. II, Progress in Math., no. 87, Birkhaüser, Boston, 1990, pp. 249–309.
- [Fon94a] J.-M. Fontaine, Le corps des périodes p-adiques, in Périodes p-adiques, Astérisque 223, Soc. Math. France, 1994, pp. 59–111.
- [Fon94b] J.-M. Fontaine, Représentations p-adiques semi-stables, Périodes p-adiques, Astérisque 223, Soc. Math. France, 1994, pp. 113–184.
- [FP94] J.-M. Fontaine, et B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L in Motives, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 599–706.
- [GH94] B. Gross & M. Hopkins, Equivariant vector bundles on the Lubin-Tate moduli space, in Topology and representation theory, Contemp. Math., 158, Amer. Math. Soc., 1994, pp. 23–88.
- [He98] L. Herr, Sur la cohomologie galoisienne des corps p-adiques, Bull. Soc. Math. France 126 (1998), 563–600.
- [Ke05] K. Kedlaya, Slope filtrations revisited, Doc. Math. 10 (2005), 447–525.

VECTOR BUNDLES AND p-ADIC GALOIS REPRESENTATIONS

- [Ke08] K. Kedlaya, Slope filtrations for relative Frobenius, in Représentations p-adiques de groupes p-adiques. I. Astérisque **319** (2008), pp. 259–301.
- [Laf79] G. Laffaille, Construction de groupes p-divisibles. Le cas de dimension 1. Journées de Géométrie Algébrique de Rennes, Vol. III, pp. 103–123, Astérisque, 65, Soc. Math. France, Paris, 1979.
- [Laf85] G. Laffaille, Groupes p-divisibles et corps gauches, Compositio Math. 56 (1985), 221– 232.
- [LT65] J. Lubin & J. Tate, Formal complex multiplication in local fields, Annals of Math. 81 (1965), 380–387.
- [Man63] Y. Manin, Theory of commutative formal groups over fields of finite characteristic, Russian Math. Surveys 18 (1963), 1–83.
- [Man65] Y. Manin, Modular Fuchsiani, Annali Scuola Norm. Sup. Pisa Ser. III 18 (1965), 113– 126.
- [Meb02] Z. Mebkhout, Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique, Invent. Math. 148 (2002), 319–351.
- [Ni08] W. Niziol, Semistable conjecture via K-theory, Duke Math. J. 141 (2008), 151–178.
- [Poo93] B. Poonen, Maximally complete fields, Ens. Math. 39 (1993), 87-106.
- [Qui73] D. Quillen, Higher algebraic K-theory I, in Algebraic K-theory I, Lecture Notes in Math., no. 341, Springer, 1973, pp. 77.
- [Sen73] S. Sen, Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of Math. (2) 97 (1973), 160–170.
- [Ser67] J.-P. Serre, Local class field theory, in Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.), Academic Press, London, 1967, pp. 128–161.
- [Tat67] J. Tate, p-Divisible groups, in Proc. Conf. on Local Fields (T.A. Springer, ed.), Springer, 1967, pp. 158–183.
- [Ts99] T. Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), 233–411.