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Abstract. Richard Hain and Makoto Matsumoto constructed a category of universal
mixed elliptic motives, and described the fundamental Lie algebra of this category: it
is a semi-direct product of the fundamental Lie algebra Lieπ1(MTM) of the category
of mixed Tate motives over Z with a filtered and graded Lie algebra u. This Lie
algebra, and in particular u, admits a representation as derivations of the free Lie
algebra on two generators. In this paper we study the image E of this representation
of u, starting from some results by Aaron Pollack, who determined all the relations in
a certain filtered quotient of E , and gave several examples of relations in low weights
in E that are connected to period polynomials of cusp forms on SL2(Z). Pollack’s
examples lead to a conjecture on the existence of such relations in all depths and
all weights, that we state in this article and prove in depth 3 in all weights. The
proof follows quite naturally from Ecalle’s theory moulds, to which we give a brief
introduction. We prove two useful general theorems on moulds in the appendices.

1. Introduction

1.1. Motivation. In the unpublished text [11], Hain and Matsumoto define a Tannakian
category MEM of mixed elliptic motives, and give a partially conjectural description of
its fundamental Lie algebra. The elements of this Lie algebra satisfy certain relations
coming from modular forms that seem to be related to other natural appearances of
modular forms in the theory of multiple (particularly double) zeta values; see [13, 19]
for the situation in the dual algebra, or [10] for a cohomological explanation of this
phenomenon.

Hain and Matsumoto show that the Lie algebra Lieπ1(MEM) is a semi-direct prod-
uct uoLieπ1(MTM), where the right-hand factor is the Lie algebra of the pro-unipotent
radical of the fundamental group of the category of mixed Tate motives over Z and u is
a weight-graded Lie algebra equipped with a depth filtration, related to SL2(Z).

Hain and Matsumoto construct a representation Lieπ1(MEM)→ Der Lie[a, b] which
is known to be injective on the subalgebra Lieπ1(MTM) and conjectured to be injective
on u. The image of u, denoted E , is equipped with a natural weight-grading and depth
filtration, but is far from free. It was studied by Aaron Pollack [16], who defined a
filtration Θ on E different from the depth filtration, and classified all relations in the
quotient E /Θ3E , showing that in each weight n and depth d > 1, these relations are in
bijection with the period polynomials of the same parity as d associated to modular
forms on SL2(Z).

This leads to two natural questions. Firstly, one may ask whether Pollack’s relations
in E /Θ3E lift to actual relations in the Lie algebra E . Pollack computed several examples
of such relations in low weights, and his observations on these examples lead to a natural
hypothesis that we state as Conjecture 1.2 at the end of this section. The conjecture is
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trivial in depth 2 since a depth 2 relation in E /Θ3E also holds in E . The goal of this
paper is to prove the conjecture in depth 3.

The second natural question is, in the absence of knowledge about the injectivity of
the map u→ E , whether Pollack’s relations in E lift to relations in u, i.e. whether they
are “motivic”. Hain recently proved that Pollack’s depth 2 relations are motivic, but it
remains an open question for d > 3.

The methods we use to prove Conjecture 1.2 are based on the passage from non-com-
mutative to commutative variables via techniques from Ecalle’s theory of moulds, to
which we give a very brief introduction in section 3. The remarkable advantage of using
moulds is that the proof involves not just polynomials such as elements of Lie[a, b], but
rational functions whose denominators play a very useful role.

Acknowledgments. The first author thanks Clément Dupont for useful discussions.
We also thank Richard Hain for pointing out an ambiguity in an early version of this
paper, as well as the anonymous referee for pointing out that the original proof was
more complicated than necessary.

1.2. The Lie algebra E : definition and statement of results. The free Lie alge-
bra Lie[a, b] is graded by the weight, i.e. the degree of polynomials in a and b, and by
the depth, i.e. the minimum number of b’s in any monomial.

The weight-grading induces a grading on the Lie algebra Der Lie[a, b] of derivations
of Lie[a, b]: a derivation is of weight n if the image of a and b are of weight n+ 1. The
depth-grading induces a filtration on Der Lie[a, b]: a derivation D is of depth r if D(a)
is of depth r and D(b) of depth r + 1.

For any word w = w1 · · ·wr with wi ∈ {a, b}, and any g ∈ Lie[a, b], we write
w · g = ad(w1) · · · ad(wr)(g). Hain and Matsumoto showed that the image E of u is
generated by the derivations ε2i defined for i > 0 by

ε2i(a) = a2i · b et ε2i(b) =
i−1∑
j=0

(−1)j [aj · b, a2i−1−j · b].

The ε2i all satisfy the relation ε2i([a, b]) = 0. The derivation ε2 commutes with all the
others, so it plays no role in our investigation of relations in E .

The relations between the brackets of derivations that are the subject of Pollack’s
work [16] are more intricate than it might seem from their simple definition. In this
article, we will concentrate on depth 3 relations, namely relations between derivations
of the form [ε2i, [ε2j , ε2k]] in E .

Let sl2 ⊂ Der Lie[a, b] be the Lie algebra generated by ε0 and a second derivation ϕ0

defined by ϕ0(a) = 0, ϕ0(b) = a. Elements of E that commute with ϕ0 are called
elements of highest weight of E . The algebra E is also equipped with a filtration denoted
Θ (see [16, p. 5–7]), which is the filtration induced by the descending central series
filtration on the subalgebra of Lie[a, b] generated by the w · [a, b] with w = aibj ∈ Q〈a, b〉.

We can now give a precise formulation of Pollack’s main theorem. Let E2 ⊂ E be the
subspace spanned by elements of the form

[εi0 · εp, ε
j
0 · εq], p, q > 2 even.

Then for all depths d > 1, Pollack shows that the depth d elements

hdp,q =
∑

i+j=d−2

(−1)i (d−2)!

(pi)(
q
j)

[εi0 · εp+2, ε
j
0 · εq+2].
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span the highest weight part of the subspace E2. Pollack’s main theorem identifies the
relations between these elements in the quotient E /Θ3E :

Theorem 1.1 ([16, Thm. 2]). Let D be a highest weight element of E2, of weight n and
depth d. Then D ≡ 0 [Θ3E ] if and only if it is of the form

Rf,d =
∑

p+q=n−4

rp−d+2(f)hdp,q,

where ri(f) is the i-th period (in the sense of [14, § 11]) of a modular form f of
weight n− 2d+ 2 on SL2(Z).

If f is a modular form of modular weight k, then the element Rf,d ∈ E2 is of depth d
and weight n = k + 2d− 1. The depth 2 and 3 elements corresponding to the weight 12
cusp form known as the Ramanujan ∆ are given by

R∆,2 = h2
2,8 − 3h2

4,6 ≡ 0 [Θ3E ]

and R∆,3 = 4h3
2,10 − 25h3

4,8 + 21h3
6,6 ≡ 0 [Θ3E ].

Theorem 1.1 shows that, as also occurs in other situations (cf. [12, 19, 15, 11, 3])
related to the theory of multiple zeta values, periods of modular forms appear as
coefficients of relations in E /Θ3E . Pollack asked the following question: when do these
relations in E /Θ3 lift to actual relations in E ? Explicit calculation shows that this is
not the case in general for the relations associated to the Eisenstein series for even d:
for example, the relation hd+2

d,n+d−2 ≡ 0 [Θ3E ] associated to the series En+4 does not

lift to an identity in E . However, Pollack observed on several examples that the
relations coming from cusp forms do seem to lift to relations in E . For example, the
relation R∆,3 ≡ 0 [Θ3E ] admits the lifting

4h3
2,10 − 25h3

4,8 + 21h3
6,6 = −345

8 [ε6, [ε6, ε4]] + 231
20 [ε4, [ε8, ε2]]. (1.1)

We can thus formulate an explicit conjecture framing an answer to Pollack’s question
as follows.

Conjecture 1.2. Let k be an integer, and let f be a cusp form of weight k for SL2(Z).
Then there exists a linear combination T of brackets of ε2i, containing at least three ε2i

with i > 1, such that Rf,d = T .

The goal of this article is to prove this conjecture in the case d = 3. The theorem
can be stated directly in this situation as follows.

Theorem 1.3. Fix a positive integer n, and let D ∈ E be a linear combination of terms
of the form

[
ε2i, [ε0, ε2j ]

]
with i, j > 2. Assume that D ∈ Θ3E . Then D can be written

as a linear combination of terms of the form
[
ε2r, [ε2s, ε2t]

]
with r, s, t > 2.

We observe in passing that ε2 never appears in any brackets of ε2i because, as is
easily seen by hand, it is central in E . Our proof is based on three ingredients: first of
all, a reformulation in terms of polynomial algebra of the condition that a derivation
in E belongs to Θ3E (section 2), secondly, a theorem due to Goncharov characterizing
certain types of Lie elements in depth 3 (end of section 2), and thirdly, the passage to
Ecalle’s language of moulds (section 3) which allows us to make interesting use of
rational functions and denominators. Two particularly useful theorems from section 3,
one in mould theory and the other concerning the translation of the Lie algebra E into
mould theory, are proved in appendices, and the proof of the main theorem is given in
section 4.
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2. A reformulation of Pollack’s property

2.1. Properties of Lie polynomials. The following definition gives a key useful
property of elements of E .

Definition 2.1. The endomorphism push of the vector space Q〈a, b〉 is defined by its
value on monomials, given by

push(ai0b · · · air−1b air) = airbai0b · · · bair−1 .

A polynomial f is said to be push-invariant if push(f) = f .

It is known that push-invariant Lie polynomials are exactly the values at a of
derivations that are zero on [a, b]; we recall this and another useful characterization in
the following proposition.

Proposition 2.2 ([20, Thm. 2.1]). Let P ∈ Lie[a, b], and assume that P is of homoge-
neous degree > 2.

i) The polynomial P is push-invariant if and only if there exists an element Q
in Lie[a, b] such that [P, b] + [a,Q] = 0, in other words the derivation D de-
fined by D(a) = P , D(b) = Q satisfies D([a, b]) = 0. If such a Q exists then
it is unique.

ii) There exists a polynomial Q ∈ Lie[a, b] such that P = [a,Q] if and only P does not
contain any monomials starting and ending in b.

Corollary 2.3. Let D ∈ E . Then D(a) is a push-invariant polynomial.

Indeed, since D ∈ E , we have D([a, b]) = [a,D(b)] + [D(a), b] = 0, so D(a) is
push-invariant by Proposition 2.2 (i).

We can now give the reformulation of Pollack’s property that will serve the purposes
of our proof.

Proposition 2.4. Let D be a linear combination of terms of the form
[
ε2i, [ε0, ε2j ]

]
with i, j > 1. If the derivation D lies in Θ3E , there exists a Lie polynomial Q ∈ Lie[a, b]
such that D(a) = [a,Q].

Proof. By the definition of the filtration Θ, the derivation D lies in Θ3E if and only
if D(a) can be written as a linear combination of terms of the form [ai · b, [aj · b, ak · b]]
with i, j and k strictly positive. Thus we can assume

D(a) = (ai ·b)(aj ·b)(ak ·b)−(ai ·b)(ak ·b)(aj ·b)−(aj ·b)(ak ·b)(ai ·b)+(ak ·b)(aj ·b)(ai ·b).
Then the monomials ending with b arise only from the terms

(ai · b)(aj · b)akb− (ai · b)(ak · b)ajb− (aj · b)(ak · b)aib+ (ak · b)(aj · b)aib.
In particular this shows that no monomial in D(a) can end in b2. Thus since D(a) is
a push-invariant polynomial by Corollary 2.3, no monomial of D(a) can start and end
with b. Then by Proposition 2.2 (ii), it follows that D(a) is of the form [a,Q]. �

2.2. A theorem of Goncharov. We end this section by giving a result of Goncharov
which will be essential to the proof of our main theorem.

Definition 2.5. Set bi = ai−1b for i > 1. For every polynomial P ∈ Lie[a, b], let P∗ be
the polynomial obtained from P by forgetting all the words ending in a and adding on

the term
∑

i>1
(−1)i−1

i (P |ai−1b) bi, where (P |w) denotes the coefficient of the word w
in the expanded polynomial P . The polynomial P is said to satisfy the linearized
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double shuffle relations if, rewriting P∗ as a polynomial in the bi, it lies in Lie[b1, b2, . . .].
Following the notation of [3], we write ls for the space of polynomials satisfying the
linearized double shuffle relations. The space ls is weight and depth graded, with weight
being the degree of the polynomials and depth the number of b’s in each monomial. We
write lsdn for the part of weight n and depth d. These spaces are also studied in [13],

which uses the notation DShd(n− d) for lsdn.
To every P ∈ Lie[a, b] we associate a derivation DP of Lie[a, b] by setting DP (a) = 0

and DP (b) = [b, P ]. The Lie bracket on derivations defines another Lie bracket on
the underlying vector space of Lie[a, b], the Poisson bracket, denoted {·, ·} and given
explicitly by

{P,Q} = [P,Q] +DP (Q)−DQ(P ),

which is nothing other than an expression for the usual bracket of derivations: namely,
the identity [DP , DQ] = D{P,Q} holds for every polynomials P and Q.

The following theorem was proven in [8, § 7] (but see also [3, 7.3] for a clearer
explanation). The point that will be essential in the proof of our main theorem is that
the powers of ad(a) that appear in the statement are all > 2.

Theorem 2.6. Let P ∈ Lie[a, b] be a polynomial of homogeneous depth 3 satisfying the
linearized double shuffle relations. Then P is a linear combination of terms of the form{

ad(a)2r(b), {ad(a)2s(b), ad(a)2t(b)}
}

with r, s, t > 2.

3. Moulds

In this section we collect some of the basic results and definitions of Ecalle’s theory
of moulds, which is the framework in which we will prove the main results. For a grand
overview of Ecalle’s theory containing the requisite statements and definitions, see [5],
and for a more detailed introduction to the part of mould theory specifically concerning
multiple zeta values and complete proofs of the basic results, see [21].

3.1. Definition. A mould is a collection (Ar)r>0 where each Ar is a function of r com-
mutative variables ui. The notation being redundant, we will often write A(u1, . . . , ur)
rather than Ar(u1, . . . , ur). We will also consider moulds in variables vi.

Ecalle defines the following operations and properties:

• the ari-bracket, a Lie bracket on the space of moulds in the ui (resp. in the vi)
satisfying A(∅) = 0. Under this bracket, said spaces become Lie algebras

denoted ARI (resp. ARI)1. We write ARIpol (resp. ARI
pol

) for the spaces of
polynomial-valued moulds; it follows directly from the definition of the ari-
brackets on ARI (resp. ARI) that these subspaces are actually Lie subalgebras.
We recall the explicit expression for the ari-bracket in Appendix A (see [5], [17]
or [21]);

1Ecalle uses ARI for bimoulds, which are functions of two sets of variables ui and vi; in the framework
of this article we never use actual bimoulds (i.e. functions that are non-trivial in both families), but
there are situations in which they are very useful.
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• the swap, an involutive variable-change map from ARI to ARI, defined by

swap(A)(v1, . . . , vr) = A(vr, vr−1 − vr, . . . , v1 − v2).

From this expression it is clear that A is rational or polynomial-valued, then so
is swap(A);
• the push, a cyclic variable-change operator acting on moulds in ARI by

push(A)(u1, . . . , ur) = A(−u1 − · · · − ur, u1, . . . , ur−1).

We write ARIpush for the space of moulds that are invariant under the push
operator;
• the notion of alternality, a mould A in ARI (resp. in ARI) being said to be

alternal if for each r > 1, A satisfies∑
σ∈Sr

σ(1)<···<σ(s)
σ(s+1)<···<σ(r)

A(uσ−1(1), . . . , uσ−1(r)) = 0,

(resp. the same condition with ui replaced by vi). Finally, we say that a mould
is bialternal if both A and swap(A) are alternal. We write ARIal/al for the space
of bialternal moulds.

As can be seen in several recent articles [5, 13, 3], the passage to commutative variables
can be very useful in studying algebras that are described in terms of non-commutative
variables. By Lazard elimination, the Lie algebra Lie[a, b] can be written as a direct
sum

Lie[a, b] = Qa⊕ Lie[C1, C2, . . .],

where Ci = ad(a)i−1(b) and the right-hand Lie algebra is the free Lie algebra on the
Ci. Let Q〈C1, C2, . . .〉 denote the free non-commutative polynomial ring on the Ci, and
for each r > 1, let Qr〈C1, C2, . . .〉 denote the subspace of Q〈C1, C2, . . .〉 spanned by the
depth r monomials Ca1 · · ·Car . Define a linear map from Qr〈C1, C2, . . .〉 to Q[u1, u2, . . .],
where the ui are commutative variables, by

ma : Ci1 · · ·Cir 7→ (−1)i1+···+ir−rui1−1
1 · · ·uir−1

r .

If P ∈ Lie[C1, C2, . . .], we write P =
∑

r>1 P
r where each P r denotes the part of P that

is homogeneous of depth r; then ma extends to a map ma : Lie[C1, C2, . . .]→ ARI by
taking ma(P ) to be the mould whose depth r part is given by ma(P r).

Under the map ma, properties of a Lie polynomial translate into properties of the
associated mould. We assemble the most useful ones in the following theorem.

Theorem 3.1.

i) The map ma transports the Poisson bracket onto the ari-bracket, that is ma({f, g}) =
ari(maf ,mag), and restricts to a Lie algebra isomorphism from Lie[a, b] to the

subalgebra ARIpol
al of alternal polynomial-valued moulds in the ui.

ii) A polynomial P ∈ Lie[a, b] is push-invariant if and only if ma(P ) is a push-invariant
mould, and the space ARIpush forms a Lie algebra under the ari-bracket.

iii) Let Q ∈ Lie[a, b] and P = [a,Q]. Then for each r > 1, we have

ma(P )(u1, . . . , ur) = −(u1 + · · ·+ ur) ma(Q)(u1, . . . , ur).
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iv) The map ma restricts to an isomorphism

ls→ ARIpol
al/al ,

of image the set of moulds in ARIpol
al/al whose depth 1 part is an even function.

v) The space ARIal/al is a Lie algebra under the ari-bracket, and is contained in ARIpush.

All these results constitute a standard part of mould theory, and can be found
scattered through various texts (see [5] for the statements not concerning Lie[a, b],
or [17, 1]; see [21] for a basic introduction to the domain containing complete proofs.)

Definition 3.2. For each r > 1, let

Dr(u1, . . . , ur) = u1 · · ·ur(u1 + · · ·+ ur).

In particular D1(u1) = u2
1. Let ARIsing denote the space of rational-function valued

moulds A such that DrAr(u1, . . . , ur) is polynomial for each r > 1.

The first main result of this article is the following theorem, which is a key result
in the application of mould theory to elliptic motives. Its rather lengthy proof is
deferred to Appendix A.

Theorem 3.3 ([1, th. 4.45]). The space

ARIsing
al/al = ARIal/al ∩ARIsing

is a Lie algebra under the ari-bracket.

Definition 3.4. For i > −1, let U2i be the mould such that U2i(u1) = u2i
1 in depth 1,

and U2i(u1, . . . , ur) = 0 for every depth r 6= 1 (we say that U2i is concentrated in
depth 1). Let U be the Lie subalgebra of ARI generated by the U2i. Since D1 = u2

1, we
have U2i ∈ ARIsing for i > −1, so thanks to Theorem 3.3, we have the inclusion U ⊂
ARIsing

al/al.

Let Der0 Lie[a, b] denote the subspace of Der Lie[a, b] consisting of the derivations
that kill [a, b]. For every polynomial F ∈ Lie[a, b], let Da(F ) denote the mould which is
given in depth r by

Da(F )(u1, . . . , ur) = (1/Dr) ma(F )(u1, . . . , ur).

Define a map Ψ : Der0 Lie[a, b]→ ARI by

Ψ(D) = Da
(
D(a)

)
.

The following proposition gives the key relationship between brackets of derivations
of Lie[a, b] and the ari-bracket on moulds.

Theorem 3.5. The map Ψ is an injective Lie algebra morphism, i.e.

Ψ
(
[D1, D2]

)
7→ ari

(
Da
(
D1(a)

)
,Da

(
D2(a)

))
.

The rather long proof of this theorem is deferred to Appendix B. Note however that
the injectivity is easy, since D(a) can be recovered from Da(D(a)), and it follows from
Proposition 2.2 that a derivation in Der0 Lie[a, b] is determined by its value on a.
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The next result2uses this proposition to show that U is isomorphic to Pollack’s Lie
algebra E .

Corollary 3.6 ([7]). We have Ψ(ε2i) = U2i−2 ∈ U for all i > 0, and the map Ψ induces
an isomorphism E ' U of Lie algebras.

Proof. Since ε2i(a) = ad(a)2i(b) = C2i+1, the mould ma(ε2i) is the mould in depth 1 that
takes the value u2i

1 , so Ψ(ε2i) = Da(D(a)) = Da(C2i+1) = U2i−2. Then by Theorem 3.5,
the map Ψ restricted to the Lie algebra E ⊂ Der0 Lie[a, b] generated by the ε2i yields
a Lie algebra isomorphism to U . �

4. Proof of the main result

We begin by translating Theorem 2.6 to a statement on moulds.

Theorem 4.1. Suppose A is a bialternal polynomial-valued mould concentrated in
depth 3. Then A lies in the Lie algebra U , and more precisely it can be written as a
linear combination of moulds of the form ari

(
U2r, ari(U2s, U2t)

)
with r, s, t > 1.

Indeed, by (i) of Theorem 3.1, the map ma gives an isomorphism from the space of

depth 3 Lie polynomials in ls to the space of depth 3 moulds in ARIpol
al/al, and by (iv) of

the same Theorem, since ma
(
ad(a)2r+2(b)

)
= U2r, we have

ma
({

ad(a)2r+2(b), {ad(a)2s+2(b), ad(a)2t+2(b)}
})

= ari(U2r, ari(U2s, U2t)),

so the statement of Theorem 4.1 is equivalent to that of Theorem 2.6.
We can now prove the main result of this article.

Theorem 4.2. Fix a positive integer n, and let D ∈ E be a linear combination of terms
of the form

[
ε2i, [ε0, ε2j ]

]
with i, j > 2. Assume that D ∈ Θ3E . Then D can be written

as a linear combination of terms of the form
[
ε2r+2, [ε2s+2, ε2t+2]

]
with r, s, t > 1.

Proof. By Proposition 2.4, since D ∈ Θ3E , there exists a polynomial Q ∈ Lie[a, b] such
that D(a) = [a,Q]. By (iii) of Theorem 3.1, this means that we have the following
relation between the depth 3 moulds ma(D(a)) and ma(Q):

−(u1 + u2 + u3) ma(Q) = ma(D(a)).

Thus ma(D(a)) is a polynomial divisible by the factor (u1 + u2 + u3), and since the
mould ma(D(a)) is push-invariant by Lemma 2.3 and (ii) of Theorem 3.1, it is also
divisible by u1, u2 and u3. Thus in fact ma(D(a)) is divisible by D3, so Ψ(D) = Da

(
D(a)

)
is a polynomial-valued mould in U concentrated in depth 3. Now, we saw that U is

contained in ARIpol
al/al, i.e. every mould in U is bialternal. In particular, the depth 3

polynomial mould Ψ(D) ∈ U is bialternal. By Theorem 4.1, we can write it as

Ψ(D)(u1, u2, u3) =
∑
r,s,t>1

crst ari
(
U2r, ari(U2s, U2t)

)
.

2This result, stated in §4 of the preprint [7] by B. Enriquez from January 2013, with a brief indication
in lieu of proof, also appears as a statement (Theorem 15) without any proof in the lecture notes [4] by
F. Brown from April 2013; therefore it seems useful to spell out the proof of the key point (Theorem 3.5)

here. Brown uses the notation pls (polar linearized double shuffle) for ARIsingal/al, whereas Enriquez

writes G0 for ARIsingpush.
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Then since Ψ(ε2i) = U2i−2 and Ψ : E → U is a Lie algebra isomorphism by Corollary 3.6,
if we set

H =
∑
r,s,t>1

crst
[
ε2r+2, [ε2s+2, ε2t+2]

]
we must have Ψ(D) = Ψ(H), so by the injectivity of Ψ, we have D = H, proving the
theorem. �

Appendix A. Proof of Theorem 3.3

This appendix is devoted to the proof of Theorem 3.3, which makes essential use
of the swap operator and some of the basic notions of Ecalle’s theory of moulds, in
particular the ari-bracket.

Definitions. If we break the tuple w = (u1, . . . , ur) into three parts

a = (u1, ..., uk), b = (uk+1, ..., u`), c = (u`+1, ..., ur),

we write {
adc = (u1, . . . , uk, uk+1 + · · ·+ u` + u`+1, u`+2, . . . , ur) if c 6= ∅
aec = (u1, . . . , uk + uk+1 + · · ·+ u`, u`+1, . . . , ur) if a 6= ∅

If A,B ∈ ARI, we define the operator arit(B) acting on A by(
arit(B) ·A

)
(u1, . . . , ur) =

∑
06k<`<r

A(adc)B(b)−
∑

16k<`6r

A(aec)B(b).

If A,B ∈ ARI and the tuple (v1, . . . , vr) breaks into pieces

a = (v1, ..., vk), b = (vk+1, ..., v`), c = (v`+1, ..., vr),

then setting{
bc = (uk+1 − u`+1, uk+2 − u`+1, . . . , u` − u`+1) if c 6= ∅, otherwise bc = b

bb = (uk+1 − uk, uk+2 − uk, . . . , u` − uk) if a 6= ∅, otherwise bb = b,

we let (
arit(B) ·A

)
(v1, . . . , vr) =

∑
06k<`<r

A(ac)B(bc)−
∑

16k<`6r

A(ac)B(bb).

For two moulds A and B, let mu(A,B) be the product defined by

mu(A,B)(u1, . . . , ur) =

r∑
i=0

A(u1, . . . , ui)B(ui+1, . . . , ur).

When A = ma(F ) and B = ma(G) for polynomials F,G in a, b, the multiplica-
tion mu coincides with ordinary multiplication of polynomials: mu(ma(F ),ma(G)) =
ma(FG) (cf. [21, (3.2.13)]). Let lu(A,B) = mu(A,B) −mu(B,A), so lu is the corre-
sponding Lie bracket. For A,B ∈ ARI or ARI, we set

ari(A,B) = arit(B) ·A− arit(A) ·B + lu(A,B). (A.1)

Recall that D is the mould in the ui’s defined by

D(u1, . . . , ur) = u1 · · ·ur(u1 + · · ·+ ur).
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Let Dv = swap(D), explicitly

Dv(v1, . . . , vr) = v1(v1 − v2) · · · (vr−1 − vr)vr.

For any mould A ∈ ARI, let Ǎ be the mould defined by

Ǎ(v1, . . . , vr) = Dv(v1, . . . , vr)A(v1, . . . , vr).

Let ARI
sing
al denote the space of alternal rational-valued moulds A in the variables vi

such that Ǎ is polynomial-valued.

The heart of the proof of Theorem 3.3 [1, lemme 4.40] consists in the following
proposition.

Proposition A.1. The space ARI
sing
al is a Lie algebra under the ari-bracket.

We first need a lemma.

Lemma A.2. Let M be an element of ARI
sing
al . Then the mould M̌ satisfies the relation

M̌(0, v2, . . . , vr) = M̌(v2, . . . , vr, 0).

Proof of Lemma A.2. Let us write the simplest of the alternality relations, which gives

0 =
∑

w∈sha(v1,v2···vr)

M(w)

=

r∑
i=0

M(v2, . . . , vi, v1, vi+1, . . . , vr)

=
r−1∑
i=1

M̌(v2, . . . , vi, v1, vi+1, . . . , vr)

v2 (v2 − · · · ) · · · (· · · − vr) vr
+

+
M̌(v1, . . . , vr)

v1 (v1 − v2) · · · (vr−1 − vr) vr
+

+
M̌(v2, . . . , vr, v1)

v2 (v2 − v3) · · · (vr−1 − vr)(vr − v1) v1
.

Hence, multiplying by v1 and evaluating at v1 = 0,

0 =
M̌(0, v2, . . . , vr)

(−v2)(v2 − v3) · · · (vr−1 − vr) vr
+

M̌(v2, . . . , vr, 0)

v2 (v2 − v3) · · · (vr−1 − vr)vr
,

which is well-defined since both numerators at play are polynomials by the hypothesis
on M . The result follows immediately. �

Proof of Proposition A.1. Let M,N ∈ ARI
sing
al . By linearity, we may assume that M

and N are respectively concentrated in depths r > 1 and s > 1. Now, alternality is
preserved by the ari-bracket (cf. [18, Theorem 3.1] for a complete proof), so it only

remains to show that ari(M,N) is an element of ARI
sing

.
The essential step of the proof consists in determining the poles of arit(M) ·N by

reducing their values modulo the subspace of polynomials in the vi’s. We will use the
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simplifying notation Dv(v1, . . . , vr) = Dr(v). The fact that M is concentrated in depth r
and N in depth s also simplifies the defining formula for arit(M) ·N , as follows:(

arit(M) ·N
)
(v1 . . . vr+s) =

∑
06i<s

N(v1 · · · vi vi+r+1 · · · vr+s)M(vi+1 · · · vi+rc)−∑
0<i6s

N(v1 · · · vi vi+r+1 . . . vr+s)M(bvi+1 · · · vi+r)

= N(vr+1 · · · vr+s)M(v1 − vr+1, . . . , vr − vr+1)

+

s−1∑
i=1

N(v1 · · · vi vi+r+1 · · · vr+s)·(
M(vi+1 − vi+r+1, . . . , vi+r − vi+r+1)−M(vi+1 − vi, . . . , vi+r − vi)

)
−N(v1 · · · vs)M(vs+1 − vs, . . . vr+s − vs).

Consequently,

Dr+s(v)
(
arit(M) ·N

)
(v1, . . . , vr+s) =

v1
vr+1 (v1−vr+1) Ň(vr+1 · · · vr+s) M̌(v1 − vr+1, . . . , vr − vr+1) +

s−1∑
i=1

Dr+s(v)Si

+ vr+s

vs (vr+s−vs) Ň(v1 · · · vs) M̌(vs+1 − vs, . . . , vr+s − vs) (A.2)

with

Dr+s(v)Si =
(vi − vi+1) · · · (vi+r − vi+r+1)

vi − vi+r+1
Ň(v1 · · · vi vi+r+1 · · · vr+s)·(

M(vi+1 − vi+r+1, . . . , vi+r − vi+r+1)−M(vi+1 − vi, . . . , vi+r − vi)
)

=
(vi − vi+1) · · · (vi+r − vi+r+1)

vi − vi+r+1
Ň(v1 · · · vi vi+r+1 · · · vr+s)·(

M̌(vi+1 − vi+r+1, . . . , vi+r − vi+r+1)

(vi+1 − vi+r+1)(vi+1 − vi+2) · · · (vi+r−1 − vi+r)(vi+r − vi+r+1)
−

M̌(vi+1 − vi, . . . , vi+r − vi)
(vi+1 − vi)(vi+1 − vi+2) · · · (vi+r−1 − vi+r)(vi+r − vi)

)
,

or, equivalently,

Dr+s(v)Si = 1
vi−vi+r+1

Ň(v1 · · · vi vi+r+1 · · · vr+s)·(
vi−vi+1

vi+1−vi+r+1
M̌(vi+1 − vi+r+1, . . . , vi+r − vi+r+1)

+ vi+r−vi+r+1

vi+r−vi M̌(vi+1 − vi, . . . , vi+r − vi)
)

. (A.3)

In light of equalities (A.2) and (A.3), there are three types of poles which can occur in
the rational function Dr+s(v)

(
arit(M) ·N

)
:

1) the poles 1
vr+1

and 1
vs

, which come from only one term and thus do not immediately

cancel out;
2) the poles of the form 1

vi−vi+r+1
;
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3) the poles of the form 1
vi−vi+r

.

Let us deal first with case 2. The corresponding pole 1
vi−vi+r+1

can only appear in

the term Dr+s(v)Si; we then want to check that this pole is compensated by the
corresponding difference of the M̌ ’s. Let us compute this difference for vi = vi+r+1 =
ui = ui+r+1 = a; it gives

a−vi+1

vi+1−a M̌(vi+1 − a, . . . , vi+r − a) + vi+r−a
vi+r−a M̌(vi+1 − a, . . . , vi+r − a)

which is indeed zero, hence the compensation.

For case 3, we need to distinguish three sub-cases, according to whether i = 1, or i = s,
or i belongs to [[2, s− 1]].
a) i = 1: the pole is multiplied by

v1
vr+1

Ň(vr+1vr+2 · · · vr+s) M̌(v1 − vr+1, . . . , vr − vr+1)−

− 1
v1−vr+2

Ň(v1 vr+2 · · · vr+s) · (vr+1 − vr+2) M̌(v2 − v1, . . . , vr+1 − v1)

which if v1 = vr+1 = a gives
a
a Ň(a, vr+2, . . . , vr+s) M̌(a− a, v2 − a, . . . , vr − a)−

− 1
a−vr+2

Ň(a, vr+2, · · · , vr+s) · (a− vr+2) M̌(v2 − a, . . . , vr − a, a− a)

= Ň(a, vr+2, . . . , vr+s) M̌(0, v2 − a, . . . , vr − a)−
− Ň(a, vr+2, · · · , vr+s) M̌(v2 − a, . . . , vr − a, 0)

which is zero thanks to Lemma A.2.
b) i = s: the pole is multiplied by

− vr+s

vs
Ň(v1 · · · vs) M̌(vs+1 − vs, . . . , vr+s − vs) +

+ 1
vs−1−vr+s

Ň(v1, . . . , vs−1, vr+s) · (vs−1 − vs) M̌(vs − vr+s, . . . , vr+s−1 − vr+s)

which if vs = vr+s = a gives

− a
a Ň(v1, . . . , vs−1, a) M̌(vs+1 − a, . . . , vr+s−1 − a, a− a) +

+ 1
vs−1−a Ň(v1, . . . , vs−1, a) · (vs−1 − a) M̌(a− a, vs+1 − a, . . . , vr+s−1 − a)

= −Ň(v1, . . . , vs−1, a) M̌(vs+1 − a, . . . , vr+s−1 − a, 0) +

+ Ň(v1, . . . , vs−1, a)M̌(0, vs+1 − a, . . . , vr+s−1 − a)

which is zero for the same reason as above.
c) i ∈ [[2, s− 1]]: the pole 1

vi−vi+r
comes from Dr+s(v)(Si−1 − Si), and is multiplied by

vi−1−vi
vi−1−vi+r

Ň(v1, . . . , vi−1, vi+r, · · · , vr+s) · M̌(vi − vi+r, . . . , vi−1+r − vi+r)−

− vi+r−vi+r+1

vi−vi+r+1
Ň(v1, . . . , vi, vi+r+1, . . . , vr+s) · M̌(vi+1 − vi, . . . , vi+r − vi)

which if vi = vi+r = a gives

Ň(v1, . . . , vi−1, a, vi+r+1, · · · , vr+s) · M̌(a− a, vi+1 − a, . . . , vi−1+r − a)−
− Ň(v1, . . . , vi−1, a, vi+r+1, . . . , vr+s) · M̌(vi+1 − a, . . . , vi+r−1 − a, a− a)

= Ň(v1, . . . , vi−1, a, vi+r+1, · · · , vr+s) · M̌(0, vi+1 − a, . . . , vi−1+r − a)−
− Ň(v1, . . . , vi−1, a, vi+r+1, . . . , vr+s) · M̌(vi+1 − a, . . . , vi+r−1 − a, 0)

which is zero again.



DERIVATION REPRESENTATION OF MIXED ELLIPTIC MOTIVE LIE ALGEBRA 13

In consequence, the only remaining poles in Dr+s(v)
(
arit(M) ·N

)
are those in 1

vr+1

and 1
vs

from case 1, and more precisely we can write

Dr+s(v)
(
arit(M) ·N

)
(v1, . . . , vr+s) ≡

v1
vr+1 (v1−vr+1) Ň(vr+1, . . . , vr+s) M̌(v1 − vr+1, . . . , vr − vr+1)

+ vr+s

vs (vr+s−vs) Ň(v1, . . . , vs) M̌(vs+1 − vs, . . . vr+s − vs) (mod Q[v]).

It remains to show that the above expression cancels in the bracket ari(M,N), us-
ing the definition by equation (A.1). The possible poles for the rational function
Dr+s(v) ari(M,N) come from the sum

v1
vs+1 (v1−vs+1) M̌(vs+1, . . . , vs+r) Ň(v1 − vs+1, . . . , vs − vs+1) +

+ vs+r

vr (vs+r−vr) M̌(v1, . . . , vr) Ň(vr+1 − vr, . . . , vs+r − vr)−

− v1
vr+1 (v1−vr+1) Ň(vr+1, . . . , vr+s) M̌(v1 − vr+1, . . . , vr − vr+1) +

+ vr+s

vs (vr+s−vs) Ň(v1, . . . , vs) M̌(vs+1 − vs, . . . vr+s − vs) +

+ vr−vr+1

vr vr+1
M̌(v1, . . . , vr) Ň(vr+1, . . . , vr+s)−

− vs−vs+1

vs vs+1
Ň(v1, . . . , vs) M̌(vs+1, . . . , vr+s)

paying attention to the exchange of r and s when we switch M and N . The discussion
on page 11 shows that it suffices to check that the poles 1

vr
and 1

vs
, 1
vr+1

and 1
vs+1

cancel
out.

Let us note that the alternality of ari(M,N) together with the basic fact that any
alternal mould M satisfies M(u1, . . . , ur) = (−1)r−1M(ur, . . . , u1) [21, Lemma 2.5.3]
imply that it is enough to deal with the case of 1

vr
and 1

vs
, the other two being deduced

from them by applying the involution corresponding to the symmetry around r+s+1
2 . And

the pole 1
vs

is deduced from 1
vr

since the total expression for ari(M,N) is antisymmetric
in M and N , and thus in r and s.

The only case left to check is that of the pole 1
vr

. The corresponding factor is

vs+r

vs+r−vr M̌(v1, . . . , vr) Ň(vr+1 − vr, . . . , vs+r − vr) +

+ vr−vr+1

vr+1
M̌(v1, . . . , vr) Ň(vr+1, . . . , vr+s)

which is clearly zero when vr = 0. This concludes the proof of Proposition A.1. �

We can now complete the proof of Theorem 3.3. We use the following elementary
result of mould theory [21, Lemma 2.4.1],

ari
(
swap(A), swap(B)

)
= swap

(
ari(A,B)

)
∀ A,B ∈ ARIpush . (A.4)

Let A,B ∈ ARIsing
al/al. Then C = ari(A,B) ∈ ARIal/al by (v) of Theorem 3.1. Con-

sider the mould swap(C) ∈ ARI. Again by (v) of Theorem 3.1, ARIal/al is contained
in ARIpush, so the moulds A,B and C are all push-invariant. Thus (A.4) holds, i.e.
swap(C) = ari(swap(A), swap(B)).

Both swap(A) and swap(B) lie in ARI
sing
al by definition. Thus by Proposition A.1, we

also have swap(C) ∈ ARI
sing
al and thus C ∈ ARIsing. But we also have C = ari(A,B) ∈

ARIal/al, so C ∈ ARIsing
al/al, which concludes the proof of Theorem 3.3. �
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Appendix B. Proof of Theorem 3.5

This section is devoted to the proof of Theorem 3.5, which is stated as Proposition B.2
below.

We use the notation and terminology of section 3, with one further definition: for
any polynomial F ∈ Lie[a, b] of homogeneous depth r, we define da(F ) to be the mould
given by

da(F )(u1, . . . , ur) =
ma(F )

u1 · · ·ur
.

As we did for Da(F ), if F =
∑

r F
r is any Lie polynomial broken up into its depth-graded

parts, we define da(F ) =
∑

r da(F r).
Let lu(A,B) be as in the beginning of Appendix A. For any polynomial U , let DaritU

be the operator on moulds defined by

DaritU ·A = − arit
(
Da(U)

)
·A− lu

(
A,Da(U)

)
.

Proposition B.1. Let U be a push-invariant polynomial in Lie[a, b], and let DU be the
associated derivation. Then for any Lie polynomial F in a and b, we have

− da
(
DU (F )

)
= DaritU ·da(F ). (B.1)

Proof. By additivity, we may assume that U is of homogeneous depth r and F is of
homogeneous depth s. We will use induction on the depth of F to prove the proposition;
the only difficult part is the base case s = 1.

So assume that F is of depth 1, i.e. F = Cn = ad(a)n−1(b). Here, since DU ([a, b]) is
zero, we have the explicit formula

DU (F ) =
n−2∑
i=0

ad(a)i ad(U) ad(a)n−i−2(b) =
n−2∑
i=0

ad(a)i(UCn−i−1 − Cn−i−1U).

Applying ma to both sides of this formula, and using the facts that ma(Cn−i−1) is equal
to (−1)n−i−2un−i−2

1 and that for a Lie polynomial P of homogeneous depth r we have

ma([a, P ]) = −(u1 + · · ·+ ur) ma(P )

by (iii) of Theorem 3.1, and using the identity

ma(UCn−i−1 − Cn−i−1U) = (−1)n−i−2 ma(U)(u1, . . . , ur)u
n−i−2
r+1

− (−1)n−i−2un−i−2
1 ma(U)(u2, . . . , ur+1),

we find that

ma
(
DU (F )

)
=

n−3∑
i=0

(−1)n−1(u1 + · · ·+ ur+1)i·(
ma(U)(u1, . . . , ur)u

n−i−2
r+1 − un−i−2

1 ma(U)(u2, . . . , ur+1)
)
,

so, with a little rewriting of indices, we find that the left-hand side of (B.1) equals

−da
(
DU (F )

)
= (−1)n−1 ma(U)(u2, . . . , ur+1)

Dr+1

n−2∑
i=1

(u1 + · · ·+ ur+1)iun−i−1
1

− (−1)n−1 ma(U)(u1, . . . , ur)

Dr+1

n−2∑
i=1

(u1 + · · ·+ ur+1)iun−i−1
r+1 ,
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or, adding up the sums to obtain a closed expression,

−da
(
DU (F )

)
= (−1)n−1 ma(U)(u2, . . . , ur+1)

Dr+1

(
(u1+···+ur+1)n−1u1−un−1

1 (u1+···+ur+1)
(u2+···+ur+1)

)
−(−1)n−1 ma(U)(u1, . . . , ur)

Dr+1

(
(u1+···+ur+1)n−1ur+1−un−1

r+1 (u1+···+ur+1)

(u1+···+ur)

)
(B.2)

Let us now compute the right-hand side of (B.1). We have ma(F ) = (−1)nun−1
1 ,

so da(F ) = (−1)nun−2
1 ; thus

lu
(
da(F ),Da(U)

)
= (−1)n

(un−2
1 ma(U)(u2,...,ur+1)
u2···ur+1(u2+···+ur+1)

)
− (−1)n

(ma(U)(u1,...,ur)un−2
r+1

u1···ur(u1+···+ur)

)
. (B.3)

Also, we have

arit
(
Da(U)

)
· da(F ) =

∑
w=abc,c6=∅

da(F )(adc) Da(U)(b)−
∑

w=abc,a6=∅

da(F )(aec) Da(U)(b)

= (−1)n(u1 + · · ·+ ur+1)n−2 Da(U)(u1, . . . , ur)−
− (−1)n(u1 + · · ·+ ur+1)n−2 Da(U)(u2, . . . , ur+1)

= (−1)n(u1 + · · ·+ ur+1)n−2
(

ma(U)(u1,...,ur)
u1···ur(u1+···+ur) −

ma(U)(u2,...,ur+1)
u2···ur+1(u2+···+ur+1)

)
, (B.4)

since da(F ) is a depth 1 mould and therefore the only possible decomposition w = abc
with c 6= ∅ is a = ∅, b = (u1, . . . , ur) and c = ur+1, and the only possible decomposition
with a 6= ∅ is a = u1, b = (u2, . . . , ur) and c = ∅. We add (B.3) and (B.4) to get the
right-hand side of (B.1), obtaining

DaritU ·da(F ) = (−1)n
ma(U)(u1, . . . , ur)

u1 · · ·ur(u1 + · · ·+ ur)

(
(u1 + · · ·+ ur+1)n−2 − un−2

r+1

)
+(−1)n

ma(U)(u2, . . . , ur+1)

u2 · · ·ur+1(u2 + · · ·+ ur+1)

(
un−2

1 − (u1 + · · ·+ ur+1)n−2
)

= (−1)n
ma(U)(u1, . . . , ur)

Dr+1

(
(u1 + · · ·+ ur+1)n−1ur+1 − un−1

r+1
(u1+···+ur+1)
(u1+···+ur)

)
−(−1)n

ma(U)(u2, . . . , ur+1)

Dr+1

(
u1(u1+···+ur+1)n−1−un−1

1 (u1+···+ur+1)
(u2+···+ur+1)

)
, (B.5)

which is equal to (B.2). This settles the base case where F is of depth 1.
Now assume that (B.1) holds up to depth s − 1, and let F be a Lie polynomial of

depth s. Then F is a linear combination of Lie brackets, so by additivity, we may
assume that F is a single Lie bracket; thus F = [G,H] for Lie brackets G,H that are of
depth < s. We saw in Appendix A that ma(FG) = mu(ma(F ),ma(G)), so by definition
of da we also have mu(da(F ),da(G)) = da(FG). Furthermore DaritU is a derivation for
the lu-bracket since both arit(B) and lu( , B) are — this is obvious for lu but difficult
for arit, cf. [21, Prop. 2.2.1] —, so using the induction hypothesis for G and H, we have

−da
(
DU (F )

)
= −da([DU (G), H] + [G,DU (H)])

= − lu
(
da(DU (G)), da(H)

)
− lu

(
da(G),da(DU (H))

)
= lu

(
DaritU (da(G))), da(H)

)
+ lu

(
da(G),DaritU (da(H)))

)
= DaritU · lu

(
da(G)),da(H)

)
= DaritU ·da([G,H])
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= DaritU · da(F ).

This proves the proposition. �

Proposition B.2. The map Der0 Lie[a, b] → ARI given by DU 7→ Da(U) is a Lie
algebra morphism, i.e.

[DU , DV ] 7→ ari
(
Da(U),Da(V )

)
. (B.6)

Proof. It is easily seen that

arit(B) ◦ arit(A)− arit(A) ◦ arit(B) = arit
(
ari(A,B)

)
. (B.7)

Using only this identity, the Jacobi relation and (B.1), we compute

−da
(
[DU , DV ](F )

)
= −da

(
DU (DV (F ))

)
+ da

(
ma(DV (DU (F ))

)
= arit

(
Da(U)

)
· da(DV (F )) + lu

(
da(DV (F )),Da(U)

)
+ arit

(
Da(V )

)
· da(DU (F )) + lu

(
da(DU (F )),Da(V )

)
= − arit

(
Da(U)

)
·
(

arit(Da(V )) · da(F ) + lu
(
da(F ),Da(V )

))
− lu

(
arit(Da(V )) · da(F ),Da(U)

)
− lu

(
lu(da(F ),Da(V )),Da(U)

)
+ arit

(
Da(V )

)
·
(

arit(Da(U)) · da(F ) + lu
(
da(F ),Da(U)

))
+ lu

(
arit(Da(U)) · da(F ),Da(V )

)
− lu

(
lu(da(F ),Da(U)),Da(V )

)
= arit

(
ari(Da(U),Da(V ))

)
· da(F ) (by (B.7))

− lu
(

da(F ), arit
(
Da(U)

)
·Da(V )

)
+ lu

(
da(F ), arit(Da(V )) ·Da(U)

)
− lu

(
lu(da(F ),Da(V )),Da(U)

)
+ lu

(
lu
(
da(F ),Da(U)

)
,Da(V )

)
= arit

(
ari
(
Da(U),Da(V )

))
· da(F )

− lu
(

da(F ), arit
(
Da(U)

)
·Da(V )

)
+ lu

(
da(F ), arit

(
Da(V )

)
·Da(U)

)
+ lu

(
da(F ), lu

(
Da(U),Da(V )

))
(by Jacobi)

= arit
(

ari
(
Da(U),Da(V )

))
· da(F )

+ lu
(

da(F ),− arit
(
Da(U)

)
·Da(V ) + arit(Da(V )) ·Da(U) + lu

(
Da(U),Da(V )

))
= arit

(
ari
(
Da(U),Da(V )

))
· da(F ) + lu

(
da(F ), ari

(
Da(U),Da(V )

))
= DaritW · da(F ),

where W is the polynomial such that Da(W ) = ari
(
Da(U),Da(V )

)
(obtained by multi-

plying the right-hand mould by D and inverting the injective map ma). However, the
above calculation shows that

DaritW · da(F ) = −da
(
[DU , DV ](F )

)
= DaritP · da(F ),

where P = DU (V )−DV (U), that is DP = [DU , DV ]. Thus the two derivations DaritW
and DaritP take the same values on all elements F of Lie[a, b], so W = P , i.e. [DU , DV ] =
DP = DW , so under the map DU 7→ Da(U) of (B.6), we have [DU , DV ] = DW 7→
Da(W ) = ari

(
Da(U),Da(V )

)
. This proves Proposition B.2. �
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