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Zeta generators are derivations associated with odd Riemann zeta values that act
freely on the Lie algebra of the fundamental group of Riemann surfaces with marked
points. The genus-zero incarnation of zeta generators are Ihara derivations of certain
Lie polynomials in two generators that can be obtained from the Drinfeld associator.
We characterize a canonical choice of these polynomials, together with their non-Lie
counterparts at even degrees w ≥ 2, through the action of the dual space of formal
and motivic multizeta values. Based on these canonical polynomials, we propose a
canonical isomorphism that maps motivic multizeta values into the f -alphabet.
The canonical Lie polynomials from the genus-zero setup determine canonical zeta
generators in genus one that act on the two generators of Enriquez’ elliptic asso-
ciators. Up to a single contribution at fixed degree, the zeta generators in genus
one are systematically expanded in terms of Tsunogai’s geometric derivations dual
to holomorphic Eisenstein series, leading to a wealth of explicit high-order compu-
tations. Earlier ambiguities in defining the non-geometric part of genus-one zeta
generators are resolved by imposing a new representation-theoretic condition. The
tight interplay between zeta generators in genus zero and genus one unravelled in
this work connects the construction of single-valued multiple polylogarithms on the
sphere with iterated-Eisenstein-integral representations of modular graph forms.

http://arxiv.org/abs/2406.05099v1


Contents

1 Introduction 2
1.1 The canonical zeta generators in genus zero . . . . . . . . . . . . . . . . . . 2
1.2 The canonical f -alphabet isomorphism . . . . . . . . . . . . . . . . . . . . . 4
1.3 The canonical zeta generators in genus one . . . . . . . . . . . . . . . . . . . 5
1.4 Motivation and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background on multizeta values 9
2.1 Real and formal multizeta values . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Motivic MZVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The Z-map associating polynomials to MZVs 19
3.1 The double shuffle dual space of formal MZVs . . . . . . . . . . . . . . . . . 19
3.2 The Z-map and dual spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 The canonical decomposition of motivic MZV spaces and zeta generators in

genus zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 The canonical decomposition forMZw for w ≤ 11 . . . . . . . . . . . . . . . 26
3.5 The semi-canonical basis forMZw . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Canonical polynomials from the Drinfeld associator . . . . . . . . . . . . . . 31

4 The canonical morphism from motivic MZVs to the f-alphabet 34
4.1 Definition of the f -alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 A canonical choice of normalized isomorphism fromMZ to F . . . . . . . . 37

5 Canonical zeta generators σw in genus one 40
5.1 The Tsunogai derivations ǫk . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 The genus one motivic Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Genus one derivations from genus zero polynomials . . . . . . . . . . . . . . 48
5.4 The canonical genus one derivations σw . . . . . . . . . . . . . . . . . . . . . 50
5.5 Expansions of σw in low degree . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Properties of τw and σw 56
6.1 Introduction to moulds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Proof of Theorem 5.4.1 (i)-(iii) . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Proof of Theorem 5.4.1 (iv)-(vi) . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Recursive high-order computations of σw and [zw, ǫk] 69
7.1 Proof and first consequences of Theorem 5.4.1 (vii) . . . . . . . . . . . . . . 70
7.2 sl2 prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3 Recursive higher-order computations of σw and [zw, ǫk] . . . . . . . . . . . . 73

7.4 Applying the recursion for σ
{m}
w and [zw, ǫk]

{m} . . . . . . . . . . . . . . . . . 76

1



A Deriving the topological map from the sphere to the torus 81
A.1 Zeta generators in terms of the KZ connection . . . . . . . . . . . . . . . . . 81
A.2 Degenerating the KZB connection . . . . . . . . . . . . . . . . . . . . . . . . 83
A.3 Link between genus zero and genus one . . . . . . . . . . . . . . . . . . . . . 84

1 Introduction

In this article we set forth some canonical features of motivic multizeta values or, more
precisely, of the Hopf algebra comodule MZ of motivic multizeta values and its graded
dual, the Hopf algebra module MZ∨. We present canonical zeta generators in genus zero
and genus one that plays a role for instance in the construction of single-valued multiple
polylogarithms on the sphere [1–4] and of modular equivariant iterated integrals of Eisenstein
series [5–8] inspired by string theory scattering amplitudes [9–13]. Our results also imply a
canonical map from multizeta values to the f -alphabet [14,15], a representation ofMZ that
is widely used but has eluded a canonical form until this work. The methods we present in
this work are constructive.

1.1 The canonical zeta generators in genus zero

Our first main contribution is the definition of a canonical set of generators forMZ∨, in the
form of a family of polynomials

gw(x, y) ∈ Q〈x, y〉 , w ≥ 2 (1.1)

in two non-commutative variables satisfying three natural conditions related to the intrinsic
structure ofMZ. For odd values of w, the polynomials gw are Lie polynomials which provide
a set of canonical generators for the genus zero motivic Lie algebra. This is the Lie algebra of
the pro-unipotent radical of the fundamental group of the Tannakian category of mixed Tate
motives unramified over Z, which is well-known to be a free Lie algebra with one generator
in each odd degree w ≥ 3 (a result established in [16]). The key tool used to define the
polynomials gw is the Z-map, first introduced in [17] and explained here in section 3, which
is a canonical linear isomorphism fromMZ∨ toMZ, or more generally between any space
of multizeta values (formal, motivic, real, mod products etc.) and its dual.

The Z-map comes from the canonical isomorphism of vector spaces

Q〈x, y〉 → Q[Z(w)] , (1.2)

where the space on the right-hand side is the Q-vector space on symbols Z(w) indexed by all
monomials w in the letters x, y, and the isomorphism is given simply by mapping w 7→ Z(w).
Identifying Q〈x, y〉 with the dual space of Q[Z(w)] and considering the bases of monomials
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w and of symbols Z(w) as dual bases makes this into an isomorphism of dual vector spaces.
As such, the map w 7→ Z(w) passes to an isomorphism of dual vector spaces between any
quotient of Q[Z(w)] and its dual space considered as a subspace of Q〈x, y〉. Imposing the
linear relations between motivic multizeta values on the symbols Z(w) identifies the motivic
multizeta algebra MZ as a quotient of Q[Z(w)], and the Z-map thus passes to a linear
isomorphism betweenMZ∨ andMZ.

Let mz denote the quotient of MZ modulo the linear subspace spanned by constants,
non-trivial products of multizeta values, and the motivic single zeta value ζm2 . Then mz

inherits the structure of a Lie coalgebra from the Hopf algebra comodule structure ofMZ
(cf. section 2.2.2). Let mz∨ ⊂MZ∨ ⊂ Q〈x, y〉 denote its dual space, which is a Lie algebra
equipped with the Ihara bracket (cf. section 3.1). LikeMZ andMZ∨, the spaces mz and
mz∨ are graded, with finite-dimensional graded parts for w ≥ 3. A major structure theorem
by Brown [15] has shown that mz∨ is freely generated by one depth 1 Lie polynomial in each
odd homogeneous weight w ≥ 3. The universal enveloping algebra Umz∨ is freely generated
by the generators of mz∨ under the Poincaré–Birkhoff–Witt multiplication, which we denote
by ⋄; in the case where g ∈ mz∨ and h ∈ Umz∨, this multiplication rule has a simple form:

g ⋄ h = gh+Dg(h) , (1.3)

where Dg is the Ihara derivation of Q〈x, y〉 defined by Dg(x) = 0 and Dg(y) = [y, g]. The
spaceMZ∨ is a module over the Hopf algebra Umz∨.

Let us write mz∨≥2 for the subspace of mz∨ spanned by Ihara brackets {g, h} := g⋄h−h⋄g
of the generators; this is a canonical subspace independent of any actual choice of generators.
The spaces MZ, MZ∨, mz, mz∨ and mz∨≥2 are all weight-graded spaces; we write MZw

etc. to indicate their graded parts of weight w, all of which are finite-dimensional. Each
graded piece MZw contains a canonical reducible subspace R̂w spanned by all weight w
products of lower weight multizeta values. We write Rw := R̂w if w is odd, and if w is even
we let Rw denote the subspace of R̂w spanned by all products except for (ζm2 )

w/2, so that
{
R̂w = Rw if w is odd ,

R̂w = Qζmw ⊕Rw if w is even ,
(1.4)

where ζmw denotes the single zeta value in weight w. We then have mzw = MZw/R̂w for
w ≥ 3. We further define canonical subspaces of irreducible multizeta values (resp. non-
single irreducible multizeta values) inMZw for each weight w ≥ 2 by setting

Îw := Z(mz∨w) , Iw := Z
(
(mz∨≥2)w

)
, (1.5)

where we note that {
Îw = Iw if w is even ,

Îw = Qζmw ⊕ Iw if w is odd .
(1.6)

In this way, we obtain a canonical decomposition of MZw into single, irreducible and re-
ducible parts:

MZw = Qζmw ⊕ Iw ⊕Rw for all w ≥ 2. (1.7)

3



Let
Φm

KZ(x, y) ∈ Q〈〈x, y〉〉 ⊗QMZ (1.8)

denote the motivic Drinfeld associator [18, 19]. For convenience, we work with the mo-
tivic power series Φm(x, y) := Φm

KZ(x,−y). Apart from the definition of the Z-map and the
canonical decomposition (1.7), the main results of sections 2 and 3 are summarized by:

Theorem 1.1.1. Write Φm in any basis adapted to the canonical decomposition (1.7), and
for each w ≥ 2, set

gw := Φm|ζmw , (1.9)

Then the polynomials gw lie in MZ∨
w. Equivalently, gw can be identified (with no reference

to Φm) as the unique polynomial inMZ∨
w satisfying the following three properties:

(i) 〈gw, ζ
m
w〉 = 1, where 〈·, ·〉 denotes the action ofMZ∨ onMZ,

(ii) gw annihilates the reducible subspace Rw ⊂MZw,

(iii) Z(gw) ∈ Qζmw ⊕Rw, i.e. it does not contain any irreducible multizeta values in Iw.

The gw for odd w ≥ 3 form a canonical set of generators for the Lie algebra mz∨, and the
gw for all w ≥ 2 form a set of generators for the Hopf algebra module MZ∨ over the Hopf
algebra Umz∨. More precisely, every element ofMZ∨ can be written uniquely as a product

gw1
⋄ · · · ⋄ gwr

⋄ gk , (1.10)

where the wi are all odd ≥ 3 and k ≥ 2, and the multiplication proceeds from right to left
using the rule (1.3).

Remark 1.1.2. For both even and odd w ≥ 2, the polynomials gw are canonical since the
subspaces Rw, Iw in part (ii) and (iii) of Theorem 1.1.1 are. Their simplest examples are
given by g2 = [x, y] and g3 = [x − y, [x, y]], and the explicit form of all gw with w ≤ 12 can
be found in the ancillary files of the arXiv submission of this work.

1.2 The canonical f-alphabet isomorphism

Brown proved in [14, 15] that the motivic multizeta algebraMZ is isomorphic to a certain
Hopf algebra comodule F , known as the f -alphabet algebra, which has a very simple struc-
ture: it is a commutative algebra under the shuffle multiplication, multiplicatively generated
by all monomials in an alphabet of letters f2 and f3, f5, f7, . . . which is free apart from the
unique relation that f2 commutes with all the other letters; thus we have

F = Q[f2]⊗Q F , (1.11)

where F is freely generated under the shuffle multiplication by all monomials in f3, f5, ... .
The space F is a commutative Hopf algebra equipped with the shuffle multiplication and the
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deconcatenation coproduct, and F is a Hopf algebra comodule equipped with the following
extension of the deconcatenation coproduct to a coaction:

∆ : F → F ⊗F , (1.12)

fn
2 fw1

· · · fwr
7→

r∑

i=0

fn
2 fw1

· · · fwi
⊗ fwi+1

· · · fwr
.

In [14, 15], Brown identified the complete family of Hopf algebra comodule isomorphisms
MZ → F normalized by ζmw 7→ fw, showing that it is parametrized by rational parameters
indexed by any basis of non-single irreducible multizetas. In section 4, we display a canonical
choice of one such isomorphism, uniquely determined as follows.

Theorem 1.2.1. There exists a canonical normalized Hopf algebra comodule isomorphism
ρ : MZ → F whose definition depends only on the canonical decomposition (1.7); it is
characterized by each of the two following properties, which are equivalent:

• ρ satisfies
ρ(ξ)|fw = 0 ∀ ξ ∈ Iw , (1.13)

• if Φm is written in a basis adapted to the canonical decomposition (1.7), then ρ satisfies

ρ(Φm)|fw = gw ∀ w ≥ 2 . (1.14)

This choice of isomorphism ρ is canonical since the subspaces Iw and the polynomials gw in
(1.13) and (1.14) are.

1.3 The canonical zeta generators in genus one

Sections 5 to 7 are dedicated to zeta generators in genus one – derivations σw of the free
graded Lie algebra Lie[a, b] associated to the pro-unipotent fundamental group of the once-
punctured torus. Based on earlier work in [20–23], the action of the genus one generators σw
on a, b is determined in section 5.4 from the genus zero polynomials gw via (with Bn the nth

Bernoulli number)

σw(s12) = 0 , σw(s01) =
[
s01, gw(s12,−s01)

]
, (1.15)

s12 = [b, a] , s01 = −b−
∑

n≥1

Bn

n!
adn

a(b)

together with the “extension lemma” 2.1.2 of [23] reviewed in section 5.3. In view of the
canonical gw in the defining equation (1.15), we arrive at the first canonical choice of the
zeta generators σw in genus one at arbitrary odd w ≥ 3.

By work of Hain–Matsumoto [21], the σw normalize the algebra u of geometric deriva-
tions ǫk of Lie[a, b] in even degrees k ≥ 0 (i.e. combined homogeneity degrees in a and b).
In fact, upon decomposing the zeta generators σw into an infinite number of contributions
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at fixed even degree ≥ w + 1, all the terms except for certain contributions at key de-
gree 2w lie in u. The terms of σw outside u are referred to as arithmetic parts zw and furnish
one-dimensional representations under the sl2 spanned by the Lie[a, b]-derivations ǫ0, ǫ

∨
0 and

h := [ǫ0, ǫ
∨
0 ] subject to

ǫ0(a) = b , ǫ0(b) = 0 , ǫ∨0 (a) = 0 , ǫ∨0 (b) = a . (1.16)

Even with the canonical definition of σw, the arithmetic derivations zw are not entirely
characterized by requiring that they form an sl2 singlet and that σw − zw ∈ u. We arrive
at canonical zw by additionally imposing that they exhaust the complete sl2 singlet at key
degree of σw. More specifically, the ǫ

(j)
k := adj

ǫ0(ǫk) with j = 0, 1, . . . , k−2 composing σw−zw

fall into (k − 1)-dimensional representations of sl2 because of ǫ
(k−1)
k = 0. The arithmetic

derivations zw are then uniquely defined by imposing that any nested commutator ǫ
(j)
k at the

key degree of σw − zw belongs to sl2 representations of dimension ≥ 3.
Based on mould theory, we describe a first algorithm to explicitly compute the action of

σw on a and b degree by degree and prove the following theorem:

Theorem 1.3.1 (see Theorem 5.4.1 (iii)). The genus one zeta generators σw are entirely
determined by their parts of degree < 2w.

This remarkable property of σw can be combined with the commutation relation [21]

[N, σw] = 0 with N := −ǫ0 +
∞∑

k=2

(2k − 1)
B2k

(2k)!
ǫ2k , (1.17)

to make σw computationally accessible to all degrees. By solving (1.17) for [ǫ0, σw], it relates

contributions to σw − zw with different numbers of ǫ
(ji)
ki

factors (with 0 ≤ ji ≤ ki − 2) to be
referred to as modular depth.1 On these grounds, we describe a second algorithm based on
(1.17) to determine σw−zw recursively in modular depth, up to highest-weight vectors of sl2
in each step which are defined to lie in the kernel of adǫ0. We will infer from the results of [21]
that there are no highest-weight vectors beyond key degree. From the viewpoint of (1.17),
it is thus sufficient to know the degree ≤ 2w parts (though Theorem 1.3.1 even guarantees
that the complete information is available from degree < 2w) of σw. The infinity of terms
at degree ≥ 2w + 2 follows from (1.17) together with representation theory of sl2.

This setup leads us to present a closed all-degree formula for σw up to contributions in u

of modular depth ≥ 3 (in the ellipsis),

σw = zw −
1

(w − 1)!
ǫ
(w−1)
w+1 (1.18)

−
1

2

w−2∑

d=3

BFd−1

BFw−d+2

w−1∑

k=d+1

BFk−d+1BFw−k+1s
d(ǫk, ǫw−k+d)

1The Lie algebra u is not free on the ǫ
(j)
k but satisfies relations [24–26] that are not homogeneous in

modular depth which for this reason only provides a filtration rather than a grading of u, see Remark 5.1.6.
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−
w∑

d=5

BFd−1s
d(ǫd−1, ǫw+1)−

1

2
BFw+1s

w+2(ǫw+1, ǫw+1)

+

∞∑

k=w+3

BFk

w−2∑

j=0

(−1)j
(
k−2
j

)−1

j!(w−2−j)!
[ǫ
(w−2−j)
w+1 , ǫ

(j)
k ] + . . . ,

where we employ the shorthands BFk :=
Bk

k!
and we define

sd(ǫk1 , ǫk2) :=
(d−2)!

(k1−2)!(k2−2)!

d−2∑

i=0

(−1)i[ǫ
(k1−2−i)
k1

, ǫ
(k2−d+i)
k2

] . (1.19)

The highest-weight-vector contribution ∼ ǫ
(w−1)
w+1 in first line of (1.18) is well-known and is

used to determine the modular-depth two terms in the third and fourth line from (1.17).
The second line of (1.18) is conjectural and features highest-weight vectors sd(ǫk, ǫw−k+d) in
each term – they are not fixed by (1.17) and confirmed by direct computation in a large
number of examples. Moreover, the d = 3 terms in the second line of (1.18) reproduce the
closed formula of Brown [27] on depth-three terms in the terminology of the reference.

Finally, (1.17) together with the terms of modular depth d in σw−zw fix the explicit form
of [zw, ǫk] ∈ u up to and including modular depth d + 1. Accordingly, the closed formula
(1.18) determines the terms of modular depth three beyond the well-known contributions [21]

[zw, ǫk] =
BFw+k−1

BFk

w−1∑

i=0

(−1)i(k + i− 2)!

i!(w + k − 3)!
[ǫ
(i)
w+1, ǫ

(w−i−1)
w+k−1 ] + . . . (1.20)

and we give closed formulae for [z3, ǫk] and [z5, ǫk] at modular depth three in section 7.4.2.

1.4 Motivation and outlook

A major motivation for our study of zeta generators stems from their relevance for periods of
configuration spaces of Riemann surfaces with marked points. In genus zero, the canonical
polynomials gw take center stage in the recent reformulation [4] of the motivic coaction
[28, 29, 15] and the single-valued map [1–3] of multiple polylogarithms on the sphere. The
genus-one zeta generators σw and their interplay with geometric derivations ǫk unlocked a
fully explicit generating-series description of non-holomorphic modular forms in a companion
paper [8] to this work.

As detailed in [8], the expansion of σw in terms of the geometric derivations ǫk determines
the appearance of (single-valued) multizeta values in so-called modular graph forms [9, 10]
in genus-one string scattering amplitudes. At a computational level, the precise expressions
for σw in terms of ǫk presented in this work are crucial for an explicit realization of Brown’s
construction of non-holomorphic modular forms in [5,6] which was related to modular graph
forms in [7]. At a conceptual level, the intimate connection between zeta generators in genus
zero and genus one presented in section 5 leads to a unified description of the single-valued
map of multiple polylogarithms in one variable and iterated Eisenstein integrals [8].
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These applications of zeta generators in genus zero and genus lead us to expect that
generalizations thereof to compact Riemann surfaces of arbitrary genus with any number of
marked points may in fact exist. Our work sets the stage for two lines of follow-up research:

• adapting zeta generators in genus one to systematic constructions of single-valued
elliptic polylogarithms pioneered by Zagier [30] in any number of variables and which
were more recently approached in the framework of “elliptic modular graph forms” in
the string-theory literature [31–34];

• determining higher-genus incarnations of zeta generators from degenerations of the flat
connections [35–38] used for constructions of polylogarithms on Riemann surfaces of
arbitrary genus and applying them to non-holomorphic modular graph forms [39–41,
31, 42] and tensors [43–46].
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2 Background on multizeta values

In this section, we review basic definitions on different types of multizeta values, their rela-
tions and their Hopf-algebraic properties.

2.1 Real and formal multizeta values

2.1.1 Real multizeta values, shuffle and stuffle multiplication

The real multizeta values are defined by the infinite sums

ζk1,k2,...,kr :=

∞∑

1≤n1<n2<...<nr

n−k1
1 n−k2

2 . . . n−kr
r , (2.1)

where k1, . . . , kr ∈ N and kr > 1 in order to ensure convergence of the sum. The integers r and∑r
i=1 ki in (2.1) are respectively referred to as the depth and weight of ζk1,k2,...,kr . Multizeta

values (MZVs) satisfy a number of algebraic relations over Q which we discuss further below.
Let us first introduce the monomial notation

ζ(xkr−1y · · ·xk2−1yxk1−1y) = ζk1,k2,...,kr , (2.2)

where x and y are non-commutative indeterminates and the convergence property kr > 1
implies that the first letter on the left-hand side is x. We say that a non-trivial monomial in
x, y is convergent if it begins with x and ends with y; all other monomials are non-convergent.
We extend the notation (2.2) to the definition of the regularized zeta values ζ(w) for all non-
convergent monomials w = yrvxs with v convergent, by the explicit formula (established in
Prop. 3.2.3 of [47])

ζ(w) =

r∑

a=0

s∑

b=0

(−1)a+bζ(ya� yr−avxs−b
� xb) , (2.3)

an expression in which all the non-convergent ζ(w) cancel out so that ζ(yrvxs) is expressed
as a linear combination of convergent words only, and which ensures that for all pairs of
(convergent or non-convergent) words u, v, the ζ-values satisfy the shuffle relation

ζ(u)ζ(v) = ζ(u� v) = ζ(v� u) , (2.4)

where ζ is considered as a linear function on words, and we fix the values ζ(x) = ζ(y) = 0
and also ζ(1) = 1, where 1 in the argument denotes the empty word. We recall here that
the shuffle product of monomials can be defined recursively as follows: for any monomial u,
we have 1� u = u� 1 = u, and if u, v 6= 1 we write u = au′ and v = bv′, where a and b are
single letters (either x or y), and we have

u� v = a(u′� v) + b(u� v′) . (2.5)

9



For example, writing ζ2 = ζ(xy), we have

ζ22 = ζ(xy)2 = ζ(xy� xy) = 4ζ(xxyy) + 2ζ(xyxy) = 4ζ1,3 + 2ζ2,2 . (2.6)

This multiplication rule is called the shuffle multiplication of real MZVs.
There is a second multiplication, restricted to a subset of words w, which arises when

considering the MZVs written as infinite sums as in (2.1). Indeed, the result of multiplying
two such series is itself a sum of such series, as can be seen on the first example:

ζ22 =
∑

n1≥1

n−2
1

∑

n2≥1

n−2
2

=
∑

n1>n2≥1

n−2
1 n−2

2 +
∑

n2>n1≥1

n−2
1 n−2

2 +
∑

n1=n2≥1

n−4
1

= 2ζ2,2 + ζ4 . (2.7)

This product, called the stuffle product, can be computed for any pair of words u, v ending
with y, as follows. We start by defining the stuffle product u ∗ v of words ending in y. To do
this, we first note that every monomial u ending in y can be rewritten in the free variables
yi = xi−1y, with i ≥ 1:

u = yi1 · · · yir . (2.8)

We stipulate that for all such monomials, we have u∗1 = 1∗u = u. Then, in the case where
u, v 6= 1, we peel off the first letter of each of the two words, writing u = yi1u

′ and v = yj1v
′

with u′ = yi2 · · · yir and v′ = yj2 · · · yjr , and define the stuffle product by the recursive rule
(first developed by Hoffman in [48])

u ∗ v = yi1(u
′ ∗ v) + yj1(u ∗ v

′) + yi1+j1(u
′ ∗ v′) . (2.9)

The stuffle product is commutative and associative on words ending in y.
Associated with the stuffle product, one can define a stuffle regularization ζ∗(w) of MZVs

for words ending in y. For convergent words w (beginning with x and ending in y) we
set ζ∗(w) = ζ(w). The stuffle-regularized MZVs for non-convergent words ending in y are
defined as follows. First we deal with ζ∗(y

i) for i ≥ 0 by writing the generating series

∑

n≥0

ζ∗(y
n)yn := exp

(∑

n≥2

(−1)n−1

n
ζ(xn−1y)yn

)
, (2.10)

leading for instance to

ζ∗(1) = 1 ,

ζ∗(y) = 0 ,

ζ∗(y
2) = −1

2
ζ(xy) = −1

2
ζ2 , (2.11)

ζ∗(y
3) = 1

3
ζ(x2y) = 1

3
ζ3 ,

10



ζ∗(y
4) = −1

4
ζ(x3y) + 1

8
ζ(xy)2 = −1

4
ζ4 +

1
8
ζ22 .

Then for monomials yiv for a non-trivial convergent word v we define the stuffle regulariza-
tion by

ζ∗(y
iv) =

i∑

j=0

ζ∗(y
j)ζ(yi−jv) , (2.12)

where the notation ζ(yi−jv) refers to the shuffle regularization defined in (2.3).
The stuffle-regularized zeta values ζ∗(u) defined in this way satisfy the stuffle relations

ζ∗(u)ζ∗(v) = ζ∗(u ∗ v) = ζ∗(v ∗ u) (2.13)

for every pair of monomials u, v both ending in y as a direct consequence of their infinite sum
expressions (2.1) (see the original reference [48], or for a standard reference text, see [49]).
In particular the stuffle relations hold for ordinary MZVs ζ(u) and ζ(v) when u and v are
convergent words; for example, we have

xy ∗ xy = y2 ∗ y2 = 2y22 + y4 = 2xyxy + xxxy , (2.14)

which corresponds to ζ22 = 2ζ2,2 + ζ4 as in (2.7) above.
The family of relations between MZVs consisting of the (“regularized”) shuffle relations

(2.4) for all pairs of monomials u, v and the (“regularized”) stuffle relations (2.13) for all
pairs of words u, v both ending in y is known as the family of regularized double shuffle
relations on MZVs. Note that if both u and v are convergent, then since ζ∗(u) = ζ(u) and
ζ∗(v) = ζ(v), combining (2.4) and (2.13) implies that

ζ(u)ζ(v) = ζ(u� v) = ζ(u ∗ v) (u, v convergent) . (2.15)

2.1.2 Formal MZVs

The formal MZVs, denoted by ζ f(w), are symbols which by definition satisfy only the (reg-
ularized) double shuffle relations explained above, as opposed to the real MZVs which may
in theory satisfy any number of additional relations, even including the possibility of being
rational numbers. Let us introduce the notation for the ring of formal MZVs.

For each n ≥ 0, let Qn[Z(w)] denote the vector space spanned by formal symbols Z(w)
indexed by all degree n monomials w in two non-commutative variables x and y; in particular
we have Q0[Z(w)] = Q. We set

Q[Z(w)] :=
⊕

n≥0

Qn[Z(w)] , (2.16)

and make this vector space into a commutative Q-algebra by equipping it with the (commu-
tative) shuffle multiplication

Z(u)Z(v) = Z(u� v) . (2.17)

Let us introduce a second set of formal symbols Z∗(w) for monomials w ending in y, by

11



• setting Z∗(w) := Z(w) for convergent w,

• defining Z∗(y
n) for n ≥ 1 by the equation (2.10) with ζ replaced by Z,

• defining Z∗(y
iv) for convergent words v by equation (2.12) with ζ replaced by Z.

Given that multiplying the symbols Z(w) by the shuffle multiplication (2.17) reduces prod-
ucts to linear combinations, all of the new symbols Z∗(w) can be expressed in terms of linear
combinations of the symbols Z(w).

Definition 2.1.1. Let IFZ be the ideal of the ring Q[Z(w)] generated by the following two
families of linear combinations: on the one hand the regularizations

Z(w)−
r∑

a=0

s∑

b=0

(−1)a+bZ(ya� yr−avxs−b
� xb) , (2.18)

for all words w = yrvxs with v convergent (adapted from (2.3)), and on the other hand the
regularized stuffles given for all pairs of monomials u and v both ending in y by

Z∗(u)Z∗(v)− Z∗(u ∗ v) (2.19)

(adapted from (2.13)). The expression (2.19) is to be computed as a linear combination of
symbols Z(w′) where the monomials w′ are all of homogeneous weight equal to the sum of
the weights of u and v by (i) expanding out the right-hand term as a linear combination, (ii)
replacing every occurrence of Z∗ by a polynomial expression in Z using (2.10) and (2.12),
(iii) using the shuffle multiplication (2.17) to express all products Z(w′)Z(w′′) as linear
combinations Z(w′

� w′′). Thus each of the expressions in (2.18) and (2.19) is a linear
combination of fixed weight; we take them all together as the generators of the ideal IFZ .

Examples. Regularization: the formula (2.18) above for the non-convergent word w = yxy
tells us to add the linear combination

Z(yxy)− Z(yxy) + Z(y� xy) = Z(yxy) + 2Z(xyy) (2.20)

to the ideal IFZ .

Stuffle: Let us compute the linear combination

Z∗(y
2)Z∗(xy)− Z∗(y

2 ∗ xy) (2.21)

as a linear combination of Z-symbols using the three steps explained below (2.19). Using
(2.9), we have

yy∗xy = y1y1∗y2 = y2y1y1+y1y2y1+y1y2y2+y3y1+y1y3 = xyyy+yxyy+yyxy+xxyy+yxxy ,
(2.22)

so by the first step, which consists of expanding out Z∗(yy ∗ xy), (2.21) can be rewritten as

Z∗(yy)Z∗(xy)− Z∗(xyyy)− Z∗(yxyy)− Z∗(yyxy)− Z∗(xxyy)− Z∗(yxxy) . (2.23)

12



In the second step we replace each Z∗ by an expression in Z. For the three convergent words
xy, xyyy and xxyy we have Z∗ = Z; by (2.11) we have Z∗(y) = 0 and Z∗(yy) = −

1
2
Z(xy),

and finally by (2.12) we have

Z∗(yxyy) = Z(yxyy) + Z∗(y)Z(xyy) = Z(yxyy) ,

Z∗(yyxy) = Z(yyxy) + Z∗(y)Z(yxy) + Z∗(yy)Z(xy) = Z(yyxy)− 1
2
Z(xy)2 , (2.24)

Z∗(yxxy) = Z(yxxy) + Z∗(y)Z(xxy) = Z(yxxy) .

Plugging these into (2.23) allows us to rewrite (2.21) as

−1
2
Z(xy)2 − Z(xyyy)− Z(yxyy)− Z(yyxy) + 1

2
Z(xy)2 − Z(xxyy)− Z(yxxy) . (2.25)

If necessary we could now expand out the products of Z-symbols using the shuffle, but since
they cancel out we don’t need to, so in the end we add the linear combination

−Z(xyyy)− Z(yxyy)− Z(yyxy)− Z(xxyy)− Z(yxxy) (2.26)

to the ideal IFZ .

Remark 2.1.2. Note that by (2.17), for convergent words u and v, the relations (2.19) of IFZ

are of the “shuffle=stuffle” form Z(u� v) = Z(u ∗ v) since Z∗(u) = Z(u) and Z∗(v) = Z(v).
A conjecture by Hoffman (cf. [50] which is useful for practical computations in low weight)
posits that the combinations

Z∗(u ∗ v)− Z(u� v) (2.27)

with both u and v convergent or u = y and v convergent suffice to generate the ideal IFZ .

Definition 2.1.3. Let IZ be the ideal ofQ[Z(w)] generated by all algebraic relations between
real MZVs. Since the real MZVs do satisfy the regularized double shuffle relations, we have
the inclusions

IFZ ⊂ IZ ⊂ Q[Z(w)] . (2.28)

The space FZ of formal MZVs and the space Z of real MZVs are defined by

FZ := Q[Z(w)]/IFZ ,

Z := Q[Z(w)]/IZ , (2.29)

so that there is a natural surjection
FZ →→ Z . (2.30)

The space FZ is generated by the images of the Z(w) in the quotient modulo IFZ , which
we denote ζ f(w); these formal MZVs are subject by definition only to the regularized double
shuffle relations coming from Definition 2.1.1. The elements of the Q-algebra Z of real MZVs
are denoted by ζ(w).

The Q-algebra FZ is weight-graded by definition since all of its defining relations are
weight-graded, while Z is conjectured but of course not known to be weight-graded; if it
were, this would imply that all real MZVs are transcendental. A standard conjecture asserts
that the surjection (2.30) is an isomorphism.
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2.1.3 The Goncharov–Brown coaction

Let FZ denote the quotient of FZ modulo the ideal generated by ζ f2. In [28,29], Goncharov
introduced a coproduct on FZ, which makes it into a Hopf algebra. Brown subsequently
defined an extension of Goncharov’s coproduct to a coaction of the Hopf algebra FZ on
the module FZ [15]; restricted from FZ to FZ in both the argument and the result, the
coaction becomes Goncharov’s coproduct FZ → FZ ⊗FZ.2

There are in fact two different versions of the Goncharov–Brown coaction, which differ
from each other only by the order of the tensor factors. We denote them by

{
∆GB : FZ → FZ ⊗FZ ,

∆GB : FZ → FZ ⊗FZ .
(2.31)

Both versions of the coaction are used regularly in the literature, so that it is important to
keep track of which one is being used at all times. In the present paper, as we will specify,
the coaction ∆GB is implicitly used in numerous proofs in view of its compatibility with
double-shuffle theory and Hopf-algebra duals. The coaction ∆GB entering explicit formulae
(most notably in section 4) is used to remain coherent with the recent literature3.

Let us describe the construction of the Goncharov–Brown coaction ∆GB.

Definition 2.1.4. Let w be a convergent monomial in x and y, i.e. starting with x and
ending with y. Write w = xkr−1y · · ·xk1−1y to match the monomial notation of ζ fk1,...,kr in
(2.2), and associate to it the symbol

I(0; 1, 0k1−1, . . . , 1, 0kr−1; 1) = ζ fk1,...,kr . (2.32)

Let n = k1+· · ·+kr denote the degree of w. Visualize the sequence (0; 1, 0
k1−1, . . . , 1, 0kr−1; 1)

in order from left to right around a semi-circle as illustrated in Figure 1, with the terminal 0
and 1 at the outer edges and the middle n points placed in clockwise order along the inner
part of the semi-circle. To compute the coaction of the symbol I(0; 1, 0k1−1, . . . , 1, 0kr−1; 1)
associated with ζ fk1,...,kr , draw every possible “polygon” inside the half-circle starting with
the outer 0 on the left and ending with the outer 1 on the right, with vertices at any subset
of the inner letters (including the empty set). In the notation

(a1, a2, . . . , an) = (1, 0k1−1, 1, 0k2−1, . . . , 1, 0kr−1) (2.33)

for the middle n points (apart from the outer points 0 and 1), the contributing polygons
are parametrized by subsets {ai1 , ai2, . . . , air} with 1 ≤ i1 < i2 < · · · < ir ≤ n and all
cardinalities in the range 0 ≤ r ≤ n; see Figure 1 for the example of r = 2.

2Strictly speaking, the definition given by Brown is only for the motivic MZVs that we introduce in
section 2.2 below. It lifts without change to FZ.

3The coaction ∆GB based on Goncharov’s original coproduct was introduced in [28, 29] and [15]. The
coaction ∆GB is used in the recent particle-physics, string-theory and mathematics literature such as [51–56].
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0

a1

a2
. .
.
ai1

. . . ai2 . . .
an−1

an

1

I(0; ai1, ai2 ; 1)⊗ I(0; a1, a2, . . . , ai1−1; ai1)

×I(ai1 ; ai1+1, . . . , ai2−1; ai2)I(ai2 ; ai2+1, . . . , an; 1)

Figure 1: Contributions to the coaction formula (2.34) for ∆GBI(0; a1, a2, . . . , an; 1) from
polygons with inner vertices ai1 , ai2, i.e. quadrilaterals associated with subsets of a1, a2, . . . , an
of cardinality r = 2.

The coaction is computed by adding up the contributions of all possible polygons:

∆GBI(0; a1, a2, . . . , an; 1) =
n∑

r=0

∑

1≤i1<i2<...<ir≤n

I(0; ai1, ai2, . . . , air ; 1)⊗ I(0; a1, a2, . . . , ai1−1; ai1)

× I(ai1; ai1+1, . . . , ai2−1; ai2) · · · I(air−1
; air−1+1, . . . , air−1; air)I(air ; air+1, . . . , an; 1) ,

(2.34)

where I(0; ai1, . . . , air ; 1) specializes to I(0; 1) = 1 in case of the empty subset at r = 0. We
simplify the expression (2.34) according to the following rules:

• I(a; b) = 1 for all a, b ∈ {0, 1},

• I(a; b; c) = 0 for all a, b, c ∈ {0, 1},

• I(a;S; a) = 0 for a ∈ {0, 1} and any non-empty sequence S of 0′s and 1’s,

• I(1;S; 0) = (−1)nI(0;
←−
S ; 1) if S is a sequence of 0’s and 1’s of length n and

←−
S denotes

the sequence S in the reversed order.

We can also replace each term I(0;S; 1) by the formal (shuffle-regularized) MZV ζ f(wS),
where if S is any sequence of 0’s and 1’s then wS is the monomial obtained by reversing the
order of S and replacing every 0 with an x and every 1 with a y. We finally project the
entries of the second factor of the tensor product modulo ζ f(xy) = ζ f2 to FZ, so that the
Goncharov–Brown coaction takes values in FZ ⊗ FZ as announced in (2.31).

Example. The coaction on the convergent word ζ f(xxyxy) is computed from the semi-circle
drawn in Figure 2, which shows one example of a contribution from a quadrilateral. The
total result of the coaction is given by

∆GBζ
f(xxyxy) = 1⊗ ζ f(xxyxy) + ζ f(xxyxy)⊗ 1 + 3ζ f(xy)⊗ ζ f(xxy) . (2.35)

The first term comes from the degenerate polygon consisting of the straight line from the
outer 0 to the outer 1 with no inner vertices and the second to the full polygon touching all
the inner vertices. The term with factor 3 arises from quadrilaterals involving the earliest 1
(in clockwise direction) of the type shown in Figure 2, and there are three such quadrilaterals
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0

1

0
1

0

0

1

→ I(0; 1, 0; 1)⊗ I(0; 1)I(1; 0)I(0; 100; 1)

→ ζ f(xy)⊗ ζ f(xxy)

Figure 2: Example of a contribution to ∆GBζ
f(xxyxy) as computed in (2.35).

which produce the same non-vanishing contribution. All other polygons have a vanishing
contribution; in particular the polygons going from 0 directly to the 1 at the top produce a
ζ f(xy) = ζ f2 to the right of the tensor product ⊗, which is projected to zero.

Definition 2.1.5. The coaction ∆GB is obtained from ∆GB by the identity

∆GB = ι ◦∆GB , (2.36)

where ι exchanges the two tensor factors

ι : FZ ⊗ FZ 7→ FZ ⊗FZ ,

α⊗ β 7→ β ⊗ α . (2.37)

Reducing the FZ factor mod ζ f2 in not just one but both factors of the image yields two
coproducts

∆G,∆
G : FZ → FZ , (2.38)

each of which confers a Hopf algebra structure on FZ. We will study the Hopf algebra FZ
equipped with ∆G and its dual Hopf algebra FZ

∨
further in section 3.1.

2.2 Motivic MZVs

In this article, we will use a simplistic definition for the Q-algebra of motivic MZVs, which
were constructed and studied in depth as a subcategory of the category of mixed Tate motives
(MTM) unramified over Z by Deligne, Goncharov, Manin and others, until Brown proved
that the subcategory is equal to the full category (see [15]). Our definition follows from
Brown’s results.

2.2.1 Definition, coproduct and coaction

Definition 2.2.1. Let IMZ denote the largest ideal in FZ preserved by the Goncharov
coproduct ∆G, in the sense that the coproduct passes to the quotient MZ := FZ/IMZ ,
which thus inherits the Hopf algebra structure from FZ. Let ζm(w) denote the image in
MZ of ζ f(w) ∈ FZ. LetMZ be the formal tensor product

MZ = Q[ζm2 ]⊗QMZ , (2.39)
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where Q[ζm2 ] denotes the polynomial ring in the symbol ζm2 . The coactions ∆GB and ∆GB

reviewed in section 2.1.3 both descend directly toMZ. Let us review the notation for ∆GB;
it is identical to ∆GB in (2.31) up to exchanging the two factors of the tensor product.

The descended coaction [15]

∆GB :MZ →MZ ⊗MZ , (2.40)

makesMZ into a Hopf algebra comodule. In particular we have

∆GB

(
ζm2
)
= ζm2 ⊗ 1 . (2.41)

In analogy with (2.32) we write ζmk1,...,kr = Im(0; 1, 0k1−1, . . . , 1, 0kr−1; 1) ∈ MZ. We also

use the notation ζdrk1,...,kr = Idr(0; 1, 0k1−1, . . . , 1, 0kr−1; 1) ∈ MZ for the second tensor factor
of ∆GB whose reduction modulo ζ2 translates into ζ

dr
2 = 0.4 The explicit form of the coaction

for motivic MZVs ζmk1,...,kr is encoded in symbols exactly as in (2.34): we write

∆GBI
m(0; a1, a2, . . . , an; 1) =

n∑

r=0

∑

1≤i1<i2<...<ir≤n

Im(0; ai1, . . . , air ; 1)⊗ I
dr(0; a1, . . . , ai1−1; ai1)

× Idr(ai1 ; ai1+1, . . . , ai2−1; ai2) · · · I
dr(air−1

; air−1+1, . . . , air−1; air)I
dr(air ; air+1, . . . , an; 1) ,

(2.42)

where the rules detailed below (2.34) apply in identical form to the terms Im and Idr on the
right-hand side of (2.42) and can be used to put all terms into the standard form Im(0;S; 1)
and Idr(0;S; 1) for finite tuples S of 0’s and 1’s.

Examples. When w = xn−1y for odd values of n = 2k + 1, the only polygons with a non-
zero contribution are the degenerate one (going directly from 0 to 1) and the full polygon
including every point on the semi-circle: thus we have

∆GBζ
m
2k+1 = ζm2k+1 ⊗ 1 + 1⊗ ζdr2k+1 ∈MZ ⊗MZ . (2.43)

Such elements are said to be primitive for the coproduct. The counterparts of (2.43) for
w = xn−1y at even n = 2k simplifies to ∆GBζ

m
2k = ζm2k ⊗ 1 by the vanishing of ζdr2k.

We also give a few other illustrative instances:

∆GB(ζ
m
3 ζ

m
5 ) = ζm3 ζ

m
5 ⊗ 1 + 1⊗ ζdr3 ζ

dr
5 + ζm3 ⊗ ζ

dr
5 + ζm5 ⊗ ζ

dr
3 ,

∆GB(ζ
m
3,5) = ζm3,5 ⊗ 1 + 1⊗ ζdr3,5 − 5 ζm3 ⊗ ζ

dr
5 , (2.44)

∆GB(ζ
m
2,6) = ζm2,6 ⊗ 1 + 1⊗ ζdr2,6 + 4 ζm3 ⊗ ζ

dr
5 + 2 ζm5 ⊗ ζ

dr
3 .

4The superscript in ζdr refers to de Rham periods [29,15,57,58]. In the motivic coaction ∆GB, de Rham
periods occur in the right entry of tensor products A ⊗ B, i.e. B is considered modulo iπ. This is opposite
to the coaction ∆GB of [15] where de Rham periods are in the left entry, so that (2.41) would instead read
∆GB(ζm2 ) = 1⊗ ζm2 .
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These relations are compatible with

ζm2,6 = −
2

5
ζm3,5 + 2ζm3 ζ

m
5 −

42

125
(ζm2 )

4 , (2.45)

where one has to use that the second entries of tensor products inMZ⊗MZ are automat-
ically projected modulo ζm2 , so that ζdr2,6 = −

2
5
ζdr3,5 + 2ζdr3 ζ

dr
5 .

The motivic MZVs surject down to the real MZVs by the period map

Im(0;S; 1) 7→ ζ(wS) (2.46)

(see [15]), so we have the following sequence of Q-algebra surjections

FZ →→MZ →→ Z , (2.47)

with conjectured equality. Like FZ, the Hopf algebra comodule MZ is graded by the
weight of the MZVs, as isMZ. We writeMZw (resp.MZw) for the weight w part ofMZ
(resp.MZ). Note that we have

FZ0 = FZ0 =MZ0 =MZ0 = Q , (2.48)

FZ1 = FZ1 =MZ1 =MZ1 = {0} .

2.2.2 Reducible motivic MZVs

Let fz denote the quotient of the Q-algebra FZ given by

fz := FZ/
(
FZ0 ⊕ FZ2 ⊕ (FZ>0)

2
)
= FZ/

(
FZ0 ⊕ (FZ>0)

2
)
, (2.49)

and analogously, let mz denote the quotient of the Q-algebraMZ given by

mz :=MZ/
(
MZ0 ⊕MZ2 ⊕ (MZ>0)

2
)
=MZ/

(
MZ0 ⊕ (MZ>0)

2
)
. (2.50)

From the Hopf algebra structure on FZ (resp.MZ), the vector space fz (resp. mz) inherits
the structure of a Lie coalgebra, dual to the Lie algebras that will be introduced in section 3.1.
Note that by (2.49) and (2.50), the element ζ f2 (resp. ζ

m
2 ) maps down to zero in fz (resp. mz).

Definition 2.2.2. For all even positive integers w = 2n, let B2n be the Bernoulli number,
and set

ζm2n :=
ζ2n
ζn2

(ζm2 )
n = (−1)n−1 (24)

nB2n

2(2n)!
(ζm2 )

n ∈MZ2n . (2.51)

Definition 2.2.3. For all w ≥ 3, let R̂w denote the canonical subspace of reducible MZVs
inMZw. The space R̂w is the subspace generated by all total-weight w products of lower-
weight MZVs, or in other words by all weight w elements of (MZ>0)

2. Note that R̂3 = {0},
so there are actually non-trivial reducible subspaces only for w ≥ 4, starting with R̂4 = Qζm4
and R̂5 = Qζm2 ζ

m
3 .

The Lie coalgebras fz and mz are weight-graded, and for each weight w > 1 we have

fzw = FZw/R̂w , mzw =MZw/R̂w . (2.52)
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2.2.3 Irreducible MZVs

Let Îw be any supplementary subspace of R̂w inMZw so that

MZw = R̂w ⊕ Îw . (2.53)

Since the mapMZw → mzw is the quotient mod R̂w, it induces an isomorphism Îw → mzw.
We will always choose Îw containing ζmw if w is odd. If w is even, we set Iw := Îw, and if w
is odd we choose a supplementary subspace Iw in Îw such that Îw = Qζmw ⊕ Iw. Similarly, if
w is odd we set Rw := R̂w and if w is even we choose a supplementary subspace Rw ⊂ R̂w

such that R̂w = Qζmw ⊕ Rw. Then for all w ≥ 2 we have the direct sum decomposition

MZw = Qζmw ⊕ Iw ⊕Rw . (2.54)

3 The Z-map associating polynomials to MZVs

In this section we will introduce the Z-map (see [17]), which provides a family of canonical
isomorphisms between the MZV spaces studied in section 2 (namely FZ, FZ,MZ,MZ,
Z, fz or mz) and their dual spaces. Since all the MZV spaces are quotients of Q[Z(w)], all of
their duals are subspaces of Q[Z(w)]∨, which is nothing other than the polynomial algebra
Q〈x, y〉 in the non-commutative variables x and y.

Thanks to the fact that the double shuffle relations generate all relations satisfied by FZ
(and in their linearized version, fz), we can give an explicit description of the elements of
the dual spaces FZ∨ and fz∨ in Q〈x, y〉. In the case of motivic and real MZVs we do not
have an explicit description of this type since they may satisfy further, unknown relations.
Still, thanks to Brown’s theorem in [15], we do know the structure and dimensions of the
graded parts of the dual spacesMZ∨ and mz∨, which allows us to compute their elements
explicitly in low weights (see section 3.4).

3.1 The double shuffle dual space of formal MZVs

Let Q〈x, y〉 denote the polynomial ring in two non-commutative variables x and y, equipped
with its canonical basis of monomials w in x and y (including the constant monomial 1),
and let Q〈〈x, y〉〉 denote its degree-completion, the power series ring in x and y. The
space Q[Z(w)] introduced in section 2.1.2 can be identified with the graded dual of Q〈x, y〉,
equipped with the dual basis of symbols Z(w) such that

〈Z(u), v〉 = δu,v , (3.1)

on monomials u and v and extended linearly to give a canonical pairing between Q〈x, y〉 and
Q[Z(w)].

Recall from (2.29) that FZ is the quotient of Q[Z(w)] by the ideal IFZ . The dual
space FZ∨ is thus the subspace of Q〈x, y〉 that annihilates the elements of IFZ ; explicitly,
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FZ∨ ⊂ Q〈x, y〉 is a weight-graded space in which FZ∨
0 = Q, FZ∨

1 = 0 and for w ≥ 2, FZ∨
w

consists of all degree w homogeneous polynomials P ∈ Q〈x, y〉 satisfying

〈L, P 〉 = 0 for all L ∈ IFZ , (3.2)

for the pairing in (3.1) (see Definition 2.1.1 for an explicit description of the elements L of
the ideal IFZ). The subspace F∨ is strictly smaller than Q〈x, y〉. In weight w = 2, for
instance, since Z(xy) + Z(yx) ∈ IFZ , we have xy − yx ∈ FZ∨

2 whereas xy and yx are not
individually contained in FZ∨

2 .

Similarly, the dual space of the quotient FZ of FZ modulo ζ f2 is a subspace FZ
∨
⊂ FZ∨.

We now consider FZ with its Hopf algebra structure given by the coproduct ∆G; then the
dual space FZ

∨
is also a Hopf algebra. The coproduct on FZ

∨
is inherited directly from

the standard coproduct ∆s on Q〈x, y〉, given by

∆s(x) = x⊗ 1+ 1⊗ x , ∆s(y) = y ⊗ 1+ 1⊗ y ; (3.3)

it satisfies
〈ξ1 ⊗ ξ2,∆s(g)〉 = 〈ξ1� ξ2, g〉 (3.4)

for g ∈ FZ
∨
, ξ1, ξ2 ∈ FZ. The multiplication on FZ

∨
, which we denote by ⋄, is uniquely

determined by the equality
〈∆G(ξ), g ⊗ h〉 = 〈ξ, g ⋄ h〉 (3.5)

for ξ ∈ FZ and g, h ∈ FZ
∨
, and an explicit formula for g ⋄h in the restricted case of g ∈ fz∨

can be found in (3.17) below.

Let us now explain how to view FZ
∨
as the universal enveloping algebra of the Lie

algebra consisting of its primitive elements. We begin by identifying the subspace Lie[x, y]
of Lie polynomials in Q〈x, y〉 as the subspace of primitive elements, which are those satisfying

∆s(g) = g ⊗ 1+ 1⊗ g . (3.6)

An equivalent formulation of this property is that g is a Lie polynomial in Q〈x, y〉 if and
only if

〈Z(u� v) , g〉 = 0 , (3.7)

for all pairs of non-empty words u, v. The Lie subalgebra of the Hopf algebra FZ
∨
is likewise

the space of elements g ∈ FZ
∨
satisfying (3.6); the Lie bracket is given by

{g, h} := g ⋄ h− h ⋄ g , (3.8)

for the multiplication ⋄ of (3.5).
This Lie algebra is identified with the dual of the space fz defined in (2.49) above; indeed,

the vector space fz inherits the structure of a Lie coalgebra from the Hopf algebra structure
on FZ, so its dual space fz∨ ⊂ FZ

∨
thus forms a Lie algebra, which is precisely the Lie

algebra of primitive elements of FZ
∨
.
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Since fz is the quotient of FZ modulo non-trivial products and the relations

ζ f(u)ζ f(v) = ζ f(u� v) ,

ζ f∗(u)ζ
f
∗(v) = ζ f∗(u ∗ v) , (3.9)

hold in FZ (the second equality being valid whenever u, v both end in y), we see that the
images of ζ f(w) in the quotient fz satisfy

ζ f(u� v) = ζ f∗(u ∗ v) = 0 in fz . (3.10)

Thus the dual space fz∨ is the subspace of polynomials g ∈ Q〈x, y〉 such that

〈Z(u� v), g〉 = 〈Z∗(u ∗ v), g∗〉 = 0 , (3.11)

for all pairs of monomials u and v (ending in y for the ∗ term), where

g∗ = g +
∑

n≥2

(−1)n−1

n
ζ(xn−1y)yn , (3.12)

(the term added to g is the linearized version of (2.10)). We note in particular that by (3.7),
the first equality 〈Z(u� v), g〉 = 0 shows that we have an inclusion of vector spaces (which
is not a Lie algebra morphism as the brackets are different)

fz∨ ⊂ Lie[x, y] . (3.13)

The Lie algebra fz∨ is known as the double shuffle Lie algebra and usually denoted by ds

for “double shuffle” (or dmr for “double mélange régularisé” by French authors). The Lie
bracket {·, ·} on ds corresponds to the Ihara bracket

{g, h} = [g, h] +Dg(h)−Dh(g) , (3.14)

where for each g ∈ Lie[x, y], the Ihara derivation Dg of Lie[x, y] is defined by

Dg(x) = 0 , Dg(y) = [y, g] , (3.15)

and the Lie bracket arises from the bracket of derivations

[Dg, Dh] = D{g,h} . (3.16)

The Hopf algebra FZ
∨
is identified with the universal enveloping algebra Uds (indeed, Gon-

charov originally developed his coproduct on FZ by determining the Hopf algebra dual of
Uds). As such, the multiplication ⋄ is identified with the Poincaré–Birkhoff–Witt multipli-
cation (which exists for every universal enveloping algebra of a Lie algebra).

Although the general expression of the ⋄ multiplication for two elements g, h ∈ Uds is
complicated, in the case where g ∈ ds and h ∈ Uds it simplifies to the rule

g ⋄ h = gh+Dg(h) , (3.17)
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which suffices for our purposes and implies that the two representations (3.8) and (3.14) of
the Ihara bracket agree.

In the rest of this article with the exception of section 4, we will consider the space FZ
as a Hopf algebra comodule equipped with the coaction ∆GB over the Hopf algebra FZ
equipped with the coproduct ∆G; the multiplication ⋄ extends to FZ by the identity

〈∆GB(ξ), g ⊗ h〉 = 〈ξ, g ⋄ h〉 (3.18)

for ξ ∈ FZ and g, h ∈ MZ∨. The quotient space MZ of FZ is then also a Hopf algebra
equipped with the coproduct ∆G, andMZ equipped with ∆GB is a Hopf algebra comodule
over it. The dual space

MZ
∨
⊂ FZ

∨
= Uds (3.19)

ofMZ is a Hopf algebra equipped with the standard coproduct ∆s and the (restriction of
the) multiplication ⋄, and the Lie algebra

mz∨ ⊂ fz∨ = ds (3.20)

consists of the primitive elements for ∆s in MZ, and is equipped with the (restriction of
the) Ihara bracket (3.8).

3.2 The Z-map and dual spaces

Definition 3.2.1. We define the Z-map to be the canonical isomorphism

Q〈x, y〉 Z // Q[Z(w)] (3.21)

mapping 1 to 1 and each non-trivial monomial w to Z(w), so that the notation Z(w),
previously just a symbol (see section 2.1.2), can now be interpreted as the image of the
monomial w under the map Z. The Z-map restricts to a canonical isomorphism on each
(finite-dimensional) weight-graded part, and passes to corresponding isomorphisms (also
called Z-maps) between any quotient of Q[Z(w)] (in particular the MZV spaces) and its
dual viewed as a subspace of Q〈x, y〉.

The situation is summarized in (3.25) below, in which all of the horizontal arrows are the
canonical isomorphisms inherited from the top Z-map

Z : Q〈x, y〉 → Q[Z(w)] , (3.22)

all surjective maps are quotients, and all injective maps are inclusions of the dual spaces. The
space Z denotes the quotient of the Q-algebra Z of real MZVs modulo the ideal generated
by ζ2, and in analogy with fz and mz, we denote the quotient of Z mod constants and non-
trivial products by z. For instance, the Z-map Z(xy) is given by ζm2 inMZ and 0 inMZ,
respectively. More generally, we have

Z(xkr−1y · · ·xk2−1yxk1−1y) = ζmk1,k2,...,kr inMZ (3.23)

22



for convergent words (kr ≥ 2), whereas the Z-map of divergent words follows from setting
the combinations in (2.18) to zero.

Note that while both fz and mz are equipped with a Lie coalgebra structure inherited
from the Hopf algebra structures on FZ andMZ, we do not know that Z is a Hopf algebra
and therefore we do not know that z has a Lie coalgebra structure. However we still have
vector space surjections fz →→ mz →→ z and the corresponding vector space inclusions of the
dual spaces, all of which lie in the vector space Lie[x, y] by (3.13):

z∨ ⊂ mz∨ ⊂ fz∨ ⊂ Lie[x, y] . (3.24)

We underline once more that all maps in the following diagram are to be viewed as vector
space morphisms.

Q[Z(w)]

����

Q〈x, y〉Zoo

FZ

����

ssss❣❣❣❣❣
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❣
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❣
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❣
❣
❣
❣
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(3.25)

We will make constant use of the Z-maps as well as the quotient maps and inclusions in
this diagram for our constructions below.
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3.3 The canonical decomposition of motivic MZV spaces and zeta
generators in genus zero

In this section we will define a specific canonical decomposition of MZw for each weight
w ≥ 2 into singles, irreducibles and reducibles of the type

MZw = Qζmw ⊕ Iw ⊕Rw (3.26)

introduced in (2.54).

Definition 3.3.1. For each w ≥ 2, let R̂w ⊂MZw denote the subspace of reducible MZVs
as in section 2.2.2, let mzw =MZw/R̂w as in (2.52), let mz∨w ⊂MZ

∨
w denote the dual space,

and let (mz∨w)
≥2 ⊂ mz∨w denote the subspace of mz∨w consisting of elements of depth ≥ 2,

where we recall that depth is the minimal y-degree of a polynomial.

• Define the canonical subspace of non-single irreducibles Iw ofMZw by

Iw = Z
(
(mz∨w)

≥2
)
⊂MZw . (3.27)

• Define the canonical subspace of non-single reduciblesRw as follows. For odd weights w,
set Rw = R̂w, and for even weights w, let Rw ⊂ R̂w be the subspace spanned by all
weight w products of the elements: ζm2 , the single zetas ζmv for odd v < w, and all
elements of Iv with v < w, excluding only the product (ζm2 )

w/2. Then since MZ =
Q[ζm2 ]⊗QMZ (cf. (2.39)), using (2.51), we have R̂w = Qζmw ⊕ Rw when w is even.

• Define the canonical decomposition ofMZw to be

MZw = Qζmw ⊕ Iw ⊕Rw (3.28)

for the canonical subspaces Rw and Iw defined above.

• Finally, define the canonical polynomial gw ∈ MZ
∨
w for each w ≥ 2 to be the unique

polynomial in x, y that

– takes the value 1 on ζmw = ζm(xw−1y) in the sense that 〈Z(xw−1y), gw〉 = 1, and

– annihilates Iw and Rw in the sense that 〈ξ, gw〉 = 0 for any ξ ∈ Iw and ξ ∈ Rw.

Examples of the polynomials gw will be given in section 3.4 below.

Lemma 3.3.2. The canonical polynomials gw for w ≥ 2 are uniquely characterized by the
following properties:

(i) The polynomial gw is normalized by gw|xw−1y = 1;

(ii) The polynomial gw lies in the subspace (MZw/Rw)
∨ ⊂MZ∨

w; in particular for odd w
it lies in mzw and is thus a Lie polynomial;
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(iii) If we consider gw as lying in (MZw/Rw)
∨, the image Z(gw) of gw under the Z-map

is a rational multiple of ζmw ∈ MZw/Rw; equivalently, if we consider gw as lying in
MZ∨

w, then
Z(gw) ∈ Qζmw ⊕ Rw ⊂MZw . (3.29)

Proof. (i) is equivalent to 〈Z(xw−1y), gw〉 = 1.
For (ii), saying that gw annihilates Rw is equivalent to saying that gw lies in the dual

space ofMZw/Rw, namely (MZw/Rw)
∨; this space is equal to mz∨w when w is odd, so by

(3.24) gw is then in Lie[x, y].
For (iii), we consider gw ∈ (MZw/Rw)

∨ and for MZw/Rw = Qζmw ⊕ Iw we choose any
basis consisting of ζmw and a basis for Iw. Then since 〈gw, Iw〉 = 0 for all ξ ∈ Iw we have
〈Z(gw), Z

−1(Iw)〉 = 0, but Z−1(Iw) = (mz∨w)
≥2, and the subspace of MZw/Rw annihilated

by (mz∨w)
≥2 is the 1-dimensional subspace generated by ζmw . Therefore if gw is considered as

lying in (MZw/Rw)
∨ we have Z(gw) ∈ Qζmw ⊂MZw/Rw, or equivalently, if gw is considered

as lying inMZw, we have Z(gw) ∈ Qζmw ⊕ Rw. �

Remark 3.3.3. The lemma shows that in order to compute the canonical polynomials gw
for any w ≥ 2, once conditions (i) and (ii) of Lemma 3.3.2 are fulfilled, the third defining
condition of gw, namely that it annihilates the subspace Iw, can be replaced by condition
(iii) of the Lemma, which does not require computing the space Iw. Once gw is determined,
it is then possible to recover the space Iw as the image under Z as in (3.27) if needed.
However, we will provide a very natural explicit basis for Iw, called the semi-canonical basis,
in section 3.5 below.

Definition 3.3.4. The set of gw for odd w ≥ 3 form a canonical generating set for mz∨, and
their Ihara derivations (3.15) are referred to as zeta generators in genus zero. By Lemma
3.3.2, each gw is characterized uniquely as the only depth 1 element of mzw normalized by
gw|xw−1y = 1 such that Z(gw) is a rational multiple of ζmw ∈ mz.

The method of using the Z-map to produce canonical generators by taking the duals of
the single zetas was initially developed in the framework of formal multizetas in [17]. The
family of polynomials gw will play a crucial role in the main results of this paper, namely

• the construction of a canonical isomorphism ρ :MZ → F from the motivic MZVs to
the f -alphabet (section 4.2);

• the construction of a canonical set of zeta generators in genus one (section 5.3).

In the next subsection we give the explicit calculation of the canonical decomposition in
weights up to w = 11 and spell out the canonical polynomials gw up to w = 7.
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3.4 The canonical decomposition for MZw for w ≤ 11

Since all MZVs in this subsection and the next one are motivic, we drop the superscript m
and simply write ζk1,...,kr instead of ζmk1,...,kr . We have

MZ2 = 〈ζ2〉 ,

MZ3 = 〈ζ3〉 ,

MZ4 = 〈ζ4〉 ,

MZ5 = 〈ζ5〉 ⊕ 〈ζ2ζ3〉 = Qζ5 ⊕R5 ,

MZ6 = 〈ζ6〉 ⊕ 〈ζ
2
3〉 = Qζ6 ⊕ R6 , (3.30)

MZ7 = 〈ζ7〉 ⊕ 〈ζ2ζ5 , ζ
2
2ζ3〉 = Qζ7 ⊕ R7 ,

MZ8 = 〈ζ8〉 ⊕ 〈Z35〉 ⊕ 〈ζ3ζ5 , ζ2ζ
2
3〉 = Qζ8 ⊕ I8 ⊕ R8 ,

MZ9 = 〈ζ9〉 ⊕ 〈ζ
3
3 , ζ2ζ7 , ζ4ζ5 , ζ6ζ3〉 = Qζ9 ⊕R9 ,

MZ10 = 〈ζ10〉 ⊕ 〈Z37〉 ⊕ 〈ζ3ζ7 , ζ
2
5 , ζ2ζ3ζ5 , ζ2Z35 , ζ4ζ

2
3〉 = Qζ10 ⊕ I10 ⊕ R10 ,

MZ11 = 〈ζ11〉 ⊕ 〈Z335〉 ⊕ 〈ζ3Z35 , ζ
2
3ζ5 , ζ2ζ9 , ζ2ζ

3
3 , ζ4ζ7 , ζ6ζ5 , ζ8ζ3〉 = Qζ11 ⊕ I11 ⊕R11 ,

where the irreducibles Z35, Z37 and Z335 are the Z-map images of the generators {g3, g5},
{g3, g7} and {g3, {g3, g5}} of (mz∨w)

≥2 for w = 8, 10 and 11, respectively: they are explicitly
given in terms of a common (arbitrary) choice of MZVs ζ3,5, ζ3,7 and ζ3,3,5 by

Z35 := Z({g3, g5}) = −
1105181

80
ζ8 +

24453
5
ζ3,5 +

28743
2
ζ3ζ5 − 1683 ζ2ζ

2
3 ,

Z37 := Z({g3, g7}) =
6614309

112
ζ3,7 +

7796217
16

ζ3ζ7 +
26525967

112
ζ25 −

2159
627

ζ2Z35

− 3203187
76

ζ2ζ3ζ5 −
60072829

608
ζ4ζ

2
3 −

408872741707
680960

ζ10 , (3.31)

Z335 := Z({g3, {g3, g5}}) = −
3683808

5
ζ3,3,5 +

1119631493
20

ζ11 −
28597725

38
ζ23ζ5

+ 296304
2717

ζ3Z35 −
198893689

6
ζ2ζ9 +

25828428
247

ζ2ζ
3
3 −

90515817
40

ζ4ζ7

+ 6826931
4

ζ6ζ5 +
1953356831

23712
ζ8ζ3 .

We observe here that the products listed above spanning the spaces of reducibles Rw actually
form bases for these spaces. This is a general result valid for all w, which will be proven in
the following section 3.5, in which we actually determine an explicit basis forMZ adapted
to the canonical decomposition of Definition 3.3.1.

Up to w = 7, the polynomials gw are given by

g2 = [xy] ,

g3 = [x[xy]] + [[xy]y] ,

g4 = [x[x[xy]]] + 1
4
[x[[xy]y]] + [[[xy]y]y] + 5

4
(xyxy − xyyx− yxxy + yxyx) ,

g5 = [x[x[x[xy]]]]+2[x[x[[xy]y]]]− 3
2
[[x[xy]] [xy]]+2[x[[[xy]y]y]]+1

2
[[xy] [[xy]y]]+[[[[xy]y]y]y] ,
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g6 = [x[x[x[x[xy]]]]]+ 3
4
[x[x[x[[xy]y]]]]+ 1

6
[x[[x[xy]] [xy]]]+23

16
[x[x[[[xy]y]y]]]+ 1

12
[x[[xy] [[xy]y]]]

− 89
48
[x[[[xy]y] [xy]]] + 3

4
[x[[[[xy]y]y]y]] + 5

3
[[xy] [[[xy]y]y]] + [[[[[xy]y]y]y]y]

+ 7
4
(xyxxxy − xyyxxx+ xyyyxy − xyyyyx− yxxxxy + yxyxxx− yyyxxy + yyyxyx)

+ 21
4
(xyxyxx− xyxxyx+ yxxxyx− yxxyxx− yxyyxy + yxyyyx+ yyxyxy − yyxyyx)

+ 7
16
(xyxxyy − xyyyxx− yxxxyy + yxyyxx) + 7

48
(yxxyxy − xyxyxy)

+ 35
48
(yxxyyx+ yxyxxy − xyxyyx− xyyxxy) + 77

48
(xyyxyx− yxyxyx) ,

g7 = [x[x[x[x[x[xy]]]]]] + 3[x[x[x[x[[xy]y]]]]]− 5[x[x[[x[x, y]] [x, y]]]] + 2[[x[x[xy]] [x[xy]]]

+ 5[x[x[x[[[xy]y]y]]]] + 19
16
[x[x[[xy] [[xy]y]]]]− 173

16
[x[[x[[xy]y]] [xy]]]− 2[[x[xy]] [x[[xy]y]]]

+ 17
16
[[[x[xy]] [xy]] [xy]] + 5[x[x[[[[xy]y]y]y]]] + 99

16
[x[[xy] [[[xy]y]y]]]− 61

16
[[x[[xy]y]] [[xy]y]]

− 109
16
[[x[[[xy]y]y]] [xy]] + 65

16
[[xy] [[xy] [[xy]y]]] + 3[x[[[[[xy]y]y]y]y]] + 4[[xy] [[[[xy]y]y]y]]

+ 3[[[xy]y] [[[xy]y]y]] + [[[[[[xy]y]y]y]y]y] . (3.32)

In these expressions, we have omitted the separating comma between the two arguments
of the Lie bracket in Lie[x, y] to condense the formulas. The odd degree (Lie) polynomials
satisfy the symmetry property g2k+1(x, y) = g2k+1(y, x) that follows from the arguments in
footnote 11. This is easy to see for g3, but requires also the use of the Jacobi identity to
make it manifest for g5 and g7. Our expressions are chosen to be adapted to the Lyndon
basis of Lie[x, y] that we introduce in the next section.

For w ≥ 8 the polynomials gw become too unwieldy to write down, although they can be
calculated on a computer easily (either by the methods presented here, or from the Drinfeld
associator as in (3.49) below). The explicit form of all gw at w ≤ 12 can be found in
machine-readable form in an ancillary file of the arXiv submission of this work. However,
since the Z-map is an isomorphism, no information is lost in giving their Z-map images,
which determine them completely and are much shorter to write down:

Z(g2) = 2ζ2 ,

Z(g3) = 12ζ3 ,

Z(g4) =
375
8
ζ4 ,

Z(g5) = 385ζ5 − 105ζ2ζ3 ,

Z(g6) =
251797
288

ζ6 −
679
4
ζ23 ,

Z(g7) =
49203

4
ζ7 −

14091
4
ζ2ζ5 −

11865
4
ζ4ζ3 , (3.33)

Z(g8) =
769152355481

40974336
ζ8 −

18246083
1824

ζ3ζ5 +
74974943
71136

ζ2ζ
2
3 ,

Z(g9) =
373659143

864
ζ9 −

264398849
3456

ζ6ζ3 −
3702413

36
ζ4ζ5 −

70513729
576

ζ2ζ7 +
133133

16
ζ33 ,

Z(g10) =
22565838727030761032761

48180785666457600
ζ10 ++ 23603271373

184515876480
ζ2Z35 −

70504768535925229
227096463360

ζ3ζ7 −
66965094752611

436723968
ζ25

+ 21865877274704331
321719989760

ζ2ζ3ζ5 +
3916397111572098571

100376636805120
ζ4ζ

2
3 ,

Z(g11) =
1316030287522093

78587904
ζ11 +

67235
1227936

ζ3Z35 +
4632642114815

4911744
ζ23ζ5 −

824237896586533
176822784

ζ2ζ9

− 470709526441
4911744

ζ2ζ
3
3 −

3026492983085
818624

ζ4ζ7 −
218501860145855

78587904
ζ6ζ5 −

3190686062952839
1414582272

ζ8ζ3 .

Note that, in agreement with the third characterizing property (3.29) of gw, the non-single
irreducibles Z35 ∈ I8, Z37 ∈ I10 and Z335 ∈ I11 are absent in Z(g8), Z(g10) and Z(g11),
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respectively. The contributions ζ2Z35 and ζ3Z35 to Z(g10) and Z(g11) lie in R10 and R11,
respectively, and are therefore compatible with (3.29).

3.5 The semi-canonical basis for MZw

In this section we determine an explicit basis for MZ which is adapted to the canonical
decomposition. The basis of the irreducible parts Iw is given by the Z-map images of the
Lyndon brackets of the canonical free generators gw of mz∨w. The basis of the reducible part
Rw in turn consists of all weight w products of elements of the set given by ζ2, ζv for all odd
v < w, and the chosen basis elements for Iv for v < w, which form a linearly independent set
as proven in Corollary 3.5.8 at the end of this subsection. Because the Lyndon basis for a
free Lie algebra, although very natural and practical, cannot justifiably be called canonical,
we refer to our basis as the semi-canonical basis for the canonical decomposition ofMZw.

Let us recall the definition and the basic result we need concerning Lyndon bases.

Definition 3.5.1. Let B = {b1, b2, . . .} be an ordered set of letters. A Lyndon word in
the alphabet B is a word W1 = bi1bi2 · · · bir that has the property that every right subword
Wj = bijbij+1

· · · bir with j > 1 is lexicographically larger than W1.

The following classic theorem was discovered simultaneously in 1958 by Chen–Fox–
Lyndon and Shirshov (cf. [59], [60], or [61] for a comprehensive introduction).

Theorem 3.5.2. Let B = {b1, b2, . . .} be an ordered set of letters and let Lie[B] be the free
Lie algebra generated by B (over a field which we take to be Q). Then a basis of Lie[B] is
given by the individual letters bi and the set of Lyndon brackets

[bi1bi2 . . . bir ] , (3.34)

where the word bi1bi2 . . . bir is a Lyndon word, and the rule for making it into a Lie bracket
is to place the comma at the leftmost position such that it divides the Lyndon word into two
shorter Lyndon words:

[bi1bi2 . . . bir ] =
[
[bi1 . . . bik−1

], [bik . . . bir ]
]

(3.35)

and to proceed recursively until it is a multiple bracket of single letters for which we set
[bi] := bi.

Examples. The first few Lyndon brackets in the free Lie algebra Lie[x, y] are given by

[xy] = [x, y] , [xxy] = [x, [x, y]] , [xyy] = [[x, y], y] , [xxyy] = [x, [[x, y], y]]] . (3.36)

The first few Lyndon brackets in the free Lie algebra mz∨ on one generator gw for each
odd w ≥ 3 (see Definition 3.3.4) equipped with its Ihara Lie bracket {·, ·} from (3.14) are
given by

{g3g5} = {g3, g5} , {g3g7} = {g3, g7} , {g3g3g5} = {g3, {g3, g5}} . (3.37)

28



Definition 3.5.3. Since mz∨ is freely generated by the canonical Lie polynomials g3, g5, . . .,
the Lyndon brackets in these generators form a basis. Every such Lyndon bracket cor-
responds as above to a Lyndon word gv1 · · · gvr with r > 1. We write the corresponding
Lyndon bracket as

Lv1v2···vr := {gv1gv2 · · · gvr} ∈ mz∨ . (3.38)

For example, L335 denotes the Lyndon bracket {g3, {g3, g5}}. We denote the Z-map images
of the Lyndon bracket by

Zv1···vr := Z(Lv1···vr) , (3.39)

consistently with (3.31). These elements with v1 + · · · + vr = w form the semi-canonical
basis for the canonical subspace of weight w non-single irreducibles Iw ⊂MZw.

Our next task is to establish a basis for the spaces Rw.

Proposition 3.5.4. Let Cw ⊂ MZ be the set consisting of ζ2, the ζv for odd 3 ≤ v < w,
and the Z-map images Zv1···vr of Lyndon brackets Lv1···vr ∈ mz∨ with r > 1, v1+ · · ·+vr < w.
Then, the set of weight w products of elements of Cw forms a linearly independent set. If w
is odd (resp. even) all of these products (resp. all of these products except for (ζ2)

w/2) form
a basis for Rw.

This proposition follows from the general result on Hopf algebras given in the following
theorem (see Corollary 3.5.8). It seems like this result should be well-known, however it
appears to have only been written down in an unpublished note by Perrin and Viennot [62].

Theorem 3.5.5. Let X denote an alphabet of weighted letters having the property that the
number of letters in each weight is finite. Let A∨ denote the graded associative Q-algebra
on X, considered as a Hopf algebra equipped with a multiplication denoted ⋄ and the standard
coproduct ∆s for which the letters of X are primitive. Let A denote the graded dual space
of A∨, let L∨ ⊂ A∨ denote the subspace of primitive elements for ∆s, and let B = {b1, b2, . . .}
be a vector space basis for L∨. Then,

(i) L∨ forms a Lie algebra whose bracket is given by [g, h] = g ⋄ h− h ⋄ g.

(ii) Both A and A∨ have bases given by the monomials w in the letters of X, which we
denote by w ∈ A and w∨ ∈ A∨. The map w∨ 7→ w provides an isomorphism of graded
vector spaces from A∨ to A. As a Q-algebra, however, A is commutative, equipped with
the shuffle multiplication.

(iii) Let ξi denote the images of the elements bi ∈ A
∨ under the isomorphism in (ii). The

ξi then form a multiplicative set of generators for A under the shuffle multiplication.

(iv) The ordered monomials ξi1�ξi2� · · ·�ξim form a linear basis for A; those with m > 1
form a basis for the subspace S ⊂ A annihilating L∨.
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Proof. (i) follows directly from the Milnor–Moore theorem [63]. The vector space part of
(ii) follows from the fact that each graded part is finite-dimensional, so has a dual that is
isomorphic to it and equipped with a dual basis; the notation w∨ for the basis of A∨ simply
defines a dual basis to the basis of monomials w ∈ A. The fact that the multiplication on A
is the shuffle is standard, corresponding to the fact that an element of A∨ is a Lie element
if and only if it satisfies the shuffle relations (see (3.7)), completing the proof of (ii). This
is the same as saying that the subspace S ⊂ A spanned by all shuffles of monomials is the
subspace that annihilates the Lie algebra L∨. For this reason, the quotient space L = A/S is
the Lie coalgebra dual to L∨, and the linear isomorphism in (ii) induces a linear isomorphism
between L and L∨. Hence, the ξi ∈ A form a basis for a subspace L̃ ⊂ A isomorphic to
L, restricted to which the quotient map A → A/S = L is an isomorphism. Thus we have
A = S ⊕ L̃, completing the proof of (iii).

The final point (iv) follows from the Poincaré–Birkhoff–Witt theorem [64], which states
that the universal enveloping algebra of a Lie algebra is generated by the ordered monomials
in elements of a basis, and the only relations come from relations in the Lie algebra. We
consider L = A/S as a Lie algebra with the trivial bracket, so that the only multiplicative
relations between the generators ξi of L are given by the fact that they commute. By the
Poincaré–Birkhoff–Witt theorem, the ordered monomials ξi1 � · · ·� ξim with m ≥ 1 then
form a basis for the universal enveloping algebra A of L, and the monomials with m > 1
form a basis for the kernel of the map A→ L, so in fact they form a basis for S, proving (iv).�

Remark 3.5.6. Essentially what this proof expresses is that the usual basis of the free
associative algebra A∨ on the alphabet X , given by the monomials in the letters of X ,
can be replaced by a different basis consisting of the basis bi of Lie elements on the one
hand, spanning the Lie algebra L∨ ⊂ A∨, completed by the space S∨ spanned by shuffles
of monomials on the other, so that A∨ = L∨ ⊕ S∨. In the dual space A, this corresponds
to an equivalent decomposition A = L ⊕ S where L is the subspace whose basis is the ξi
and S is the subspace spanned by all non-trivial shuffles of the ξi, which are in fact linearly
independent by (iv).

Corollary 3.5.7. Let A∨ = MZ
∨
, which by Brown’s theorem [15] is freely generated by

g3, g5, . . . under the ⋄ multiplication. Then the elements Z(gw) for odd w ≥ 3 together with
the shuffles

Z(gw1
)� Z(gw2

)� · · ·� Z(gwr
) with w1 ≤ w2 ≤ · · · ≤ wr (3.40)

(called ordered shuffle products) form a basis for MZ = A; in particular the shuffles are
linearly independent.

We now pass fromMZ toMZ by using the isomorphism (2.39).

Corollary 3.5.8. Let g3, g5, . . . denote the canonical generators of mz∨. Then a basis for
MZ is given by the following elements:
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(i) the single motivic zeta values ζw for w ≥ 2;

(ii) the Z-map images Zw1···wr
of the basis of mz∨ given by the Lyndon brackets Lw1···wr

with
r > 1 of the canonical generators g3, g5, . . .; the weight w = w1+ . . .+wr elements of
this type give a basis of Iw;

(iii) the ordered shuffle products of all the basis elements in (i) and (ii) above, excluding
the products of even single zetas (since these products are equal to rational multiples of
powers of ζ2); the weight w elements of this type form a basis for Rw.

Proof. A basis of Q[ζ2] is given by the powers of ζ2, so by (2.51) the single zeta values ζw
for all even w ≥ 2 also give a basis. A basis forMZ is given in Corollary 3.5.7. Thanks to
(2.39), a basis for the tensor product is given by the products of the basis elements of each
of the two vector spaces, which is precisely as described by (i), (ii) and (iii) of the statement.�

3.6 Canonical polynomials from the Drinfeld associator

In this section we introduce the Drinfeld associator [18,19] which offers an alternative method
of computing the canonical polynomials gw. The Drinfeld associator is given by the power
series [65]

ΦKZ(x, y) := 1+
∑

w

(−1)d(w)ζ(w)w ∈ Z ⊗Q Q〈〈x, y〉〉 , (3.41)

where Q〈〈x, y〉〉 denotes the degree completion of the polynomial ring Q〈x, y〉, the sum runs
over non-trivial monomials w in x and y, and for each such w, d(w) denotes the depth of
the monomial, i.e. the number of y’s contained in it.5 Removing the signs in front of each
term produces a power series that we call the modified Drinfeld associator, given by6

Φ(x, y) := ΦKZ(x,−y) = 1+
∑

w

ζ(w)w ∈ Z ⊗̂Z∨ , (3.42)

where ⊗̂ denotes the completed tensor product (allowing infinite sums). We also have formal
and motivic versions

Φf ∈ FZ ⊗̂FZ∨ and Φm ∈MZ ⊗̂MZ∨ , (3.43)

obtained by replacing ζ(w) by ζ f(w) and ζm(w), respectively. The coefficients of all three
power series Φ, Φf and Φm satisfy the regularized double shuffle relations.

5The subscript “KZ” in ΦKZ(x, y) stems from the fact that the Drinfeld associator can be constructed by
solving the Knizhnik–Zamolodchikov equation, see appendix A.

6This definition gives an a posteriori explanation of the stuffle-regularized MZVs defined in (2.12): for
words w ending with y the value ζ∗(w) is nothing other than the coefficient of w in the product CΦ of formal
power series, where C is the power series defined in (2.10).
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Definition 3.6.1. Let V =
⊕

w Vw be a graded vector space for which each graded part is
finite-dimensional, and let V ∨ denote the graded dual (the direct sum of the duals of the
graded parts of V ). Choose any basis e1, e2, . . . for V respecting the grading decomposition,
and let e∨1 , e

∨
2 , . . . denote the dual basis of V ∨, with 〈e∨i , ej〉 = δij. Let

Ψ =
∞∑

i=1

ei ⊗ e
∨
i ∈ V ⊗̂V

∨ . (3.44)

We call Ψ the canonical element of V ⊗̂V ∨.

Note that the element Ψ is independent of the choice of basis of V due to the use of dual
bases.

Proposition 3.6.2. Let V be as in Definition 3.6.1 and let φ : V →W denote any surjective
linear morphism and φ∨ : W∨ → V ∨ denote the dual morphism. Let Ψ be the canonical
element of V ⊗̂V ∨. Then

(
φ⊗(φ∨)−1

)
(Ψ) (in the sense specified in the proof) is the canonical

element of W ⊗̂W∨.

Proof. We may assume that V is finite-dimensional by working with a fixed graded piece.
Since φ is surjective, we have that V/Kerφ ∼= W . Choose a basis of V adapted to this
quotient, i.e. linearly independent elements w̃1, . . . , w̃m ∈ V that get mapped to a basis
{wi = φ(w̃i)} of W under φ and a basis k1, . . . , kn of Kerφ. Write the canonical element Ψ
in this basis:

Ψ =
m∑

i=1

w̃i ⊗ w̃
∨
i +

n∑

j=1

kj ⊗ k
∨
j . (3.45)

We now apply the map φ⊗ (φ∨)−1 to Ψ, with the understanding that this map is interpreted
as the composition (

id⊗ (φ∨)−1
)
◦ (φ⊗ id

)
, (3.46)

which avoids appearing to apply (φ∨)−1 to elements not in φ∨(W∨). We thus obtain

(
φ⊗ (φ∨)−1

)
(Ψ) =

m∑

i=1

wi ⊗ (φ∨)−1(w̃∨
i ) =

m∑

i=1

wi ⊗ w
∨
i , (3.47)

which is the canonical element of W ⊗W∨. �

Recall from diagram (3.25) that Q[Z(w)] is the graded dual of the power series ring
Q〈〈x, y〉〉. Then, the element

ΦZ = 1+
∑

w

Z(w)⊗ w ∈ Q[Z(w)] ⊗̂QQ〈〈x, y〉〉 (3.48)

is the canonical element of the tensor product Q[Z(w)] ⊗̂QQ〈〈x, y〉〉. Since Z,FZ andMZ,
are all quotients of Q[Z(w)] (see diagram (3.25)), Proposition 3.6.2 then implies that Φ,
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Φf and Φm are the canonical elements for the respective rings Z ⊗̂Z∨, FZ ⊗̂FZ∨ and
MZ ⊗̂MZ∨. In particular, the choice of basis in which to express Φm is of little signifi-
cance in general. However, writing Φm in the semi-canonical basis does have one convenient
advantage: it provides another method to compute the canonical polynomials gw.

In our semi-canonical basis of MZ (see (3.31) for Z35, Z37 and Z335), the expansion of
the modified Drinfeld associator Φ to weight 11 reads as follows, see [52] for the analogous
expansion of the Drinfeld associator and its significance for the motivic coaction:7

Φ = 1+ ζ2g2 + ζ3g3 + ζ4g4 + ζ5g5 + ζ2ζ3g3 ⋄ g2 + ζ6g6 +
1
2
ζ23g3 ⋄ g3 + ζ7g7 (3.49)

+ ζ3ζ4g3 ⋄ g4 + ζ2ζ5g5 ⋄ g2 + ζ8g8 + ζ2ζ
2
3

(
1
2
g3 ⋄ g3 ⋄ g2 +

17
247
{g3, g5}

)

+ 1
24453

Z35{g3, g5}+ ζ3ζ5

(
47
114
g3 ⋄ g5 +

67
114
g5 ⋄ g3

)

+ ζ9g9 +
1
6
ζ33g3 ⋄ g3 ⋄ g3 + ζ2ζ7g7 ⋄ g2 + ζ4ζ5g5 ⋄ g4 + ζ6ζ3g3 ⋄ g6

+ ζ10g10 +
8

6614309
Z37{g3, g7}+ ζ3ζ7

(
24581
59858

g3 ⋄ g7 +
35277
59858

g7 ⋄ g3
)

+ ζ25
(
1
2
g5 ⋄ g5 −

2160
29929
{g3, g7}

)
+ ζ2Z35

(
1016

243951279
{g3, g7}+

1
24453
{g3, g5} ⋄ g2

)

+ ζ2ζ3ζ5
(

47
114
g3 ⋄ g5 ⋄ g2 +

67
114
g5 ⋄ g3 ⋄ g2 +

492798
9667067

{g3, g7}
)

+ ζ4ζ
2
3

(
85
494
{g3, g5} ⋄ g2 +

60072829
502687484

{g3, g7}+
1
2
g3 ⋄ g3 ⋄ g4

)

+ ζ11g11 +
1

3683808
Z335{g3, {g3, g5}}

+ ζ3Z35

(
7063

625556646
g3 ⋄ g3 ⋄ g5 +

5728
312778323

g3 ⋄ g5 ⋄ g3 −
6173

208518882
g5 ⋄ g3 ⋄ g3

)

+ ζ23ζ5
(

5439455
46661568

g3 ⋄ g3 ⋄ g5 +
4179377
23330784

g3 ⋄ g5 ⋄ g3 +
3177525
15553856

g5 ⋄ g3 ⋄ g3
)

+ ζ2ζ9
(
− 31943

22102848
{g3, {g3, g5}}+ g9 ⋄ g2

)
+ ζ4ζ7

(
46765

3274496
{g3, {g3, g5}}+ g7 ⋄ g4

)

+ ζ2ζ
3
3

(
3066359
75825048

g3 ⋄ g3 ⋄ g5 −
456995

37912524
g3 ⋄ g5 ⋄ g3 −

2152369
75825048

g5 ⋄ g3 ⋄ g3 +
1
6
g3 ⋄ g3 ⋄ g3 ⋄ g2

)

+ ζ8ζ3
(
− 1953356831

87350455296
{g3, {g3, g5}}+ g3 ⋄ g8

)
+ ζ6ζ5

(
540685

14735232
{g3, {g3, g5}}+ g5 ⋄ g6

)
+ . . .

Computational remarks

(1) In computing this expression, we have written multiple ⋄-products without parentheses
with the understanding that we can evaluate them as gw1

⋄ (gw2
⋄ · · · (gwr−1

⋄ (gwr
⋄ gk)) · · · )

with wi odd and k odd or even. In this way, the left factor of each ⋄ multiplication is a Lie
polynomial, i.e. a gw with w odd, which allows us to use the simplified expression (3.17) for
the multiplication ⋄ inMZ∨.

(2) This gives us three ways to recursively compute the gw, of which we saw the first two
earlier:

(i) from the properties in Lemma 3.3.2 that uniquely characterize the gw,

7The product ◦ among h ∈ ds and g ∈ Uds in [52] is related to the Poincaré–Birkhoff–Witt multiplication ⋄

in (3.17) via
←−−
g ◦ h =

←−
h ⋄ ←−g , where ←−w is obtained by reversing the letters x, y of w ∈ Q〈x, y〉. This is a

consequence of D←−
h
(←−g ) = −

←−−−
Dh(g) which can be proven by induction. The Drinfeld associator in the

conventions of [52] is obtained from the series Φ(x, y) in the present work by reversing the words w 7→ ←−w
in (3.42).
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(ii) get the semi-canonical basis for Iw using the Lyndon words and then compute the
unique normalized polynomial gw ∈ MZ

∨
w annihilating the basis elements of Rw and

Iw, or

(iii) decompose Φ into the semi-canonical basis ofMZ; then

gw = Φ|ζw (3.50)

The equivalence of the third approach with the others is a direct consequence of Proposition
3.6.2, which implies that the polynomial appearing in Φ with coefficient ζw must be the
element of the dual basis of the semi-canonical basis taking the value 1 on ζw and annihilating
Iw and Rw.

(3) As an advantage of the first method (i) over methods (ii) and (iii), the conditions of
Lemma 3.3.2 make it clear that the canonical gw do not depend on any basis choice for
MZw. For those weights w where the expansion of the Drinfeld associator is available (e.g.
from [66,67]), the third approach (iii) enjoys the computational advantage that ansätze and
solutions of linear equation systems can be bypassed.

As pointed out earlier, in order to write motivic MZVs in a given basis in weight w we
need to know the linear relations between motivic MZVs in that weight. While these are
not known in general, we have several possible approaches: (i) in weights up to w = 22
(and also at weight w = 23 modulo a 31-bit prime), it is known by dimension arguments
thatMZw = FZw [66] so we can use the double shuffle relations, (ii) since Brown gave the
dimension ofMZw in all weights, if we reached any weight whereMZw is not equal to FZw

(in spite of the conjecture that they are equal) we could write the real MZVs as real numbers,
seek for enough linear relations between them with rational coefficients to reach the correct
dimension and then prove that these relations are motivic [66]. In practice, the latter method
has been used to create the available datamines, making the decomposition particularly easy
by computer as it is enough to enter an MZV into the datamine to automatically obtain its
decomposition. Note that the Q-bases of [66] were extended from weight 22 to weight 34 in
the HyperlogProcedures of Schnetz [67].

4 The canonical morphism from motivic MZVs to the f-alphabet

In [14,15], Brown proved a remarkable theorem showing that the motivic MZV Hopf algebra
comoduleMZ is isomorphic to a certain Hopf algebra comodule F with a particularly simple
structure that we recall below. However, Brown did not display a canonical isomorphism,
but rather showed the existence and described the construction of a family of isomorphisms
ρ~c : MZ → F parametrized by free rational parameters ~c associated to a chosen basis
of non-single irreducible motivic MZVs. The goal of this section is to use the canonical
polynomials gw of Definition 3.3.1 to fix a canonical choice of isomorphism

ρ :MZ → F . (4.1)
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As in section 3.4, we will allow ourselves to simplify the notation by writing ζ instead of ζm

throughout the present section, which will deal uniquely with motivic MZVs. Furthermore,
in order for this section to remain coherent with the literature (see footnote 3 above) we will
considerMZ as a Hopf algebra comodule with the structure conferred on it by the choice of
coaction ∆GB and not ∆GB (see (2.31) and (2.36)). This change also modifies the structure
of the dual Hopf algebraMZ∨, which instead of being equipped with the multiplication ⋄
satisfying (3.18), becomes equipped with the multiplication • defined by

h • g := g ⋄ h , (4.2)

satisfying
〈∆GB(ξ), g ⊗ h〉 = 〈ξ, g • h〉 (4.3)

for all ξ ∈ MZ, g, h ∈ MZ∨. Moreover, the simple expression (3.17) for g ⋄ h in case of
g ∈ ds translates into

h • g = gh+Dg(h) (4.4)

with the Ihara derivation Dg defined by (3.14). The Lie subspace ofMZ∨ is then equipped
with the Lie bracket associated to •, defined by

[[g, h]] := g • h− h • g . (4.5)

(Note that this Lie bracket satisfies [[g, h]] = −{g, h} in relation to the Ihara bracket (3.14).)

4.1 Definition of the f-alphabet

We begin by defining the Hopf algebra comodule F , familiarly called the f -alphabet [14,15].

To start with, let F
∨
:= Q〈f∨

3 , f
∨
5 , . . .〉 be the free associative Hopf algebra on one non-

commutative indeterminate f∨
w in each odd weight w ≥ 3, with the usual (concatenation)

multiplication and the standard coproduct defined by

∆s(f
∨
w ) = f∨

w ⊗ 1 + 1⊗ f∨
w (4.6)

for all odd w ≥ 3. The subspace of Lie polynomials L∨ := Lie[f∨
3 , f

∨
5 , . . .] ⊂ F

∨
is the space

of primitive elements f∨ ∈ F
∨
, i.e. elements satisfying

∆s(f
∨) = f∨ ⊗ 1 + 1⊗ f∨ . (4.7)

Now let F denote the Hopf algebra dual to F
∨
. The underlying vector space of F is

isomorphic to that of Q〈f3, f5, . . .〉, the free associative algebra spanned by all monomials
fi1 · · · fir in the free non-commutative indeterminates fi for odd i ≥ 3; these monomials form

a dual basis to the basis of monomials f∨
i1
· · · f∨

ir of F
∨
in the sense that 〈f∨

i1
· · ·f∨

ir , fj1 · · · fjr〉=

δi1,j1 · · · δir ,jr . The Hopf algebra structure of F is given by equipping F with the (commuta-
tive) shuffle multiplication on the monomials fi1 · · · fir and the deconcatenation coproduct ∆
defined by

∆(fi1 · · · fir) =
r∑

j=0

fi1 · · · fij ⊗ fij+1
· · · fir . (4.8)
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Following Brown, let us now define the comodule F to be the tensor product

F := Q[f2]⊗Q F , (4.9)

where f2 is a new commutative indeterminate of weight 2 and the factor Q[f2] denotes the
polynomial ring over Q in the single indeterminate f2. The algebra structure of F extends
to F by letting f2 commute with F ; the general rule is

(fm
2 fi1 · · · fir)� (fn

2 fj1 · · · fjs) = fm+n
2

(
fi1 · · · fir � fj1 · · · fjs

)
(4.10)

for odd i1, . . . , ir, j1, . . . , js ≥ 3. By a slight abuse of terminology, we continue to call this
product on all of F the shuffle product on F .

The Q-algebra F is made into a F-comodule by defining a coaction

∆ : F → F ⊗ F (4.11)

on F by (4.8) above together with

∆(f2) = f2 ⊗ 1 . (4.12)

Thus the general formula for this coaction is given by

∆(fn
2 fi1fi2 . . . fir) =

r∑

j=0

fn
2 fi1 . . . fij ⊗ fij+1

. . . fir (4.13)

with integer n, r ≥ 0 and odd ij ≥ 3.

Now let F∨ denote the dual of F . The underlying vector space of F∨ is a tensor product
of two vector spaces

〈f∨
2 , f

∨
4 , . . .〉 ⊗Q F

∨
, (4.14)

where F
∨
is as defined at the beginning of this section, and the left-hand factor denotes the

vector space (not ring) dual of Q[f2], with basis f∨
2n ∈ F

∨ satisfying

〈f∨
2n, f

m
2 〉 = δm,n

ζn2
ζ2n

. (4.15)

By analogy with Definition 2.2.2 we set

f2m :=
ζ2m
ζm2

fm
2 ∈ F , (4.16)

so that
〈f∨

2m, f2n〉 = δm,n . (4.17)

The fact that F is a Hopf algebra comodule and not a Hopf algebra is reflected in the dual
space by the fact that F∨ is not a Hopf algebra but a Hopf algebra module over the Hopf
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algebra F
∨
. Thus, the concatenation multiplication does not extend from the subspace F

∨

to all of F∨; instead we only have an action of F
∨
on F∨, which we write as

a(f∨
2nb) = f∨

2nab ∈ F
∨ (4.18)

for n ≥ 1 and a, b ∈ F
∨
. This action can be considered as a multiplication of an element of

the space Q[f∨
2 , f

∨
4 , . . .] with an element of F

∨
, but the f∨

2n cannot be multiplied together.
Thus every element of F∨ is a sum of monomials which can be written uniquely in the form
f∨
2nb for some n ≥ 0 (with the convention f∨

0 = 1) and some b ∈ F
∨
.

4.2 A canonical choice of normalized isomorphism fromMZ to F

Definition 4.2.1. A morphism φ : MZ → F is a normalized morphism if the following
conditions hold [14, 15]:

(i) normalization: φ
(
ζn
)
= fn for all n ≥ 2, where fn for even values n = 2m was defined

in (4.16).

(ii) compatibility with the shuffle multiplication (4.10) on F ,

φ
(
ζ(w1)ζ(w2)

)
= φ

(
ζ(w1)

)
� φ

(
ζ(w2)

)
. (4.19)

(iii) compatibility with coactions ∆ in (4.13) and ∆GB in (2.42), given by the following
formula for all monomials w in x and y:

∆φ
(
ζ(w)

)
= φ

(
∆GBζ(w)

)
. (4.20)

It is understood that φ acts on each factor of the tensor product, with an additional
projection from F to F in the second factor, meaning that each term involving a power
of f2 in the second factor will be projected to zero.

Remark 4.2.2. The third property (4.20) translates the Goncharov–Brown coaction ∆GB,
which is expressed by the complicated procedure given in Definition 2.1.4, into the consid-
erably simpler deconcatenation coaction (4.13) in the f -alphabet.

The results summarized in the next theorem follow directly from the results of Brown
in [14, 15] that we state here in a version adapted to the semi-canonical basis of Defini-
tion 3.5.3.

Theorem 4.2.3 (Brown). Let w ≥ 2, let MZw = Qζw ⊕ Iw ⊕ Rw be the canonical decom-
position of Definition 3.3.1 and choose the semi-canonical basis of Iw expressed via Lyndon
words Zv1...vr introduced in Definition 3.5.3. Let ~c = {cv1...vr} denote an infinite family of
rational parameters indexed by the same Lyndon words. Then for any choice of rational
values for the parameters ~c, there exists a normalized Hopf algebra comodule isomorphism

ρ~c :MZ → F . (4.21)

Furthermore, any normalized Hopf algebra comodule isomorphism in the sense of Definition
4.2.1 corresponds to a specific choice of rational values of the parameters in ~c.
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Remark 4.2.4. We have used our choice of semi-canonical basis to state Brown’s theorem,
but the result is in fact independent of the choice of basis and even of the choice of subspace
Iw of non-single irreducibles. For any such choice of Iw equipped with any basis, we can use
that basis to index a set of rational numbers ~c parametrizing the inequivalent normalized
isomorphisms from MZ to the f -alphabet, with the same constructive proof as the one
indicated below for our particular choice.

Essentially, the proof of this result comes down to actually constructing the isomorphisms
MZ → F inductively weight by weight [14, 15]. We sketch the procedure here and work it
out explicitly for small weights.

We saw in section 3.5 that for weights w ≤ 7 we have Iw = {0}. Thus for these weights
the theorem says that the normalized isomorphism is uniquely fixed up to w ≤ 7; it is in
fact determined solely by properties (i) and (ii) of Definition 4.2.1. For w = 2, 3, 4, we must
have

ρ~c :MZw → Fw ,

ζw 7→ fw , (4.22)

since the weight spaces MZw are 1-dimensional for these values. For weight 5, MZ5 is
2-dimensional spanned by ζ5 and ζ2ζ3, so by (i) and (ii) we have

ρ~c :MZ5 → F5 ,

ζ5 7→ f5 ,

ζ2ζ3 7→ f2f3 . (4.23)

For weight 6,MZ6 is 2-dimensional spanned by ζ6 =
35
8
ζ32 and ζ23 , so all ρ~c are given by

ρ~c :MZ6 → F6 ,

ζ6 7→ f6 ,

ζ23 7→ f3 � f3 = 2f3f3 . (4.24)

Finally, in weight 7,MZ7 is 3-dimensional, spanned by ζ7, ζ2ζ5 and ζ3ζ4, so we have

ρ~c :MZ7 → F7 ,

ζ7 7→ f7 ,

ζ2ζ5 7→ f2f5 ,

ζ22ζ3 7→ f 2
2 f3 . (4.25)

Starting from weight w = 8, the presence of non-trivial spaces of non-single irreducibles
Iw ⊂MZw requires additional input from the coaction property (4.20) in (iii).

Example. Let us illustrate this for the case of weight w = 8, where we use the element
Z35 defined in (3.31) appearing in our semi-canonical basis constructed in section 3.5. The
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image under ρ~c of this element is not fixed by (i) and (ii) alone, so we make the most general
ansatz

ρ~c (Z35) = a1f3f5 + a2f5f3 + a3f2f3f3 + c35f8 (4.26)

with rational parameters ai, c35 and then impose (iii). By combining (3.31) and (2.44) we
find that

∆GB(Z35) = Z35 ⊗ 1 + 1⊗ Z35 −
20163

2
ζ3 ⊗ ζ5 +

28743
2
ζ5 ⊗ ζ3 − 3366ζ2ζ3 ⊗ ζ3 , (4.27)

whose ρ~c -image is

ρ~c
(
∆GB(Z35)

)
= ρ~c (Z35)⊗ 1 + 1⊗ ρ~c (Z35)−

20163
2
f3 ⊗ f5 +

28743
2
f5 ⊗ f3 − 3366f2f3 ⊗ f3 .

(4.28)

To impose (iii) we have to compare this with the deconcatenation coaction (4.13) applied to
the ansatz (4.26), which is

∆
(
ρ~c (Z35)

)
= ρ~c (Z35)⊗ 1 + 1⊗ ρ~c (Z35) + a1f3 ⊗ f5 + a2f5 ⊗ f3 + a3f2f3 ⊗ f3 . (4.29)

Comparing coefficients fixes the parameters ai but leaves c35 undetermined, so for (4.26) we
obtain

ρ~c (Z35) = −
20163

2
f3f5 +

28743
2
f5f3 − 3366f2f

2
3 + c35f8 . (4.30)

This is the first appearance of a rational parameter of ~c from Theorem 4.2.3. Analogous free
parameters appear as the coefficient of fw in the image under ρ~c of each basis element of Iw.
In the semi-canonical basis the parameter cv1...vr corresponds to the coefficient of fv1+...+vr

in ρ~c (Zv1...vr).

Definition 4.2.5. For w ≥ 8, letMZw = Qζw ⊕ Iw ⊕Rw denote the canonical decomposi-
tion constructed in section 3.3. Let ρ~c be the family of normalized Hopf algebra comodule
isomorphisms established in the semi-canonical basis as in Theorem 4.2.3 such that its ra-
tional parameters ~c = {cv1...vr} are indexed by Lyndon words. Then we define the canonical
f -alphabet isomorphism

ρ :MZ → F by ρ := ρ~0 . (4.31)

The definition of the canonical isomorphism implies immediately

ρ(Zv1...vr)|fw = 0 (4.32)

for all v1+ . . .+vr = w ≥ 8 (with r > 1), which is an alternative unique characterization
of ρ. This leads for instance to

ρ(Z35) = −
20163

2
f3f5 +

28743
2
f5f3 − 3366f2f3f3 ,

ρ(Z37) = −
5432401

16
f3f7 +

7796217
16

f7f3 + 119340f5f5 −
2698111

16
f4f3f3 −

29731
4
f2f3f5

− 366535
4

f2f5f3 ,

ρ(Z335) = 1629441f5f3f3 − 1037295f3f5f3 − 20223f3f3f5 +
31943

6
f2f9 − 473832f2f3f3f3

− 420885
8

f4f7 −
540685

4
f6f5 +

1953356831
23712

f8f3 . (4.33)
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Proposition 4.2.6. The isomorphism ρ is uniquely characterized by the property:

ρ(ξ)|fw = 0 for all ξ ∈ Iw . (4.34)

Equivalently, one can characterize ρ as the unique isomorphism MZ → F that preserves
the property (3.50), i.e.

ρ(Φ)|fw = gw . (4.35)

Proof. Since the Zv1...vr at v1+ . . .+vr = w with r > 1 form a basis of Iw, we also have
from (4.32) for all w ≥ 2 that ρ(ξ)|fw = 0 for any ξ ∈ Iw. Therefore, writing Φ in the
semi-canonical basis, no irreducible MZV can contribute to the coefficient of fw in ρ(Φ) and
the property (3.50) is preserved.

Note that even though the semi-canonical basis appears when defining ρ = ρ~0 in (4.31),
ρ is characterized by the property (4.34) which refers only to the canonical subspace Iw and
therefore ρ can be defined canonically in this way. �

Remark 4.2.7. We end this section with a brief observation about the specific MZVs ζ3,5,
ζ3,7 and ζ3,3,5, that are widely used in the physics literature as a basis for a non-canonical
choice of (1-dimensional) subspace of non-single irreducibles in Iw ⊂MZw for w = 8, 10, 11.
Using (3.31) and (4.33), the canonical parameter choice c35 = c37 = c335 = 0 translates into
the f -alphabet images

ρ(ζ3,5) = −5f3f5 +
100471
35568

f8 , (4.36)

ρ(ζ3,7) = −14f3f7 − 6f5f5 +
408872741707
40214998720

f10 ,

ρ(ζ3,3,5) = −5f3f3f5 − 45f2f9 −
6
5
f 2
2 f7 +

4
7
f 3
2 f5 +

1119631493
14735232

f11

for these elements. The analogous ρ-images of all irreducible higher-depth motivic MZVs of
weights ≤ 17 in the basis choice of [66] can be found in the ancillary files of [8].

5 Canonical zeta generators σw in genus one

In this section we show how the canonical polynomials gw associated with zeta generators in
genus zero as defined in section 3.3 induce canonical zeta generators σw in genus one. The
construction also includes a canonical split of σw into an arithmetic and a geometric part.

5.1 The Tsunogai derivations ǫk

In this section we write Lie[a, b] for the fundamental Lie algebra associated to a once-
punctured torus. This is a free Lia algebra on two generators and thus isomorphic to Lie[x, y],
but we prefer to distinguish the letters used because the topological fundamental group of
a thrice-punctured sphere maps non-trivially to that of a once-punctured torus when two
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of the holes are joined together. We also have a natural map between the pro-unipotent
fundamental groups, which gives a natural but highly non-trivial Lie algebra morphism

Lie[x, y]→ Lie[a, b] (5.1)

between the associated graded Lie algebras (see (5.29) below).
We write Der0Lie[a, b] for the subspace of Lie algebra derivations of Lie[a, b] which anni-

hilate the bracket [a, b] = ab−ba, where the last expression is valued in Q〈a, b〉. A derivation
in Der0Lie[a, b] is entirely determined by its value on a (see for example Thm. 2.1 of [68]
giving an explicit formula for the value of such a derivation on b).

Definition 5.1.1. Let δ ∈ Der0Lie[a, b]. We say that δ is of homogeneous degree n if δ(a)
(and thus also δ(b)) is a Lie polynomial of homogeneous degree n+ 1, i.e. if δ adds n to the
degree of any polynomial it acts on. We furthermore assign a-degree k and b-degree ℓ to δ if
δ(a) is a Lie polynomial of homogeneous degree k + 1 in a and ℓ in b, in which case δ(b) is
necessarily of a-degree k and b-degree ℓ+1 (unless it vanishes). The b-degree of a derivation
and the homogeneous b-degree of a polynomial in a, b is also referred to as the depth. The
(homogeneous) degree of δ is equal to the sum of its a- and its b-degree.

We now need to introduce the Tsunogai derivations which were introduced by Tsunogai
in 1995 [69], also see [70].

Definition 5.1.2. For all i ≥ 0, let ǫ2i denote the derivation of Lie[a, b] defined by

ǫ2i(a) = ad2i
a (b) , ǫ2i([a, b]) = 0 , i ≥ 0 . (5.2)

These two conditions determine ǫ2i completely: its action on b is given explicitly by

ǫ0(b) = 0 and ǫ2i(b) =

i−1∑

j=0

(−1)j
[
adj

a(b), ad
2i−1−j
a (b)

]
, i ≥ 1 . (5.3)

We write u for the Lie algebra of derivations of Lie[a, b] generated by the ǫ2i for i ≥ 0; the
ǫ2i are also called geometric derivations.

The Lie algebra u of geometric derivations ǫ2i has a rich history dating back to pioneering
work of Ihara [71], with detailed studies in the work of Tsunogai [69,70]. They have become
ubiquitous in the theory of elliptic MZVs (see for example [72,20,73,74,21,75] and [26]), with
numerous references in the recent mathematics and string-theory literature. The derivations
ǫ0 and ǫ2 defined in (5.2) play a special role. The derivation ǫ0 is nilpotent on the ǫk (with
even k ≥ 2) in the sense that adk−1

ǫ0
(ǫk) = 0, see part (i) of Lemma 5.1.5 below. The

derivation ǫ2 is central in Der0Lie[a, b] and will play no role in our construction.
We will also make essential use of the following sl2-subalgebra of Der0Lie[a, b]:
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Definition 5.1.3. Define derivations ǫ∨0 , h ∈ Der0Lie[a, b] by

ǫ∨0 (a) = 0 , ǫ∨0 (b) = a , h = [ǫ0, ǫ
∨
0 ] . (5.4)

The derivations ǫ0, ǫ
∨
0 and h generate the Lie subalgebra of Der0Lie[a, b] denoted sl2. The

generator h satisfies h(a) = −a and h(b) = b. We refer to vectors that are annihilated by
ǫ0 as highest-weight vectors and vectors that are annihilated by ǫ∨0 as lowest-weight vectors,
respectively.

Definition 5.1.4. We will also need to introduce the switch operator θ, which can be
considered as the automorphism of Q〈〈a, b〉〉 that exchanges a and b, mapping a polynomial
f = f(a, b) to θ(f) with [θ(f)](a, b) = f(b, a), but also acts on derivations δ of Q〈a, b〉 by
conjugation via the formula

θ(δ) := θ ◦ δ ◦ θ−1 , (5.5)

i.e.
[θ(δ)](a) = θ

(
δ(b)

)
, [θ(δ)](b) = θ

(
δ(a)

)
. (5.6)

Notice that θ(ǫ0) = ǫ∨0 and therefore θ(h) = −h.

The interplay of the derivations ǫk with with the sl2-algebra and the switch operation θ
in the previous definitions is reviewed in the following lemma (see for instance [69, 21, 26]).

Lemma 5.1.5. For even values k ≥ 2 and even or odd j ≥ 0, set

ǫ
(j)
k := adj

ǫ0(ǫk) (5.7)

including ǫ
(0)
k = ǫk. Then the ǫ

(j)
k for k ≥ 2 together with the generators ǫ0, ǫ

∨
0 , h of the sl2 in

Definition 5.1.3 satisfy the following properties:

(i) The derivation ǫ
(j)
k is of a-degree k − j − 1 and b-degree j + 1 for 0 ≤ j ≤ k − 2 (in

other words ǫ
(j)
k (a) is a polynomial of homogeneous a-degree k − j and b-degree j + 1)

and thus of homogeneous degree k. We have the nilpotency property

ǫ
(j)
k = 0 ∀ j > k − 2 . (5.8)

The ǫ
(k−2)
k at maximum value of j are highest-weight vectors of the sl2.

(ii) The derivations ǫk with k ≥ 2 commute with ǫ∨0 :

[ǫ∨0 , ǫk] = 0 ∀ k ≥ 2 , (5.9)

i.e. they furnish lowest-weight vectors of sl2.

(iii) The generator h of sl2 satisfies the following commutation relations:

[h, ǫk] = (2− k)ǫk ∀ k ≥ 0 , [h, ǫ∨0 ] = −2ǫ
∨
0 . (5.10)

In particular this implies that the ǫ
(j)
k are all eigenvectors for h, with eigenvalues

given by
[h, ǫ

(j)
k ] = (2 + 2j − k)ǫ

(j)
k ∀ k ≥ 2 , 0 ≤ j ≤ k − 2 . (5.11)
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(iv) The commutation relations of the sl2 generators with ǫ
(j)
k at k ≥ 2 and 0 ≤ j ≤ k − 2

are [ǫ0, ǫ
(j)
k ] = ǫ

(j+1)
k by definition, [h, ǫ

(j)
k ] = (2j + 2− k)ǫ

(j)
k by the previous point and

[ǫ∨0 , ǫ
(j)
k ] = j(k − 1− j)ǫ

(j−1)
k . (5.12)

(v) The switch operator in Definition 5.1.4 acts on the ǫ
(j)
k with k ≥ 2 and 0 ≤ j ≤ k−2 via

θ
(
ǫ
(j)
k

)
= −

j!

(k − 2− j)!
ǫ
(k−2−j)
k . (5.13)

Proof. (i) The derivation ǫk is of a-degree k − 1 and b-degree 1 by definition, and each
application of adǫ0 increases the b-degree by 1 without changing the total degree, so it de-
creases the a-degree by 1, proving the first statement. For the second statement, it is enough
to show that ǫ

(k−1)
k = 0 even though since ǫ

(j)
k shifts the (a, b) degrees of any polynomial in

a, b by (k − 1 − j, 1 + j), the case ǫ
(k−1)
k of interest has (a, b) degrees (0, k) as a derivation,

meaning that a priori ǫ
(k−1)
k (a) could be a polynomial of a-degree 1 and b-degree k. Since

the only Lie polynomial with these degrees is adk
b (a) up to scalar multiple, we must have

ǫ
(k−1)
k (a) = c · adk

b (a) (5.14)

for some constant c, and ǫ
(k−1)
k (b) = 0. However, the derivation ǫ

(k−1)
k must annihilate the

commutator [a, b] since both ǫk and ǫ0 do, so by the above, we have ǫ
(k−1)
k ([a, b]) = c·[adk

b (a), b]

which only vanishes for c = 0. Thus c = 0, so the derivation ǫ
(k−1)
k = 0.

(ii) is readily established by evaluating [ǫ∨0 , ǫ2i] = ǫ∨0 ǫ2i − ǫ2iǫ
∨
0 on a and b. The least

straightforward part of the computation is to note that ǫ∨0
∑i−1

j=0(−1)
j [adj

a(b), ad
2i−1−j
a (b)]

receives a single contribution from the j = 0 term, resulting in [ǫ∨0 (b), ad
2i−1
a (b)] = ǫ2i(a).

(iii) Any monomial in a, b is an eigenvector for h, with the difference of the b-degree minus
the a-degree as its eigenvalue. Since ǫk at k ≥ 0 and ǫ∨0 shift the (a, b)-degrees by (k − 1, 1)
and (1,−1), respectively, the associated differences “b-degree minus a-degree” are shifted by
2− k in case of ǫk and −2 in case of ǫ∨0 . This implies both identities in (5.10) as eigenvalue

equations. The second claim (5.11) is a corollary which can for instance be inferred from ǫ
(j)
k

shifting the (a, b)-degrees by (k − 1− j, j + 1).

(iv) One can conveniently prove (5.12) by induction in j, starting with [ǫ∨0 , ǫ
(0)
k ] = 0

as a base case which follows from (ii). The inductive step relies on the Jacobi identity

[ǫ∨0 , ǫ
(j)
k ] = [ǫ∨0 , [ǫ0, ǫ

(j−1)
k ]] = [[ǫ∨0 , ǫ0], ǫ

(j−1)
k ] + [ǫ0, [ǫ

∨
0 , ǫ

(j−1)
k ]] as well as (5.11) to evaluate the

first term [[ǫ∨0 , ǫ0], ǫ
(j−1)
k ] = −[h, ǫ(j−1)

k ].

(v) We proceed by induction in j, first proving θ(ǫk) = − 1
(k−2)!

ǫ
(k−2)
k as a base case of

(5.13) at j = 0.
Base case: If a derivation of degree > 0 annihilates the bracket [a, b], then knowing its

value on one of the variables a or b determines it completely. Hence, it suffices to show that
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θ(ǫk) and − 1
(k−2)!

ǫ
(k−2)
k have the same action on b to establish their equality as derivations

in Der0Lie[a, b]. For this purpose, we successively simplify

ǫ
(k−2)
k (b) = (ǫ0)

k−2ǫk(b) =

k
2
−1∑

j=0

(−1)j(ǫ0)
k−2
[
adj

a(b), ad
k−1−j
a (b)

]

= (ǫ0)
k−2
[
b, adk−1

a (b)
]
= −

[
b, (ǫ0)

k−2adk−2
a ([b, a])

]

= −(k − 2)!
[
b, adk−2

b ([b, a])
]
= −(k − 2)! adk

b (a) . (5.15)

In the first step, we have used ǫ0(b) = 0 to remove all contributions to ǫ
(k−2)
k (b) with an ǫ0

on the right of ǫk. The second step makes use of the expression (5.3) for ǫk(b) and k even.
The third step relies on the fact that for m ≥ 1, adm

a (b) is annihilated by (ǫ0)
m such that

[adj
a(b), ad

k−1−j
a (b)] is annihilated by (ǫ0)

k−2 unless j = 0. After redistributing the (k − 1)-
fold action of ada in the fourth step, we note in the fifth step that the k− 2 factors of ǫ0 can
act on the k − 2 exposed powers of ada (besides [b, a] which is annihilated by ǫ0) in (k − 2)!
different permutations, converting adk−2

a to adk−2
b in all cases. The end result of (5.15) after

repackaging the powers of adb is equivalent to

ǫ
(k−2)
k (b) = −(k − 2)! adk

b (a) = −(k − 2)! θ
(
ǫk(a)

)
(5.16)

by virtue of (5.2). As a consequence, θ(ǫk) and −
1

(k−2)!
ǫ
(k−2)
k have the same action on b and

must agree as derivations since they both annihilate [a, b] and have degree > 0.
Inductive step: Now we can take care of (5.13) at values j > 0 by induction as follows:

θ(ǫ
(j)
k ) = θ

(
[ǫ0, ǫ

(j−1)
k ]

)
=
[
θ(ǫ0), θ(ǫ

(j−1)
k )

]
= −

(j − 1)!

(k − 1− j)!
[ǫ∨0 , ǫ

(k−1−j)
k

]

= −
(j − 1)!

(k − 1− j)!
j(k − 1− j)ǫ

(k−2−j)
k = −

j!

(k − 2− j)!
ǫ
(k−2−j)
k , (5.17)

where we used θ(ǫ0) = ǫ∨0 and the induction hypothesis θ(ǫ
(j−1)
k ) = − (j−1)!

(k−1−j)!
ǫ
(k−1−j)
k in the

third step and (5.12) proven as (iv) in passing to the second line. �

Remark 5.1.6. Note that the ǫ
(j)
k are by no means free generators of u; commutators of two

or more of them obey a number of relations related to period polynomials of holomorphic
cusp forms on SL2(Z), the first of which were noticed by Ihara and Takao (cf. [24]). The
relations between brackets of two ǫk’s were classified in [25] where the connection with cusp
forms was made explicit; subsequently Pollack in [26] unearthed many more relations, and

made a general conjecture about the full set of relations between the ǫ
(j)
k . These relations,

which we call Pollack’s relations, were proved to be motivic in [21]. They appear in many
works related to elliptic MZVs, such as for example [76] and [74]. The lowest-degree Pollack
relations arise in degrees 14 and 16, and are given by

0 = [ǫ4, ǫ10]− 3[ǫ6, ǫ8] , (5.18)
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0 = 80[ǫ
(1)
4 , ǫ12] + 16[ǫ

(1)
12 , ǫ4]− 250[ǫ

(1)
6 , ǫ10]− 125[ǫ

(1)
10 , ǫ6] + 280[ǫ

(1)
8 , ǫ8]

− 462[ǫ4, [ǫ4, ǫ8]]− 1725[ǫ6, [ǫ6, ǫ4]] . (5.19)

5.2 The genus one motivic Lie algebra

In [21], Hain and Matsumoto define a Tannakian category MEM of mixed elliptic motives
and study its fundamental Lie algebra. We do not recall their construction here, but restrict
ourselves to giving the main result of their article that we will use here. Let Lie π1(MEM)
denote the graded Lie algebra associated to the unipotent radical of the fundamental group
of the category MEM . Let sl2 denotes the Lie subalgebra of Der0Lie[a, b] from Definition
5.1.3.

Theorem 5.2.1 (Hain–Matsumoto). There is a Lie algebra morphism (the “monodromy
representation”, see section 22 of [21])

Lie π1(MEM)→ Der0Lie[a, b] (5.20)

whose image L is generated by the derivations ǫ
(j)
k for even k > 0 and 0 ≤ j ≤ k−2 together

with derivations σw for each odd w ≥ 3, and has the following properties:

(i) The Lie subalgebra S := Lie[σ3, σ5, . . .] ⊂ L is free,

(ii) The Lie subalgebra u generated by the ǫ
(j)
k is normal in L, i.e. L = u⋊ S,

(iii) L is an sl2-module, and u is also an sl2-module,

(iv) the Lie subalgebra u⋊ sl2 is normal inside L⋊ sl2.

Remark 5.2.2. Although entirely phrased in terms of the monodromy representation of
the fundamental Lie algebra of the category MEM , this theorem reflects essential geomet-
ric/arithmetic content. The quotient of L by the normal Lie subalgebra u is isomorphic to S,
which is itself free on one generator in each odd rank ≥ 3, i.e. isomorphic to Lie π1(MTM) the
fundamental Lie algebra of the category of mixed Tate motives unramified over Z, and this
reflects the fact geometrically expressed by the degeneration of an elliptic curve parametrized
by τ to the nodal elliptic curve by letting τ tend to i∞ (see appendix A).

To be more precise, if one considers the universal elliptic curve E as a fibration over
the Deligne–Mumford compactification M1,1 of the moduli space of elliptic curves M1,1

(viewed as the usual fundamental domain for the action of SL2(Z) on the Poincaré upper
half-plane, parametrized by the variable τ), then the fiber over τ = i∞ is the so-called nodal
(or degenerate) elliptic curve E∞. Let π1 denote the fundamental group of the punctured
torus, freely generated by loops α and β through and around the genus hole, and let π̂1 be its
profinite completion. Then there is a canonical arithmetic outer Galois action of the absolute
Galois group Gal(Q/Q) on π̂1(E∞). Furthermore, since E is a fibration over the baseM1,1

with an elliptic curve as a fiber, π1(E) fits into a short exact sequence whose kernel is free
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on two generators (the π1 of the fiber) and whose quotient is SL2(Z) (the π1 of the base),
and thus there is a second, geometric outer group action on π1(E∞) by the group SL2(Z),

which extends to an action of the profinite completion ŜL2(Z) on π̂1(E∞). Thus we have

two disjoint profinite groups, ŜL2(Z) and the absolute Galois group Gal(Q/Q) [77], acting
as automorphism groups of π̂1(E∞).

The pro-unipotent version of this situation, or rather the associated Lie algebra version,
has S = Lie π1(MTM) playing the role of Gal(Q/Q) and u⋊ sl2 playing the role of SL2(Z),
both acting as derivation Lie algebras (the Lie algebra version of automorphism groups) of
Lie[a, b], the free Lie algebra on two generators which plays the role of π̂1(E∞). The fact
that S acts on u⋊ sl2 reflects the fact that Gal(Q/Q) acts not only on π̂1(E∞) but also on

ŜL2(Z), since the latter group is also a fundamental group, namely ofM1,1.

Hain and Matsumoto conjecture that the surjective morphism from Lie π1(MEM) to L is
actually an isomorphism, but this is still an open question. They further explain that there
is a natural surjection from Lie π1(MEM) to Lie π1(MTM), the fundamental Lie algebra of
the category of mixed Tate motives unramified over Z. Since this category was shown by
Brown to be generated by the motivic MZVs, we have the isomorphism

Lie π1(MTM) = mz∨ , (5.21)

where mz∨ is the Lie algebra associated to the motivic MZVs. Hain and Matsumoto further
proved the existence of a section map

Lie π1(MTM) →֒ Lie π1(MEM) , (5.22)

which explains the semi-direct product structure in (ii), with the image of Lie π1(MTM)
identified with S ⊂ Lie π1(MEM). The section map was defined explicitly in independent
parallel work by Enriquez in [20], working with the Grothendieck–Teichmüller Lie algebra
grt. Thanks to this work, S is identified as a canonical Lie subalgebra of L. However, neither
Hain–Matsumoto nor Enriquez gave a canonical choice of the actual generators σw for odd
w ≥ 3; a priori, the choice of generator σw is only defined up to adding on brackets of σu
with smaller u < w. This exactly parallels the fact that no special set of free generators of
the motivic Lie algebra Lie π1(MTM) = mz∨ was defined prior to the canonical family of gw
in genus zero defined in section 3.3.

Our main purpose in this section is to point out that, thanks to the canonical genus zero
generators gw and the existence of the section map (5.22), we can now define a canonical
choice of genus one generators σw simply as the images of the gw under the section map.
More precisely, we will construct an explicit Lie algebra morphism

γ̃ : mz∨ → Lie[σ3, σ5, . . . , ] ⊂ Der0Lie[a, b] (5.23)

and use it to define the σw (as images of the gw), to compute them and to determine many
of their properties. In the same way as the Ihara derivations of gw are called zeta generators
in genus zero, we will refer to the σw as zeta generators in genus one. The tight interplay of
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zeta generators in genus zero and one can for instance be seen from (5.41) below where the
action of σw is computed from gw. Additional facets of the relation between zeta generators
in genus zero and genus one can be found in appendix A.

Let us show how the map γ̃ in (5.23) relates to the Grothendieck–Teichmüller section
map defined by Enriquez. We do not need to give the definition of grt here, but only to
mention two essential properties that we need: firstly, there is an injective morphism

mz∨ →֒ grt ,

h(x, y) 7→ h(x,−y) , (5.24)

(this is a direct consequence of the fact that Goncharov’s motivic MZVs satisfy the associator
relations, see for example [78]) and secondly, Enriquez [20] defined an injective map

grt →֒ Der0Lie[a, b] (5.25)

which was shown in [23] to be equivalent to the Hain–Matsumoto section, using methods
from Écalle’s mould theory that will be explained in section 6 below. Let

γ : mz∨ →֒ Der0Lie[a, b] (5.26)

denote the composition of (5.24) with (5.25). The explicit isomorphism γ̃ announced in
(5.23) is given by

γ̃ = θ ◦ γ , (5.27)

where θ is the switch automorphism of Q〈〈a, b〉〉 exchanging a and b, see Definition 5.1.4.

Definition 5.2.3. Let gw for odd w ≥ 3 denote the family of canonical free generators of
mz∨ given in Definition 3.3.4. Set

τw := γ(gw) , σw := γ̃(gw) , (5.28)

where γ is as in (5.26) and γ̃ as in (5.27). This definition accomplishes the second goal of this
article of giving a canonical choice for the zeta generators σw in genus one for odd w ≥ 3.

The remainder of section 5 and all of sections 6 and 7 are devoted to the study of
the canonical zeta generators σw in genus one. Section 5.3 gives an explicit step-by-step
construction of the Enriquez map (5.25), and in Theorem 5.4.1 of section 5.4 we list several
properties of the zeta generators σw and their switch images τw. Section 5.5 contains the
low-degree parts of σw for w = 3, 5, 7, 9. The proofs of some of the properties in Theorem
5.4.1 rely on a second, mould theoretic construction of the map γ, which is given in section
6.1 along with a necessary introduction to mould theory; the full proof of the theorem
is contained in section 6.2 (using mould theory), section 6.3 (using the sl2 subalgebra of
Definition 5.1.3) and section 7.1 (summarizing the essential argument of [79, 21]). Section
7.3 introduces a recursive procedure to compute high-degree contributions to σw in terms of
ǫk which leads to a variety of explicit results beyond the state-of-the-art in section 7.4.
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5.3 Genus one derivations from genus zero polynomials

Since in this section we will work only in odd weights w, we can work entirely mod ζ2, in
the Q-algebras FZ andMZ.

The surjection FZ →→ MZ from section 2.2 induces a surjection FZ →→ MZ and a
surjection fz→→ mz. As we saw in the previous sections, we can pass to the dual spaces using
the Z-map and these surjections induce injections mz∨ →֒ fz∨ = ds andMZ

∨
→֒ FZ

∨
= Uds

in the dual spaces. The complete situation combining all the surjections, dual inclusions and
Z-maps is summarized in the diagram (3.25).

The map from gw to σw is to be viewed as a map from genus zero to genus one. The genus
zero situation here is represented by the Lie algebra Lie[x, y], which is identified with the
graded Lie algebra associated to the pro-unipotent completion of the fundamental group π1
of the sphere with three punctures (which is free on two generators). The genus one situ-

ation is represented by the completion L̂ie[a, b] ⊂ Q〈〈a, b〉〉 of the free Lie algebra on two
generators Lie[a, b], the graded Lie algebra of the pro-unipotent fundamental group of the
once-punctured torus. The topological map from the sphere to the torus obtained by joining
two of the punctures passes to the topological fundamental groups, their unipotent comple-
tions and then via formality isomorphisms to the corresponding graded Lie algebras, yielding
the following Lie algebra morphism:

ψ : Lie[x, y]→ L̂ie[a, b] ,

x 7→ t12 ,

y 7→ t01 , (5.29)

where letting Bn denote the standard Bernoulli numbers,

t01 :=
adb

eadb − 1
(−a) = −a−

∑

n≥1

Bn

n!
adn

b (a) = −a +
1
2
adb(a)−

1
12
ad2

b(a) +
1

720
ad4

b(a) + . . . ,

t12 := [a, b] . (5.30)

The map ψ in (5.29) also arises when computing the Knizhnik–Zamolodchikov–Bernard
connection on a degeneration limit of the torus (corresponding topologically to the degenerate
torus obtained by joining two punctures of the thrice-punctured sphere), and matching the
result with the Knizhnik–Zamolodchikov connection on the sphere. This calculation is spelled
out in detail in appendix A.

In order to explicitly define the map γ in (5.26), we will make use of the notion of a
partner [23]: for any g(a, b) ∈ Lie[a, b], we write g = gaa+ gbb and define the partner of g by
the formula

g′ :=
∑

i≥0

(−1)i−1

i!
aib ∂ia

(
ga
)
∈ Q〈a, b〉 , (5.31)

where ∂a is the derivation of Q〈〈a, b〉〉 defined by ∂a(a) = 1 and ∂a(b) = 0. It is shown in
Lemma 2.1.1 of [23] that the derivation a 7→ g, b 7→ g′ lies in Der0Lie[a, b] if and only if g has
a certain property called push-invariance to which we will return in section 6 (see (6.21)).
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We can now proceed to the explicit definition of the map γ of (5.26). Define τh := γ(h) ∈

Der0L̂ie[a, b] to be the derivation obtained from h ∈ mz∨ by the following procedure:

• Let h = h(x, y) be in mz∨ and define a derivation κh of the Lie subalgebra Lie[t12, t01] ⊂

L̂ie[a, b] by8

κh(t12) = 0 , κh(t01) = [t01, h(t12,−t01)] . (5.32)

• By the “extension lemma” 2.1.2 of [23], there exists a unique derivation τh of Q〈〈a, b〉〉
having the following two properties: firstly

τh(t01) = κh(t01) , (5.33)

and secondly τh(b) is (in each degree) the partner of τh(a) as defined in (5.31).

Specifically, the action of the derivation τh on a can be inferred from (5.33) degree
by degree as follows. Suppose h(x, y) is homogeneous of degree w in x, y. We have
from (5.30)

τh(t01) = τh
(
−a + 1

2
[b, a]− 1

12
[b, [b, a]] + · · ·

)
(5.34)

so
τh(a) = −κh(t01) +

1
2
τh
(
[b, a]

)
− 1

12
τh
(
[b, [b, a]]

)
+ · · · (5.35)

since τh(t01) = κh(t01). In particular, the lowest degree part of τh(a) is equal to
the lowest degree part of −κh(t01), which is equal to [a, hd([a, b], a)] from (5.32) and
where d denotes the minimal x-degree of h and hd(x, y) are the contributions to h(x, y)
of x-degree d; the term [a, hd([a, b], a)] is of degree w + d+ 1 in a, b. So we have

τh(a)w+d+1 = −κh(t01)w+d+1 = [a, hd([a, b], a)] (5.36)

in lowest degree, where gd denotes the degree-d contributions to polynomials g in a
and b. We set τh(b)w+d+1 to be the partner of τh(a)w+d+1 using the formula (5.31).

We then use (5.35) to recursively compute τh(a) in successive degrees w+d+ i (i > 1):

τh(a)w+d+2 = −κh(t01)w+d+2 +
1
2
[τh(b)w+d+1, a] +

1
2
[b, τh(a)w+d+1] ,

τh(a)w+d+3 = −κh(t01)w+d+3 +
1
2
[τh(b)w+d+2, a] +

1
2
[b, τh(a)w+d+2]

− 1
12
[τh(b)w+d+1, [b, a]]−

1
12
[b, [τh(b)w+d+2, a]]−

1
12
[b, [b, τh(a)w+d+1]] ,

etc. , (5.37)

defining τh(b)w+d+i to be the partner of τh(a)w+d+i at each successive degree via (5.31).
This process yields a unique Lie series τh(a). As observed just after (5.31), if τh(a) has

8The minus sign in front of t01 in (5.32) is present because if h(x, y) ∈ mz∨ ⊂ ds, then as in (5.24), the
polynomial h(x,−y) lies in grt. Since the process described in the present section is an explicit version of
Enriquez’s map (5.25) from grt to Der0Lie[a, b], the starting point of the map is the grt polynomial h(x,−y),
or more precisely, the associated Ihara derivation which maps x 7→ 0 and y 7→ [y, h(x,−y)]. The first step
in the explicit construction of the Enriquez map is transporting this Ihara derivation to a derivation on
Lie[t01, t12] via the map (5.29), which is what is expressed in (5.32).
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the property of push-invariance then τh ∈ Der0L̂ie[a, b], so in particular τh annihilates

[a, b] = t12, and thus τh is an extension of κh to all of Der0L̂ie[a, b]. The fact that τh(a)
does indeed possess the necessary property of push-invariance is proved in Theorem
6.1.6 (iii) below.

• For each h ∈ mz∨, we define σh ∈ Der0L̂ie[a, b] to be the derivation obtained from τh
by the switch operator in Definition 5.1.4: we set

σh = θ(τh) , (5.38)

or equivalently, σh acts on a and b via

σh(a) = θ
(
τh(b)

)
, σh(b) = θ

(
τh(a)

)
. (5.39)

Combining all the steps of the process above then yields explicit versions

γ : mz∨ →֒ Der0Lie[a, b] , γ̃ : mz∨ →֒ Der0Lie[a, b] ,

h 7→ τh , h 7→ σh , (5.40)

of the maps γ from (5.26) and γ̃ from (5.23).

5.4 The canonical genus one derivations σw

We shall now specialize the above construction of γ(h) and γ̃(h) for general h ∈ mz∨ to the
canonical polynomials h→ gw of Definition 3.3.4 for odd w ≥ 3. The concrete realization of
the maps γ, γ̃ in (5.40) provided by the previous section allows for an explicit computation
of the zeta generators σw, τw in (5.28). By (5.32) and (5.39), the action of the genus one zeta

generators σw = γ̃(gw) and on the smaller Lie subalgebra Lie[t01, t12] ⊂ L̂ie[a, b] is given by

σw(t12) = 0 , σw(t01) = θ
([
t01, gw(t12,−t01)

])
, (5.41)

obtained from applying the switch θ to

τw(t12) = 0 , τw(t01) =
[
t01, gw(t12,−t01)

]
. (5.42)

By the discussion in section 3.6, the canonical polynomials gw are determined by the (mod-
ified) Drinfeld associator and the Q relations among MZVs. Hence, the information from
iterated integrals in genus zero already fixes the defining relations (5.42) of zeta generators
in genus one. Further discussions of the tight interplay between genus zero and genus one
can be found in appendix A.

In the previous section, we explained how to infer τh(a) and τh(b) from τh(t01) and τh(t12)
for general h ∈ mz∨ from (5.32) by the extension lemma 2.1.2 of [23]. To compute σw(a) and
σw(b), we can either apply that method with h = gw and use the switch θ or use the same
method directly from (5.41).
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The derivations τw and σw associated to gw for odd w have many remarkable properties,
of which a number are listed in the following theorem. Several of these are statements for
the different degree parts of τw and σw (where degree refers to the degree as a derivation).
The degree 2w parts of τw and σw turn out to play a special role and are called the key
degree parts τkeyw and σkey

w . In section 6.1 we will present a brief introduction to mould
theory which will enable us to prove the first three of these in section 6.2; the others are
proved in section 6.3. Part (i) and (ii) of the theorem below are already known from [23] and
implicitly from [20, 21]. Part (iv) follows straightforwardly from Theorem 5.2.1 [21]. Part
(v) is essentially in [21], see for instance Remark 20.4. The last two sentences of part (vi)
readily follow from Theorem 5.2.1 as can be seen from their proof in section 6.3.2 below.
Part (vii) was proven in section 27 of [21] as will be reviewed in section 7.1 below.

Theorem 5.4.1. For odd w ≥ 3, the zeta generators τw and σw in Definition 5.2.3 satisfy:

(i) Both τw and σw lie in Der0L̂ie[a, b].

(ii) The minimal degree of τw and σw is w + 1, and all odd-degree terms are equal to zero.
All terms of the power series τw(a) are of constant a-degree w + 1, or equivalently
(thanks to the switch), all terms of the power series σw(a) have constant b-degree w.

(iii) Both τw and σw are entirely determined by their parts of degree < 2w.

(iv) There are no highest-weight vectors of sl2 in σw beyond key degree.

(v) All contributions to τw and σw of degree different from 2w lie in u. The key-degree
parts τkeyw and σkey

w do not lie in u.

(vi) Define the arithmetic part zw ∈ Der0L̂ie[a, b] of the derivation σw to be the one-
dimensional component of σkey

w as an sl2 representation, i.e. which commutes with the

generators ǫ0, ǫ
∨
0 of sl2 ⊂ Der0L̂ie[a, b] in Definition 5.1.3. Then, the difference σkey

w −zw
and by (v) in fact all of σw−zw lies in u. Moreover, while the zw themselves do not lie
in u, the brackets [zw, ǫk] for any even k ≥ 0 lie in u.

(vii) σw commutes with the infinite series N in geometric derivations defined by

N := −ǫ0 +
∞∑

k=2

(2k − 1)
B2k

(2k)!
ǫ2k . (5.43)

Remark 5.4.2. As pointed out in [21, 6], the characterization of the arithmetic parts zw
in the earlier literature as commuting with sl2 and not lying in u does not identify the zw
uniquely; ambiguities remain for w ≥ 7, since one can modify zw by adding on sl2-invariant
combinations of ǫ

(j)
k in σkey

w − zw while keeping the overall σw unchanged (see for instance
Remark 20.3 (ii) of [21]). In order to eliminate this ambiguity, we added the defining property
in Theorem 5.4.1 (vi) that zw exhausts the one-dimensional irreducible sl2 representations
of σkey

w (or equivalently, σkey
w − zw contains no one-dimensional irreducible representations of
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sl2). Moreover, the canonical zeta generators σw established with the help of the polynomials
gw(x, y) resolve an independent class of earlier ambiguities in zw, namely it is no longer
possible to add on nested brackets of lower-weight zv with v < w (e.g. for example, we
cannot add a multiple of [z3, [z3, z5]] to z11). Hence, the properties in part (vi) of Theorem
5.4.1 single out unique canonical arithmetic derivations zw at each odd w ≥ 3.

5.5 Expansions of σw in low degree

In this section we spell out the explicit low-degree parts of the σw up to w = 9, in order to
give a feel for their appearance (relegating a detailed discussion of computational methods
to section 7.3). For this purpose, we rewrite the expansion of σw(a) and σw(b) resulting from

(5.41) and the extension lemma in terms of the geometric derivations ǫ
(j)
k in (5.7) acting on

a and b, up to the arithmetic parts zw at key degree described in Theorem 5.4.1 (vi). Note
that according to Theorem 5.4.1 (v), the “key degree” part σkey

w of σw, which is the part in

degree 2w (as a derivation) is the only part not consisting of brackets of ǫ
(j)
k .

In section 5.5.3 below we give a more detailed description of the computation algorithm,
but begin by presenting a few examples to convey an impression of the structure of the σw.
In the following examples for w = 3, 5, 7, we decompose σkey

w into the unique choice of its

sl2 invariant part zw in Theorem 5.4.1 (vi) and nested brackets of ǫ
(j)
k in (≥ 3)-dimensional

irreducible representations of sl2.

5.5.1 The case w = 3

In this situation, we first give the complete calculation of the derivations τ3 and σ3 related
by the switch, and specify the derivation z3 by directly giving its values on a and b. Recall
that the switch maps τw to σw via (5.39) and acts on the derivations ǫ

(j)
k according to (5.13).

Direct computation based on (5.42) shows that

τ3 = ǫ4 + τkey3 − 1
960

[ǫ
(1)
4 , ǫ

(2)
4 ] + 1

725760
[ǫ
(1)
4 , ǫ

(4)
6 ]− 1

1451520
[ǫ
(2)
4 , ǫ

(3)
6 ]

+ 1
1741824000

[ǫ
(2)
4 , ǫ

(5)
8 ]− 1

870912000
[ǫ
(1)
4 , ǫ

(6)
8 ] + 1

2786918400
[ǫ
(2)
4 , [ǫ

(2)
4 , ǫ

(4)
6 ]]

+ 1
1931334451200

[ǫ
(1)
4 , ǫ

(8)
10 ]−

1
3862668902400

[ǫ
(2)
4 , ǫ

(7)
10 ] + . . . , (5.44)

with an infinite series in nested brackets of ǫ
(ji)
ki

of total degree
∑

i ki ≥ 16 in the ellipsis.
Here and in section 5.5.2 below, we have made a choice on how the Pollack relations of
Remark 5.1.6 are used to represent the degree ≥ 14 terms of σw and τw.

The key-degree part τkey3 concentrated in degree 6 is given explicitly by

τkey3 (a) = −1
4
[aaababb] − 1

4
[aaabbab] − 1

12
[aababab] ,

τkey3 (b) = 1
4
[aababbb] + 1

4
[aabbabb] + 1

4
[aabbbab] + 1

12
[abababb] , (5.45)

where we employ the Lyndon-bracket notation introduced in Theorem 3.5.2.
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Applying the switch (5.39) and (5.13) to τ3 and τkey3 , we obtain the following explicit
formula for σ3 (again skipping an infinity of contributions at degree

∑
i ki ≥ 16):

σ3 = −
1
2
ǫ
(2)
4 + z3 +

1
480

[ǫ4, ǫ
(1)
4 ] + 1

30240
[ǫ
(1)
4 , ǫ6]−

1
120960

[ǫ4, ǫ
(1)
6 ] + 1

7257600
[ǫ4, ǫ

(1)
8 ] (5.46)

− 1
1209600

[ǫ
(1)
4 , ǫ8]−

1
58060800

[ǫ4, [ǫ4, ǫ6]] +
1

47900160
[ǫ
(1)
4 , ǫ10]−

1
383201280

[ǫ4, ǫ
(1)
10 ] + . . . .

For w = 3 it turns out that the key-degree part σkey
3 is already sl2 invariant and therefore

coincides with the arithmetic derivation z3 whose action on a and b is given by

z3(a) =
1
4
[aaababb] + 1

4
[aaabbab] + 1

12
[aababab] , (5.47)

z3(b) = −
1
4
[aababbb] − 1

4
[aabbabb] − 1

4
[aabbbab] − 1

12
[abababb] .

An exact expression for the whole of the power series σ3 will be given as a closed formula in
section 7.4.3 below.

5.5.2 The case w = 5, 7, 9

Now we give the lowest-degree contributions to the expansions of σ5, σ7 and σ9:

σ5 = −
1
24
ǫ
(4)
6 −

5
48
[ǫ
(1)
4 , ǫ

(2)
4 ] + z5 +

1
5760

[ǫ4, ǫ
(3)
6 ]− 1

5760
[ǫ
(1)
4 , ǫ

(2)
6 ] + 1

5760
[ǫ
(2)
4 , ǫ

(1)
6 ]

+ 1
3456

[ǫ4, [ǫ4, ǫ
(2)
4 ]] + 1

6912
[ǫ
(1)
4 , [ǫ

(1)
4 , ǫ4]] +

1
145152

[ǫ
(1)
6 , ǫ

(2)
6 ]− 1

145152
[ǫ6, ǫ

(3)
6 ]

− 1
2073600

[ǫ4, [ǫ4, ǫ
(2)
6 ]] + 139

72576000
[ǫ
(1)
4 , [ǫ4, ǫ

(1)
6 ]]− 23

24192000
[ǫ4, [ǫ

(1)
4 , ǫ

(1)
6 ]]

− 1007
145152000

[ǫ
(2)
4 , [ǫ4, ǫ6]]−

1
4147200

[ǫ
(1)
4 , [ǫ

(1)
4 , ǫ6]] +

289
48384000

[ǫ4, [ǫ
(2)
4 , ǫ6]]

+ 1
145152000

[ǫ6, ǫ
(3)
8 ]− 1

36288000
[ǫ
(1)
6 , ǫ

(2)
8 ] + 1

14515200
[ǫ
(2)
6 , ǫ

(1)
8 ]− 1

7257600
[ǫ
(3)
6 , ǫ8] + . . . (5.48)

σ7 = −
1

720
ǫ
(6)
8 + 7

1152
[ǫ
(2)
4 , ǫ

(3)
6 ]− 7

1152
[ǫ
(1)
4 , ǫ

(4)
6 ]− 661

57600
[ǫ
(1)
4 , [ǫ

(1)
4 , ǫ

(2)
4 ]]− 661

57600
[ǫ
(2)
4 , [ǫ

(2)
4 , ǫ4]]

+ 1
172800

[ǫ4, ǫ
(5)
8 ]− 1

172800
[ǫ
(1)
4 , ǫ

(4)
8 ] + 1

172800
[ǫ
(2)
4 , ǫ

(3)
8 ] + 1

13824
[ǫ
(1)
6 , ǫ

(4)
6 ]− 1

13824
[ǫ
(2)
6 , ǫ

(3)
6 ]

+ z7 −
1

4354560
[ǫ6, ǫ

(5)
8 ] + 1

4354560
[ǫ
(1)
6 , ǫ

(4)
8 ]− 1

4354560
[ǫ
(2)
6 , ǫ

(3)
8 ] + 1

4354560
[ǫ
(3)
6 , ǫ

(2)
8 ]

− 1
4354560

[ǫ
(4)
6 , ǫ

(1)
8 ] + 7

552960
[ǫ4, [ǫ4, ǫ

(4)
6 ]] + 7

552960
[ǫ4, [ǫ

(1)
4 , ǫ

(3)
6 ]] + 7

184320
[ǫ
(1)
4 , [ǫ

(2)
4 , ǫ

(1)
6 ]]

+ 7
552960

[ǫ
(2)
4 , [ǫ4, ǫ

(2)
6 ]]− 7

184320
[ǫ4, [ǫ

(2)
4 , ǫ

(2)
6 ]]− 7

276480
[ǫ
(2)
4 , [ǫ

(2)
4 , ǫ6]]

− 7
552960

[ǫ
(1)
4 , [ǫ4, ǫ

(3)
6 ]]− 7

552960
[ǫ
(2)
4 , [ǫ

(1)
4 , ǫ

(1)
6 ]] + . . . (5.49)

σ9 = −
1

40320
ǫ
(8)
10 −

1
5184

[ǫ
(1)
4 , ǫ

(6)
8 ] + 1

5184
[ǫ
(2)
4 , ǫ

(5)
8 ]− 7

20736
[ǫ
(3)
6 , ǫ

(4)
6 ] + 1

9676800
[ǫ4, ǫ

(7)
10 ]

− 1
9676800

[ǫ
(1)
4 , ǫ

(6)
10 ] +

1
9676800

[ǫ
(2)
4 , ǫ

(5)
10 ] +

7
4147200

[ǫ
(1)
6 , ǫ

(6)
8 ]− 7

4147200
[ǫ
(2)
6 , ǫ

(5)
8 ]

+ 7
4147200

[ǫ
(3)
6 , ǫ

(4)
8 ]− 7

4147200
[ǫ
(4)
6 , ǫ

(3)
8 ]− 529

691200
[ǫ4, [ǫ

(2)
4 , ǫ

(4)
6 ]] + 2959

2419200
[ǫ
(1)
4 , [ǫ

(2)
4 , ǫ

(3)
6 ]]

+ 5891
6220800

[ǫ
(2)
4 , [ǫ4, ǫ

(4)
6 ]]− 443

967680
[ǫ
(1)
4 , [ǫ

(1)
4 , ǫ

(4)
6 ]]− 799

1088640
[ǫ
(2)
4 , [ǫ

(2)
4 , ǫ

(2)
6 ]]

− 10651
21772800

[ǫ
(2)
4 , [ǫ

(1)
4 , ǫ

(3)
6 ]] + . . . (5.50)

In all cases, the ellipsis refers to an infinite series in nested brackets of ǫ
(ji)
ki

of total degree∑
i ki ≥ 16, and the expansion of σ9 additionally involves an arithmetic contribution z9 at
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key degree 18. The action of the arithmetic derivation z5 on the generators a is given by

z5(a) = −
[aaaaababbbb]

240
− [aaaaabbbbab]

240
+ [aaaabaabbbb]

120
+ [aaaabababbb]

80
− [aaaababbabb]

30

+ [aaaababbbab]
60

+ [aaaabbaabbb]
80

− 7[aaaabbababb]
120

− [aaaabbabbab]
30

+ [aaaabbbaabb]
80

+ [aaaabbbabab]
240

+ [aaaabbbbaab]
240

− [aaabaababbb]
24

− 3[aaabaabbabb]
80

− 7[aaabaabbbab]
240

− [aaababaabbb]
240

+ 73[aaababababb]
240

+ 49[aaabababbab]
80

+ 3[aaababbaabb]
80

+ 149[aaababbabab]
240

+ [aaababbbaab]
240

− [aaabbaababb]
240

− [aaabbaabbab]
60

+ [aaabbabaabb]
240

+ 5[aaabbababab]
16

− [aaabbabbaab]
240

+ [aaabbbaabab]
240

+ [aaabbbabaab]
120

+ [aabaabaabbb]
240

+ [aabaabababb]
240

− [aabaababbab]
30

+ [aabaabbaabb]
120

− [aabaabbabab]
30

− 3[aababaababb]
80

− 3[aababaabbab]
80

− [aabababaabb]
240

+ [aababababab]
16

, (5.51)

again using the Lyndon bracket notation of Theorem 3.5.2. A similar expression for z5(b)
can be reconstructed from (5.51) by virtue of the following observation:

Remark 5.5.1. The Lie polynomials zw(a) and zw(b) at w = 3, w = 5 and w = 7 are related
by the switch θ via

zw(b) = −θ
(
zw(a)

)
, w ≤ 7 . (5.52)

Note that an alternative method for the computation of z3(a), z3(b), z5(a), z5(b) was given
by Pollack in [26], though the approach in that reference has not yet led to explicit results
for zw≥7. Machine-readable expressions for zw(a) and zw(b) at w = 3, 5, 7 can be found in an
ancillary file of the arXiv submission of this work.

5.5.3 Computational aspects

We close this section by giving more details on the practical implementation of Defini-
tion 5.2.3 to determine the canonical zeta generators σw and their arithmetic parts zw.

The starting point of the construction is to solve the conditions (5.41) degree by degree
following (5.36) and (5.37) and the partner condition. We recall from Theorem 5.4.1 that at
degree d the derivation (σw)d has a-degree d−w and b-degree w.

For the example of σ3 the extension lemma leads at lowest degree to9

(
σ3(a)

)
5
= −[aabbb] + [ababb] ,

(
σ3(b)

)
5
= −[abbbb] , (5.53)

by using g3 presented in (3.32) as well as (5.36). We here employ Lyndon bracket notation
in the Lie algebra Lie[a, b]. From (5.37) we then obtain at the next degree (which is here
already key degree):

(
σ3(a)

)
7
= 1

4
[aaababb] + 1

4
[aaabbab] + 1

12
[aababab] ,

(
σ3(b)

)
7
= −1

4
[aababbb] − 1

4
[aabbabb] − 1

4
[aabbbab] − 1

12
[abababb] . (5.54)

9Note that, as a derivation, the lowest degree of σ3 is 4, but here we are writing the degree of the image
of a and b as the subscript.
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Since (5.53) is not at key degree, we know from Theorem 5.4.1 that it must be possible to
rewrite it completely as the action of a geometric derivation, i.e. an element of u. We know
moreover from part (ii) of that theorem that the total depth, meaning the total number of
ǫi (for i ≥ 0) of any term is equal to w = 3. Together with the information on the degree,
computable from Lemma 5.1.5, this leaves very few possible terms. For any nested backet
of the form ǫ

(j1)
k1
· · · ǫ

(jr)
kr

(with ki ≥ 4 and any allowed placement of brackets) the conditions
to be allowed at degree d in σw are

r +

r∑

i=1

ji = w for the total depth and

r∑

i=1

ki = d for the degree. (5.55)

For example, for the lowest degree d = 4 in (5.53), the only possible term in σ3 is proportional

to ǫ
(2)
4 and the constant of proportionality c1 is fixed by

(
σ3(a)

)
5
=
[(
c1ǫ

(2)
4

)
(a)
]
5
= c1 (2[aabbb] − 2[ababb]) (5.56)

to the value c1 = −1
2
when comparing to (5.53), in agreement with (5.46) and a general

formula to be derived in Corollary 6.2.3.
The next-to-lowest degree in σ3, given by (5.54), is the key degree d = 2w = 6 and

therefore contains both the arithmetic z3 part, transforming in an sl2 singlet, as well as
possible geometric contributions. The most general ansatz compatible with (5.55) is

σkey
3 = z3 + c2ǫ

(2)
6 . (5.57)

In order to separate out the geometric from the arithmetic term, we use that z3 is a singlet
under sl2 and thus commutes with ǫ0. The general relations

ǫ0
(
σw(a)

)
− σw(b) = [ǫ0, σw](a) , ǫ0

(
σw(b)

)
= [ǫ0, σw](b) (5.58)

at key degree depend only on the geometric part due to [ǫ0, σ
key
w ] = [ǫ0, σ

key
w − zw]. Moreover,

the commutator [ǫ0, σ
key
w − zw] of the geometric term can be evaluated easily according

to general representation theory as in Lemma 5.1.5. The left-hand sides of the general
conditions (5.58) only depend on σw(a) and σw(b) that are furnished by (5.41) whereas the
geometric contribution on the right-hand sides can be computed using the ansatz.

In the case of (5.54) we can use the second equation of (5.58) and find for the left-hand
side

ǫ0
(
σkey
3 (b)

)
= 0 (5.59)

as well as

c2ǫ
(3)
6 (b) = 12c2

(
2[aabbbb] + 5[ababbbb] + 2[abbabbb]

)
(5.60)
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for the right-hand side, implying c2 = 0 and that the action of z3 is given by (5.54), which
agrees with the expression already presented in (5.47).

The ansätze for the degree d parts of σw rapidly grow with d and w. For instance, the
candidate terms for (σ7)12 compatible with (5.55) are given by

(σ7)12 = c1ǫ
(6)
12 + c2[ǫ4, ǫ

(5)
8 ] + c3[ǫ

(1)
4 , ǫ

(4)
8 ] + c4[ǫ

(2)
4 , ǫ

(3)
8 ] (5.61)

+ c5[ǫ
(1)
6 , ǫ

(4)
6 ] + c6[ǫ

(2)
6 , ǫ

(3)
6 ] + c7[ǫ

(1)
4 , [ǫ

(1)
4 , ǫ

(2)
4 ]] + c8[ǫ

(2)
4 , [ǫ

(2)
4 , ǫ4]] .

By matching the action of this ansatz on a with
(
σ7(a)

)
13

computed from (5.41), we find the
values of the above ci noted in the degree 12 parts of (5.49) including a vanishing coefficient

c1 of ǫ
(6)
12 . The absence of terms in σw with a single ǫ

(j)
k at any degree besides the minimal

degree w + 1 will follow from Proposition 7.3.4 (i) below.

In summary, the strategy for converting the result of the extension lemma construction
of σw into expressions in terms of geometric and arithmetic derivations is to make an ansatz
for the geometric terms at a given degree subject to the constraints (5.55).10 Away from
key degree, evaluating this ansatz on a and b and equating it with the explicit form of σw
then fixes the ansatz (modulo free parameters that are in one-to-one correspondence with
the Pollack relations defining u). At key degree one can separate the geometric from the
arithmetic part of σw using (5.58) by first computing the geometric part; then the arithmetic
zw is simply the difference zw = σkey

w −
(
σkey
w |u

)
.

In section 7.3, we will provide additional calculational tools that recursively determine σw
up to highest-weight vectors of sl2 (see Definition 5.1.3). In case of (5.61), the ansatz contains

two highest-weight vectors [ǫ
(1)
6 , ǫ

(4)
6 ] − [ǫ

(2)
6 , ǫ

(3)
6 ] and [ǫ

(1)
4 , [ǫ

(1)
4 , ǫ

(2)
4 ]] + [ǫ

(2)
4 , [ǫ

(2)
4 , ǫ4]], and the

method of section 7.3 can efficiently determine 6 out of the 8 parameters ci. By Theorem
5.4.1 (iv), there are no highest-weight vectors in σw beyond key degree. Hence, a major virtue
of the method in 7.3 is that the evaluation of infinitely many contributions σw(a)d>2w+1 via
(5.41) can be bypassed, i.e. that the extension lemma construction of section 5.3 only needs
to be applied to a finite range of degrees where it fixes all terms.

6 Properties of τw and σw

In this section, we prove the properties of the derivation τw, σw or zeta generators in genus
one listed in Theorem 5.4.1 (i) to (vi). One of the key tools for parts (i)-(iii) will be Écalle’s
theory of moulds developed in [22] (see also [80] for an exposition of the basic theory), and
the proof of parts (iv)-(vi) will make use of the sl2 algebra in Definition 5.1.3.

6.1 Introduction to moulds

For the reader’s convenience, we first review a few basic definitions and facts about moulds,
and one fundamental theorem due to Écalle (cf. [22], [80]).

10It can be useful, although not necessary, to group these terms according to sl2 representations.
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6.1.1 Moulds and power series

Definition 6.1.1. A rational mould over a ring R is a family of rational functions F =(
Fr

)
r≥0

= (F0, F1, F2, . . .) such that

Fr(u1, . . . , ur) ∈ R(u1, . . . , ur) , (6.1)

i.e. Fr is a function of r commutative variables ui. The constant term of the mould F0 lies
in the ring R. We will generally refer to a rational mould simply as a “mould”, and most of
the time we will work over the base field Q. Also, when there is no possibility of confusion,
we often write F (u1, . . . , ur) instead of Fr(u1, . . . , ur). The function Fr or F (u1, . . . , ur) is
called the depth r part of the mould F . When the rational functions Fr are polynomials for
all r > 0, we say that F is a polynomial mould. Moulds can be added componentwise and
multiplied by a constant in R componentwise. The moulds with constant term 0 thus form
a vector space, denoted ARI; its vector subspace of polynomial moulds is denoted ARIpol.
The names of the various objects, morphisms and properties are due to Écalle [22].

Let ci = adi−1
x y for i ≥ 1. From now on unless otherwise stated we will work with R = Q.

The power series in Q〈〈x, y〉〉 that can be written as power series in the ci are exactly the
ring of power series p satisfying ∂x(p) = 0, where ∂x is the derivation defined by ∂x(x) = 1,
∂x(y) = 0. These power series are in bijection with the free ring Q〈〈c1, c2, . . .〉〉 of power series
on the non-commutative variables ci. All Lie-like and group-like power series in Q〈〈x, y〉〉
belong to Q〈〈c1, c2, . . .〉〉 and indeed, with the exception of the element x, all Lie polynomials
in x, y are in bijection with the Lie polynomials in the ci. There is a simple bijection between
power series p ∈ Q〈〈c1, c2, . . .〉〉 and polynomial moulds, given by letting pr denote the part
of p of homogeneous degree r in the ci (i.e. homogeneous degree r in y) and mapping pr to
the space of polynomial moulds of depth r by the map on monomials

ma : ci1 . . . cir 7→ (−1)r+i1+···+irui1−1
1 · · ·uir−1

r , (6.2)

extended by linearity. We often use the notation P = ma(p) for the polynomial mould
associated to a power series p ∈ Q〈〈c1, c2, . . .〉〉 under the mapma. The vector space of power
series without constant term maps isomorphically under ma to the vector space ARIpol.

6.1.2 Basic operators on moulds

The space of moulds ARI is equipped with many operations. All those given in the following
list are natural extensions to moulds of familiar operations on power series in x and y (see [22]
or [80] for complete definitions and details).

• Mould multiplication is defined by:

mu(G,H)(u1, . . . , ur) =
r∑

i=0

G(u1, . . . , ui)H(ui+1, . . . , ur) . (6.3)
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This multiplication is valid for moulds with non-zero constant term as well, and is
compatible with power series multiplication in the sense that if G = ma(g) and H =
ma(h) for g, h ∈ Q〈〈c1, c2, . . . , 〉〉, then

ma
(
gh
)
= mu(G,H) . (6.4)

• The Lie bracket lu on ARI is defined by

lu(G,H) = mu(G,H)−mu(H,G) , (6.5)

and when ARI is considered as a Lie algebra under this bracket, it is denoted ARIlu.
Again, for G = ma(g) and H = ma(h) as above, we have

ma
(
[g, h]

)
= lu(G,H) . (6.6)

• For each mould G ∈ ARI, there is a derivation arit(G) of the Lie algebra ARIlu which
generalizes the Ihara derivation Dg for g ∈ Lie[x, y] defined by (3.15) in the sense that
if G = ma(g) and H = ma(h) for g, h ∈ Lie[x, y] then

arit(G) ·H = −ma
(
Dg(h)

)
. (6.7)

(The minus sign is due to the original definition of arit by Écalle).

• The ari-bracket is another Lie bracket on the space ARI (besides lu introduced in (6.5)),
defined by

ari(G,H) = arit(H) ·G− arit(G) ·H + lu(G,H) . (6.8)

The ari-bracket generalizes the Ihara bracket (3.14) on the underlying vector space
Lie[x, y] in the sense that if G = ma(g) and H = ma(h) for g, h ∈ Lie[x, y] then

ari(G,H) = ma
(
{g, h}

)
. (6.9)

We denote the Lie algebra formed by the vector space ARI equipped with the ari-
bracket by ARIari.

• The universal enveloping algebra UARIari of the Lie algebra ARIari is nothing other
than the space of all (rational in the context of this article) moulds; these are essentially
the same moulds as in ARI except that arbitrary constant terms are allowed. By
the Poincaré–Birkhoff–Witt theorem, this universal enveloping algebra is equipped
with an associative multiplication law which we denote by ⋄. The expression for this
multiplication G ⋄ H simplifies in the case where G ∈ ARI, in which situation it is
given for G in ARIari and H in UARIari by

G ⋄H = mu(G,H)− arit(G) ·H , (6.10)

which thanks to (6.7) generalizes the ⋄ multiplication introduced in (3.17):

G ⋄H = ma
(
g ⋄ h

)
. (6.11)

58



• The ari-exponential map from ARIari to the group-like elements in the universal en-
veloping algebra is defined for F ∈ ARI by

expari(F ) = Id+
∑

n≥1

1

n!

(
F ⋄ F ⋄ . . . ⋄ F︸ ︷︷ ︸

n

)
, (6.12)

where the ⋄ multiplication must be applied from right to left so that the leftmost
element being multiplied is always F , and Id denotes the mu- and ⋄-identity mould
(1, 0, 0, . . .). The image of the space ARI under the map expari is called GARI, and it
consists precisely of the set of all (here rational) moulds with constant term 1. The set
GARI forms a group with respect to the multiplication obtained from lifting the ari Lie
bracket to GARI using the Baker–Campbell–Hausdorff formula. The ari-exponential
has an inverse map, the ari-logarithm

logari : GARI → ARI . (6.13)

• The group GARI acts on the Lie algebra ARIari via the adjoint action, under which
each mould P ∈ GARI gives an isomorphism of the Lie algebra ARIari via the adjoint
operator Adari(P ). Let L := logari(P ), so L ∈ ARI. Then the adjoint action of P on
a mould A ∈ ARI can be expressed and computed explicitly by the standard formula

Adari(P )(A) = A + ari(L,A) + 1
2
ari(L, ari(L,A)) + 1

6
ari(L, ari(L, ari(L,A))) + · · ·

(6.14)

by exponentiating the ari bracket ari(L, ·).

• We define an operator dur acting on all moulds by dur(F )(∅) = F (∅) and the following
formula for r ≥ 1:

dur(F )(u1, . . . , ur) = (u1 + · · ·+ ur)F (u1, . . . , ur) . (6.15)

If F = ma(f) for a power series f ∈ Q〈〈c1, c2, . . .〉〉 (considered as a function f(x, y)),
then

dur(F ) = ma([x, f ]) . (6.16)

• We will also need the mould operator ∆ defined by ∆(F )(∅) = F (∅) and

∆(F )(u1, . . . , ur) = u1 · · ·ur(u1 + · · ·+ ur)F (u1, . . . , ur) . (6.17)

If F = ma(f) as above, we have

∆(F ) = ma
(
[x, f(x, [x, y])]

)
. (6.18)

The inverse operator of ∆ is given by

∆−1(F )(u1, . . . , ur) =
1

u1 · · ·ur(u1 + · · ·+ ur)
F (u1, . . . , ur) . (6.19)

Of course, the operator ∆ on power series given in (6.18) cannot always be inverted in
the world of non-commutative power series.
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• The push-operator acts on moulds F by the formula push(F )(∅) = F (∅) and for r ≥ 1,

push(F )(u1, . . . , ur) = F (−u1 − · · · − ur, u1, u2, . . . , ur−1) . (6.20)

The push-operator corresponds to an operation on power series (also called push)
monomial by monomial defined as follows:

push(xa1yxa2y · · · yxar−1yxar) = xaryxa1y · · · yxar−2yxar−1 (6.21)

in the sense that if h ∈ Q〈〈c1, c2, . . .〉〉 then

ma
(
push(h)

)
= push

(
ma(h)

)
, (6.22)

where the left-hand push is as in (6.21) and the right-hand one is as in (6.20) (for
this equivalence, see [81], section 3.3). In particular, h is push-invariant if and only if
ma(h) is.

• The swap operator on moulds is defined by the formula swap(F )(∅) = F (∅) and

swap(F )(v1, v2, . . . , vr) = F (vr, vr−1 − vr, . . . , v1 − v2) . (6.23)

We could write the mould swap(F ) in the variables ui instead of vi, of course, but to
keep apart a mould and its swap it is convenient to consider the swapped mould parts
swap(F )r as lying in Q(v1, . . . , vr).

• Finally, we need to define the alternality property on moulds. A mould P ∈ ARI is
said to be alternal if for all r ≥ 2 we have

∑

w∈u�v

P (w) = 0 (6.24)

for all pairs of non-empty words u = (u1, . . . , ui), v = (ui+1, . . . , ur). (There is no
condition at r = 1.) When P = ma(p) for a power series p ∈ Q〈〈c1, c2, . . .〉〉 with-
out constant term, then P is alternal if and only if p is a Lie element in the ci, or
equivalently, if and only if p(x, y) ∈ Lie[x, y].

Example. Recall that the first non-trivial element of mz∨ is given by

g3 = [x, [x, y]] + [[x, y], y] = c3 + [c2, c1] = c3 + c2c1 − c1c2 . (6.25)

By (6.2), the associated mould G3 = ma(g3) ∈ ARI is given by

0 7→ 0 = G3(∅) in depth 0 ,

c3 7→ u21 = G3(u1) in depth 1 , (6.26)

c2c1 − c1c2 7→ −u1 + u2 = G3(u1, u2) in depth 2 .

The fact that g3 is a Lie polynomial is reflected in the alternality condition satisfied by G3:
∑

w∈(u1�u2)

G3(w) = G3(u1, u2) +G3(u2, u1) = 0 . (6.27)
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6.1.3 The fundamental operator Adari(pal) and Écalle’s theorem

Écalle defined a remarkable pair of inverse moulds in the group GARI, called pal and invpal,
which have the following property: when acting on ARI via the adjoint action, invpal
transforms the double shuffle property into a much simpler property known as bialternality,
where a bialternal mould is an alternal mould with alternal swap, and pal does the opposite
(this is a major result due to Écalle, see [22, 82] and an expository version in section 4.6
of [80]). The isomorphisms Adari(invpal) and Adari(pal)

−1 are mutually inverse. The action
of Adari(invpal) on a double shuffle Lie polynomial mould introduces certain denominators,
but these are eliminated by the operator ∆ in (6.17), yielding a polynomial mould once
again (cf. [83]); in other words, restricted to ma(ds), the composition ∆ ◦ Adari(invpal)
takes polynomial moulds to polynomial moulds. The key result for our purposes here is that
when restricted to the subspace ma(mz∨) ⊂ ma(ds), the map ∆ ◦ Adari(invpal) is directly
related to the morphism

γ : mz∨ → Der0Lie[a, b] (6.28)

of (5.26) by the following formula: if h ∈ mz∨, then

∆ ◦ Adari(invpal)
(
ma(h)

)
= ma

(
γ(h)(a)

)
, (6.29)

where
γ(h) ∈ Der0Lie[a, b] (6.30)

and γ(h)(a) denotes the Lie series obtained by applying that derivation to a (cf. [23], Thm.
1.3.1). The connection (6.29) enables us to apply the known properties of the operator
Adari(invpal) to prove properties of the derivations τw and σw.

We now proceed to the definition of the moulds pal and invpal.

Definition 6.1.2. Let dupal be the mould defined explicitly by dupal(∅) = 0 and for r > 0
by

dupal(u1, . . . , ur) =
Br

r!

1

u1 · · ·ur

(
r−1∑

j=0

(−1)j
(
r − 1

j

)
uj+1

)
. (6.31)

Lemma 6.1.3. The mould dupal is related to t01 in (5.30) by the equation

dupal(u1, . . . , ur) =
1

u1 · · ·ur
ma(tr01) (6.32)

for all r ≥ 1, where tr01 is the part of t01 of b-degree r.

Proof. The map ma maps power series in a, b to moulds exactly like those in x, y, namely
via (6.2) with ci = adi−1

a (b). To prove (6.32), notice that since we have

adr−1
b (a) = −adr−2

b ([a, b]) = −adr−1
c1

(c2) = −
r−1∑

j=0

(−1)j
(
r − 1

j

)
cj1c2c

r−1−j
1 , (6.33)
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the associated mould is

ma
(
adr−1

b (a)
)
= −

r−1∑

j=0

(−1)j
(
r − 1

j

)
uj+1 . (6.34)

Hence, since the part tr01 of b-degree r of t01 is just given by −Br

r!
adr

b(a), (6.32) follows from
comparing (6.31) and (6.34). �

Definition 6.1.4. Let pal be the mould defined recursively by pal(∅) = 1 and the formula

dur(pal) = mu(pal, dupal) (6.35)

with dur defined in (6.15) and dupal in (6.31).

This formula might look circular but in fact it defines each depth of pal successively
thanks to the fact that dupal(∅) = 0. For example, in depth 1, we have

dur(pal)(u1) = u1pal(u1)

= mu(pal, dupal)(u1)

= pal(∅)dupal(u1) + pal(u1)dupal(∅)

= dupal(u1)

= −
1

2
, (6.36)

so

pal(u1) = −
1

2u1
. (6.37)

Then in depth 2, we have

dur(pal)(u1, u2) = (u1 + u2)pal(u1, u2)

= mu(pal, dupal)(u1, u2)

= pal(∅)dupal(u1, u2) + pal(u1)dupal(u2)

=
u1 − u2
12u1u2

+
1

4u1

=
u1 + 2u2
12u1u2

, (6.38)

so

pal(u1, u2) =
u1 + 2u2

12u1u2(u1 + u2)
. (6.39)

Definition 6.1.5. Let lopal = logari(pal) using the ari-logarithm map defined in (6.13), and
recall that invpal is the inverse of pal in the group GARI = expari(ARI), equipped with
the Baker–Campbell–Hausdorff multiplication law, so that we have

logari(pal) = − logari(invpal) . (6.40)
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In lowest depths we have

lopal =

(
0, −

1

2u1
,

u1 − u2
12u1u2(u1 + u2)

, . . .

)
,

invpal =

(
1,

1

2u1
,
−u1 + 4u2

12u1u2(u1 + u2)
, . . .

)
. (6.41)

Both of these moulds will be used below in our computations of σw.

The following theorem summarizes the key results from mould theory needed for the
proof of Theorem 5.4.1 (i) to (iii).

Theorem 6.1.6. Let h ∈ ds and let H = ma(h) denote the associated mould. Let τh be the

derivation of L̂ie[a, b] constructed from h as in section 5.3 and write Th = ma
(
τh(a)

)
. Then,

(i) The mould Adari(invpal)(H) is bialternal, i.e. it is alternal and its swap is alternal
(cf. [22, 82] and [80], Thm. 4.6.1);

(ii) We have the following equality of moulds in ARI (cf. [23], Thm. 1.3.1):

Th = ∆ ◦ Adari(invpal)(H) ; (6.42)

(iii) All bialternal moulds are push-invariant (cf. [22], [80] Lemma 2.5.5); in particu-
lar Adari(invpal)(H) is push-invariant, and so is Th since ∆ does not modify push-
invariance;

(iv) A bialternal rational mould A satisfies

A(−u1, . . . ,−ur) = A(u1, . . . , ur) (6.43)

for all r ≥ 1. In particular if A(u1, . . . , ur) is of odd total degree then it is equal to zero
(cf. [80], Lemma 2.5.5).

Note that the push invariance of Th and therefore τh(a) established in part (iii) is crucial

to obtain extensions of derivations of the Lie subalgebra Lie[t12, t01] ⊂ L̂ie[a, b] to all of

Der0L̂ie[a, b], see the discussion around (5.37).

6.2 Proof of Theorem 5.4.1 (i)-(iii)

For all h ∈ mz∨, let τh denote the associated derivation in Der0Lie[a, b] constructed in
section 5.3. Let gw for odd w ≥ 3 be the canonical free generators of mz∨; recall that we
write τw and σw for the zeta generators in genus one rather than τgw and σgw . The results
of Theorem 6.1.6 are valid for all elements h ∈ ds, in particular for elements of the subspace
mz∨ ⊂ ds, but in this section we will apply them specifically to the elements gw.
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Corollary 6.2.1 (Theorem 5.4.1 (i)). The derivations τw and σw satisfy

τw([a, b]) = σw([a, b]) = 0 , (6.44)

i.e. τw and σw lie in Der0Lie[a, b].

Proof. The mould Tw = ma
(
τw(a)

)
is push-invariant by Theorem 6.1.6 (iii), and we saw

in (6.22) that push-invariance for moulds is equivalent to push-invariance of power series.
Thus τw(a) is push-invariant. It is shown in Lemma 2.1.1 of [23] that for any derivation δ
of Lie[a, b] such that δ(b) is the partner of δ(a) as defined in (5.31), then δ([a, b]) = 0 if and
only if δ(a) is push-invariant. Since τw(b) is the partner of τw(a) by construction (i.e. (5.31)
with g = τw(a) and g

′ = τw(b)) and τw(a) is push-invariant, we thus have τw([a, b]) = 0 as
desired. Then

σw([a, b]) = θ ◦ τw ◦ θ([a, b]) = θ ◦ τw([b, a]) = 0 (6.45)

as well. �

Proposition 6.2.2. The mould Tw is zero in all even depths, and in odd depths r ≥ 1,
Tw(u1, . . . , ur) is a polynomial of homogeneous degree w+1 in the variables ui. In particular

Tw(u1) = uw+1
1 . (6.46)

Proof. We first show that the mould Tw is of constant degree w + 1 in u1, . . . , ur in every
depth. For this, we begin by noting that the Lie series

τw(t01) = [t01, gw(t12,−t01)] (6.47)

has constant a-degree equal to w+1 since gw is a polynomial of homogeneous degree w and
both t01 and t12 have a-degree 1. Then, using the degree-by-degree computation of τw(a)
given in (5.34) to (5.37) (with h = gw), we see that τw(a)n is a Lie polynomial of constant
a-degree w + 1 in every degree n since the a-degree of the partner τw(b) is one less than
that of τw(a) at every degree. By the defining property gw(x, y)|xw−1y = 1 of the canonical
polynomials in genus zero and their symmetry property gw(x, y) = gw(y, x),

11 the monomial
yw−1x also appears in gw(x, y) with coefficient 1. Since gw(x, y) for odd w is a Lie polynomial
this implies that the Lie word ad(y)w−1(x) appears in gw with coefficient 1. Thus the minimal
x-degree in gw is 1 and by (5.36) we have

τw(a)w+2 = [a, adw−1
a ([a, b])] = adw+1

a (b) , (6.48)

where the sign disappears since w is odd.
Under the map ma from power series to commutative variables u1, . . . , ur defined in (6.2)

(with ci = adi−1
a b for i ≥ 1), we see that the a-degree corresponds to the degree in u1, . . . , ur

11This symmetry property follows from the odd degree w of gw together with the facts that gw(x,−y) ∈ grt

by (5.24) and that one of the defining properties of elements h ∈ grt is h(x, y) + h(y, x) = 0.
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while the b-degree corresponds to the mould depth r; thus for all r ≥ 1, the depth r part of
the mould Tw = ma

(
τw(a)

)
is a polynomial in u1, . . . , ur of degree w + 1. Furthermore, the

lowest depth part of Tw appears in depth 1 and is given by

Tw(u1) = ma
(
adw+1

a (b)
)
= uw+1

1 . (6.49)

It remains only to prove that Tw(u1, . . . , ur) = 0 for all even r. For this, we apply Theorem
6.1.6 to the case h = gw and H = Gw = ma(gw). By (ii) of that theorem, we have

Tw = ∆ ◦Adari(invpal)(Gw) . (6.50)

Therefore for each r ≥ 1 we have

∆−1(Tw)(u1, . . . , ur) =
Tw(u1, . . . , ur)

u1 · · ·ur(u1 + · · ·+ ur)
= Adari(invpal)(Gw)(u1, . . . , ur) . (6.51)

By (i) of Theorem 6.1.6, the mould Adari(invpal)(Gw) is bialternal, so the rational mould
in the middle term is bialternal. The total degree of this rational function is w − r, which
is odd whenever r is even. Thus, by Theorem 6.1.6 (iv), the mould Tw is zero in all even
depths r. This concludes the proof of the Proposition. �

Corollary 6.2.3 (Theorem 5.4.1 (ii)).

(i) The minimal degree part of the Lie series τw(a) is equal to adw+1
a (b), so the minimal

degree part of τw is ǫw+1. The minimal degree part of σw is given by − 1
(w−1)!

ǫ
(w−1)
w+1 .

(ii) There are no terms of degree < w + 2 and no terms of even degree in the Lie series
τw(a), σw(a) and their partners. For all odd n ≥ w+2, the terms of τw(a) (resp. σw(b))
all have b-degree (resp. a-degree) equal to n−w−1 and constant a-degree (resp. constant
b-degree) equal to w + 1.

Proof. (i) We saw in (6.48) that the lowest degree of τw(a) is w+2 and τw(a)|w+2 = adw+1
a (b),

which is also equal to ǫw(a) by (5.2). The switch formula is given in (5.13).
(ii) The statement is a direct translation of the corresponding statement of the previous

proposition into terms of the non-commutative variables a, b. The minimal degree of τw and
σw as a derivations is w + 1 by part (i), so the minimal degree of the Lie series τw(a) and
σw(a) is w+2. For the other terms, the map ma sends a polynomial h ∈ Q〈c1, c2, . . .〉 (with
ci = adi−1

a (b)) of homogeneous degree n in a, b and homogeneous depth r to a mould ma(h)
concentrated in depth r of homogeneous degree n − r in the variables u1, . . . , ur. Since the
degree of Tw(u1, . . . , ur) is always w + 1 by the previous Proposition, the a-degree of every
term of τw(a) is w+1. The depth r part of the mould Tw corresponds to the b-degree r part
of the power series τw(a). We first observe that if r is even then Tw(u1, . . . , ur) = 0 by the
previous proposition, so all terms of τw(a) of even b-degree r are zero, but these are precisely
all the terms of total degree w + 1 + r, which are all of the even-degree terms. If we have
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a term τw(a) of odd total degree n, then since it has a-degree w + 1 its b-degree is equal to
n− w − 1. This concludes the proof for τw(a) and the switch gives the analogous result for
σw(b) with b-degree w + 1 and a-degree n− w − 1. �

Proposition 6.2.4. For each odd w ≥ 3, the mould Tw = ma
(
τw(a)

)
is entirely determined

by its parts of depth r ≤ w − 1.

Proof. By Theorem 6.1.6 (ii), the mould ∆−1Tw is equal to Adari(invpal)(Gw) where Gw =
ma(gw) and gw is the canonical polynomial in genus zero. For any moulds P ∈ GARI and
A ∈ ARI, set L = logari(P ) and recall the adjoint operator formula (6.14). Since L has no
constant term, taking the ari-bracket with L increases the depth, so the adjoint operator
formula shows that for any given depth r, only the terms of A of depth ≤ r contribute to
the depth r part of Adari(P )(A). Now let A = Adari(invpal)(Gw) and P = pal, so that

Adari(P )(A) = Adari(pal)
(
Adari(invpal)(Gw)

)
= Gw . (6.52)

Since gw is a Lie polynomial of degree w it has no terms of depth ≥ w, so the same is true for
the associated mould Gw = ma(gw). Thus, Gw is determined entirely by its parts of depth
≤ w − 1, which in turn by the adjoint action formula are determined entirely by the parts
of A = Adari(invpal)(Gw) in depths ≤ w − 1. The parts of Tw of depth ≤ w − 1 determine
those of A = Adari(invpal)(Gw) by applying ∆−1, and the parts of A of depths ≤ w−1 then
determine Gw up to depth w− 1 by the adjoint action formula (6.52) – but this is all of Gw,
which then in turn determines all of Tw by the formula

Tw = ∆ ◦Adari(invpal)(Gw) , (6.53)

concluding the proof of the proposition. �

Corollary 6.2.5 (Theorem 5.4.1 (iii)). Both of the derivations τw and σw are entirely de-
termined by their parts of degree ≤ 2w − 1 (as derivations).

Proof. By the above Proposition, Tw is entirely determined by its parts of depth ≤ w − 1,
so the same holds for the Lie series τw(a). But we saw above that for all r ≥ 1 the b-degree
r part of the Lie series τw(a) is of polynomial degree w + r + 1 in a and b, so in particular
the b-degree w−1 part of τw(a) is of degree 2w. Saying that τw(a) is determined by its parts
of b-degree ≤ w − 1 is equivalent to saying that it is determined by its parts of total degree
≤ 2w. Since τw([a, b]) = 0 by Corollary 6.2.1, knowing τw(a) determines τw completely. The
part of τw(a) of given polynomial degree n corresponds to the part of τw of degree n− 1 as
a derivation; thus the derivation τw is entirely determined by its parts of degree ≤ 2w − 1,
and the same holds for σw. �
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6.3 Proof of Theorem 5.4.1 (iv)-(vi)

In this section, we use properties of the sl2 algebra in Definition 5.1.3 with generators ǫ0, ǫ
∨
0 , h

to prove parts (iv)-(vi) of Theorem 5.4.1.
Since the element h = [ǫ0, ǫ

∨
0 ] ∈ sl2 ⊂ Der0Lie[a, b] acts by h(a) = −a and h(b) = b, any

derivation δ of L̂ie[a, b] of homogeneous a-degree α and b-degree β is an eigenvector for h,
with eigenvalue given by

[h, δ] = (β − α)δ . (6.54)

In particular, for the action of h on u, we have [h, ǫ
(j)
k ] = (2j+2−k)ǫ(j)k from (5.11), so

h has eigenvalues covering the spectrum of values −k+2, −k+4, . . . ,−2, 0, 2, . . . , k−4, k−2
within the (k− 1)-dimensional irreducible representations {ǫ

(j)
k , j = 0, 1, . . . , k− 2} of sl2 at

fixed k. Similarly, (r − 1)-dimensional irreducible subrepresentations in u built from brack-

ets of ǫ
(j1)
k1
ǫ
(j2)
k2

. . . ǫ
(jm)
km

will have the spectrum of h-eigenvalues −r+2, −r+4, . . . ,−2, 0, 2,
. . . , r−4, r−2, always including the eigenvalue zero since r is even as will become clear from
the discussion around (7.3).

By [h, ǫ0] = 2ǫ0 and [h, ǫ∨0 ] = −2ǫ
∨
0 , adjoint action of ǫ0 and ǫ∨0 shifts the h eigenvalue of

any derivation δ ∈ Der0L̂ie[a, b] (not necessarily δ ∈ u) by 2 and −2, respectively (except for
highest- and lowest-weight vectors annihilated by adǫ0 and adǫ∨

0
, respectively).

Lemma 6.3.1. By the above spectra of h eigenvalues in irreducible representations of sl2
and the action (5.12) as well as the fact that adǫ0ǫ

(j)
k = ǫ

(j+1)
k and ǫ

(k−1)
k = 0, we have:

(i) for any Y ∈ adǫ0u, the equation adǫ0X = Y has a unique solution X ∈ adǫ∨
0
u. In

particular, adǫ0 has no kernel within eigenspaces at negative eigenvalues of h.

(ii) for any Y ∈ adǫ∨
0
u, the equation adǫ∨

0
X = Y has a unique solution X ∈ adǫ0u. In

particular, adǫ∨
0
has no kernel at positive eigenvalues of h.

6.3.1 Proof of Theorem 5.4.1 (iv)

For any term of σw of total degree n, since by Theorem 5.4.1 (ii) the b-degree is w, the
a-degree must be n− w, and thus by (6.54) this term is an h-eigenvector with h-eigenvalue
equal to 2w − n. Thus any term of σw of bihomogeneous degree in a and b and total degree
n is an eigenvector for h, and we have:

if n < 2w, the eigenvalue of h is strictly positive,

if n = 2w, the eigenvalue of h is zero, (6.55)

if n > 2w, the eigenvalue of h is negative.

Lemma 6.3.2 (Theorem 5.4.1 (iv)). The derivation σw has no highest-weight vectors in
degrees n > 2w.

Proof. Since adǫ0 has no kernel at negative h-eigenvalues by Lemma 6.3.1 (i), the infinite
Lie series of geometric contributions to σw above key degree 2w does not involve any highest-
weight vectors. �
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6.3.2 Proof of Theorem 5.4.1 (v) and (vi)

We shall next prove parts (v) and (vi) of Theorem 5.4.1 based on Theorem 5.2.1. In a
notation where

g := u⋊ sl2 , (6.56)

and S denotes the free Lie algebra of zeta generators σw, Theorem 5.2.1 implies that

[g,S] ⊂ g . (6.57)

Following the notation pd for degree-d parts of polynomials p in a, b, we shall write (σw)d for
the degree-d part of genus one zeta generators, so that in particular σkey

w = (σw)2w.

Proposition 6.3.3 (Theorem 5.4.1 (v) and (vi)).

(i) All terms of σw in degrees 6= 2w lie in u, but σkey
w /∈ u.

(ii) The terms of σw in key degree 2w that lie in irreducible sl2 representations of dimension
≥ 3 lie in u.

(iii) The brackets [zw, ǫk] of the sl2-invariant part zw of σw lie in u.

Proof. (i) Recall from Theorem 5.4.1 (ii) that every term of σw is of b-degree w and that
the minimum total degree of any term is given by n = w + 1. Let

σw =
∞∑

n=w+1

(σw)n (6.58)

denote the expansion of σw according to total degree. Then by (6.54), for each n ≥ w + 1,
we have

[h, (σw)n] = (2w − n)(σw)n . (6.59)

Note that, instead of (6.57), we actually have the stronger statement

[g,S] ⊂ u (6.60)

since the brackets on the left-hand cannot have any terms of degree zero and u is the part
of g of degree > 0. Thus, the bracket [h, σw] must lie in u and indeed each separate term
[h, (σw)n] must already lie in u since there are no linear relations between terms of different
degree. Hence, by (6.59), we must have

(2w − n)(σw)n ∈ u (6.61)

for all n ≥ w+ 1, i.e. for all terms of σw. In particular, whenever 2w− n 6= 0, (6.61) implies
that (σw)n ∈ u. Terms of σw not in u can thus only occur when n = 2w, i.e. in key degree.
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The fact that σkey
w /∈ u follows directly from Theorem 5.2.1, since if σkey

w lied in u then we
would have σw ∈ u, so u together with the σw could not generate a semi-direct product as
in Theorem 5.2.1 (ii).

(ii) Once again, by (6.60), any bracket of sl2 elements and σw, and therefore in particular
[ǫ0, (σw)2w] must lie in u. If we decompose

(σw)2w =
∑

odd d≥1

(σw)
(d)
2w , (6.62)

where (σw)
(d)
2w collects the key-degree terms in σw that lie in d-dimensional irreducible repre-

sentations of sl2, we must then have

[ǫ0, (σw)
(d)
2w ] ∈ u (6.63)

separately for each (odd) d ≥ 1. When d ≥ 3, the terms [ǫ0, (σw)
(d)
2w ] ∈ u are non-zero since

highest-weight vectors of (d ≥ 3)-dimensional sl2 representations have h-eigenvalue ≥ 2.
Then, thanks to the equality12

(σw)
(d)
2w =

4

(d− 1)(d+ 1)
[ǫ∨0 , [ǫ0, (σw)

(d)
2w ]] , (6.64)

we see that for d ≥ 3, the term (σw)
(d)
2w itself lies in u since u is an sl2-module by Theorem

5.2.1.
When d = 1, the term [ǫ0, (σw)

(1)
2w ] = 0 and therefore we cannot use (6.63) to conclude

that (σw)
(1)
2w lies in u; indeed we know that it cannot lie in u since otherwise all of σw would,

contradicting (i). This proves that the arithmetic terms zw of σw form a one-dimensional sl2
representation in key degree.

Finally, (iii) follows directly from (6.60), since this shows that [ǫk, σw] ∈ u and zw is the
only term of σw not already in u. �

7 Recursive high-order computations of σw and [zw, ǫk]

In this section, we combine representation theory of sl2 with Theorem 5.4.1, particularly
part (vii) recalled below, to perform explicit high-order computations of σw and [zw, ǫk] in

terms of nested brackets of ǫ
(j)
k .

12The prefactor follows from the fact that the sl2 properties of [ǫ0, (σw)
(d)
2w ] are identical to ǫ

( d+1

2
)

d+1 , where

the action of the lowering operator adǫ∨
0
yields 1

4 (d− 1)(d+ 1)ǫ
(d−1

2
)

d+1 by (5.12).
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7.1 Proof and first consequences of Theorem 5.4.1 (vii)

Proposition 7.1.1 (Theorem 5.4.1 (vii)). Let BFk := Bk

k!
for k ≥ 2, and set

N := −ǫ0 +
∞∑

k=4

(k − 1)BFkǫk . (7.1)

Then for all odd w ≥ 3 we have

[N, σw] = 0 ∈ Der0L̂ie[a, b] . (7.2)

Proof. The proof of this result is given in section 27 of [21] based on sections 12 and 13
of [79], so we simply indicate the essential argument here. In the framework set forth in

Remark 5.2.2, we noted that the two profinite groups ŜL2(Z) and the absolute Galois group
Gal(Q/Q) both act naturally as automorphisms on the profinite fundamental group π̂1(E∞)
of the nodal elliptic curve, where SL2(Z) is identified with the fundamental group of the

moduli spaceM1,1. There is a distinguished element in ŜL2(Z) on which Gal(Q/Q) acts via

its abelian quotient Gal(Q
ab
/Q): this is the element corresponding to a small loop around

the degenerate point τ = i∞ in the moduli space (or as Hain–Matsumoto describe it, a
small loop around q = 0 in the q-disk where q = e2πiτ ). Thus in the pro-unipotent version,
or rather the associated Lie algebra version, the arithmetic part S corresponding to the
Galois action commutes with the image of this element in the Lie algebra u ⋊ sl2. There
are various ways of showing that this image is equal to the element N defined in (7.1); the
method used in section 12 of [79] is to identify it as the residue at q = 0 of the restriction of
the KZB connection (see appendix A) to a first order neighborhood of the degenerate nodal
curve. �

In the remainder of this section, the commutation relation (7.2) will be applied to recur-
sively determine the infinite series expansions of σw as in (5.46) to (5.50) from the finitely
many terms in degree ≤ 2w. The finitely many contributions to σw not yet determined by
(7.2) are precisely the highest-weight vectors of sl2, i.e. the elements in the kernel of adǫ0.
By Theorem 5.4.1 (iv), these highest-weight-vector contributions to σw occur only up to and
including key degree 2w which explains the finite number of them for each w.

For example, when w = 3, the key degree is 6 and feeding the highest-weight vector
contributions −1

2
ǫ
(2)
4 and z3 into (7.2) determines all of σ3, see (7.22) below for the exact

result. When w = 5, the highest-weight vectors − 1
24
ǫ
(4)
6 , − 5

48
[ǫ
(1)
4 , ǫ

(2)
4 ] and z5 occurring in

the low-degree part of σ5 feed into (7.2) and determine all of σ5.
13

Our construction of σw from finitely many highest-weight vectors will be recursive in the
modular depth of its geometric contributions which we define as follows:

13The analogous highest-weight vectors in the expansion (5.49) that completely determine σ7 are given

by − 1
720 ǫ

(6)
8 at degree 8, by 7

1152 ([ǫ
(2)
4 , ǫ

(3)
6 ] − [ǫ

(1)
4 , ǫ

(4)
6 ]) at degree 10, by 1

13824 ([ǫ
(1)
6 , ǫ

(4)
6 ] − [ǫ

(2)
6 , ǫ

(3)
6 ]) and

− 661
57600 ([ǫ

(1)
4 , [ǫ

(1)
4 , ǫ

(2)
4 ]] + [ǫ

(2)
4 , [ǫ

(2)
4 , ǫ4]]) at degree 12 and finally z7 at key degree 14.
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Definition 7.1.2. Nested brackets [[. . . [[ǫ
(j1)
k1
, ǫ

(j2)
k2

], ǫ
(j3)
k3

], . . .], ǫ
(jr)
kr

] of r derivations ǫ
(j)
k in u

are said to have modular depth r. The modular depth forms a natural increasing filtration
on u, but not a grading, as shown for example by the Pollack relation (5.19) which can be
viewed as an equality between linear combinations of terms of modular depth 2 with two
terms of modular depth 3.

In addition to the infinitely many terms in the series expansion of σw above key degree, the
recursive method of section 7.3 will completely determine the explicit form of the brackets
[zw, ǫk] of the arithmetic contributions zw to the zeta generators. We reiterate that, by
Theorem 5.4.1 (v) and (vi), the non-geometric part zw of σw is concentrated in a one-
dimensional sl2 representation at key degree 2w and gives rise to brackets [zw, ǫk] ∈ u.

7.2 sl2 prerequisites

We start by organizing u into representations of the subalgebra sl2 of Der0Lie[a, b], and
describing its irreducible pieces; in particular we determine the highest- and lowest-weight
vectors of each one.

In view of the nilpotency adk−1
ǫ0

ǫk = 0 (see (5.8)), the non-zero ǫ
(j)
k = adj

ǫ0
ǫk for fixed

even k and j = 0, 1, . . . , k − 2 form a (k − 1)-dimensional irreducible representation of sl2,
which we denote by V (ǫk). The generators ǫ0, ǫ

∨
0 , h of sl2 permute the elements of V (ǫk)

simply by adǫ0ǫ
(j)
k = ǫ

(j+1)
k , (5.11) and (5.12), identifying adǫ0 and adǫ∨

0
as the raising and

lowering operators for the eigenvalues of h, respectively. All irreducible representations of
sl2 inside u are formed from nested commutators of the ǫ

(j)
k , and they are all isomorphic

(as sl2-representations) to some V (ǫk) for even k ≥ 2. Note that each odd-dimensional
sl2-representation occurs infinitely many times in u, and they can be arranged by modular
depth.

The collections of commutators [ǫ
(j1)
k1
, ǫ

(j2)
k2

] for fixed k1, k2 and ji = 0, 1, . . . , ki−2 sit inside
the reducible tensor-product representations V (ǫk1)⊗V (ǫk2) of sl2 which can be decomposed
into the following (r − 1)-dimensional irreducible representations V (ǫr) of sl2:

V (ǫk1)⊗ V (ǫk2) =

k1+k2−2⊕

r=|k1−k2|+2
r∈2Z

V (ǫr) . (7.3)

Since r is restricted to even values, the dimensions of the irreducible representations of sl2
in iterated tensor products of V (ǫki) are always odd.

7.2.1 Projectors to lowest-weight vectors

The projection of the commutators [ǫ
(j1)
k1
, ǫ

(j2)
k2

] at modular depth two into the irreducible
representations V (ǫr) on the right-hand side of (7.3) is implemented by

td(ǫk1 , ǫk2) :=
(d−2)!

(k1−2)!(k2−2)!

d−2∑

i=0

(−1)i
(k1−2−i)!(k2−d+i)!

i!(d−2−i)!
[ǫ
(i)
k1
, ǫ

(d−2−i)
k2

] (7.4)
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with d = 1
2
(k1 + k2 − r + 2) and therefore 2 ≤ d ≤ min(k1, k2). In case of k1 = k2, the

td(ǫk, ǫk) at even values of d vanish.
The outcomes td(ǫk1, ǫk2) of the projectors in (7.4) are lowest-weight vectors (see Defi-

nition 5.1.3) of the V (ǫr) in the tensor product (7.3). The rest of the (r − 1)-dimensional
irreducible representations in u at modular depth two is obtained from adj

ǫ0
td(ǫk1 , ǫk2) with

j = 0, 1, . . . , r − 2 and terminates due to adr−1
ǫ0 td(ǫk1 , ǫk2) = 0.

Since td1(ǫk1, ǫk2) is a lowest-weight vector it can be inserted on the same footing as ǫr
with r = k1 + k2 − 2d1 + 2 into another operation (7.4). For instance,

td2(ǫk3, t
d1(ǫk1 , ǫk2)) =

(d2−2)!

(k3−2)!(r−2)!

d2−2∑

i=0

(−1)i
(k3−2−i)!(r−d2+i)!

i!(d2−2−i)!

× [ǫ
(i)
k3
, add2−2−i

ǫ0
td1(ǫk1, ǫk2)] (7.5)

is the lowest-weight vector of a (k1 + k2 + k3 − 2d1 − 2d2 + 3)-dimensional irreducible sl2
representation in the triple tensor product V (ǫk1)⊗V (ǫk2)⊗V (ǫk3) which may be decomposed
into irreducibles by iterating (7.3). Iterations of the td projectors (7.4) as exemplified in (7.5)
are instrumental for compactly representing the contributions to [zw, ǫk] at modular depth
three in section 7.4.2 below.

7.2.2 Projectors to highest-weight vectors

One can similarly generate highest-weight vectors of the the irreducible representations V (ǫr)
in V (ǫk1)⊗ V (ǫk2) and tensor products at higher modular depth via

sd(ǫk1, ǫk2) :=
(d−2)!

(k1−2)!(k2−2)!

d−2∑

i=0

(−1)i[ǫ
(k1−2−i)
k1

, ǫ
(k2−d+i)
k2

] (7.6)

where again d = 1
2
(k1 + k2 − r + 2), as long as 2 ≤ d ≤ min(k1, k2). Nevertheless, we will

see that an extension of (7.6) to d > min(k1, k2) will be useful to bring certain contributions
to σw into a convenient form, though the highest-weight vector property [ǫ0, s

d(ǫk1, ǫk2)] = 0
only holds for d ≤ min(k1, k2). Since the entries ǫk1 , ǫk2 of the sd-operation in (7.6) are
lowest-weight vectors, the nested brackets relevant to modular depth m ≥ 3 are generated
by m iterations of tdi and a single sd operation for the outermost bracket. For instance,

sd2(ǫk3 , t
d1(ǫk1 , ǫk2)) =

(d2−2)!

(k3−2)!(r−2)!

d2−2∑

i=0

(−1)i[ǫ
(k3−2−i)
k3

, adk2−d2+i
ǫ0 td1(ǫk1 , ǫk2)] (7.7)

at suitable values for d1, d2 (with r = k1 + k2 − 2d1 + 2) generate all highest-weight vectors
of the irreducible sl2 representations in V (ǫk1) ⊗ V (ǫk2) ⊗ V (ǫk3). In general, iterations of
sdm−1tdm−2 . . . td1 conveniently capture the highest-weight-vector contributions to σw at each
modular depth that are not yet determined by the recursion below based on [N, σw] = 0 (see
Theorem 5.4.1 (vii)).
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7.2.3 sl2 representations of Pollack relations

The Pollack relations among ǫ
(j)
k with k ≥ 4 and 0 ≤ j ≤ k − 2 in Remark 5.1.6 fall into

irreducible sl2 representations of dimension ≥ 11.14 As exemplified by the second relation in
(5.18), Pollack relations generically mix contributions of different modular depths ≥ 2.

7.3 Recursive higher-order computations of σw and [zw, ǫk]

Based on the vanishing of [N, σw] in section 7.1 and the sl2 prerequisites of section 7.2,
we shall now set up the recursive high-order computations of σw and [zw, ǫk] in terms of

nested brackets of ǫ
(j)
k . For this purpose, we parametrize the desired expressions according

to modular depth.

Definition 7.3.1. Given that σw − zw and [zw, ǫk] both lie in u for any odd w ≥ 3 and even
k ≥ 4 by Theorem 5.4.1 (v) and (vi), we expand

σw = zw + σ{1}
w + σ{2}

w + σ{3}
w + . . .+ σ{w}

w , (7.8)

[zw, ǫk] = [zw, ǫk]
{1} + [zw, ǫk]

{2} + [zw, ǫk]
{3} + . . .+ [zw, ǫk]

{w+1} ,

where σ
{m}
w and [zw, ǫk]

{m} refer to combinations of [[. . . [[ǫ
(j1)
k1
, ǫ

(j2)
k2

], ǫ
(j3)
k3

], . . .], ǫ
(jm)
km

] ∈ u at
modular depth m = 1, 2, . . . , w + 1. The properties of the arithmetic derivations zw ∈
Der0L̂ie[a, b] outside u can be found in Theorem 5.4.1 (vi) — a- and b-degree w and vanishing
commutators [zw, ǫ0] = [zw, ǫ

∨
0 ] = 0.

Remark 7.3.2. The maximum modular depth w of σw and w + 1 of [zw, ǫk] in (7.8) both
follow from the fact that each ǫm with m ≥ 0 has b-degree 1: the b-degrees w of σw (see

Theorem 5.4.1 (ii)) and w + 1 of [zw, ǫk] are incompatible with modular depths σ
{m≥w+1}
w

and [zw, ǫk]
{m≥w+2}. The well-known vanishing of [zw, ǫk]

{1} [26, 27, 21] follows from the fact

that only expression in u compatible with its a- and b-degrees is ǫ
(w)
2w+k which violates the

lowest-weight-vector property of zw and ǫk.

Remark 7.3.3. We recall that generic Pollack relations among ǫ
(j)
k with k ≥ 4 and 0 ≤ j ≤

k−2 in Remark 5.1.6 relate nested brackets of different modular depth ≥ 2. Accordingly, the
individual contributions σ

{m≥2}
w and [zw, ǫk]

{m≥2} to the right-hand side of (7.8) are usually
not well-defined before specifying a scheme of applying those Pollack relations that mix
modular depths.15 We will specify a choice of σ

{2}
w and [zw, ǫk]

{2} for all odd w ≥ 3 in (7.15)

14More specifically, Pollack relations whose relative factors in the modular-depth-two contributions

[ǫ
(j1)
k1

, ǫ
(j2)
k2

] are governed by holomorphic cusp forms of modular weight w [26] fall into irreducible sl2 repre-
sentations of dimension w − 1.

15For instance, the image of the second relation in (5.18) under ad10ǫ0 can be used to convert contributions

∼ s3(ǫ4, ǫ12), s
3(ǫ6, ǫ10) and s3(ǫ8, ǫ8) to σ

{2}
13 into contributions ∼ [ǫ

(2)
4 , [ǫ

(2)
4 , ǫ

(6)
8 ]] and [ǫ

(4)
6 , [ǫ

(4)
6 , ǫ

(2)
4 ]] to

σ
{3}
13 . Similarly, the coefficient of t4(ǫ4, ǫ14) in [z3, ǫ12]

{2} can be modified through Pollack relations of degree
18 at the cost of extra terms in all of [z3, ǫ12]

{2}, [z3, ǫ12]
{3} and [z3, ǫ12]

{4}.
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and (7.18) below which eliminates some of the ambiguities in σ
{3}
w and [zw, ǫk]

{3} (those
that descend from Pollack relations involving terms of modular depth two). Nevertheless,

the recursive relations among σ
{m}
w to be derived below are valid for any scheme of applying

Pollack relations that mix different modular depths as long as the same choice is consistently
applied to all modular depths m ≥ 2.

In the companion paper [8], we study uplifts of zeta generators σw → σ̂w which no longer

act on L̂ie[a, b] and where the ǫ
(j)
k in their series expansion in u are promoted to free-algebra

generators e
(j)
k with k ≥ 4 and 0 ≤ j ≤ k − 2. The expansion of the uplifted σ̂w in terms

of e
(j)
k is determined from considerations of non-holomorphic modular forms and does not

share the ambiguities from Pollack relations. Accordingly, the uplifted σ̂w induce preferred
representations of the σ

{m}
w and [zw, ǫk]

{m} at m = 2 and partially at m = 3 which will be
followed in section 7.4.

With the notation of Definition 7.3.1 for the contributions of fixed modular depth m, we
organize the property [N, σw] = 0 as written in (7.2) according to modular depth

0 = [N, σw] = −[ǫ0, σ
{1}
w + σ{2}

w + . . .+ σ{w}
w ] (7.9)

+
∞∑

k=4

(k − 1)BFk

(
[ǫk, σ

{1}
w ] + [ǫk, σ

{2}
w ] + . . .+ [ǫk, σ

{w}
w ]

− [zw, ǫk]
{1} − [zw, ǫk]

{2} − . . .− [zw, ǫk]
{w+1}

)
,

where BFk :=
Bk

k!
, and we have used sl2 invariance [ǫ0, zw] = 0.

Proposition 7.3.4. Upon isolating the contributions to (7.9) at fixed modular depth m =
1, 2, . . . , w + 1, we deduce

[ǫ0, σ
{m}
w ] +

∞∑

k=4

(k − 1)BFk[zw, ǫk]
{m} =

∞∑

k=4

(k − 1)BFk[ǫk, σ
{m−1}
w ] . (7.10)

In particular:

(i) By σ
{0}
w = 0 and [zw, ǫk]

{1} = 0 (see Remark 7.3.2), the m = 1 instance of (7.10)

enforces [ǫ0, σ
{1}
w ] = 0. Hence, the only term in σ

{1}
w of modular depth one compatible

with the b-degree w of σw and (7.10) is the highest-weight vector σ
{1}
w = − 1

(w−1)!
ǫ
(w−1)
w+1

identified in Corollary 6.2.3 (i).

(ii) Applying adǫ∨
0
to both sides of (7.10) implies (m = 2, 3, . . . , w + 1)

[ǫ∨0 , [ǫ0, σ
{m}
w ]] =

∞∑

k=4

(k − 1)BFk[ǫk, [ǫ
∨
0 , σ

{m−1}
w ]] (7.11)

since both zw and ǫk are annihilated by adǫ∨
0
. This is the recursive approach announced

earlier on to determine σ
{m}
w from its precursor at lower modular depth σ

{m−1}
w up
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to the kernel of adǫ∨
0
adǫ0. Since adǫ∨

0
is invertible on the image of adǫ0, see (ii) of

Corollary 6.3.1 with Y ∈ adǫ∨
0
u on the right-hand side composed of [ǫk, [ǫ

∨
0 , σ

{m−1}
w ]] =

[ǫ∨0 , [ǫk, σ
{m−1}
w ]], the only part of σ

{m}
w which is not yet determined by (7.11) is in the

kernel of adǫ0, i.e. a combination of highest-weight vectors of sl2. By Theorem 5.4.1
(iv) proven in section 6.3.1, the highest-weight vectors in σw all occur below or at key

degree. In fact, zw gathers all highest-weight vectors in σkey
w by definition, so σ

{m}
w at

degree 2w is free of highest-weight vectors. Hence, the missing information on σ
{m}
w

inaccessible from (7.11) amounts to a finite number of terms at degree ≤ 2w − 2.

(iii) By inserting the expression for σ
{m}
w modulo highest-weight vectors found in (ii) into

(7.10) and isolating terms of degree 2w + k, one can solve for [zw, ǫk]
{m}. Note that

contributions to [zw, ǫk] of modular depth m determined from [N, σw] = 0 only depend
on the highest-weight vectors in σw up to and including modular depth m− 1.

(iv) Given that σ
{1}
w = − 1

(w−1)!
ǫ
(w−1)
w+1 , the m = 2 instances of (7.10) and (7.11) can be

written more explicitly as

[ǫ0, σ
{2}
w ] +

∞∑

k=4

(k − 1)BFk[zw, ǫk]
{2} = −

1

(w − 1)!

∞∑

k=4

(k − 1)BFk[ǫk, ǫ
(w−1)
w+1 ] (7.12)

and

[ǫ∨0 , [ǫ0, σ
{2}
w ]] = −

1

(w − 2)!

∞∑

k=4

(k − 1)BFk[ǫk, ǫ
(w−2)
w+1 ] . (7.13)

Inverting the operation adǫ∨
0
adǫ0 determines

σ{2}
w = −

w∑

d=5

BFd−1s
d(ǫd−1, ǫw+1)−

1

2
BFw+1s

w+2(ǫw+1, ǫw+1)

+

∞∑

k=w+3

BFk

w−2∑

j=0

(−1)j
(
k−2
j

)−1

j!(w−2−j)!
[ǫ
(w−2−j)
w+1 , ǫ

(j)
k ] mod Ker(adǫ0) , (7.14)

where mod Ker(adǫ0) refers to highest-weight vectors to be proposed in (7.18) below.
All instances of the brackets sd(ǫk1 , ǫk2) defined by (7.6) that occur in (7.14) have d >
min(k1, k2) and are therefore not highest-weight vectors. Upon insertion of (7.14) into
(7.12) and isolating terms of degree 2w + k, we reproduce the closed-form expression
at modular depth two known form [21]

[zw, ǫk]
{2} =

BFw+k−1

BFk
tw+1(ǫw+1, ǫw+k−1) . (7.15)

(v) The instance of (7.10) at the maximum value m = w + 1 simplifies to

∞∑

k=4

(k − 1)BFk[zw, ǫk]
{w+1} =

∞∑

k=4

(k − 1)BFk[ǫk, σ
{w}
w ] (7.16)
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by σ
{w+1}
w = 0. Hence, the contribution to [zw, ǫk] of highest modular depth w + 1 can

simply be determined from the highest-modular depth terms in σw by isolating the parts
of degree 2w + k in (7.16). Validity of (7.10) at m = 1, 2, . . . , w + 1 — finitely many
steps in the recursion in the modular depth — is sufficient for [N, σw] = 0, see (7.9).

Note that parts (ii) and (iii) of Proposition 7.3.4 can also be unified by the decomposition

of [ǫk, σ
{m−1}
w ] on the right-hand side of (7.10) into the image of adǫ0 and the kernel of adǫ∨

0
,

[ǫ0, σ
{m}
w ] =

∞∑

k=4

(k − 1)BFk[ǫk, σ
{m−1}
w ]

∣∣
Im(adǫ0

)
,

∞∑

k=4

(k − 1)BFk[zw, ǫk]
{m} =

∞∑

k=4

(k − 1)BFk[ǫk, σ
{m−1}
w ]

∣∣
Ker(adǫ∨

0
)
. (7.17)

This decomposition is unique since Ker(adǫ∨
0
) projects the individual terms of [ǫk, σ

{m−1}
w ] to

lowest-weight vectors which do not occur in the image of adǫ0.

7.4 Applying the recursion for σ
{m}
w and [zw, ǫk]

{m}

In this section, we gather explicit results for zeta generators and commutators [zw, ǫk] at
modular depth 2 ≤ m ≤ 4 that go considerably beyond the state of the art and found
fruitful applications in the construction of non-holomorphic modular forms [8].

7.4.1 Zeta generators at modular depth two

The relation (7.13) for the modular-depth-two contributions σ
{2}
w to the zeta generators

determines the infinite series of terms in (7.14) that are not highest-weight vectors. We shall
now augment these terms by a conjectural closed formula for the highest-weight vectors in
σ
{2}
w given by the first line of

σ{2}
w = −

1

2

w−2∑

d=3

BFd−1

BFw−d+2

w−1∑

k=d+1

BFk−d+1BFw−k+1s
d(ǫk, ǫw−k+d)

−
w∑

d=5

BFd−1s
d(ǫd−1, ǫw+1)−

1

2
BFw+1s

w+2(ǫw+1, ǫw+1)

+

∞∑

k=w+3

BFk

w−2∑

j=0

(−1)j
(
k−2
j

)−1

j!(w−2−j)!
[ǫ
(w−2−j)
w+1 , ǫ

(j)
k ] . (7.18)

This conjecture for the complete parts σ
{2}
w of modular depth two is readily checked to

reproduce the terms [ǫ
(j1)
k1
, ǫ

(j2)
k2

] in the examples (5.46) to (5.50) at w ≤ 9. The first line

of (7.18) gathers highest-weight vectors such as − 5
48
[ǫ
(1)
4 , ǫ

(2)
4 ] in σ

{2}
5 and 7

1152
([ǫ

(2)
4 , ǫ

(3)
6 ] −
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[ǫ
(1)
4 , ǫ

(4)
6 ])+ 1

13824
([ǫ

(1)
6 , ǫ

(4)
6 ]− [ǫ

(2)
6 , ǫ

(3)
6 ]) in σ

{2}
7

16 which have been tested for all cases of degree
≤ 22 and are in general conjectural. Note that the highest-weight-vector contributions to
σ
{2}
w in the first line of (7.18) are in one-to-one correspondence with the τ → i∞ asymptotics

of the generalized Eisenstein series F
+(s)
m,k in [84, 85] at m + k + s = w + 1 upon assembling

their iterated-integral representations from the generating series of [8].
The images of the terms sd(ǫk1 , ǫk2) under the switch operation in Definition 5.1.4 have

b-degree or depth d, and their d = 3 instances line up with Brown’s general formula for the
depth-three contributions to τw [27]. However, the choice of τw≥11 in the reference does not
match the canonical zeta generators in this work since redefinitions via nested brackets of
τv at v < w have been used in [27] to remove contributions of modular depth and b-degree
three. The second and third line of (7.18) are rigorously derived by solving (7.13) and,
together with the conjectural highest-weight vectors at depth d ≥ 5 in the first line, furnish
a partial generalization of Brown’s result beyond depth three: On the one hand, (7.18) is

claimed to capture all contributions [ǫ
(j1)
k1
, ǫ

(j2)
k2

] to σw, regardless of their values of j1, j2, k1, k2
or depth in the sense of [27]. On the other hand, terms in σw at depth or b-degree d involve

contributions of modular depth up to and including d, and closed formulae for σ
{m≥3}
w akin

to (7.18) are currently out of reach.
Note that, following the comments below (7.6), the sd(ǫk1 , ǫk2) in the second line of (7.18)

have d > min(k1, k2) and are therefore not highest-weight vectors. Moreover, the expression
(7.18) for contributions to σw of modular depth two can be rewritten in a variety of ways

via Pollack relations among ǫ
(j)
k , see Remark 7.3.3. Hence, the closed formula (7.18) for σ

{2}
w

realizes a specific choice of distributing terms between different modular depths.

7.4.2 Commutators of arithmetic derivations at modular depth three

By Proposition 7.3.4 (iii), the highest-weight vectors in σw at modular depth m determine
the contributions to the brackets [zw, ǫk] at modular depth m+1 via (7.10). The conjectural

expressions (7.18) for σ
{2}
w therefore translate into expressions for [zw, ǫk]

{3} that generalize
the simple closed formula (7.15) for terms of modular depth two.

Contributions to [z3, ǫk] and [z5, ǫk] at modular depth ≥ 3 and low values of k have been
firstly reported in [26] and the ancillary files of [7], respectively. Moreover, the combinato-
rial tools developed in [26] can be used to determine more general expressions for [zw, ǫk].

Our conjecture (7.18) for σ
{2}
w gives access to arbitrary [zw, ǫk]

{3}, but the expressions re-
sulting from the representation-theoretic manipulations become increasingly unwieldy with
growing w. Hence, we content ourselves to giving the following two infinite families of com-
mutation relations beyond the state of the art with arbitrary even k ≥ 4 (see (7.5) for the

16The analogous highest-weight vectors in σ
{2}
9 resulting from the first line of (7.18) are given by

1
5184 ([ǫ

(2)
4 , ǫ

(5)
8 ] − [ǫ

(1)
4 , ǫ

(6)
8 ]) and − 7

20736 [ǫ
(3)
6 , ǫ

(4)
6 ] at degree 12, 7

4147200 ([ǫ
(1)
6 , ǫ

(6)
8 ] − [ǫ

(2)
6 , ǫ

(5)
8 ] + [ǫ

(3)
6 , ǫ

(4)
8 ] −

[ǫ
(4)
6 , ǫ

(3)
8 ]) at degree 14 and − 1

26127360 ([ǫ
(1)
8 , ǫ

(6)
8 ]− [ǫ

(2)
8 , ǫ

(5)
8 ] + [ǫ

(3)
8 , ǫ

(4)
8 ]) at degree 16.
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iteration of the projector td to lowest-weight vectors),

[z3, ǫk]
{3} =

3BF4BFk−2

BFk

{
−
(k−3)

(k−1)
t2(ǫ4, t

3(ǫ4, ǫk−2)) +
(k−2)

k
t3(ǫ4, t

2(ǫ4, ǫk−2))

}
(7.19)

+
1

(k−1)BFk

k−4∑

ℓ=6

(ℓ−1)BFℓBFk+2−ℓ

×

{
−
2(k−ℓ+1)

(k−ℓ+2)
t2(ǫℓ, t

3(ǫ4, ǫk+2−ℓ)) +
ℓ−2

k
t3(ǫℓ, t

2(ǫ4, ǫk+2−ℓ))

}

and

[z5, ǫk]
{3} =

BFk+2BF
3
2

2BF4BFk

t4(ǫk+2, t
3(ǫ4, ǫ4)) (7.20)

+
5BF6BFk−2

BFk

{
−
(k−5)

(k−1)
t2(ǫ6, t

5(ǫ6, ǫk−2)) +
2(k−3)(k−4)

k(k−1)
t3(ǫ6, t

4(ǫ6, ǫk−2))

−
2(k−2)(k−3)

k(k+1)
t4(ǫ6, t

3(ǫ6, ǫk−2)) +
(k−2)

(k+2)
t5(ǫ6, t

2(ǫ6, ǫk−2))

}

+ BF4

{
−
12(k−3)

k(k−1)
t2(ǫ4, t

5(ǫ6, ǫk)) +
36(k−2)

k2(k+1)
t3(ǫ4, t

4(ǫ6, ǫk))

−
24

k(k+1)(k+2)
t4(ǫ4, t

3(ǫ6, ǫk))−
9(k−2)

5k
t3(ǫk, t

4(ǫ4, ǫ6))

−
2(k−2)(k−3)

k(k+1)
t4(ǫk, t

3(ǫ4, ǫ6))−
(k−2)(k−3)(k−4)

k(k+1)(k+2)
t5(ǫk, t

2(ǫ4, ǫ6))

}

+
1

(k−1)BFk

k−4∑

ℓ=8

(ℓ−1)BFℓBFk+4−ℓ

{
−
4(k−ℓ+1)

(k−ℓ+4)
t2(ǫℓ, t

5(ǫ6, ǫk+4−ℓ))

+
6(ℓ−2)(k−ℓ+2)(k−ℓ+3)

k(k−ℓ+4)(k−ℓ+5)
t3(ǫℓ, t

4(ǫ6, ǫk+4−ℓ))

−
4(ℓ−3)(ℓ−2)(k−ℓ+3)

k(k+1)(k−ℓ+6)
t4(ǫℓ, t

3(ǫ6, ǫk+4−ℓ))

+
(ℓ−2)(ℓ−3)(ℓ−4)

k(k+1)(k+2)
t5(ǫℓ, t

2(ǫ6, ǫk+4−ℓ))

}
.

The remaining brackets [zw, ǫk]
{3} at degree ≤ 20 are given by

[z7, ǫ4]
{3} =

BF8BF
2
2

BF6
t6(ǫ8, t

3(ǫ4, ǫ6)) +
BF6BF

2
2

2BF4
t4(ǫ6, t

5(ǫ6, ǫ6)) (7.21)

− BF6

{
15

14
t3(ǫ4, t

6(ǫ6, ǫ8)) +
5

14
t4(ǫ4, t

5(ǫ6, ǫ8))

+
5

7
t5(ǫ4, t

4(ǫ6, ǫ8)) +
3

28
t6(ǫ4, t

3(ǫ6, ǫ8))

}
,
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[z7, ǫ6]
{3} =

BF10BF4BF
2
2

BF2
6

t6(ǫ10, t
3(ǫ4, ǫ6)) +

BF8BF
2
2

2BF6
t4(ǫ8, t

5(ǫ6, ǫ6))

−
BF4BF8

BF6

{
5

2
t5(ǫ8, t

4(ǫ4, ǫ8)) +
7

2
t6(ǫ8, t

3(ǫ4, ǫ8)) +
14

5
t7(ǫ8, t

2(ǫ4, ǫ8))

}

− BF6

{
10

7
t3(ǫ6, t

6(ǫ6, ǫ8)) +
50

49
t4(ǫ6, t

5(ǫ6, ǫ8))

+
25

84
t5(ǫ6, t

4(ǫ6, ǫ8)) +
1

42
t6(ǫ6, t

3(ǫ6, ǫ8))

}
.

7.4.3 Exact results for σ3 and z3

Once the complete set of highest-weight vectors for a given σw is available, then the recursion
(7.10) determines all-degree expressions for both σ

{2}
w , σ

{3}
w , . . . , σ

{w}
w and [zw, ǫk]

{2}, [zw, ǫk]
{3},

. . . , [zw, ǫk]
{w+1}. With the highest-weight vectors for σ3, σ5, σ7 noted in section 7.1, there is

no obstruction to algorithmically assembling the exact results for the expansions of σw and
[zw, ǫk] at w ≤ 7.

We shall here display the exact results for σ3 and [z3, ǫk] which terminate with modular
depth three and four, respectively. The all-order expansion of σ3 is given by,

σ3 = −
1

2
ǫ
(2)
4 + z3 +

1

480
[ǫ4, ǫ

(1)
4 ] +

∞∑

k=6

BFk

(
[ǫ
(1)
4 , ǫk]−

[ǫ4, ǫ
(1)
k ]

k−2

)

+

∞∑

m=4

∞∑

r=6

(m−1)BFmBFr

m+r−2

[
ǫm, [ǫ4, ǫr]

]
, (7.22)

where the second line is obtained by solving (7.11) at m = w = 3 for σ
{3}
3 with the expression

for σ
{2}
3 determined by the first line. The action of the arithmetic part z3 on a, b can be

found in (5.47). The expression for [z3, ǫk] resulting from [N, σ3] = 0 can be assembled by
combining [z3, ǫk]

{2} = BFk+2

BFk
t4(ǫ4, ǫk+2) from (7.15) with the expression (7.19) for [z3, ǫk]

{3}

and the degree-(2w + k) parts of
∞∑

k=4

(k − 1)BFk[z3, ǫk]
{4} =

∞∑

k=4

(k − 1)BFk

∞∑

m=4

∞∑

r=6

(m− 1)BFmBFr

(m+ r − 2)
[ǫk, [ǫm, [ǫ4, ǫr]]] (7.23)

which follows from (7.16) at w = 3. The lowest-degree examples of [z3, ǫk]
{4} occur in

[z3, ǫ12] =
BF14

BF12
t4(ǫ4, ǫ14) +

BF4BF10

BF12

{
−
27

11
t2(ǫ4, t

3(ǫ4, ǫ10)) +
5

2
t3(ǫ4, t

2(ǫ4, ǫ10))

}

+
BF6BF8

BF12

{
−
35

44
t2(ǫ6, t

3(ǫ4, ǫ8)) +
5

33
t3(ǫ6, t

2(ǫ4, ǫ8))

−
35

33
t2(ǫ8, t

3(ǫ4, ǫ6)) +
7

22
t3(ǫ8, t

2(ǫ4, ǫ6))

}

+
9BF2

4BF6

88BF12

[ǫ4, [ǫ4, [ǫ4, ǫ6]]]
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as well as

[z3, ǫ14] =
BF16

BF14
t4(ǫ4, ǫ16) +

BF4BF12

BF14

{
18

7
t3(ǫ4, t

2(ǫ4, ǫ12))−
33

13
t2(ǫ4, t

3(ǫ4, ǫ12))

}

+
BF6BF10

BF14

{
10

91
t3(ǫ6, t

2(ǫ4, ǫ10))−
9

13
t2(ǫ6, t

3(ǫ4, ǫ10))

+
36

91
t3(ǫ10, t

2(ǫ4, ǫ6))−
15

13
t2(ǫ10, t

3(ǫ4, ǫ6))

}

+
BF2

8

BF14

{
3

13
t3(ǫ8, t

2(ǫ4, ǫ8))−
49

52
t2(ǫ8, t

3(ǫ4, ǫ8))

}

+
9BF2

4BF8

130BF14

[ǫ4, [ǫ4, [ǫ4, ǫ8]]] +
27BF4BF

2
6

104BF14

[ǫ4, [ǫ6, [ǫ4, ǫ6]]] ,

also see appendix E.1 of [8] for [z3, ǫk] at k = 4, 6, 8, 10.

7.4.4 Highest-weight vectors at modular depth three

While a comprehensive study of highest-weight vector contributions to σ
{m≥3}
w is left for the

future, their instances at w ≤ 11 are accessible from the ancillary files of [8]. The simplest
highest-weight vector at modular depth three occurs in the expansion (5.49) of σ7 at degree
12 and can be compactly written as − 661

14400
s3(ǫ4, t

3(ǫ4, ǫ4)) through the combination (7.7) of
sd and td operations. This shorthand also streamlines the expansions of σ9, σ11 to

σ9 = −
ǫ
(8)
10

8!
+

5s3(ǫ4, ǫ8)

18
+

7s3(ǫ6, ǫ6)

72
+
s5(ǫ4, ǫ10)

720
−

7s5(ǫ6, ǫ8)

1440
(7.24)

+
34921s2(ǫ4, t

4(ǫ4, ǫ6))

1134000
+

2587s3(ǫ4, t
3(ǫ4, ǫ6))

37800
−

529s4(ǫ4, t
2(ǫ4, ǫ6))

14400

−
s7(ǫ6, ǫ10)

30240
+
s7(ǫ8, ǫ8)

12096
+
s5(ǫ4, t

3(ǫ4, ǫ8))

2592
+

7s5(ǫ4, t
3(ǫ6, ǫ6))

51840

−
34921s4(ǫ6, t

4(ǫ6, ǫ4))

47628000
−

2587s5(ǫ6, t
3(ǫ6, ǫ4))

1587600
+

529s6(ǫ6, t
2(ǫ6, ǫ4))

604800
149s3(ǫ4, t

3(ǫ4, t
3(ǫ4, ǫ4)))

13824
−

149s4(ǫ4, t
2(ǫ4, t

3(ǫ4, ǫ4)))

69120
+ . . .

σ11 = −
ǫ
(10)
12

10!
+

11s3(ǫ4, ǫ10)

40
+

11s3(ǫ6, ǫ8)

60
+

242407s2(ǫ4, t
2(ǫ4, ǫ6))

14735232
+
s5(ǫ4, ǫ12)

720

−
s5(ǫ6, ǫ10)

216
−

7s5(ǫ8, ǫ8)

4320
+

11090423s2(ǫ4, t
4(ǫ4, ǫ8))

309439872
+

3197s3(ǫ4, t
3(ǫ4, ǫ8))

57600

−
2983s4(ǫ4, t

2(ǫ4, ǫ8))

86400
+

148753s3(ǫ4, t
3(ǫ6, ǫ6))

7367616
+

490853s3(ǫ6, t
3(ǫ6, ǫ4))

17191104

+
156805s4(ǫ6, t

2(ǫ6, ǫ4))

14735232
+ c s2(ǫ4, t

2(ǫ4, t
3(ǫ4, ǫ4))) + . . . ,
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where the ellipsis refers to all contributions of degree ≥ 18, and the coefficient c ∈ Q of
the first modular-depth-four contribution to σ11 in the last line has not yet been computed.
It is, however, a highest weight vector and entirely fixed by our construction. Note that
the sd2(ǫk3 , t

d1(ǫk1 , ǫk2)) only furnish highest-weight vectors if d2 ≤ min(k3, r), where r =
k1 + k2 − 2d1 + 2. Accordingly, all the terms sd2(ǫk3 , t

d1(ǫk1 , ǫk2)) of modular depth three
in (7.24) are highest-weight vectors with the exception of the contributions s5(ǫ4, t

3(ǫ4, ǫ8))

and s5(ǫ4, t
3(ǫ6, ǫ6)) to σ9. The ancillary files of [8] provide all contributions to σ

{m≤3}
w at

degree ≤ 20 in machine-readable form which determines all the highest-weight vectors of
σ
{3}
9 and σ

{3}
11 .

A Deriving the topological map from the sphere to the torus

The goal of this appendix is to derive the explicit form of the map (5.29) and (5.30) be-
tween the generators x, y and a, b of the fundamental groups in genus zero and genus one,
respectively. Our derivation will be based on a formulation of the zeta generators in terms
of Knizhnik–Zamolodchikov (KZ) connections in genus zero and Knizhnik–Zamolodchikov–
Bernard (KZB) connections in genus one. The form of the KZ connection obtained from the
degeneration limit of the KZB connection then relates the generators x, y of the fundamental
group of the thrice punctured sphere to the generators a, b of the fundamental group of the
once-punctured torus.

A.1 Zeta generators in terms of the KZ connection

In this appendix we assume the conjecture that the surjection from motivic to real MZVs
is an isomorphism, and thus identify the motivic version Φm(x, y) of the modified Drinfeld
associator with Φ(x, y) as defined in (3.42). We will systematically assume that Φ(x, y) is
written in the semi-canonical basis defined in section 3.5, and use the notation

gw = Φ(x, y)|ζw (A.1)

for the canonical polynomial gw that then appears in Φ with coefficient ζw for odd w ≥ 3
(see Definition 3.3.4). The power series Φ(x, y) in (3.42) can be obtained as the path-ordered
exponential of the modified KZ connection J defined by17

J(x, y; z) =

(
x

z
+

y

1− z

)
dz , z ∈ C \ {0, 1} ,

Φ(x, y) = Pexp

(∫ 1

0

J(x, y; z)

)
, (A.2)

gw(x, y) = Φ(x, y)
∣∣
ζw

= Pexp

(∫ 1

0

[
x

z
+

y

1− z

]
dz

) ∣∣
ζw
,

17The connection J(x, y; z) differs from the classical KZ connection JKZ(x, y; z) =
(
x
z
+ y

z−1

)
dz by changing

y to −y, corresponding to the relation Φ(x, y) = ΦKZ(x,−y) between the power series Φ and the classical
Drinfeld associator (3.41) obtained by path-ordered integration of JKZ.
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where the iterated integration is taken over the simplex 0 < z1 < · · · < zr < 1, and the
convention for expanding path-ordered exponentials is

Pexp

(∫ 1

0

J(z)

)
= 1 +

∞∑

r=1

∫ 1

0

J(zr)

∫ zr

0

J(zr−1) · · ·

∫ z3

0

J(z2)

∫ z2

0

J(z1) . (A.3)

The endpoint divergences in (A.3) are understood to be regularized by passing to shuffle-
regularized versions (2.3) of the MZVs in the expansion of Φ(x, y).

Re(z)

Im(z)

•
z = 1

Cx

Re(z)

Im(z)

•
z = 1

Re(z)

Im(z)

•
z = 1

Cy

Re(z)

Im(z)

•

z = 1

Figure 3: The loops Cx and Cy around z = 0 and z = 1 anchored at the origin (upper half)
and their homotopy deformation to infinitesimal circles along with straight paths between zero
and one in case of Cy (lower half) [71]. Strictly speaking, all the contours start and end at
the tangential base point from 0 to 1 as indicated by the arrows at the origin pointing along
the positive real axis. The straight line portions of the path in the lower-right panel should
be viewed as running along the real axis between 0 and 1; they have been slightly separated
for visual convenience.

The zeta generators in genus zero are given by the Ihara derivations Dgw associated to
the polynomials gw, which act on the free Lie algebra Lie[x, y] via

Dgw(x) = 0 , Dgw(y) = [y, gw(x, y)] ; (A.4)

they can be interpreted as the coefficient of ζw in the holonomies of J(x, y; z) w.r.t. the
loops around z = 0 and z = 1, respectively. More specifically, (A.4) extracts the linearized
monodromy of the loops Cx and Cy around z = 0 and z = 1 anchored at the origin as drawn
in Figure 3, where only the first power of 2πi is retained:

Dgw(x) = −Pexp

(∫

Cx

J(x, y; z)

) ∣∣
2πiζw

,
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Dgw(y) = −Pexp

(∫

Cy

J(x, y; z)

) ∣∣
2πiζw

(A.5)

Equivalence to (A.4) can be seen as follows:

• The path-ordered exponentials of J(x, y; z) associated with the infinitesimal circles
around 0 and 1 in counter-clockwise orientation are given by e2πix and e−2πiy, respec-
tively.

• Since Cx is homotopic to an infinitesimal circle around z = 0, we have

Pexp

(∫

Cx

J(x, y; z)

)
= e2πix (A.6)

and does not contain any odd Riemann zeta values, thereby reproducing Dgw(x) = 0.

• The path Cy is homotopic to the composition of the path (0, 1) followed by an infinites-
imal circle around z = 1 and the inverse path (1, 0) as seen in the lower-right panel of
Figure 3. Hence, the path-ordered exponential can be decomposed into

Pexp

(∫

Cy

J(x, y; z)

)
= Φ(x, y)−1e−2πiyΦ(x, y) . (A.7)

By the conventions (A.3) for path-ordered exponentials, the last segment (1, 0) of the
deformed path Cy translates into the leftmost factor Φ(x, y)−1.

• Extracting the coefficient of ζw from (A.7) leads to

Pexp

(∫

Cy

J(x, y; z)

)∣∣
ζw

= e−2πiygw(x, y)− gw(x, y)e
−2πiy (A.8)

which upon linearization in 2πi reduces to −2πi[y, gw(x, y)] and reproduces the action
of Dgw on y in (A.4).

We emphasize that it will be the formulation (A.5) of zeta generators in terms of linearized
monodromies which generalizes from genus zero to genus one.

A.2 Degenerating the KZB connection

In the same way as the (modified) KZ connection (A.2) can be used to generate multiple
polylogarithms in genus zero, the Brown–Levin formulation of elliptic polylogarithms in
genus one [86] is based on the KZB connection

JKZB(A,B; z|τ) = adBF (z, adB|τ)Adz , F (z, α|τ) =
θ′1(0|τ)θ1(z + α|τ)

θ1(z|τ)θ1(α|τ)
, (A.9)

θ1(z|τ) = 2q1/8 sin(πz)
∞∏

n=1

(1− qn)(1− e2πizqn)(1− e−2πizqn) , q = e2πiτ ,
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where F (z, α|τ) is known as the Kronecker–Eisenstein series. The modular parameter τ ∈ H

of the torus takes values in the upper half plane H = {τ ∈ C , Im τ > 0}, and z, α ∈ C

live on the universal cover of the torus C/(Z + τZ). The KZB connection JKZB depends
on non-commutative indeterminates A,B, and the adjoint actions of B in adBF (z, adB|τ)
are performed after series expansion in the second argument of F . Note that the elliptic
associators of [72,20,79] are obtained from (regularized) path-ordered exponentials of (A.9),
integrated over the homology cycles of the torus.

The degeneration τ → i∞ of the Kronecker–Eisenstein series and its expansion coeffi-
cients w.r.t. the second argument α = adB is well-known to yield [87]

lim
τ→i∞

F (z, α|τ) =
1

α
+ π cot(πz)− 2

∞∑

n=1

α2n−1ζ2n . (A.10)

The limit τ → i∞ degenerates the torus to a nodal sphere. In the coordinate σ = e2πiz

of the nodal sphere, the pinched homology cycle of the degenerate torus translates into
the identification of the points σ = 0 with σ = ∞. Based on dz = dσ

2πiσ
and (A.10), the

degeneration of the KZB connection (A.9) is readily found to be

lim
τ→i∞

JKZB(A,B; z|τ) =

{
A + 2πi

(
−
1

2
+

σ

σ − 1

)
[B,A] +

∞∑

n=1

(2πi)2n
B2n

(2n)!
ad2n

B A

}
dσ

2πiσ
.

(A.11)
In order to make contact with the images t01 and t12 in (5.30) of the genus-zero generators
x, y, we redefine the non-commutative A,B in (A.9) in terms of the generators a, b introduced
in section 5.1

A = −2πia , B =
b

2πi
(A.12)

and obtain the (modified) KZ connection (A.2) at x = t01 and y = −t12 from the degeneration
(A.11),

lim
τ→i∞

JKZB(A,B; z|τ) =

(
t01
σ

+
−t12
1− σ

)
dσ = J(t01,−t12; σ) . (A.13)

A.3 Link between genus zero and genus one

The non-commutative arguments t01, t12 obtained in the comparison (A.13) of KZ and KZB
connections do not yet line up with (5.29) and differ by a swap of x and y. This can be fixed
by an additional change of coordinates to η = 1−σ in the degeneration of the KZB connection
which is in fact necessary to map the origin z = 0 of the torus to the origin η = 0 of the nodal
sphere (as opposed to σ = 1). In this way, the homotopy deformation of the contour Cy of
Figure 3 producing the action of zeta generators in genus zero is the image of the A-cycle
of the torus z ∈ (0, 1) under the change of variables from z via σ = e2πiz to η = 1 − σ, see
Figure 4. Similar homotopy deformations of paths together with the degeneration (A.13) of
the KZB connection were used by Enriquez to express the limit τ → i∞ of elliptic associators
in terms of ΦKZ [73].
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Re(z)

Im(z)

•
τ/2

•
τ/2 + 1

•
−τ/2

•
−τ/2 + 1

||

||
|| ||

A-cycle
•
z = 1

•
σ = 1

Re(σ)

Im(σ)

τ → i∞

σ = e2πiz

η = 1− σ

Re(η)

Im(η)

•

η = 1

Figure 4: The degeneration τ → i∞ of the torus with coordinate z (left panel) yields a
nodal sphere, where the image of the A-cycle connecting z = 0 with z = 1 is drawn in two
different coordinates σ and η (right panel). The image of the A-cycle in the η coordinate
(lower-right panel) matches the deformation of the loop Cy around z = 1 in Figure 3. Similar
to Figure 3, the straight line portions of all the paths should be viewed as running along the
real axis between 0 and 1; they have been slightly separated for visual convenience.

With the degenerate KZB connection in the coordinate η = 1− σ

lim
τ→i∞

JKZB(A,B; z|τ) =

(
t12
η

+
−t01
1− η

)
dη = J(t12,−t01; η) , (A.14)

we obtain the factor

gw(t12,−t01) = Pexp

(∫ 1

0

[
t12
η

+
−t01
1− η

]
dη

) ∣∣
ζw

(A.15)

in the action (5.42) of genus-one zeta generators on t01, in direct analogy with (A.2) in genus
zero. Moreover, the realization (A.5) of Dgw(y) in genus zero generalizes to

τw(t01) = −Pexp

(∫

Cy

[
t12
η

+
−t01
1− η

]
dη

)∣∣
2πiζw

, (A.16)

= − lim
τ→i∞

Pexp

(∫ 1

0

JKZB(A,B; z|τ)

) ∣∣
2πiζw

,

i.e. the interpretation as a linearized monodromy passes through from genus zero to genus
one. The loop Cy anchored at the origin of the sphere around the point η = 1 descends
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from the A-cycle z ∈ (0, 1) of the torus. The other part τw(t12) = 0 of the action (5.42) of
genus-one zeta generators in turn follows from a loop around the origin of both the sphere
(η = 0) and the torus (z = 0) which can be contracted to an infinitesimal circle and does
not produce any odd zeta values through its periods, see (A.6).

In summary, this appendix derived the close analogy between the actions (A.4) and (5.42)
of zeta generators in genus zero and one and justified the morphism (5.29) by comparing (i)
the underlying connections of KZ- and KZB-type in the degeneration of the torus to a nodal
sphere and (ii) integration contours on the respective surfaces (loops around marked points
and the pinched homology cycle of the degenerate torus).
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[22] J. Écalle, “The flexion structure and dimorphy: flexion units, singulators, generators,
and the enumeration of multizeta irreducibles,” CRM Series 12 (2011) 27–211.

[23] L. Schneps, “Elliptic double shuffle, Grothendieck-Teichmüller and mould theory,”
Ann. Math. Québec 44(2) (2020) 261–289, arXiv:1506.09050 [math.NT].

87

http://dx.doi.org/10.1016/j.jnt.2017.11.015
http://arxiv.org/abs/1603.00839
http://arxiv.org/abs/1603.00839
http://arxiv.org/abs/2011.08647
http://arxiv.org/abs/2011.08647
http://arxiv.org/abs/2203.09099
http://arxiv.org/abs/2203.09099
http://arxiv.org/abs/2208.07242
http://arxiv.org/abs/2208.07242
http://dx.doi.org/10.2969/aspm/06310031
http://arxiv.org/abs/1102.1310
http://arxiv.org/abs/1102.1310
http://dx.doi.org/10.4007/annals.2012.175.2.10
http://arxiv.org/abs/1102.1312
http://arxiv.org/abs/1102.1312
http://dx.doi.org/10.1007/978-94-017-0695-7_7
http://dx.doi.org/10.7146/math.scand.a-15481
http://dx.doi.org/10.1007/s00029-013-0137-3
http://arxiv.org/abs/1003.1012
http://arxiv.org/abs/1003.1012
http://dx.doi.org/10.1017/S1474748018000130
http://arxiv.org/abs/1512.03975
http://arxiv.org/abs/1512.03975
http://dx.doi.org/10.1007/s40316-020-00141-7
http://arxiv.org/abs/1506.09050
http://arxiv.org/abs/1506.09050


[24] Y. Ihara,
“Some arithmetic aspects of Galois actions in the pro-p fundamental group of P1 − {0, 1,∞},”
in Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999),
vol. 70 of Proc. Sympos. Pure Math., pp. 247–273. Amer. Math. Soc., Providence, RI,
2002.

[25] L. Schneps, “On the Poisson bracket on the free Lie algebra in two generators,” J. Lie
Theory 16 (2006) no. 1, 19–37.

[26] A. Pollack, “Relations between derivations arising from modular forms.”
https://dukespace.lib.duke.edu/dspace/handle/10161/1281, 2009.
Undergraduate thesis, Duke University.

[27] F. Brown, “Zeta elements in depth 3 and the fundamental lie algebra of the
infinitesimal tate curve,” Forum of Mathematics, Sigma 5 (2017) ,
arXiv:1504.04737 [math.NT].

[28] A. B. Goncharov, “Multiple polylogarithms and mixed tate motives,”
arXiv:math/0103059 [math.AG].

[29] A. Goncharov, “Galois symmetries of fundamental groupoids and noncommutative
geometry,” Duke Math.J. 128 (2005) 209, arXiv:math/0208144 [math.AG].

[30] D. Zagier, “The Bloch-Wigner-Ramakrishnan polylogarithm function,”
Math. Ann. 286 (1990) 613.

[31] E. D’Hoker, M. B. Green, and B. Pioline, “Asymptotics of the D8R4 genus-two string
invariant,” Commun. Num. Theor. Phys. 13 (2019) no. 2, 351–462,
arXiv:1806.02691 [hep-th].

[32] A. Basu, “Poisson equations for elliptic modular graph functions,”
Phys. Lett. B 814 (2021) 136086, arXiv:2009.02221 [hep-th].

[33] E. D’Hoker, A. Kleinschmidt, and O. Schlotterer, “Elliptic modular graph forms. Part
I. Identities and generating series,” JHEP 03 (2021) 151,
arXiv:2012.09198 [hep-th].

[34] M. Hidding, O. Schlotterer, and B. Verbeek, “Elliptic modular graph forms II:
Iterated integrals,” arXiv:2208.11116 [hep-th].

[35] B. Enriquez, “Flat connections on configuration spaces and braid groups of surfaces,”
Advances in Mathematics 252 (2014) 204–226, arXiv:1112.0864 [math.GT].

[36] B. Enriquez and F. Zerbini, “Construction of Maurer-Cartan elements over
configuration spaces of curves,” arXiv:2110.09341 [math.AG].

88

http://dx.doi.org/10.1090/pspum/070/1935408
https://dukespace.lib.duke.edu/dspace/handle/10161/1281
http://dx.doi.org/10.1017/fms.2016.29
http://arxiv.org/abs/1504.04737
http://arxiv.org/abs/1504.04737
http://arxiv.org/abs/math/0103059
http://arxiv.org/abs/math/0103059
http://dx.doi.org/10.1215/S0012-7094-04-12822-2
http://arxiv.org/abs/math/0208144
http://arxiv.org/abs/math/0208144
http://dx.doi.org/10.1007/BF01453591
http://dx.doi.org/10.4310/CNTP.2019.v13.n2.a3
http://arxiv.org/abs/1806.02691
http://arxiv.org/abs/1806.02691
http://dx.doi.org/10.1016/j.physletb.2021.136086
http://arxiv.org/abs/2009.02221
http://arxiv.org/abs/2009.02221
http://dx.doi.org/10.1007/JHEP03(2021)151
http://arxiv.org/abs/2012.09198
http://arxiv.org/abs/2012.09198
http://arxiv.org/abs/2208.11116
http://arxiv.org/abs/2208.11116
http://arxiv.org/abs/1112.0864
http://arxiv.org/abs/1112.0864
http://arxiv.org/abs/2110.09341
http://arxiv.org/abs/2110.09341


[37] B. Enriquez and F. Zerbini, “Analogues of hyperlogarithm functions on affine complex
curves,” arXiv:2212.03119 [math.AG].

[38] E. D’Hoker, M. Hidding, and O. Schlotterer, “Constructing polylogarithms on
higher-genus Riemann surfaces,” arXiv:2306.08644 [hep-th].

[39] E. D’Hoker and M. B. Green, “Zhang-Kawazumi Invariants and Superstring
Amplitudes,” J. Number Theor. 144 (2014) 111, arXiv:1308.4597 [hep-th].

[40] B. Pioline, “A Theta lift representation for the Kawazumi-Zhang and Faltings
invariants of genus-two Riemann surfaces,” J. Number Theor. 163 (2016) 520–541,
arXiv:1504.04182 [hep-th].

[41] E. D’Hoker, M. B. Green, and B. Pioline, “Higher genus modular graph functions,
string invariants, and their exact asymptotics,”
Commun. Math. Phys. 366 (2019) no. 3, 927–979, arXiv:1712.06135 [hep-th].

[42] A. Basu, “Eigenvalue equation for genus two modular graphs,” JHEP 02 (2019) 046,
arXiv:1812.00389 [hep-th].

[43] N. Kawazumi, “Lecture “Some tensor field on the Teichmüller space” given at
MCM2016, OIST.” https://www.ms.u-tokyo.ac.jp/~kawazumi/OIST1610_v1.pdf,
2016.

[44] N. Kawazumi, “Lecture “Differential forms and functions on the moduli space of Rie-
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