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Abstract. The even weight period polynomial relations in the double shu�e
Lie algebra ds were discovered by Ihara, and completely classi�ed in [Sch06] by
relating them to restricted even period polynomials associated to cusp forms
on SL2(Z). In an article published in the same year, Gangl, Kaneko and Za-
gier [GKZ06] displayed certain linear combinations of odd-component double
zeta values which are equal to scalar multiples of simple zeta values in even
weight, and also related them to restricted even period polynomials. In this
paper, we relate the two sets of relations, showing how they can be deduced
from each other by duality.

1. Introduction and background

We recall the de�nition of the even period polynomials associated to cusp forms
on SL2(Z) of even weight k, and the associated space Ek of the restricted period
polynomials. We also recall the isomorphisms between Ek and a set of special
elements of the double shu�e Lie algebra ds, and between Ek and a set of particular
relations between double zeta values in the formal double zeta space. Based on these
results, the goal of the paper is to show how to deduce each of these isomorphisms
explicitly and directly from the other by duality.

1.1. Restricted period polynomials associated to cusp forms on SL2(Z).

De�nition. The period polynomials in weight k are given by

r(X) =

∫ ∞
0

f(z) (z −X)k−2 dz

for cusp forms f(z) ∈ Sk(SL2(Z)). The even period polynomials r−(X) are obtained
from these by

r−(X) =
r(X) + r(−X)

2
.

Finally, the restricted even period polynomials p(X) are obtained from r−(X) by
subtracting o� the term of top degree Xk−2 and the constant term. These poly-
nomials, homogenized by an additional variable Y to degree k − 2, form a vector
space which we denote by Ek.

By the Eichler-Shimura correspondence, the map

Sk(SL2(Z))→ Ek

induced by the above de�nition is an isomorphism. It is easy to deduce from the
work of Zagier [Zag91, Zag00] on period polynomials that a polynomial P (X) lies
in Ek if and only if it is even of degree 6 k−4, without constant term, and satis�es
the relations P (X) +Xk−2P

(
1
X

)
= 0 and

P (X) +Xk−2P
(
1− 1

X

)
+ (X − 1)k−2P

(
1

1−X
)

= 0.

1
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The �rst restricted even period polynomials, in weights 12 and 16, are{
(X8 −X2)− 3 (X6 −X4)

and 2 (X12 −X2)− 7 (X10 −X4) + 11 (X8 −X6).
(1)

1.2. The double shu�e Lie algebra and period polynomial elements.

Let Lie[x, y] denote the free Lie algebra on two generators, and for each n > 1,
let Lien[x, y] denote the subvector space of homogeneous Lie polynomials of de-
gree n. Let Lie>n[x, y] denote the Lie algebra of Lie polynomials all of whose mono-
mials are of degree greater than or equal to n, i.e. Lie>n[x, y] =

⊕
m>n Liem[x, y].

For a polynomial f in x and y and any word w in x and y, let (f | w) denote the
coe�cient of the word w in f , and extend this notation to (f | g) for g ∈ Q〈x, y〉
by right linearity.

Let ds denote the double shu�e Lie algebra de�ned as follows:

ds = {f ∈ Lie>3[x, y] | (f | u ∗ v) = 0}

where u ∗ v represents the stu�e product of all nontrivial words u and v in x and y
both ending in y† and not both powers of y.

For every f ∈ Q〈x, y〉, let Df be the associated derivation of Q〈x, y〉 de�ned on
the generators by Df (x) = 0 and Dg(y) = [y, f ]. The Poisson bracket

{f, g} = [f, g] +Df (g)−Dg(f)

arises naturally from bracketing derivations, since as is easily veri�ed, we have

[Df , Dg] = Df ◦Dg −Dg ◦Df = D{f,g}.

The following result was shown independently and using quite di�erent methods
by Goncharov [Gon05] (who displayed an explicit cobracket on the dual space),
Racinet [Rac00] (who gave a direct proof), and Écalle [Éca03] (who embedded the
whole situation in a much vaster theory).

Proposition 1.1. The vector space ds is a Lie algebra under the Poisson bracket.

The Lie algebra ds is graded by the weight, which is the homogeneous degree
of a Lie polynomial. We write dsn for the weight n graded part. The full algebra ds
and each of its graded parts dsn are �ltered by the depth, which is de�ned to be the
smallest number d such that an element f ∈ ds contains a monomial (with non-zero
coe�cient) having d letters y. This depth �ltration is decreasing on ds and on each
subspace dsn: one has a decreasing sequence ds1n ⊃ ds2n ⊃ ds3n ⊃ · · · .

The depth �ltration is not a grading, due to the existence of linear combinations
of depth d elements whose depth is strictly greater than d. The most studied of
these relations, which conjecturally generate the Lie ideal of all such relations, are
the period polynomial relations which we now proceed to de�ne.

Various closely related proofs (essentially based on using the Drinfel'd associator)
have been given for the following result (cf. [Zag93, Éca03, Gon05, Rac00]).

Proposition 1.2. For every odd n > 3, there exists a non-zero element f ∈ dsn of
depth 1.

Thanks to this result, we now �x a choice of depth 1 elements fn ∈ dsn for each
odd n > 3 once and for all. The results we prove below are independent of this
choice.

†Let yi = xi−1y, so that all words ending in y can be written as yi1 · · · yir . The stu�e product
of two such words is de�ned recursively by 1 ∗ w = w ∗ 1 = w and yiw ∗ yjw′ = yi (w ∗ yjw′) +
yj (yiw ∗ w′) + yi+j (w ∗ w′).
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De�nition. For every even weight k, the period polynomial elements in ds2k are
linear combinations P of Poisson brackets of fn and fk−n such that

P =

k−3∑
n=3
n odd

an {fn, fk−n} ≡ 0 (mod ds3k). (2)

The depth 2 part of P comes only from the Poisson brackets of the depth 1
parts of the fn; thus the existence of such relations only depends on these depth 1
parts (cf. [Sch06]). Up to scalar multiple, the depth 1 part of fn is equal to the
Lie word adn−1

x (y). Thus, the coe�cients an appearing in the period polynomial
elements are independent of the choice of depth 1 elements fn. In this paper we
assume that the fn are normalized so that the coe�cient of adn−1

x (y) is equal to 1.
Working in a slightly di�erent context (that of the stable derivation Lie alge-

bra, also known as the Grothendieck-Teichmüller Lie algebra grt and consisting of
polynomials with integer coe�cients), Ihara [Iha02] �rst discovered the existence
of elements such as (2), which are zero modulo depth 3. He gave the �rst such
element, which occurs in weight 12, as

2 {f3, f9} − 27 {f5, f7} ≡ 0 (mod grt312).

Here, he normalized the chosen fn by taking them with relatively prime integer
coe�cients. Ihara also discovered a similar relation in weight 16, and together with
Takao [Iha02], proved that the dimension of the space of such relations in even
weight k is given by [

k−4
4

]
−
[
k−2
6

]
,

which is exactly the dimension of the space Sk(SL2(Z)) of cusp forms of weight k
on SL2(Z) (this result was also proven in [Gon01]). As indicated in [Sch06], these
special elements depend only on the depth 1 terms adn−1

x (y) and are thus entirely
independent of the de�nition of the stable derivation algebra grt. In fact, the same
linear combinations will have the property of being zero modulo depth 3 in the Lie
algebra L[x, y] whose underlying vector space is the same as Lie[x, y] but which is
equipped with the Poisson bracket, and in any Lie subalgebra of L[x, y] having a
depth 1 element for each odd n > 3, so in both grt and ds.

If the chosen fn are normalized by taking the coe�cient of the Lie word adn−1
x (y)

to be equal to 1, then Ihara's relations in weights 12 and 16 become{
{f3, f9} − 3 {f5, f7} ≡ 0 (mod ds312)

and 2 {f3, f13} − 7 {f5, f11}+ 11 {f7, f9} ≡ 0 (mod ds316).
(3)

The main result of [Sch06] proves the result suggested by comparison of (1)
and (3), namely:

Theorem 1.3 ([Sch06]). Let L denote any sub-Lie algebra of L containing an
element fn in each weight n satisfying (fn | xn−1y) = 1. Then for each even k, the
following conditions are equivalent:

(i)

[ k−4
4 ]∑

i=1

ai {f2i+1, fk−2i−1} ≡ 0 (mod L3
k) ;

(ii) P (X,Y ) =

[ k−4
4 ]∑

i=1

ai (X2iY k−2−2i −Xk−2i−2Y 2i) ∈ Ek .
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1.3. Period polynomial relations between double zeta values. The multiple
zeta values are de�ned by the series

ζ(r1, . . . , rk) =
∑

n1>···>nk>0

1

nr11 · · ·n
rk
k

(4)

where the ri are strictly positive integers with r1 > 1 to ensure convergence. The
double zeta values are the values of the convergent series

ζ(r, s) =
∑

m>n>0

1

mrns

whenever r and s are positive integers with r > 1. In the paper [GKZ06], Gangl,
Kaneko and Zagier exhibit for even k > 12 some particular linear combinations of
double zeta values ζ(r, s) with odd entries r and s such that r+ s = k, which have
the property of being equal to a scalar multiple of ζ(k) =

∑
n>0

1
nk , and which also

arise from period polynomials.
More precisely, the result of [GKZ06] on period polynomials and odd-component

double zetas which concerns us here can be expressed as follows.

Theorem 1.4 ([GKZ06]). Let k > 12 be even. Let P (X,Y ) ∈ Ek and set

P (X + Y, Y ) =

k−3∑
r=1

(
k − 2

r − 1

)
qr,k−rX

r−1Y k−r−1. (5)

Then
k−3∑
r=3
r odd

qr,k−r ζ(r, k − r) ≡ 0 (mod ζ(k)). (6)

Conversely, the weight k even polynomials Q giving rise to a relation of the type (6)
are those for which the polynomial P de�ned by (5) is a period polynomial.

We observe that this statement does not appear exactly in this form in [GKZ06];
instead, they give a rough version in theorem 3 of the introduction (�The va-
lues ζ(od, od) of weight k satisfy at least dimSk linearly independent relations,
where Sk denotes the space of cusp forms of weight k on SL2(Z)�), and a more
re�ned version in the body of the article, in which both even and odd component
double zetas are studied in a �formal zeta space� Dk. The result of theorem 1.4
is indicated for real multizeta values in remark 2 following Theorem 3 of [GKZ06].
That remark works in exactly the same way space FZ of formal multizeta values
which we de�ne in the following section (and which is not the same as their space
of �formal double zetas�, even in depth 2).

The �rst GKZ relation occurs in weight k = 12 and is given by

28 ζ(9, 3) + 150 ζ(7, 5) + 168 ζ(5, 7) =
5197

691
ζ(12). (7)

In the remarks ending the introduction of [GKZ06], several questions are raised
concerning the relation between their results and the period polynomial results
of [Sch06], and the relations observed by Ihara in the stable derivation Lie algebra.
The present article provides some of these connections; the main result in particular
(proposition 3.2 and the �nal corollary) shows how to explicitly deduce the existence
and coe�cients of the GKZ relations of theorem 1.4 (in both real and formal zetas)
from the existence of the period polynomial elements in ds and vice versa.
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2. Universal enveloping algebra and duality

In order to work simultaneously on the level of multiple zeta values and double
shu�e, we place ourselves within the following extremely useful diagram which
simultaneously shows all the levels and dualities between the Hopf algebras, Lie
algebras and Lie coalgebras in which double shu�e and double zeta relations are
generally studied.

Q[Z(w)]

����

Q〈x, y〉∼oo

Q[Z(w)]

����

SH
?�

OO

∼oo

FZ

����

FZ∗
?�

OO

∼oo

FZ

����

U ds
?�

OO

∼oo

nfz ds
?�

OO

∼oo

The top right-hand space is the underlying vector space of the free polynomial ring
on two non-commutative variables x and y, with basis the set of words in x and y,
graded by weight (i.e. degree of monomials). The top left-hand space Q[Z(w)] is
its graded dual, which is the direct sum of the duals of the graded parts of Q〈x, y〉.
As a vector space, we equip the graded dual of Q〈x, y〉 with a dual basis to the
basis of words w in x and y, and write Z(w) for the dual basis element associated
to a word w, so that

(Z(w) | v) = δwv .

All the vector spaces in the diagram except for the bottom two are actually equipped
with Hopf algebra structures. We do not need to specify the explicit multiplication
and coproduct on each space, but we do note that Q〈x, y〉, the free polynomial
ring on two non-commutative variables x and y, is equipped with the standard
coproduct given by ∆(x) = x ⊗ 1 + 1 ⊗ x and ∆(y) = y ⊗ 1 + 1 ⊗ y, and that its
dual Q[Z(w)], where Z(w) denotes the dual basis element of a word w ∈ Q〈x, y〉,
is equipped with the multiplication dual to this coproduct, which is the shu�e
multiplication of words Z(u)Z(v) = Z(u ø v)‡. The multiplication � on Q〈x, y〉 is
not the simple concatenation, but a complicated rule which we do not know how
to write down explicitly in general (but see the beginning of section 3 for certain
cases). The top horizontal map is the duality isomorphism w 7→ Z(w).

Let us de�ne the other spaces and maps in the diagram.
We say that a word w in x and y is convergent if w = xvy for any word v

(even a constant). The second left-hand space down in the diagram, Q[Z(w)], is
the quotient of the top space by the shu�e regularization relations de�ned for all

‡The shu�e product of words is de�ned recursively by w ø 1 = 1 ø w = w, s u ø t v =
s (u ø t v) + t (s u ø v) where t, s ∈ {x, y}.
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non-convergent words as follows. Let w = yr v xs where v is a convergent word.
Then Q[Z(w)] is the quotient of Q[Z(w)] by the linear relations

Z(w) =

r∑
a=0

s∑
b=0

(−1)a+bZ
(
π(ya ø yr−a uxs−b ø xb)

)
(8)

where π denotes the projection of polynomials onto just their convergent words
and Z is considered to be linear on sums of words. We write Z(w) for the image
of Z(w) in this quotient; by de�nition, Q[Z(w)] is spanned by the symbols Z(w)
for convergent w. It is a long-established theorem that the formula (8) (known as
�shu�e regularization�, and given explicitly by Furusho [Fur03] building on work
by Le-Murakami, Zagier and others) ensures that

Z(w)Z(w′) = Z(w ø w′)

for all words w,w′, so that the algebra structure of Q[Z(w)] under shu�e multipli-
cation descends to Q[Z(w)]. Formula (8) shows in particular that Z(x) = Z(y) = 0
in Q[Z(w)]. The dual space is a subspace of Q〈x, y〉 denoted by SH.

Although the horizontal map is obviously a duality isomorphism, we have chosen
to write it as a map SH → Q[Z(w)] and similarly for all the lower levels of the
diagram, simply because the map in this direction is easier to describe: if f lies
in any of the right-hand spaces, then we may consider f =

∑
aww ∈ Q〈x, y〉,

and the horizontal duality maps are obtained by taking the image of the dual
element f∗ =

∑
awZ(w) in the corresponding quotient on the left-hand side.

The next space down, FZ, is obtained by quotienting Q[Z(w)] by the regularized
stu�e relations

Z∗(u)Z∗(v) = Z∗(u ∗ v) (9)

for all words u and v ending in y, where Z∗ is de�ned as follows:

Z∗(v) = Z(v) for convergent words v

Z∗(1, . . . , 1︸ ︷︷ ︸
n

) is de�ned by (10) below

Z∗(ymv) =

m∑
r=0

Z∗(1, . . . , 1︸ ︷︷ ︸
r

)Z(ym−rv) for convergent v,

where we set

exp
∑
r>1

(−1)r−1

r Z(xr−1y) yr =
∑
r>0

Z∗(1, . . . , 1︸ ︷︷ ︸
r

) yr. (10)

Using this de�nition to transform the Z∗'s into algebraic expressions in the sym-
bols Z(w) for convergent words, and then using shu�e multiplication to transform
each product into a linear combination of convergent Z(w), equation (9) translates
into a set of linear relations between the convergent symbols Z(w) ∈ Q[Z(w)],
and FZ is obtained by quotienting Q[Z(w)] by these linear relations. We continue
to write Z(w) for the image of this element in FZ and FZ by a slight abuse of
notation.

For convergent words w = xr1−1y · · ·xrk−1y with r1 > 1, let us write

Z(w) = Z(r1, . . . , rk) (11)

in order to underline the equivalence between the x, y-word notation for formal
zetas and the usual notation for real zetas. Since it is well-known and easy to prove
that real multiple zeta values satisfy the double shu�e relations, the formal zeta
space FZ surjects to the space of real multiple zeta values de�ned in (4) simply via

Z(r1, . . . , rk) 7→ ζ(r1, . . . , rk)
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The space FZ is the quotient of FZ by the ideal generated by Z(xy) = Z(2),
and the new zeta space nfz is the vector space obtained by quotienting FZ by the
subspace generated by FZ0 = Q and by all products FZ2

>1 (note that every space
in the diagram is graded by weight).

The new zeta space nfz is a Lie coalgebra, as was shown by Goncharov [Gon05]
who displayed an explicit Lie cobracket on it, dual to the Poisson bracket. Its dual
is the Lie algebra ds (a complete proof of this elementary fact is not easy to �nd
in the literature, but was given for example in [Car08, prop. 1.27]). Thus, the
elements of ds are the set of primitive elements for the coproduct on FZ∗ (which
is just the restriction of the coproduct ∆ on Q〈x, y〉). From the Milnor-Moore
theorem (or a corollary of it, cf. [CM08, theorem 1.22]), since FZ is a positively
graded commutative Hopf algebra over Q such that FZ0 = Q and each of its graded
pieces is �nite-dimensional, its dual FZ∗ is isomorphic to the universal enveloping
algebra of its set of primitive elements; thus FZ∗ ' U ds.

This completes the de�nition of all the left-hand spaces in the diagram, and,
by duality, the right-hand spaces. Since the latter are all vector spaces which are
subspaces of the polynomial ring Q〈x, y〉, the spaces on the right-hand side of the
diagram can all be computed explicitly (in small weight) as the spaces killed by the
kernels of each quotient map on the left. For example, since (Z(w) | f) = (f | w),
the space SH consists of polynomials f(x, y) such that for every non-convergent
word w = yrvxs, we have

(f | w)−
r∑

a=0

s∑
b=0

(−1)a+b(f | π(ya ø yr−avxs−b ø xb) = 0.

The dimension of the weight n part SHn is equal to 2n−2.
As we saw for ds in section 1, the right-hand spaces are all equipped with a

depth �ltration de�ned by taking the depth of a polynomial f in x and y to be the
minimal number of y's occurring in any monomial of f with non-zero coe�cient.

The vector spaces on the left-hand side of the diagram can then all be equipped
with the dual depth �ltrations. Namely, for each space V on the left, we set V d to
be the subset of V annihilated by (V ∗)d+1, with V 0 = 0. Thus we have

(V ∗)dn/(V
∗)d+1

n ' V d
n /V

d−1
n . (12)

By the action (Z(w) | f) = (f | w), it is obvious that if w is a convergent word
containing d− 1 y's and f is a polynomial of depth > d, then 〈Z(w), f〉 = 0, so the
depth �ltration on the spaces on the left corresponds to the usual notion of depth
�ltration of multiple zeta values, for which the depth of Z(w) for a convergent
word w is the number of y's in w.

3. The main result

The main result of this paper says that the GKZ relations (6), which are valid in
the formal multiple zeta algebra FZ, can be deduced in even weight k > 12 directly
from the period polynomial relations (2) in ds by duality, and vice versa.

Theorem 3.1. There is a natural bijective correspondence connecting relations of
theorem 1.4 between double zeta values and relations of theorem 1.3 between Poisson
brackets of Lie polynomials.

The rest of this section is devoted to the proof of this result. The strategy is to
show that these relations can be described respectively as lying in the kernel of a
certain matrix and of its transpose.

In order to prove theorem 3.1, we �rst rephrase the main result of [Sch06] as
follows, showing that in fact it generalizes from ds to the universal enveloping



8 S. BAUMARD AND L. SCHNEPS

algebra U ds. The notation � indicates multiplication of elements of ds in the
universal enveloping algebra. The explicit formula for the multiplication of two
polynomials f and g in U ds is complicated, but in the case where f lies in fact
in ds, it simpli�es to

f � g = fg +Df (g) (13)

where Df is the derivation de�ned in paragraph 1.2.

Proposition 3.2. Let k > 12 be even and �x a choice of depth 1 elements fn of dsn
for every odd n > 3. For 1 6 i 6 k−4

2 , set
wi = x2iyxk−2i−2y

Zi = Z(2i+ 1, k − 2i− 1) = Z(wi) ∈ FZ
gi = f2i+1 � fk−2i−1 ∈ Q〈x, y〉.

Let A be the k−4
2 ×

k−4
2 matrix de�ned by

Aij = (Zi | gj) for 1 6 j 6 k−4
2 .

Then there is an isomorphism Ek ' KerA given by

[ k−4
4 ]∑

i=1

ai (X2iY k−2−2i −Xk−2−2iY 2i) 7−→ (a1, . . . , a k−4
2

) ∈ KerA.

Proof. The kernel of A is the set of vectors such that the corresponding linear
combinations of the gi are annihilated by the Zi. In [GKZ06], it is proved that in
even weight k, the odd-component double zeta values Z(r, s) with r, s ≡ 1 (mod 2)

span the depth 2 part FZ2

k of FZk (loc. cit., theorem 2, using the fact that FZ2

k

is a quotient of Dk). Therefore, since the Zi together with Z(k) span the depth 2

part FZ2

k, and Z(k) automatically annihilates all the gi since they are all of depth 2,
this means that the kernel of A is the set of linear combinations

k−4
2∑

i=1

ai gi (14)

which are zero modulo FZ3

k. It follows from [Sch06] that there is an injective
map Ek ↪→ KerA; by the property P (X) = Xk−2P ( 1

X ) satis�ed by the elements
of Ek, we have

ai = −a k−2i−2
2

for 1 6 i 6 k−4
2 , so that all the linear relations between the gi arising from poly-

nomials in Ek are actually linear relations amongst the pairs gi − g(k−2i−2)/2 =
f2i+1 � fk−2i−1 − fk−2i−1 � f2i+1 = {f2i+1, fk−2i−1}. Since it is shown in [Sch06]
that there are no other linear relations between these brackets, to prove the propo-
sition we need only show that there can be no linear combination (14) between
the gi which is zero modulo depth 3 but has ai 6= −a(k−2i−2)/2 for some i.

To do this, it is convenient to compute the elements of the matrix explicitly,
which is not di�cult given the expression (13) of the � multiplication. As the Zi's
are of depth 2, the desired scalar product is in fact equal to

Aij = (Z(x2iyxk−2−2iy) | f2j+1 � fk−2j−1)

= (Z(x2iyxk−2−2iy) | ad2j
x (y) adk−2−2j

x (y) +Dad2j
x (y)(adk−2−2j

x (y)))

= (Z(x2iyxk−2−2iy) | ad2j
x (y) adk−2−2j

x (y) + adk−2−2j
x ([y, adk−2−2j

x (y)]))
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using the de�nitions of D and �. Then, explicitly computing the coe�cients of
monomials in the Lie brackets, we �nd that

Aij =

(
2j

2i

)
−
(

2j

k − 2− 2i

)
+ δ

k−2
2

i+j .

Let S be the k−4
2 ×

k−4
2 matrix with −1's along the antidiagonal, so S2 = id. Let

us make the base change to a basis of eigenvectors of S:

vj = t(0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
j−1

) for 1 6 j 6
(
k−4
4

)
, with eigenvalue − 1

w0 = t(0, . . . , 0︸ ︷︷ ︸
(k−6)/4

, 1, 0, . . . , 0︸ ︷︷ ︸
(k−6)/4

) if k ≡ 2 (mod 4)

wj = t(0, . . . , 0︸ ︷︷ ︸
j−1

,−1, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
j−1

) for 1 6 j 6
[
k−4
4

]
, with eigenvalue 1.

Let T be the matrix having columns v1, . . . , v[ k−4
4 ], w0, w1, . . . , w[ k−4

4 ] in that

order (with the w0 left out if k ≡ 0 (mod 4)). To show that every vector in the
kernel of A is of the form t(a1, a2, . . . ,−a2,−a1), we use T to make the basis change
from the standard basis to the vi and wj , and then show the equivalent result that
the kernel of the matrix M = T−1AT lies in the space generated by the wj .

But this result is an immediate consequence of the following claim on the form
of M , so it remains only to prove this claim.

Claim. The matrix M = T−1AT is a block matrix of the form

M = T−1AT =

(
id 0
B C

)
, (15)

where all four blocks are of dimension k−4
4 ×

k−4
4 if k ≡ 0 (mod 4), whereas if k ≡ 2

(mod 4), the identity block is of dimension k−2
4 ×

k−2
4 and the 0 block of dimen-

sion k−2
4 ×

k−6
4 .

Proof of claim. The calculation of the matrix entries turns out to be particularly
easy since all the binomial coe�cients of the Aij cancel out and it is merely a matter
of checking the Kronecker deltas. We drop the upper index of the deltas since it is
always equal to k−2

2 .
Suppose �rst that k ≡ 0 (mod 4). For the upper left-hand block 1 6 i, j 6 k−4

4 ,
we have

Mij = Aij +Ai, k−2
2 −j

+A k−2
2 −i,j

+A k−2
2 −i,

k−2
2 −j

,

so
Mii = 1

2 (δ2i + 2δ k−2
2

+ δk−2i−2) = 1

and
Mij = 1

2 (δi+j + δ k−2
2 +i−jδ k−2

2 −i+j + δk−2−i−j) = 0 if i 6= j,

so this block is indeed just the identity matrix.
For the upper right-hand block 1 6 i 6 k−4

4 and k−2
4 6 j 6 k−4

2 , we have

Mij = −Aij +Ai, k−2
2 −j

−A k−2
2 −i,j

+A k−2
2 −i,

k−2
2 −j

= 1
2 (−δi+j + δ k−2

2 +i−j − δ k−2
2 −i+j + δk−2−i−j) = 0,

since if i+ j = k−2
2 the �rst and last deltas cancel, whereas if i = j then the middle

deltas cancel. So the upper right-hand block is a 0 block, completing the proof in
the case k ≡ 0 (mod 4).

This calculation above remains valid in the case k ≡ 2 (mod 4), but it is not
complete; it shows that the upper left k−6

4 ×
k−6
4 block is the identity, whereas the
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upper right k−6
4 ×

k−2
4 block is zero, but we still have to determine the (k−2

4 )-th
row. We have

M k−2
4 ,j =


A k−2

4 ,j +A k−2
4 , k−2

2 −j
if 1 6 j 6 k−6

4

A k−2
4 , k−2

4
if j = k−2

4

−A k−2
4 ,j +A k−2

4 , k−2
2 −j

if k+2
4 6 j 6 k−4

2 .

Again, the binomial coe�cients cancel trivially, so this becomes

M k−2
4 ,j =


δ k−2

4 +j + δ 3k−6
4 −j if 1 6 j 6 k−6

4

δ k−2
2

if j = k−2
4

−δ k−2
4 +j + δ 3k−6

4 −j if k+2
4 6 j 6 k−4

2 ,

all of which are zero except when j = k−2
4 , in which case the value is equal to 1,

completing the proof of the claim, and thus of the proposition. ♦

This result shows that there are no other linear relations modulo depth 3 between
the elements f2i+1 � fk−2i−1 than the already known period polynomial relations
between Poisson brackets {f2i+1, fk−2i−1}, and thus that the kernel of A consists
exactly in vectors whose coe�cients are the coe�cients of period polynomials P ∈
Ek.

Example. In weight k = 12, the matrices A and T−1AT are given by

A =


1 6 15 28
0 1 15 42
0 0 −14 −42
0 −6 −15 −27

 , T−1AT =


1 0 0 0
0 1 0 0
−28 −21 −27 −9
−42 −15 −42 −14

 ·
The kernel ofA is generated by the weight 12 period polynomial vector t(1,−3, 3,−1)
corresponding to the only linear relation modulo depth 3 between f3 � f9, f5 � f7,
f7 � f5 and f9 � f3, namely

f3� f9− 3 f5� f7 + 3 f7� f5− f9� f3 = {f3, f9}− 3 {f5, f7} ≡ 0 (mod depth 3).

From this example, we can already perceive how the GKZ relations between
odd-component double zetas arise in this situation. Indeed, as we saw, the ker-
nel of A is the set of linear relations between generators of (FZ∗)212/(FZ

∗
)312.

Thus by duality, the kernel of the transpose tA is the set of linear relations be-
tween the odd-component double zetas Z(3, 9), Z(5, 7), Z(7, 5), Z(9, 3) in the dual
space FZ2

12/FZ
1
12, which correspond to linear combinations of the odd-component

double zetas which are equal to a scalar multiple of Z(k). One computes explicitly
that the kernel of tA is generated by the vector t(0, 168, 150, 28); therefore we know
without further investigation that

168Z(5, 7) + 150Z(7, 5) + 28Z(9, 3) ≡ 0 (mod Z(12)),

thus recovering relation (7) except for the coe�cient of Z(12) (the coe�cients of
the Z(k) terms in general even weight k are computed in [GKZ06]).

This argument generalizes to the following statement, which is really the heart
of the deduction of the double zeta relations from the period polynomial relations
in the double shu�e Lie algebra and vice versa.

Corollary. For all even k > 16, the space Ek of weight k restricted period polyno-
mials is in bijection with the kernel of the matrix A, itself in bijection with the set of
linear relations between the Poisson brackets {f2i+1, fk−2i−1}. Thus the kernel of
the transpose matrix tA has the same dimension as Ek, and is in bijection with the
set of Q-linear relations between the odd-component weight k double zetas Z(r, s)
and Z(k).
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Proof. Since the vectors of KerA correspond to linear relations between the gi
viewed as generators of (FZ∗)2k/(FZ

∗
)3k, the vectors of Ker tA correspond to linear

relations between the Zi (odd-component double zetas) viewed as generators of the

dual space, which is FZ2

k/FZ
1

k by (12). ♦

The result from [GKZ06] cited in theorem 1.4 proves more than the existence
of a space of linear relations between single and double zetas arising of dimension
equal to that of Ek, however; it also states that the coe�cients of these relations
are essentially the coe�cients of the period polynomials under the change of vari-
ables X ← X+Y . We now show that also this result can be deduced from studying
the matrix A, which has some particular symmetry properties proven in the follow-
ing propositions.

Proposition 3.3. Let k > 12 be even, and de�ne k−4
2 ×

k−4
2 matrices D and B by

D−1 = diag

((
k − 2

2i

))
, Bij =

(
2j

2i

)
.

Then tADB is symmetric.

Proof. The (i, j)-th entry of tADB is given by
k−4
2∑

r=1

((
2i

2r

)
−
(

2i

k − 2− 2r

)
+ δ

k−2
2

i+r

)
·
(
k − 2

2r

)−1(
2j

2r

)

=

k−4
2∑

r=1

(
2i
2r

)(
2j
2r

)(
k−2
2r

) − k−4
2∑

r=1

(
2i

k−2−2r
)(

2j
2r

)(
k−2
2r

) +

(
2j

k−2−2i
)(

k−2
k−2−2i

) .
The left-hand term is obviously symmetric in i and j, and so is the middle term,
using the index change r ← k−2

2 − r. As for the last term, it is equal to

(2i)! (2j)!

(k − 2)! (2i+ 2j − k + 2)!
,

so it is also symmetric, which concludes the proof. ♦

Example. Let A be the matrix in weight 12 given explicitly above. Then

tADB = tBDA =
1

630


14 84 210 392
84 507 1305 2478
210 1305 3783 7644
392 2478 7644 15890

 ·
The kernel of this matrix (and its transpose) is of course still generated by the same
vector t(1,−3, 3,−1) as the kernel of A.

Proposition 3.4. Let k > 12 be even and suppose that t(a1, a2, . . . ,−a2,−a1) ∈
KerA. Set

P (X,Y ) =

[ k−4
4 ]∑

i=1

ai (X2iY k−2−2i −Xk−2−2iY 2i)

and de�ne the coe�cients qr,k−r for 1 6 r 6 k − 3 by

P (X + Y, Y ) =

k−3∑
r=1

(
k − 2

r − 1

)
qr,k−rX

r−1Y k−r−1.

Then the vector t(q3,k−3, . . . , qk−3,3) (with odd indices) lies in the kernel of tA, and
in fact the kernel of tA consists in exactly these vectors.
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Proof. We �rst compute the qr,k−r in terms of the ai. We have

P (X + Y, Y ) =

[ k−4
4 ]∑

i=1

ai
(
(X + Y )2iY k−2−2i − (X + Y )k−2−2iY 2i

)
=

[ k−4
4 ]∑

i=1

ai

(
2i∑

r=1

(
2i

r

)
XrY k−2−r −

k−2−2i∑
r=1

(
k − 2− 2i

r

)
XrY k−2−r

)

=

[ k−4
4 ]∑

i=1

ai

(
k−2∑
r=1

(
2i

r

)
XrY k−r−2 −

k−2∑
r=1

(
k − 2− 2i

r

)
XrY k−2−r

)
since we can freely replace the upper limits on the r-sums by larger ones, as the
binomial coe�cients will simply be equal to zero. Thus we can invert the order of
the sums and write

P (X + Y, Y ) =

k−2∑
r=1

[ k−4
4 ]∑

i=1

ai

((
2i

r

)
−
(
k − 2− 2i

r

))
XrY k−r−2.

We are interested in the coe�cients
(
k−2
r−1
)
qr,k−r of the monomials Xr−1Y k−r−1

where r − 1 is even, so we write r − 1 = 2j, and the coe�cient of X2jY k−2−2j is
then given by(

k − 2

2j

)
q2j+1,k−2j−2 =

[ k−4
4 ]∑

i=1

ai

((
2i

2j

)
−
(
k − 2− 2i

2j

))
, 1 6 j 6

k − 4

2
.

Now, note that since tADB is symmetric by proposition 3.3, we have Ker tADB =
Ker tBDA = KerA. Thus since D and B are both invertible, we have Ker tA =
DBKerA. But by the de�nitions of D and B, the j-th component of the vec-
tor DBt(a1, . . . ,−a1) is exactly equal to q2j+1,k−2j−1 (indeed, the whole point of
the matrix DB is to e�ect the variable change from the ai to the qr,k−r). This
concludes the proof. ♦

Since we saw above that the vectors in the kernel of tA provide the coe�cients of
the linear combinations of odd-component double zetas which are zero modulo Z(k),
we recover the statement of theorem 1.4 (the [GKZ06] result) in the formal zeta
algebra FZ, and thus also for real multizeta values by passage to the quotient, as
an immediate corollary of these propositions.

Corollary ([GKZ06] theorem). Let k > 12 be an even integer, let P (X,Y ) =∑[ k−4
4 ]

i=1 ai (X2iY k−2−2i − Xk−2−2iY 2i) ∈ Ek be a homogeneous period polynomial
of weight k, and write

P (X + Y, Y ) =

k−3∑
r=1

(
k − 2

r − 1

)
qr,k−rX

r−1Y k−r−1.

Then the linear combination
k−3∑
r=3
r odd

qr,k−r Z(r, k − r)

is equal to a scalar multiple of Z(k) in FZ.

Remark. A variant of the matrix A can also be found in [Kan04], but the equivalence
we proved above was not derived from it.
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