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Abstract

In this article we interpret the relations defining the Grothendieck-Teichmiiller group

GT as cocycle relations for certain non-commutative cohomology sets, which we
compute using a result due to Brown, Serre and Scheiderer. This interpretation

allows us to give a new description of the elements of GT', as well as a new proof
of the Drinfel’d-Thara theorem stating that G'I" contains the absolute Galois group
Gal(@/@) From the same methods we deduce other properties of G'I" analogous

to known properties of Gal(@/@), such as the self-centralizing of the complex
conjugation element.

§1. Introduction

Let F, denote the profinite completion of the free group on two generators, topolog-
ically generated by x and y. Set z = (zy)~!. Let #, w and ¢ denote the three automor-
phisms of F, defined as follows on z and y: 8(z) = y and 0(y) = 2; w(z) = y and w(y) = z;
v(z) =21 and «(y) =y~ L.

For n > 2, let B, be the Artin braid group generated by o1,...,0,_1 with the
relations o;0;410; = 0;410;0,41 and 0;0; = ojo; whenever | i — j |> 2. There is a
surjection B, — S, onto the group of permutations on n letters, obtained by quotienting
B, by the 02. Let K,, be the kernel of this surjection; then K, is generated by the elements

Bij = 041011070, 05
for 1 <i < j<n. Wedefine z;; =1 and z;; = z;; for 1 < j < i < n. Let M(0,n), the
mapping class group, be the quotient of B,, by the two relations o,,_1-+- 0%+ 0,1 = 1
and (op,—1---01)" = 1, and let K(0,n) be the image of K,, in this quotient. Conjugation by
the elements (0, _1---01)" € M(0,n) for 1 <4 < n — 1 induces automorphisms of K (0,n)
which extend to the profinite completion K (0,n) (throughout this article, “conjugation of
z by a” means oz a~t). Let p denote the automorphism of K (0,5) given by conjugation
by the element (o4030201)%. K (0,5) is generated by the five elements 12, T23, T34, T45
and x5, satisfying the five conditions stating that the z; ;1 with disjoint indices mod 5

commute, as well as the important pentagon relation
—1 -1 -1 -1 -1

(see §2 for more on presentations of K (0,5)). The action of p on these generators is given

by p(zi;+1) = it3,i+4 (with indices mod 5).
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Let us now recall the definition of the Grothendieck-Teichmiiller group GT defined by
Drinfel'd (cf. [D]). Let Z denote the profinite completion of Z. There is an injection of
Fy < K(0,5) given by  — x15 and y — xa3; for every f € Fy, we write f for its image in
K (0,5) under this injection. Let FY, denote the derived subgroup of F, in the topological

sense.

Definition: Let @ be the monoid of pairs (A, f) € 7* x 13’2’, satisfying the three following
relations, the first two of which take place in F and the third in K (0,5):

@ 6N f=1

(II) w?(fz™)w(fz™)fz™ = 1, where m = (X — 1).

(1) p*(F)p*(F)e*(Ho(H)f = 1.

Remark. This definition is the same as the one given by Drinfel’d [D]. Let us briefly
recall his notation. For every f € F, and a, b in a finite or profinite group G, write
f(a,b) for the image of f by the homomorphism Fy,— G sending = to a and y to b. In
particular, under the identity we have f = f(x,y); this notation is not to be interpreted
as a substitution of variables in f, but as the images of f under various homomorphisms.
The three relations (with (III) in its modified form due to Ihara, see [I1]) are generally
written as (1) £(y,2)f(2,y) = 1; (1) f(z2)=™ f(y, 2)y™ f (&, y)a™ = 1 (with = = (z5)~)
and (II) f(x34,245)f (251, 212) f (223, 234) f (45, T51) f (212, 23) = 1, which are equivalent
to the forms given in our definition.

The set GT forms a monoid under the multiplication given by:
(A,f(fv,y))(u,g(fv,y)) = (Au,f(x,y)g(fc*,f(fv,y)_lyAf(x,y)))- (2)

This peculiar multiplication law becomes easier to understand when the elements of @
are interpreted as endomorphisms of Fy via z ), y— f~ly? f; it simply expresses the
composition. In other words, if F' is the endomorphism associated to the pair (A, f), then
the multiplication law can be written (X, f)(u,g) = (Au, fF(g)). As for the fact that this
law really defines a monoid, i.e. that the product of two pairs still satisfies relations (I),
(IT) and (III), it is not at all obvious, but can be deduced from the interpretation of GT
as endomorphisms of higher braid groups (cf. appendix of [IM], or [LS]). Define GT to be
the group of invertible elements of @

The first theorem we state is a well-known result, proved by Drinfel’d and Thara (cf.
[D],[11], [12]).

Theorem 1. Gal(Q/Q) injects into GT, with the element (—1,1) as the image of complex
conjugation.



Thara’s proof of this theorem involves associating to each ¢ € Gal(Q/Q) a pair
(Ao, fs) € 7* x 13’2’, showing that this pair actually lies in @, i.e. satisfies relations
(I), (II) and (III), obtaining a group homomorphism Gal(Q/Q) — GT, and finally, show-
ing that this homomorphism is injective. In §4, we give a new proof of the fact that the
pairs (s, fo) satisfy the relations (I), (II) and (IIT). Our method consists in proving that
the f, take the forms (I’), (II’) and (IIT’) given in theorem 2 below; indeed this observation
was the starting point for the statement and proof of theorem 2, which is the main theorem
of this article. At the end of the introduction we briefly sketch our approach to theorem 1
and explain how it led to theorem 2.

The surjectivity of the inclusion Gal(Q/Q) — GT, i.e. the possibility that Gal(Q/Q)
is actually isomorphic to @, is still an open question. Theorem 2, giving a new description
of the set of elements of @, provides some new evidence towards a favorable answer.

Theorem 2. Let (), f) € GT, and let m = (A —1)/2. Then there exist elements g and
heF,and k € R’(O, 5) such that we have the following equalities, of which the first two
take place in Fy and the third in K(0,5):

(') f=0(9)""g
/ m _ Jw(h)"th if A\ =1 mod 3
(1) fa" = {w(h)_l zyh if A\=—1 mod 3
/ ~ fpk)tk if A\ = +1mod 5
(III) f(x127$23) - {p(k)_l $34$g11,’1)45$1_21 k ZfA = 42 mod 5.

Corollary. There is a natural GT -action on certain pro-paths of the algebraic fundamental
groupoids of the moduli spaces Mo 4 and My s of Riemann spheres with 4 and 5 marked
points respectively, based at the tangential base points near infinity and at the points with

special automorphism groups.

The description of the elements of GT given in theorem 2, which could serve as a defi-
nition of éT, has some advantages over the usual definition given above, since rather than
describing GT as the set of all pairs satisfying three conditions, it gives a way to construct
all the pairs satisfying each of the conditions, so that GT is the intersection of these three
sets. One application is the study of the action of GT on finite covers of P! — {0,1, 0}
(i.e. algebraic curves defined over Q), and its comparison with the Gal(Q/Q)-action on
them. Indeed, let N be a normal subgroup of finite index in F, and let X be the finite
cover of P! — {0, 1, 00} corresponding to N. Then it is an important question to determine
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the image in F, /N of the set of elements f € F, such that for some ) the pair (A, f) lies in
GT. Using the analog of theorem 2 for the finite group P, /N, a candidate for this image
can be found algorithmically: although it may be larger than the real image, it can still
be used to give a bound on the order of the GT and thus of the Gal(Q/Q)-orbit of X, and
thus on the degree of the field of definition of X (cf. [HS]). Indeed, if N D N; D Ny---
is a cofinal sequence of subgroups for 13’2, then computing this candidate image in each
successive 13’2 /N; and projecting the result down to ﬁ’g /N does give the exact image of the
set of f’s corresponding to GT after a finite number of steps (though unfortunately this
procedure is not algorithmic, because the number of steps is not known).

The proof of theorem 2 is given in §3, and its corollary is proved at the end of §4.
The main point is that the relations (I), (II) and (III) of GT are cocycle relations for
the non-commutative cohomology sets given in (i), (ii) and (iii) of proposition 3 below.
These cohomology sets can be explicitly determined using a result of Brown, Serre and
Scheiderer, the essential part of which were written up for us by Claus Scheiderer as an
appendix to this article. The results are stated in proposition 3, which is proved in §2.
The forms given in theorem 2 are cocycle forms for f, so any f taking these forms satisfies
relations (I), (IT) and (III). But this reasoning is not necessary to check directly from the
formulae in theorem 2 that the three relations are satisfied, just using the relation zyz =1
in F, and the pentagon relation (1) in K(0,5).

Proposition 3. (i) The non-commutative cohomology set H'((8), Fy) is trivial;

(ii) The set H'((w), Fy) consists of two elements, represented by the trivial cocycle and
the cocycle given by c,, = ry;

(iii) The set H({p), K(0,5)) consists of two elements represented by the trivial cocycle and

: _ ~1 —1
the cocycle given by ¢, = T34%5] Ta5T15 -

A computation of a similar nature gives part (i) of the following proposition, and
the striking statements of parts (ii) and (iii) are easy consequences of it. Proposition 3 is
proved in §2, and proposition 4 at the end of §2.

Proposition 4. (i) The group H0(<L>,Fz) of elements of Fy fized by ¢ is trivial.

(ii) The complex conjugation element (—1,1) is self-centralizing in ﬁ, as in Gal(Q/Q).
(iii) Gal(Q/Q) is self-normalizing in GT. In particular, this means that if Gal(Q/Q) is a
normal subgroup of GT, then Gal(Q/Q) = GT.

Let us briefly sketch here the method of the proof of theorem 1 given in §4, since it
was the starting point for theorem 2. Recall that Thara associates a pair (A, f,) to all
o € Gal(Q/Q) as follows. Let Mg 4 ~ P! — {0,1, 00} denote the moduli space of Riemann
spheres with 4 marked points. The set of tangential base points on My 4 is the set of six
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small regions of P! — {0, 1,00} neighboring the missing points 0, 1 and co, and lying on
the real axis; they are denoted by {01, 10, 0c0, 500, 100, 001} (these definitions are recalled
more completely in §4). Let p be the path along the real axis from 01 to 10. Then any
element ¢ € Gal(Q/Q) sends the path p to pf, where f, is a “pro-loop”, i.e. an element
of the profinite completion of 71 (M 4; (ﬁ). Identifying F, with 71 (Mo 4; Oi) by taking x
to be a small counterclockwise loop around 0 and y a counterclockwise loop around 1, we
obtain an element f, € Fy. Let x denote the cyclotomic character. Then Thara associates
the pair (/\J = x(0), fo) to o.

Thara then proves that the pairs (x(o), f,) satisfy relations (I), (II) and (IIT). We show
that according to the congruence of x(o) mod 3 and 5, f, takes the forms given in (I’),
(I’) and (IIT’) of theorem 2. We actually did this before proving theorem 2; we started
from the question of whether the natural action of o on the path r along the real axis
from 01 to 1 /2 could not give some information on the form of f,. We soon found that if
o acts on r by sending it to rg,, then since p = (r)~!r, we must have f, = 0(g9,) 19,.
We proceeded similarly for the path t on Mg 4 running directly from 01 to —exp(47i/3)
together with the automorphism w, and for analogous paths on My 5 together with the
automorphism p, to find that elements of Gal(Q/Q) took all the forms given in theorem
2. Then, attempting as usual to extend to GT any visible combinatorial property of the
elements of Gal(Q/Q), we asked ourselves whether all elements of GT took these forms,
and this led to the formulation and proof of theorem 2, and to its corollary stating that in
return, the elements of GT act naturally on the same paths on the moduli spaces. Indeed,
it is more than probable that GT is an automorphism group of the algebraic fundamental
groupoids of all the M ,, for n > 4 based at suitably defined sets of tangential base points
and at the points having special automorphism group on these spaces; the difficulty even
for n = 5 is to give a complete construction and presentation of these groupoids. In §4 we
do however prove this fact for n = 4, which gives a stronger statement than that of the
corollary to theorem 2.

§2. Proof of propositions 3 and 4.

The basic defining principles for non-commutative cohomology sets are the following.
Suppose C'is a group acting on a (non-commutative) group G. Then

(S0) H°(C, @) is the subgroup of C-invariant elements of G.
(S1) The elements of H'(C,G) are in bijection with the set of G-conjugacy classes of
splittings of the exact sequence 1 - G — C xG — C' — 1.

Part of the following proposition was communicated to us by J-P. Serre; the proofs of
the different parts are due to him, to Brown and to Scheiderer. Since the full proof was not
actually written up anywhere, Claus Scheiderer was willing to write up a complete proof
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which is included as an appendix to this article. Proposition 5 is valid for both discrete
and profinite groups (see the last remark in the appendix). In our proof of proposition
8 below, we use the “discrete converse” implication of proposition 5, and in the proof of
proposition 3 which follows it, we use the “profinite direct” implication; the appendix of
course contains a complete proof of all the implications.

Proposition 5. Let G be a discrete or a profinite group. Let G1,...,G, be finite subgroups
of G, and suppose that for every prime p and every p-primary discrete G-module M the
restriction map
-
H™(G,M) — [ H"(G:, M) (%)
i=1

is bijective for n > ng = no(M). Then:
(a) ved,(G) < oo for every prime p;
(b) every montrivial finite subgroup of G is conjugate to a subgroup of precisely one of

Gi,...,Gy;
(c) GiNxGiz=t={1} forz e G,z ¢ G;,i=1,...,r.

Conversely, if G1, . .., G, are finite subgroups of G and (a), (b) and (c) hold, then there

exists an integer no(p) such that (*) is bijective for every p-primary discrete G-module M
and every n > ng(p).

Now, following Serre (cf. [S1]), we say that a discrete group G is good if it has the
same (ordinary, not non-commutative) cohomology as its profinite completion, i.e. if for
every finite G-module M the canonical maps H"(G, M) — H™(G, M) are bijective for all
n > 0. Free groups and semi-direct products of free groups are good (cf. [S1, p.14]), so in
particular F5 and K (0, 5) are both good (K (0, 5) is a semi-direct product Fy x F3, described
explicitly below). Let us say that if a group (discrete or profinite) satisfies the hypotheses
of proposition 5, it satisfies hypothesis (H). We want to verify hypothesis (H) on discrete
rather than profinite groups, and use it to compute the non-commutative cohomology sets
in the statement of proposition 3, for which purpose we need the following lemma.

Lemma 6. Let G be a good discrete group which injects into its profinite completion C;*, and
suppose that G satisfies hypothesis (H) for a family G1,...,G, of finite cyclic subgroups
of G. Then G also satisfies (H) for the (images of the) same family.

Proof. For all sufficiently large n, the restriction map H"(G, M) — [[,_, H"(G;, M) is an
isomorphism (for all M as in proposition 5). Since G is good, the left-hand side is the same
as H ”(é, M), so since the G; are subgroups of G and the restriction map is the same, G
also satisfies hypothesis (H) for the family Gy,..., G,. &

Lemma 7. Let G be a good discrete group which injects into its profinite completion,
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and let ¢ be an automorphism of prime order p of G (and G’) Let H denote the semi-
direct product (¢) XG. Then H is good and injects into its profinite completion (which
is isomorphic to (¢) xG). Suppose H satisfies hypothesis (H) for a family G4, ...,G, of
finite cyclic subgroups of prime order of H. Then the non-commutative cohomology set
H((¢), G) is in bijection with the subset of the groups G1,...,G, which are splittings of
the exact sequence

1—-G— H=(¢) xG— (¢p) — 1.

Moreover, the sets H'((¢), Q) and H'((¢), G) are equal.

Proof. The first assertions, that H is good and injects into its profinite completion, and
that H = (¢) xG are all standard (cf. [N, Prop. 1.2.4] for example). By the defining
property (S1), we know that the set H({#), Q) is in bijection with the set of G-conjugacy
classes of splittings of the exact sequence in the statement.

Short digression. Let us show how to make the correspondence between splittings G;
and elements of H'((¢),G) explicit. Any G; which is a splitting of the exact sequence
contains p elements of the form (¢!, a)® € (¢) xG for 0 < i < n — 1, where « is in G
these powers have the form (¢, ¢*~1(a)---¢(a)a). The relation (¢!, a)® = 1 (which
we sometimes simply write (¢~'a)™ = 1) implies that ¢"~(a) - --¢(a)a = 1, so a cocycle
for ¢ is obtained by defining ¢y = ¢*~!(a) - - - ¢()a.

Back to the proof of the lemma, any splitting of the exact sequence is conjugate to a
unique G; since hypothesis (H) implies (b) of proposition 5 (by assumption, the G; have
no non-trivial subgroups). Since all members of a G-conjugacy class of splittings are a
fortiori H-conjugate, they are all conjugate to the same G;, so we obtain a map from
HY((¢),G) — {G1,...,G,}. Now, an H-conjugate of a splitting is actually always equal
to a G-conjugate of it, and therefore lies in the same G-conjugacy class of splittings. To
see this, we simply note that if a splitting is generated by (¢!, a) as in the digression
above, then its conjugate by ¢ = (¢,1) is equal to its conjugate by a = (1, «), since

(@, D¢~ a)(¢711) = (¢71,¢(a)) = (La)(¢7 !, ) (1,07 ).

Thus our map from H'((¢),G) — {G4q,...,G.} is injective, and it is obviously surjective
onto the subset of the G; which are actually splittings of the exact sequence.

Finally, the equality of the cohomology sets for G and G is a consequence of the fact
that H satisfies hypothesis (H) for the same family of G; as H by lemma 6. )

In particular the trivial cocycle is associated to the trivial splitting given by the G-
conjugate of the subgroup (¢) which appears in the list Gy, ...,G, (by (b) of proposition
5, such a subgroup must appear in the list).



Now we can apply these results to proving proposition 3. We said above that K (0, 5)
is good because it is a semi-direct product of free groups; let us recall that presentation
and another one here. Set x1 = x19, T2 = o3, T3 = T4, T4 = x13 and x5 = x34, Where
the z;; are the generators defined in §1. Then K (0,5) = (x4, x5) X(x1, L2, 3) =~ Fy X F3,
with the following relations:

( :c;l:clau = xlexgl
lexzau = 56‘21)1@'2@'1_1@'2_1
x;1x3x4 = xlexglxl_lxgxlxle_lxz_l
xg1x1x5 =x
Ty ToTy = 56‘21)3@'2@';1@'2_1
L xglxgacg, = X2T3Tqy .

For two elements a and b of a group, let (a,b) = aba='b~! denote their commutator.
Rewriting the above presentation in the generators x19, T23, T34, T45 = T12T13T23 = T1L4T2
and 51 = T93X24T34 = T2T3T5 Gives:

$12,$34)
5623,5645)
)
)

(
(
(5634, Ts51
(
(

Il
—_

L45, L12
Ts51,T23) = 1
—1 -1 —1 -1 -1 _ 1

Let 6, w and ¢ be the automorphisms of F, given by: f(z) = y and 0(y) = =,
w(z) = (zy) "
of K(0,5) given by p(x;;+1) = p(xiy3,i+4) (indices considered mod 5). This is easily

and w(y) =z, and () = 2! and «(y) = y~!. Let p be the automorphism

seen to be an automorphism by considering the second presentation of K(0,5); it is the
same automorphism as the one defined in §1, given by conjugation by (c4030201)? inside
M(0,5).

Let Fy, F,,, F, and K, denote the semi-direct products () x F», (w) X Fy, (¢) X Fy and
(p) xK(0,5) respectively. Let Fo, F,, F,and K , denote the profinite completions of these
groups (which are all given by the same semi-direct products with the discrete infinite
group replaced by its profinite completion).

Proposition 8. The following groups satisfy hypothesis (H) for the given families of finite
subgroups:

(i) E, for Gy = (1), Gy = (1x) and G5 = (1y));
(ii) Fy for Gy = (6);
(iii) E, for G, = (W), Gy = (w™tzy);



(iv) K, for Gy = (p) and Gy = (p~“asszs Tasr 15 ).

Proof. By lemma 6 (and the fact that F» and K(0,5) both inject into their profinite
completions), it suffices to show hypothesis (H) for the discrete groups. The first three
groups are all freely generated; Fyp by an element of order 2 and an element of infinite
order, namely z and 6, F,, by two elements of order 3, namely w and zw, and F, by three
elements of order 2, namely ¢, x¢ and yt. We check that these discrete groups satisfy
conditions (a), (b) and (c) of proposition 5; (a) is well-known, and both (b) and (c) are
consequences of the fact that the given subgroups freely generate the groups (cf. [Br, p.
54] or [S3,1.4.3]). By the converse implication of the discrete version of proposition 5, these
then imply hypothesis (H) for the discrete groups, and thus for their profinite completions
since they are good, by lemma 6. This proof, the essence of proposition 5 and the idea of
using it also in the case of K(0,5) was suggested to us by Serre (cf. [S2]). For a briefer
argument valid for these three groups but not for K (0,5), see the commentary following
the proof of proposition 3 below.

Let us show that K, satisfies hypothesis (H) for the family G1 = (p) and G2 =
(p_1x34xg11x45x1_21>. Consider the element c5 = 04030207 in the full mapping class group
M(0,5), whose associated permutation is the 5-cycle (15432). Conjugation by cZ acts
on the pure subgroup K(0,5) of M(0,5) like the automorphism p, and the semi-direct
product (p) xK(0,5) can be identified with the subgroup (c5) x K (0,5) of M(0,5). Now,
all cyclic subgroups of order 5 of M(0,5) are conjugate to (c5) (cf. [HM, Corollary, p.
508]). We need to determine the number of K (0,5)-conjugacy classes of the set of all
M (0, 5)-conjugates of (cs5) which lie inside the subgroup (c5) X K(0,5). These subgroups
can be distinguished amongst all the M (0, 5)-conjugates of (¢5) simply by considering the
permutations associated to their elements; they must lie in the preimage of the subgroup
((15432)) under the surjection M (0,5) — Ss. This means that for a subgroup (ycsy~!)
with v € M(0,5) to lie inside (c5) x K(0,5), the permutation of the element ycsy~! must
be a non-trivial power of (15432). There are only four such powers, so there are at most
four K (0,5)-conjugacy classes of subgroups of order 5 in (c5) X K(0,5), given by any of
the many possible choices of a v; € M(0,5) for each i = 1,2,3,4 such that the element
vicsy; ! has permutation (15432)%. It follows from a theorem in [HM] that the number of
K (0,5)-conjugacy classes is in fact exactly two, and we can determine representatives of
them explicitly. Let us work this out in detail.

Choose four such elements v; giving at most four K (0, 5)-conjugacy classes of order 5
n (c5) XK (0,5). We need to determine if they are not actually K (0, 5)-conjugate amongst
themselves. Suppose that there exists a € K(0,5) such that

alyicsy; et = (e ),
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for 1 < ¢ # j < 4. This means that

1

-1 -1 a7t o1
aviCsy; - =7iC5 ;o

1

where the power ij~" on the right (considered in (Z/5Z)*) is necessary for both sides of

the equation to have the same permutation. This in turn implies that
_ _ _ s e—1
(7j 104%’)05(%' o 1’Yj) = 015] )
so the element vj_loz% normalizes the subgroup (cs) of M (0,5). Now, it is known that the
centralizer of c; in M(0,5) is reduced to {c5) and the quotient of the normalizer by the
centralizer contains two elements (cf. [HM, Theorem 10, p. 509]). A non-trivial element

of the normalizer is given by o30201020302: we have
1 1 -1 -1 2 _ -1
(030201020302)” "¢5(030201020302) = 01 05 03 040302070203 = Cg .

Thus the subgroups (yicsy; ') and (y4cs7; ') are K (0,5)-conjugate, as are the subgroups
(yacsyy ') and (y3csv5 '), On the other hand, since the normalizer consists of two elements
only, the subgroups (y1¢57; ') and (y2c57, 1) cannot be K (0, 5)-conjugate. This shows that
there are exactly two K (0, 5)-conjugacy classes of subgroups of order 5 in (c5) x K (0,5),
so also in the isomorphic abstract group (p) xK(0,5). The final step is to determine
them. One is of course represented simply by (c5). The other is represented by any
choice of (y2¢575 1), the element yocsy; ' having the permutation (15432)2. Let us choose
Yo = 0302010201, which has the permutation (4312), so that the permutation of 720572_1
is indeed (4312)(15432)(4213) = (14253) = (15432)2. After generous simplification, we
find that —1, -1 _ -1 -1 _ -1 -1 -1, -1
Y2C5 Yo = C5 L13T51C5 = C5 Tyg L45L93 L51Cx
= cgzxg11x34x1_21x45 = 0523034@'5113645:61_21,

the last equality following from the the commutation relations of K (0,5). As in lemma
7 and the remark following it, since this element has order 5 and p = cZ, setting s, :=
T3475 T457 ], defines a cocycle for p. This concludes the proof of proposition 8. &

Now we can finish the proof of proposition 3. All the groups G; in the families given
in proposition 8 are splittings of the associated exact sequences (as in lemma 7), so by
the profinite direct implication of proposition 5, we see that H'((#), 13’2) contains only one
element, corresponding to Gy, the trivial splitting. H'((w), F5) contains two elements,
represented by the trivial cocycle, i.e. the group G, and the cocycle given by b, = zy,
corresponding to Gy. Finally, H'((p), K(0,5)) also contains two elements, represented
by the trivial cocycle corresponding to G; and the cocycle given by s, = ac34xg11x45ac1_21
corresponding to G3. This concludes the proof of proposition 3. s
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Commentary. Proposition 8 was stated and proved in order to prove proposition 3,
and to underline the analogous treatment of the three cohomology sets corresponding to
0, w and p. However, Claus Scheiderer (and the referee) pointed out to us that it is
not necessary to make a detour through proposition 5 to compute the cohomology sets
HY((0), Fy), H'((w), F5) and H((1), F,). Indeed, since the three profinite groups F,, Fy
and E,, are free profinite products, in order to check that the subgroups G; exactly describe
the cohomology sets as in lemma 7, it suffices to use the profinite “Kurosh subgroup
theorem” given as the corollary to the proposition in Scheiderer’s appendix to this paper.
Since K , is not a free profinite product, this argument unfortunately does not apply.

Let us prove proposition 4. By proposition 8 (i), we know that the profinite semi-
direct product F, = (1) x F} satisfies (H) for the family of finite subgroups G, G5 and
G3. Therefore by the profinite direct implication of proposition 5, the G; satisfy (c) of
proposition 5, so in particular the only elements of F, which commute with ¢ are 1 and
t. By the principle (S0), the group H0(<L>,Fg) is in bijection with the elements of F}

A

centralizing ¢ inside F,, so it consists of only the trivial element. This proves proposition
4 (i).

To prove proposition 4 (ii), let (A, f) be an element of GT which commutes with
(—1,1). Multiplying on the left and on the right by (—1,1) via the multiplication formula
(2), we obtain the equality:

(=M f(zy) = (=2 f@hy™h),

which implies f(z,y) = f(z=*,y~ 1), i.e. f(z,y) is fixed under the automorphism ¢ of Fj.
But by (i), the only element of Fy centralizing ¢ in the semi-direct product (¢) X Fy is 1, so
f(z,y) =1, and A = £1 by relation (II).

Finally, to prove proposition 4 (i), we consider Gal(Q/Q) as a subgroup of GT
by theorem 1, and suppose it is normal. Let (), f) € @; we will show that (A, f) €
Gal(Q/Q). Indeed, (—1,1) € Gal(Q/Q) C GT since this element corresponds to complex
conjugation, so (A, f)~1(=1,1)(}, f) € Gal(Q/Q) since Gal(Q/Q) is assumed normal, and
it is an element of order 2 in Gal(Q/Q) (pairs are multiplied according to (2)). But all
such elements are conjugates of complex conjugation by elements of Gal(Q/Q), so there
exists 0 € Gal(Q/Q) such that writing ()\,, f,) for the image of o under the injection
Gal(Q/Q) — GT, we have

A HTHELD ) = Aoy fo)THELD) (A, fo)-

Thus (\s, fo)(A, f)~! commutes with (—1, 1), so by proposition 4 (ii), this product is equal
to 1 or (—1,1), s0 (), f) is equal to (£),, fo), which lie in Gal(Q/Q). The same argument

—

shows that Gal(Q/Q) is self-normalizing in GT, which concludes the proof of proposition
4. )
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§3. Proof of theorem 2.

Let (A f) € GT. Let us prove (D). Since every element (A, f) € GT satisfies the
equation f(y,z)f(z,y) = 0(f)f = 1in Fy, ag := f defines a cocycle for . But by (i)
of proposition 3, the non-commutative cohomology set H'((8), F}) is trivial, so ag is a
coboundary, which means that there exists g = g(z,y) € F, such that f=0() 9.

For (I’), relation (II) of GT says that f(z,2)z™f(y, 2)y™ f(z,y)z™ = 1, i.e. w?(fz™)
w(fx™)fz™ =1, so b, := fz™ defines a cocycle for w. Thus by (ii) of proposition 3,
fx™ is equivalent up to coboundaries to either 1 or xy, which means that there exists
h = h(z,y) € Fy such that either fz™ = w(h)~'h or fz™ = w(h)~' zyh.

Recall that f € ﬁ’2’ Suppose fz™ = w(h)~1h, i.e.

flz,y)z™ = w(h)"*h = h(z,z) *h(z,y) = h((xy)_l,x)_lh(x,y),

and write h(z,y) = %y’ mod 13’2’, with a,b € Z. Then mod 13’2’ we have 2™ = (zy)%z~bzoy®
= g20-byatb g0 b = —g and m = 3a. Thus m = 0 mod 3. On the other hand, if
fo™ = w(h)"lzyh, then mod F}, we have 2™ = (zy)%z bryry? = p2o-btlyatd+l o4

b=—a—1and m=3a+ 2, s0o m=2mod 3.

Finally, for (IIT’), relation (III) of GT says that ¢y = f(x12,23) defines a cocycle
for p. Recall that the automorphism p of M(0,5) is given, via an abuse of notation, by
p(g) = pgp~! where p = (c4030201)2. By (iii) of proposition 3, this cocycle is equivalent up
to coboundaries to the trivial cocycle or the non-trivial one defined by s, := x34xg11x45x1_21
introduced in §2. It remains to show that this equivalence depends only on the congruence
of £X mod 5. We do this by comparing relation (IT), in which the quantity m = (A —1)/2
occurs, with the coboundary/cocycle forms of f(z12, z23), in the group K(O, 5) modulo the
second commutator group K (0,5)® = (K(0,5), K’(0,5)). Before doing so, we calculate
the image of f(z,y) in the quotient Fj/ 13’2(2), where 13’2(2) denotes the second commutator
group (Fy, ).

Denote by G either 13’2/13’2(2) or K(0,5)/K(0,5)®). Then G is a torsion free nilpotent
group and for any prime ¢, it injects into its Qg-envelope G(Qy) (cf. Appendix A of [Q]
for details). Like G, the group G(Q) is nilpotent and torsion free, but it is also divisible.
It has a Lie algebra LG(Qy), and the exponential map defines an isomorphism between
G(Q¢) and LG(Qg) for all ¢, via the Campbell-Hausdorff formula. Because in our case
G has length two, this construction is actually defined not only over @y, but in fact over
Z[1] (= Zg for € # 2). With (or without) this in mind, we now turn to the computation,
where for simplicity we drop the index ¢ from the groups and Lie algebras.

For any prime /, let Gp = (Fy/F{?)(Q,) and Gk = (K(0,5)/K(0,5)*)(Q;). Then
the map @ +— exp(w) = w gives the isomorphism from LGp (resp. LGk) to G (resp.
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G k). The multiplication law in LG (resp. LG ) corresponding to the multiplication law
in Gp (resp. Gk) is given by the Campbell-Hausdorff formula: ww’ = exp(w * @) with

1
o =+ @ + 5[0, D,
where [@, @W'] = W' — ww'. The Lie algebra LG is generated as a Qy-vector space by z,
y and [z,y] (for all g € F,, we continue to write ¢ for the corresponding element of G ).

Considering f(z,y) in Gp, write f(z,y) for the corresponding element in LG . Then

we have

—_—

f(x7 y) = exp(f(x, y)) = eXp(Ozg[.f?, ?:/]),

—~——

ie. since f(z,y) is in the derived subgroup, there exists oy € Z[3] such that f(z,y) =
oy[Z,§]. Let us calculate ap. Let my denote the Zg-component of m = (A — 1)/2 € Z.
Rewriting relation (II) in LG, with 2z = (zy)~!, gives

f(z,x)*mgé*f(y,z)*mggj*f(x,y)*mgi'zo

Expanding this expression using the Campbell-Hausdorff formula, we find

(e[, &] +meZ) * (u[d, Z] + med) * (e[, J] + mel) = 30,[Z, ] — %me[fﬁ, ) — %mﬁ[f, g) =0

so oy = my(my +1)/6. Note that since A\ € Z*, m cannot be congruent to 1 mod 3, so
m(m +1) =0 mod 6, and a = (ay), € Z.

Before finishing the proof of theorem 2, we take a moment to draw attention to the
fact just proved, by stating it as follows.

Lemma 9. Let f € Fy and suppose there exists \ € 7* such that (\ f) € GT. Then
the set of u € Z* such that (u, f) € GT is given by {£A}. These two values of X\ can
be determined by considering the image of f in 13’2/13’2(2), which takes the form (x,y)" for
somer € Z; we have \? = 24r + 1.

Proof. This lemma was actually proved just before its statement, but we give another
simple argument for the first part. Suppose f € Fy and (), f) and (g, f) lie in GT. Let F
and F), denote the two automorphisms of F, associated to these two elements. Consider
the automorphism Fy 1FM; by the multiplication formula (2), it is associated to the pair
(A1, 1). Set n = (A\~'p — 1)/2; if this pair is in GT it must satisfy relation (IT), i.e.
x"z"y"™ = 1. But this is possible if and only if n = 0 or —1. &

The following lemma concludes the proof of theorem 2.

Lemma 10. Let (A f) € GT. If f(x12,223) has the coboundary form p(k)~tk for
some k € K(0,5), then m = 0 or 4 mod 5, whereas if f(z12,x23) has the cocycle form
p(k) tzzszs wasz i, k, thenm =1 or 3 mod 5.
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Proof. We use the Campbell-Hausdorff formula to calculate in the group G, or rather in
LG k. As before, for all g € K (0,5), we continue to write g for the corresponding element
of Gx. Suppose f(x12,T23) = p(k)~'k. The Lie algebra LG is generated as a Qp-vector
space by the z;;y; and by the non-zero brackets of them, namely [Zi2,Z23], [Z23, Z34],
[Z34, Z45], [Ta5,T51], [T51, £12]. However, rewriting the pentagon relation (1) of K’(O, 5) in
LG gives the relation

[Z12, Z23] + [T23, T34] + [Z34, Tas] + [F45, T51] + [T51, T12] =0,

so we do not need [Z51,Z12] in a basis of LG . Thus the first order part of any element of
LG g is a linear combination of the five variables Z; ;1 with coefficients in Z, and its second
order part is a linear combination of the four brackets §; := [Z12, Z23], J2 := [Fo23, T34],
J3 1= (T34, Z45), §a = [Z45, T51] with coefficients in Z,[]. In particular k = exp(k) with

k= a1%1 + asFos + a3Fsq + aadas + asisy + bif + bado + bsijs + badia,

so p(k)~! = exp(—p(k)) with

p(k) = a1Z45 + a2F51 + a3T12 + aaT23 + a5T34 + b17s — b2 (J1 + G2 + J3 + Ja) + b31 + baFa-

Expanding the identity exp(—p(k) * k) = f(z,y) to the first order, we see that the first

order part of —p(k) * k is 0, which shows that all the a; are equal. The equality

~ me(me+1). .. .
—p(k) x k= %[mz, 5623]
becomes
) i ) . my(mg+1) _
(b1 + b2 — b3)g1 + (2b2 — ba)P2 + (b2 + b3)giz + (—b1 + b2 + ba)fia = %m-

Solving the system obtained in the b;, we see that by = —2b3, by = 2b3, by = —2b3 and
5bs = my(my + 1)/6. Now, the denominator of b3 is at worst 2, and thus we see that for
¢ =5, ms(ms + 1) must be congruent to 0 mod 5, i.e. ms = 0 or 4 mod 5, so m = 0
or 4 mod 5. The computation for the cocycle form of f(x19,x23) is analogous up to the
following small differences. We now need to make sure the equation

~ - - - - ~ me(me +1) _  _
—P(k) * T34 * (—9551) * Tq5 * (—9612) x k= %[mlz, ng]

is satisfied. Elimination of the first order terms gives the following expression for k:

k=aziy+ (a — 1)zos + (@ — 1)x3q + (@ — 1)x45 + axsy + biy1 + bays + bays + baya.
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Calculation of the second order term of —p(l;:) * Taq % (—Z51) * Tas * (—F12) * k gives a
system to solve in the b; similar to the one in the coboundary case, except that we find
5bs = 1/2 + my(me + 1)/6 = (m7 + mg + 3)/6, so by the same reasoning as before,
m2 +ms+3=0mod 5, s0 m=1or 3 mod 5. )

§4. Proof of theorem 1 and of the corollary to theorem 2.

We first need to recall some well-known facts about pro-paths on algebraic varieties
defined over Q and the Galois action on them.

Definitions. (1) Let X be an algebraic variety. A pro-point @ on X is a collection of
points ay, one on each finite cover Y of X, such that for any two such covers Y and Y’
with Y a cover of Y’, the image of ay under the covering map Y — Y’ is ay.

If X is defined over Q and @ = {ay }y is a pro-point of X, then & is said to be defined
over Q if ax lies in X (Q). If this is the case then ay lies in Y (Q) for all finite covers Y of
X, so there is a Galois action on these pro-points. The points on the universal cover X of
X (C) gives rise to a natural subset of the set of pro-points

(2) Suppose X (Q) is not empty. Let us fix a base point @ € X lying over a point ax
in X(Q). A pro-loop on X based at a is defined to be a pro-point lying over ax. This
terminology is the generalisation of the situation where the chosen pro-point is again a
point bon X , lying over ax, in which case the two points a and b uniquely determine
a loop (up to homotopy) on X (C). These pro-loops, like loops, can be composed and
form a group denoted by 71(X;a), which is isomorphic to the profinite completion of the
fundamental group 71 (X (C);ax).

(3) For any finite set of points A of X, let m(X; A) denote the fundamental groupoid
of X based A, i.e. the set of homotopy classes of paths from a to b for all pairs a,b € A.

(4) If & and b are pro-points of X, lying over a and b € X respectively, then we define
the set of pro-paths on X from @ to b to be the set of homotopy classes of paths from a to b
on X, precomposed with the group of pro-loops #1(X; ). If A is a finite set of pro-points
of X, we can define the profinite completion of w1 (X; A) to be the set of pro-paths from @
to b for all pairs @, b of pro-points of A.

Well-known facts: (cf. [SGA 1], or [EL] for a short account) (1) Suppose X is an
algebraic variety defined over Q. There is a Galois action on the set of pro-paths of X
whose endpoints are pro-points defined over Q. In particular, if o € Gal(Q/Q) and 7 is
a pro-path with endpoints @ and b defined over Q, then for any pro-path 7' from o(a) to

o(b), there exists a pro-loop f € 71(X;a) such that o(y) = +' f. (By convention, 7; v2
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means the path 7, followed by the path +;.) In particular, even if we fix 4’ to be an actual
(homotopy class of) paths such an f exists.

(2) (cf. [I1, I2]) The tangential base points on Mg 4 and Mg 5 can be canonically
lifted to pro-points which can be considered as being “defined over Q7. Thus, the action of
Gal(Q/Q) on the pro-points of the moduli spaces defined over Q can be extended to these
tangential base points by fixing them. The Galois action on pro-paths of these spaces with
endpoints defined over Q can also be extended to an action on pro-paths whose endpoints
are tangential base points.

Now let us briefly recall the structure of the moduli spaces Mg 4 (resp. Mys) of
Riemann spheres with 4 (resp. 5) ordered marked points, and particularly the nature of
the tangential base points at infinity and of certain paths belonging to the fundamental
groupoids based at these tangential base points and at some points with special automor-
phism group. Points of these moduli spaces are isomorphism classes of Riemann spheres
with 4 (resp. 5) marked points, which means for instance that for each point of the moduli
space there is a unique sphere whose ordered marked points are given by (0, €, 1, c0) (resp.
(0,€,1,00,p)) for € € C different from 0 and 1 (resp. €, u € C with € # p and € and p
different from 0 and 1). Namely

Mos =P —{0,1,00} and Mgs =~ (P' —{0,1,00})% — A,

where A is the diagonal.

A complete description of the region of mazimal degeneration of these moduli spaces
is given in [PS, chapters II and III]. In particular, one can describe a set of simply con-
nected (real) neighborhoods near infinity on the moduli spaces, the so-called tangential
base points. The case of My 4 is well-known and the tangential base points were first
described by Deligne (cf. [De], [I]). Mg 4 >~ P* —{0,1, 00} and its stable compactification
is just P!; the points of maximal degeneration are the missing points 0, 1 and oo, and
their neighborhoods in Mj 4 thus form three punctured disks. The real part of these three
punctured disks is formed by 6 simply connected real segments which are usually denoted
by {(ﬁ, 000, 10, 100, 600, 051}; they form the set of six tangential base points on Mg 4. We
denote this set by Bjy.

Let j = exp(4mi/3). Let p be the path on M 4 along the real axis from 01 to 10; r the
path along the real axis from 01 to 1/2, s the path from 000 to —j2 (the south pole) and ¢
the path on Mg 4 from 01 to —j2 shown in the figure above. Let t’ be the image of ¢ under
complex conjugation, so t' runs directly from 01 to the north pole —j. We identify F, with
the algebraic fundamental group of My 4, where x and y are anticlockwise loops around 0
and 1 based at the tangential base point 01. In order to discuss the profinite completion
of the fundamental groupoid of Mg 4, we need to pick liftings of the six tangential base
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points and the five “special” points 1/2, —1, 2, —j and —j2 to pro-points once and for
all. We lift the tangential base points as Thara does (cf. well-known fact (2) above). We
choose the unique pro-point over 1/2 such that the pro-path from the pro-point over 01
to the pro-point over 1/2 is just the path on P! — {0,1,00} from 01 to 1/2; we pick the
pro-points over the other “special” points analogously. Fixing these choices from now on,
we allow ourselves to speak of the profinite fundamental groupoid based at 01, 1 /2, etc.

The neighborhood of the set of points of maximal degeneration in Mg is more
complicated and the real neighborhood of the set of 15 points of maximal degeneration
forms 60 simply connected regions; this set, which we denote by Bs, is well-described in
[PS] and we restrict ourselves to the careful description of two of these regions which will
concern us here. The first is given by the set of all points on M, 5 corresponding to spheres
whose five ordered marked points are of the form (0, ¢, 1, 00, 1) where € is a small positive
real number and u is a negative real number with very large absolute value, and the second
is given by the set of points on My 5 corresponding to the spheres whose ordered marked
points have the form (0,1 —¢,1,00, 1), € and p as above (we say that a sphere with 5
marked points is in “standard form” if 0, 1 and oo are in the first, third and fourth places
respectively). We denote these small simply connected real regions of Mg s by @ and Q'
respectively. Let p be the path from from @ to @', analogous to the path p on My 4, given
by the set of points corresponding to the spheres in standard form with marked points
(0,0, 1, 00, u) where 6 takes all real values in the interval [e,1 — €.

Let ¢ = exp(27i/5), and let Z denote the point of My 5 corresponding to the sphere
with five marked points (1,¢,¢?,¢3,¢*). The sphere in standard form corresponding to
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this point with 0, 1 and oo in the first, third and fourth places, is given by the points

¢ 4
—,1 — ~ 38,1 —.62
(Oa (1+C)2, y 00, (C_'_C )) (Oa 38, y 00, 6 )
(it is easy to confirm that ¢/((1+ ¢)?) and —(¢ + ¢*) are real). For any o € Gal(Q/Q),
X (o) is invertible mod 5. If x(0) = 1 or 4 mod 5, then x(0)(Z) = Z. If x(¢) = 2 or 3 mod
5, then x(0)(Z) = Z', where Z' is obtained from Z by substituting ¢? or ¢3 for ¢, the two

substitutions giving the same result. The standard form of Z’ is given by:

2
(0, ﬁ 1,00, —(¢*+ ¢*))) ~ (0,2.6,1, 00, 1.6).

Again, we fix once and for all pro-points lying over the tangential base points @ and @’
and the points Z and Z’ such that the pro-paths between these pro-points are exactly the
paths on Mg 5 described below.

Let v and v’ denote the paths on Mg 5 from @ to Z and from @ to Z’ parametrized
respectively by (0, f,1,00,¢) and (0, f',1,00,¢’) where f, g, f’, ¢’ are the paths shown in
the following figure (the dashed line represents a path on the back of the sphere).

Recall that the mapping class group M (0,5) is the group of orientation-preserving
diffeomorphisms of a sphere with 5 marked points modulo those which are isotopic to the
identity. Let Sg be a sphere in standard form corresponding to @, with marked points
(0,€,1,00, 1), and let ~; represent the loop passing through the i-th and (i + 1)-st marked
points of Sg for ¢ = 1,2, 3,4, running along the real axis. Each generator o; of M(0,5)
corresponds to a Dehn twist along the loop 7v;, and following the effect of this twist as
it deforms the sphere Sg gives a path on the moduli space Mj 5 starting at ). These
paths can be composed via the automorphisms of My 5, so that the group M (0, 5) can be
identified with a star of paths starting at ). In particular, this gives an identification of
the pure subgroup K (0, 5) with the fundamental group 71 (M 5; Q).
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Proof of theorem 1. Gal(Q/Q) — GT.

Let p, r, s, t and t’ on My 4 and p, v and v’ on M 5 denote the paths defined above,
and let Fy be identified with 71 (Mo 4; Oi) and K(O, 5) with 71 (M, 5; Q) also as above. Fix
o € Gal(Q/Q). By the well-known fact (2), there exist pro-loops f = f(z,y), g = g(z,v)
and h = h(z,y) € Fy such that o(p) = pf, o(r) = rg, o(t) = th if x(0) = 1 mod 3, or
o(t) = t'h if X(0) = 2 mod 3. Similarly, there exists a pro-loop k = k(z12, 23, T34, T45, T51)
in K(0,5) such that o(v) = vk if x(¢) =1 or 4 mod 5, o(v) = v'k if x(¢) = 2 or 3 mod 5.
Note that IThara proves that f = f(x,y) actually lies in F} (cf. [I2], Prop. 1.5).

The inclusion of Gal(Q/Q) into GT discovered by Thara is given by associating to o
the pair (x(0), f) € Z* x F3. In [I1] and [I2] Thara proves that these pairs satisfy relations
(I), (IT) and (III) of the definition of GT. We associate the same pair to o, and we show
directly that such pairs satisfy properties (I'), (II') and (III’) of the elements of GT given
in theorem 2. It is enough to show these properties, since they give the precise cocycle
form of f and thus immediately imply the cocycle relations (I), (II) and (III).

Let us begin with (I’). Let ©(z) = 1 — z and Q(z) = 1/(1 — z) denote two auto-
morphisms of Mg 4 of order 2 and 3 respectively; they generate Aut(Mg 4) ~ S3. These
automorphisms are related to the automorphisms # and w of By, = 71 (Mo,4; (ﬁ) by the
following formulae:

O(w) =p~1O(w)p and w(w) =t~ Qt)Qw)Qt 1)t for all w e Fy, (3)

as can be easily confirmed by checking on the two generators z and y of F,. Let us show
that (x(c), f) has property (). We have ©(r)~'r = p; applying o to both sides, we obtain

O(rg)'rg =0(g)'O(r)"trg = O(g) 'pg = pb(9) "9 = pf

using equation (3). This shows that f = 6(g)~'g, so f has the form (I’) of theorem 2.

Let us show (I'). The path s~!t is homotopic to a small clockwise half-circle in
the lower hemisphere around 0 starting at 01 and ending at 0co. The path QO(s7 1) is
homotopic to a small half-circle around 0 starting at Oco and ending at 01, lying in the
upper hemisphere, so that QO (s~!t)s~1t = 27! is just a clockwise loop around 0 based at
01. We need the two following facts. First (cf. [I2, Prop. 2.5]), the action of ¢ commutes
with that of the automorphisms of Mg 4 and M s, and second (cf. [EL, formula 18)), if
m = (x(c) —1)/2, then o(s71t) = s~tz=™. In particular, this determines the action of &
on s from its action on ¢: we obtain o(s) = o(t)z™t " 's where o(t) = th or t'h according
to the congruence of x(o) mod 3.

Moreover, €(s) is the path running straight from the base point 10 to —j2, so we have
p = Q(s)~!t. Consider first the case x(c) = 1 mod 3, so o(t) = th. Applying o to both
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sides of the equation p = (s) !¢, we obtain on the left-hand side o(p) = pf and on the
right-hand side, using equation (3):

o(p) = o(Qs)7't) = Qa(s)) o (t) = QsTQ(ta~ "R )tk
=Q(s~Ht- 1) Q(x ) mQ@E Nt - T IQOQAHQ(E Yt

= pw(z) " ™w(h) " h = py"w(h) " h.
Set h = ﬁxm; then we obtain from this expression:
pf = pw(h) " he™™,

i.e. fr™ = w(h)~th, which is the form given in theorem 2.

In the case x(o) = 2 mod 3, ie. o(t) = t'h, we apply o to the same equation
p = Q(s)~1t and the left-hand side is again pf. Again using equation (3), the right-hand
side becomes

o(p) = o(Qs)"tt) = Qo (s)) " to(t) = Q(s™ )Q(t:c_mh o )
= Q(s~Ht- 7)) T - ) QATHQE - tTIQ@)Q() T H A
= pw(z)""w(h) "'y h = py~"w(h) "y h,

since t71Q(H)Q() "' = y~!. Now set h =y~ ha™. Then since w(y) = 2z = (zy)~ !, we
obtain the equality

pf =py "w(h) "y~ h = pw(h) tayha ™™,

so fa™ has the form given in theorem 2.

Let us prove (III’). Recall that the mapping class group M (0,5) can be identified
with a star of paths starting from ) via the Dehn twists described above. Let p =
(04030901)% € M(0,5) as in the previous sections. A priori, p corresponds to a rotation of
the sphere through an angle of 674/5, but this symmetry is lost using standard form. A
point (0,a, 1, c0,b) goes to (1,00,b,0,a) under p, which is given in standard form by

sty )

The permutation corresponding to p is given by (14253) € Ss; it also gives an auto-
morphism of My 5, expressed on the spheres in standard form by (4). We denote this
automorphism by P € Aut(M,5), appealing to the reader to identify this letter with a
capital p, accompanied by the suitable pronunciation, in analogy with the notation # and
©, w and  introduced above. Considering p € M(0,5) as a word in the Dehn twists
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0;, p induces a path in the moduli space from any point ¢ € @ to the point P(q) which
by (4) lies in @', so it induces a well-defined homotopy class of paths from the simply
connected region @ to P(Q) = Q'. We denote this path by p. The automorphisms p of
K(0,5) = #1(Mos; Q) (i.e. conjugation by p in M (0,5)) and P of M, 5 are related by the
following formula, analogous to equation (3) above:

P P(k)p = p(k) for all ke K(0,5). (5)

To study the images of the paths v and v’ under the automorphism P of M 5, we need
to choose parametrizations of them. Before doing so, we note that using (4), it is easy to
check that P fixes the points Z and Z’ on M 5.
Let us parametrize v by

(0. (gge — 9=+ Lo ((C+ ¢ = )z 1),

for z € [0, 1] (where the first, third and fourth paths are constant paths at the given points).
The path v’ is only slightly more complicated; we do it with two pairs of line segments.
Let a = ¢2/((1+ ¢?)?) ~ 2.6 and B8 = —(¢? + ¢3) ~ 1.6 so that (0,a,1,00,3) gives the

endpoint of v/. Then we can parametrize v’ via
(0,(2 — 26 — 24)z +€,1,00, (26 — 2p)z + )
for z € [0,1/2] and
(0, 2a—2+2i)z+ (2 — a— 2i),1,00, (28 — 2i)z + (2i — B))

for z € [1/2,1]. These parametrizations allow us to compute the images of the paths v and
v' under the automorphism P. Using (4) to calculate them directly, we find that P(v) and
P(v') are as in the following figure. In particular, this calculation (left to the unconvinced
reader...) shows that the two pieces of P(v’) actually cross for some value zg € [0, 1], i.e.
there is a point of the form (0, zg, 1, 00, zg) on the path P(v’), a fact which comes in handy
below.
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Let us show that P(v)~'v = p and P(v')" %' = praszszasr]s. The case of v is
immediate from the figures: the path v followed by P(v)~! has the point starting at u
perform a loop homotopic to the identity, while the point starting at € slides from € to
1 — €, which is just the path p. Along v’ followed by P(v')~!, the points starting at u
and e follow a more complicated procedure which we can write as the braid given in the
following figure, with the convention that when a marked point passes above another, the
corresponding braid strand passes behind, and when it passes below, the braid strand
passes in front. The braid we obtain is a pure braid which means it starts and ends at Q);
in order to obtain P(v')~!v’ we have to compose this braid with the path p. The upper
part of the braid follows the meanderings of the path v, and the lower half continues it
with P(v")~!. One cannot of course deduce this braid merely from the figures above, it
is necessary to use the explicit parametrization of v’ and the parametrization of P(v')~!
obtained from it, i.e. to have a sort of “kinematic” version of the path, in order to confirm
the fact remarked above that the two pieces of the path cross for some value zo € [0, 1],

i.e. that there is a point (0, g, 1,00, zp) on P(v) !

This braid is given by z25245; using the identity x5; = xa3224234 valid in K(0,5), we
find that this is equal to the now-familiar expression x34xg11x45x1_21, which means precisely
that P(v')"'v' = praszs; Tas2]y, as desired. Now, from the two equalities P(v)™'v = p
and P(v')~'' = prssrs'zasryy, we will deduce the cocycle form (IIT’) of f. Consider
first the case x(0) =1 or 4 mod 5. Then o(v) = vk and o(p) = p f(x12, x23), so applying
o to both sides of the equality P(v)~'v = p and using equation (5), we obtain

P(vk)~'vk = P(k)"'P(v) "'k = P(k)™'pk = pp(k) 'k = b f (12, x23).
In the case x(0) =2 or 3 mod 5, we have o(v) = v’k and so similarly, we obtain
P(w'k) "'k = P(k) 'prsarsi wasriyk = pp(k) twsarstraszisk = P f(x12, 223).

Thus f(x12,x23) has the form of (III) of theorem 2. This concludes our proof that the
elements f € F} belonging to pairs (), f) associated to o € Gal(Q/Q) have the forms
('), (I’) and (IIT’), so in particular they lie in GT. To see that the map Gal(Q/Q) —
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GT obtained this way is a group homomorphism, it suffices to note that elements o €

A and

Gal(Q/Q) give automorphisms of F, via their couples (\, f), by sending =z — =z
y — f~ly*f, and multiplication of elements of Gal(Q/Q) corresponds to composition of
these automorphisms, which gives the multiplication of formula (2), i.e. that of GT.
Now, since the elements of GT give automorphisms of F, via z — z* and Yy —
f~1y*f, the elements of Gal(Q/Q) act as automorphisms of F,. Now, F, is the algebraic
fundamental group of P! — {0, 1, 0o}, which is a variety defined over Q, so we have a split

exact sequence
1— (PP —{0,1,00} ® Q) ~ Fy — 71 (P! — {0,1,00}) — Gal(Q/Q) — 1.

This gives an outer action of Gal(Q/Q) on Fy, i.e. a canonical homomorphism Gal(Q/Q) —
Out(F}), which lifts in many ways to homomorphisms Gal(Q/Q) — Aut(F,). The most
striking property of our homomorphism Gal(Q/Q) — GT C Aut(Fy) is that it lifts the
canonical homomorphism Gal(Q/Q) — Out(E) (cf. theorem 1 of the appendix to [I2]).
Since by Belyi’s theorem, the homomorphism Gal(Q/Q) — Out(Fy) is injective (cf. for

—

example [S], IT), our homomorphism Gal(Q/Q) — GT is also injective. s
ple [S], II), P j

Proof of the corollary to theorem 2. Let F = (), f) be an element of @, so it
takes the forms in theorem 2 according to the congruences of . Then in analogy to what
happens for Gal(Q/Q), GT acts naturally on the path r on Mj 4 by sending it to rg, and
on t by sending it to th where h = hz=™ if A = 1 mod 3 and to t'h where h = yhx~™ if
A = 2 mod 3. Moreover, F' acts on the path v on Mg 5 by sending it to vk if A =1 or 4
mod 5 and to v’k if A = 2 or 3 mod 5.

As described at the end of the introduction, this action of GT on these paths is natural
in that it probably extends to an automorphism of the full algebraic fundamental groupoids
of Mo 4 and My s based at tangential base points and points of special automorphism
group, and indeed it is probably the complete group of automorphisms of these groupoids
satisfying some simple conditions. We can show that this is the case for n = 4. Let
© and Q be the two generators of Aut(M,g4) given above. Generically, any point of
Moa = P*—{0,1,00} has six images under Aut(My4). The points of P' — {0,1, 00}
having special automorphism group are the points which do not have six distinct images
under the action of this group, i.e. they are fixed under some automorphisms. It is easily
determined that 1/2 is the only fixed point of @, —1 of Q20 and 2 of 220. The fixed points
of 2 and Q2 are —j and —352, so the five points {1/2,2, —1, —j, —j?} give the complete set of
points of P! — {0, 1, 00} with special automorphism group. Let B, denote the union of the
six tangential base points and the five points of special automorphism group. A generating
set of paths for the fundamental groupoid 7y (M 4; Bs) forms a sort of pumpkin, as in the
following figure:
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These paths are simply the basic paths r, s and t together with all their images under
the six automorphisms of P! — {0, 1, 00}. For any two points a and b in l§4, the set of paths
in w1 (Mo,a; 5’4) from a to b is given by any one path from a to b precomposed with the
set of loops in the local group (isomorphic to F») based at a. The algebraic fundamental
groupoid 71 (Mo 4; 1’5’4) is obtained from the topological fundamental groupoid by replacing
the local group (isomorphic to F3) at each point by its profinite completion Fg, so that
the set of pro-paths from a to b is given by a choice of a path from a to b lying in the
topological fundamental groupoid, formally precomposed with all elements of 71 (M 4; a).

Proposition 11. GT is an automorphism group of the fundamental groupoid 71 (Mo 4; l§4).

Proof. Tn order to show that GT is an automorphism group of this fundamental groupoid,
we first define the action of GT on each path as above, namely if F = (], f) € GT, we set

B he™™ if A=1 mod 3
~ \yhz™™ if A =2 mod 3,

and F(r) = rg, F(t) = th resp. t'h if A = 1 resp. 2 mod 3, and F(s) = F(t)z™t 's, so
F(s7't) = s7z=™. Since f = 0(g)~'g and p = ©(r)~'r, we obtain F(p) = pf. In order
to check that F really an automorphism of the groupoid, we need to check that all relations
in the groupoid are respected by this action (a relation in the groupoid is a non-trivial chain
of paths forming a loop homotopic to the identity). Up to the action of automorphisms
(which commute with @), the set of relations in the fundamental groupoid 71 (Mo 4) is
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generated by the following two relations among the generating paths r, s and ¢:
-1 —1y, _
rOr)Q(sT )t =1

and
t=1sQ2(0(r) " rt~1s)Q(O(r) " trtTs)O(r) Tr = 1.

The first relation can be written ©(r)~'r = Q(s)!t. Applying F to both sides, we see
that it is respected by the action of F' if and only if

1 Jw)? if A\=1mod 3
bl9)”"9 = {w(h)_lxyh if A = 2 mod 3.

But this is the case by hypothesis.

In the second relation, we may use the identity ©(r)~!r = p to rewrite the relation
as t71sQ%(pt~1s)Q(pt~ts)p = 1. Let us apply F to the left-hand side of this relation,
recalling that ¢t~1Q(#)Q(w)Q(t) " = w(w) and thus t~1Q2?(#)Q?(w)Q%(t) "1t = w?(w) for
all w e 13’2. We obtain

e ()3 (£ (¢ 5 Q) ™) ) = 1.
Using the identity p = Q(s) !¢ this simplifies to
T2 (f2™)Q% () "M -t IQ)Q(f2™)Qt) T - fa™ =1,

which is equal to w?(fr™)w(fz™)fz™ = 1, by relation (II) of the definition of GT. Thus
the second relation is also respected by the action of GT', which concludes the proof. &
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