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§0. Introduction

Let GQ = Gal(Q/Q). In this paper we study Belyi’s action of GQ on
π1(P1 − {0, 1,∞}) on the level of finite covers . We show that this action
can be made effective in terms of the natural outer action on π1, and that
this outer action can itself be approximated so as to obtain information
about Galois orbits and fields of moduli of covers and dessins. We begin
with some background and motivation, and then describe the structure of
the paper.

0.1. Background and motivation. In the theory of branched covers
of curves, the action of the arithmetic Galois group on the geometric Ga-
lois group is both important and mysterious, and provides a link between
number theory and topology. This link arises from the fact that topological
covering spaces over a punctured Riemann sphere can be defined as covers
of algebraic curves, and that the covers are even arithmetic if the branch
locus consists of points defined over Q. Namely, as Grothendieck showed
[G], such a cover can be defined over Q (and hence over some number field),
and the same is true for G-Galois covers. If we fix an algebraic branch locus,
then we may first ask how the absolute Galois group GQ = Gal(Q/Q) acts
on the set of such covers, and secondly ask what the field of moduli of such
a cover is. In the G-Galois case, if G has trivial center (and in certain other
cases), the cover is defined over its field of moduli, so the latter question is
equivalent to asking for the minimum field of definition K. That in turn
has applications to the Inverse Galois Problem, via Hilbert’s Irreducibility
Theorem — for then G is a Galois group over K(t) and hence over K.

These questions can be made more explicit by rephrasing the situation
in terms of group theory. Let P1, . . . , Pr ∈ P1

Q be r distinct points, and let
P0 ∈ P1 − {P1, . . . , Pr} be a base point. Then we may choose a homotopy
basis of counterclockwise loops γi at P0 around Pi such that

∏
γi ∼ 1. To

give a G-Galois cover branched at points P1, . . . , Pr is then equivalent to
giving its branch cycle description, i.e. an r-tuple of generators (g1, . . . , gr) of
G such that

∏
gi = 1, determined up to uniform conjugacy (corresponding

to the choice of base point on the cover over P0). The first question above
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then becomes the problem of determining how GQ acts on the set of such
equivalence classes of r-tuples (e.g. by giving a formula for the action of
σ ∈ GQ on the set of branch cycle descriptions). Solving this would then
answer the second question as well, since the field of moduli of a cover would
be the fixed field of the stabilizer of the branch cycle description. We would
thus like to have a “formula” for the field of moduli in terms of the branch
cycles gi. (The non-Galois case can be interpreted similarly, in terms of
r-tuples of elements in an appropriate Sn, but for simplicity we focus on
the Galois case here.)

Using his “branch cycle argument,” Fried (cf. [F1]) showed a branch cycle
condition that gives a weak form of the desired formula for the action of GQ.
Namely, if each Pi is defined over K ⊂ Q, and if σ ∈ GK , then the branch
cycle description (g′1, . . . , g

′
r) of Y σ → P1 satisfies the relation g′i ∼ g

χ(σ)
i .

(Here χ is the cyclotomic character and ∼ denotes conjugacy in G). More
generally, if the branch locus is defined over K ⊂ Q (but the individual Pi’s
are not necessarily defined over K), then g′j ∼ g

χ(σ)
i if σ(Pi) = Pj .

Later, Belyi [B] considered the case of r = 3, where we may take P1 = 0,
P2 = 1, P3 = ∞. By considering the special case now known as “rigid-
ity” (and treated independently, about the same time, by Matzat [M] and
Thompson [T]), he showed that for certain triples the branch cycle condi-
tion g′i ∼ g

χ(σ)
i determines the field of moduli — and thus many simple

groups can be realized as Galois groups over Qab (or even over Q, in some
cases). Also, he showed that for a given σ ∈ GQ, there is a unique fσ ∈ F̂ ′

2

(the commutator subgroup) such that σ takes each triple (g1, g2, g3) to an
expression of the form (gχ(σ)

1 , f−1
σ g

χ(σ)
2 fσ, g̃

χ(σ)
3 ) (for some g̃3 ∼ g3). This

provides a lifting of the natural map GQ → Out(F̂2) to a homomorphism
GQ → Aut(F̂2). Moreover he showed a converse to Grothendieck’s theorem,
viz. that for every curve Y defined over Q there is a covering map Y → P1

that is branched only over {0, 1,∞} — and hence GQ acts faithfully on the
set of étale covers of P1 − {0, 1,∞}.

In the Esquisse d’un Programme, motivated in part by Belyi, Grothendieck
suggested studying GQ as a group of outer automorphisms of P1−{0, 1,∞}.
More generally, he suggested viewing GQ as a group of outer automorphisms
of the groups K̂(g, n) = π1(Mg,n), where Mg,n is the moduli space of
curves of genus g with r ordered marked points, and then trying to un-
derstand the outer action on K̂(g, n) in terms of the one on K̂(0, 4) = F̂2

(whereM0,4 = P1 − {0, 1,∞}). In particular, he suggested that the action
on the full “Teichmüller tower” of K̂(g, n)’s can be understood in terms of
K̂(0, 4), K̂(1, 1), K̂(0, 5), and K̂(1, 2) (where the actions on the first two
would provide the generators of the tower and the second two the relations).
In addition, he showed how covers of P1 − {0, 1,∞} can be classified not
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only by equivalence classes of triples, but also by “dessins d’enfants”, which
encode the same information graphically.

Since the action of an element σ ∈ GQ is given by λσ = χ(σ) ∈ Ẑ∗ and
fσ ∈ F̂ ′

2 (as in [B]), the above involves characterizing the pairs (λ, f) ∈
Ẑ∗ × F̂ ′

2 that arise from elements of GQ, and characterizing the actions of
elements σ ∈ GQ on the tower of K̂(g, n)’s in terms of λσ and fσ. Such
characterizations would give an explicit description of GQ as a subgroup of
the outer automorphism group of K̂(g, n), and in particular of K̂(0, 4) = F̂ ′

2.
Some progress was made on the first point by the discovery of three neces-

sary conditions for a pair (λ, f) ∈ Ẑ∗×F̂2 to come fromGQ. These properties
come from work of Drinfel’d (cf. [D]), where he defined the Grothendieck-
Teichmüller group ĜT as a certain subgroup of Aut(F̂2) (constructed in
terms of “quasi-triangular quasi-Hopf algebras”) that contains the image
of GQ under the Belyi lifting. Later, Ihara reinterpreted the inclusion of
GQ in ĜT in terms of M0,4 and M0,5, braid groups, and “pro-loops” (cf.
[I1], [I2]). The elements of ĜT are automorphisms corresponding to pairs
(λ, f) ∈ Ẑ∗ × F̂ ′

2 satisfying a certain 2-cocycle condition (I), a 3-cocycle
condition (II), and a 5-cocycle condition (III) (see the survey on ĜT in this
volume for details). The group ĜT can be identified with the automorphism
group of a tower of profinite Artin braid groups B̂n; cf. [LS].

On the second point, Nakamura recently showed explicitly for g ≥ 1 and
n = 0 or 1, how the action of any σ ∈ GQ on K̂(g, n) can be expressed
in terms of the action on K̂(0, 4). For K̂(0, 4) = F̂2 = 〈x, y, z | xyz = 1〉,
Belyi’s action can be written more explicitly as

σ : x 7→ xλ, y 7→ (yλ)f(x,y), z 7→ (zλ)f(x,z)x−m

, (∗)

where λ = λσ = χ(σ) ∈ Ẑ∗, f = fσ ∈ F̂ ′
2, m = (λ − 1)/2 ∈ Ẑ, and

uv := v−1uv for u, v ∈ F̂2. In [N, Appendix], Nakamura described an
analogue of Belyi’s lifting that provides an action of GQ on the group K̂(0, 5)
(which is generated by elements xi,i+1 for i modulo 5) by

σ : x12 7→ xλ12, x23 7→ (xλ23)
f(x12,x23), x34 7→ (xλ34)

f(x45,x34),

x45 7→ xλ45, x51 7→ (xλ51)
f(x45,x51)f(x12,x23), (∗∗)

where λ, f are as above. In his contribution to this volume, he discovered a
similar formula for the action of GQ on K̂(g, 0) and K̂(g, 1), with g ≥ 0.

0.2. Structure of the paper. In the present paper, we continue the
examination of GQ and ĜT as groups of outer automorphisms of the funda-
mental groups K̂(0, n) of the moduli spacesM0,n, and the related problem
of finding a “formula” for the action of σ ∈ GQ on covers — i.e. finding fσ
in terms of σ, at least on finite levels. We break this problem into two parts.
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In §1 we treat the first half of this problem, viz. showing that the Belyi
lifting GQ → Aut(F̂2) can be made “effective” in terms of the natural map
GQ → Out(F̂2). That is, for every normal subgroup N ⊂ F̂2 of finite index,
we show that there is a finite index normal subgroup Ñ ⊂ F̂2 such that
the Belyi lifting modulo N can be computed in terms of the outer action
of GQ modulo Ñ . Moreover we show how Ñ can be found explicitly in
terms of N , and interpret this in terms of computing the action of GQ on
covers of P1 − {0, 1,∞}. In §2 we prove analogous results for K̂(0, 5). A
basic ingredient is the definition (in 1.1) of a certain group O#

n of symmetric
outer automorphisms of K̂(0, n).

The second half of the problem, i.e. explicitly computing the outer action
of a given σ ∈ GQ, remains open. In §3 we obtain partial results in this
direction, which compute the ĜT -orbit of a dessin — thus approximating the
GQ-orbit — and also yield information about the field of moduli of a dessin
(or corresponding cover). This is achieved by using the result (cf. [HS])
that ĜT ' O#

5 , and by considering the image of O#
5 in Out(K̂(0, 5)/N) for

characteristic subgroups N ⊂ K̂(0, 5) of finite index.

§1. The Belyi lifting and four-point moduli

Let F2 be the free group on two generators x and y, which is the topo-
logical fundamental group of P1 − {0, 1,∞} (based at some point), with x

and y being counterclockwise loops around 0 and 1 respectively. Let F̂2 be
its profinite completion, which we identify with the algebraic fundamental
group of P1−{0, 1,∞} (with the same base point), and hence with K̂(0, 4).
Let F̂ ′

2 denote its commutator subgroup, and consider the Belyi subgroup
A ⊂ Aut(F̂2), defined (as in [B]) by

A =
{
F ∈ Aut(F̂2) | ∃λ ∈ Ẑ∗, f ∈ F̂ ′

2 such that

F (x) = xλ, F (y) = f−1yλf, F (xy) ∼ (xy)λ
}
,

where ∼ denotes conjugacy in F̂2. Giving F ∈ A determines the pair (λ, f)
uniquely, so A may also be regarded as a subset of Ẑ∗ × F̂ ′

2, which is how
we consider it henceforth.

Since any σ ∈ GQ must take the full tower of finite covers (regarded as
the “pro-universal cover” of P1−{0, 1,∞}) to itself, there is a natural map
α : GQ → Out(F̂2). Using that the centralizers of x and y are respectively
the pro-cyclic subgroups 〈x〉 and 〈y〉, Belyi deduced that α may be lifted to
a homomorphism β : GQ → A ⊂ Aut(F̂2). The map β, known as the Belyi
lifting, corresponds to a section of the fundamental exact sequence

1→ F̂2 → π1(P1
Q − {0, 1,∞})→ GQ → 1
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obtained via a certain tangential base point for π1 (cf. [IM]).
The goal of this section is to show that the Belyi lifting β : GQ → Aut(F̂2)

is effective in terms of the natural map α : GQ → Out(F̂2). We describe our
approach to this in 1.2 below; before that, we need to define some important
subgroups of the automorphism and outer automorphism groups of the pure
mapping class groups K̂(0, n) = π1(M0,n). (For basic facts about K̂(0, n),
cf. section 1.1 of the survey on ĜT in this volume.)

1.1. Symmetric automorphisms of pure mapping class groups.
For each n, the symmetric group Sn acts on the moduli space M0,n by
permuting the order of the marked points. For n = 4, the automorphism
group ofM0,4 = P1−{0, 1,∞} is S3, and the map σ(4) : S4 → Aut(M0,4) is
surjective with kernel equal to the even involutions in S4 (which form a Klein
four group). On the other hand, for n > 4, the map Sn → Aut(M0,n) is an
isomorphism. For all n, the map Sn → Aut(M0,n) induces a homomorphism
σ(n) : Sn → Out(K̂(0, n)), which again is injective for n > 4 and has Klein
four kernel if n = 4. (In fact, by a version of Grothendieck’s anabelian
conjecture — see the article by Ihara and Nakamura in this volume — the
image of this homomorphism is exactly the subgroup of Out(K̂(0, n)) that
commutes with the natural outer action of GQ on K̂(0, n).)

For any group G, the outer automorphism group Out(G) acts on the set
of conjugacy classes [g] of elements of G, and we may make the following

Definition. For all n ≥ 4, let O#
n be the subgroup of outer automorphisms

F ∈ Out
(
K̂(0, n)

)
such that

(i) for each i, j, we have F ([xij ]) = [xλij ] for some λ ∈ Ẑ∗;

(ii) F commutes with σ(n)(Sn) in Out(K̂(0, n)).

Note that for F ∈ O#
n , the value of λ is independent of i, j by the symmetry

condition (ii); so we may write λ = λ(F ). Let A#
n denote the inverse image

of O#
n under the natural map Aut(K̂(0, n)) → Out(K̂(0, n)), and write

λ(F ) = λ(F ) if F ∈ A#
n maps to F ∈ O#

n . A key fact [HS, 1.2] is that the
image of the natural map GQ ↪→ Out(K̂(0, n)) is contained in O#

n .

In this section, we restrict attention to the case n = 4, identifying K̂(0, 4)
with F̂2 via x12 = x and x23 = y, and viewing O#

4 ⊂ Out(F̂2) and A#
4 ⊂

Aut(F̂2). Since β : GQ ↪→ Aut(F̂2) lifts α : GQ ↪→ Out(F̂2) and since
α(GQ) ⊂ O#

4 , we have that β(GQ) ⊂ A#
4 . Our explicit description below of

β in terms of α will be based on the following result, which is essentially
well-known (cf. [IM]), but is explicitly proved in this form in [HS, 1.2].

Theorem 1. There is a unique section s of the natural homomorphism
A#

4 → O#
4 whose image lies in the Belyi subgroup A of Aut(F̂2). This

section satisfies β = sα : GQ ↪→ Aut(F̂2).
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1.2. Explicit computation of the Belyi lifting. Our goal in §1 is to
compute β explicitly in terms of α, on the level of finite covers. That is, we
will show that for any normal subgroup N ⊂ F̂2 of finite index, there is a
smaller such subgroup Ñ — which we determine explicitly — such that the
reduction of β modulo N is determined by that of α modulo Ñ .

Our approach to this is to use Theorem 1, and the section s of A#
4 → O

#
4 .

We show that s is effectively computable, in the sense that s(F ) modulo N
is determined by F modulo Ñ , where Ñ depends only on N (and not on F ).
The computation of β in terms of α then follows from the relation β = sα.

The rest of §1 is thus devoted to finding an Ñ for each N , and describing
how to compute s(F ) modulo N in terms of F modulo Ñ — and hence β
modulo N in terms of α modulo Ñ . First, we need to define these reductions
of α and β.

Let Γ be the set of normal subgroups N of finite index in F̂2. For each
N ∈ Γ, consider the quotient group GN = F̂2/N . Then giving the quotient
map F̂2 →→ GN is equivalent to giving a triple (a, b, c) of generators of GN
such that abc = 1, corresponding (via Riemann’s Existence Theorem) to
a pointed GN -Galois cover X → P1

Q − {0, 1,∞}. The set of equivalence
classes of such triples (under uniform conjugacy) can be identified with the
set of isomorphism classes of GN -Galois dessins, each corresponding to a
GN -Galois cover X → P1

Q − {0, 1,∞}.
For N ∈ Γ, the action of GQ on GN -Galois covers lifts to an action on the

set of triples {(a, b, c) | a, b, c generate GN , abc = 1}, via the map β : σ 7→
(λσ, fσ) ∈ A ⊂ Ẑ∗×F̂ ′

2. Since a, b ∈ GN determine c ∈ GN , we can view this
as an action on pairs of generators (a, b) ∈ GN . Note that this action factors
through (Z/nZ)∗ × G′

N , where n is the exponent of GN . Namely, σ ∈ GQ
takes a pair of generators (a, b) of G to (aλσ,N , f−1

σ,Nb
λσ,N fσ,N ), where λσ,N

is the image of λσ in (Z/nZ)∗ and fσ,N is the image of fσ in G′
N . We thus

obtain a reduction map βN : GQ → AN ⊂ (Z/nZ)∗×G′
N of β (modulo N),

where AN is the image of A under Ẑ∗ × F̂ ′
2 → (Z/nZ)∗ ×G′

N .
Next, we define the reductions αN of α, for each N ∈ Γ. For this, observe

that we may identify Aut(F̂2) with the set of pairs of generators (x′, y′)
of F̂2, via F 7→ (F (x), F (y)). Thus Out(F̂2) becomes identified with the
set of equivalence classes of such pairs (with respect to uniform conjugacy),
and O#

4 is identified with a subset of this set of equivalence classes. For
each N ∈ Γ, let O#

4 /N be the quotient of this subset under translation by
N ; this is a set whose elements are equivalence classes of (certain) pairs of
generators of GN . The reduction αN : GQ → O#

4 /N is then the composition
of α with the reduction map O#

4 →→ O
#
4 /N .

In this section, as noted above, our goal is to find βN in terms of an
appropriate αÑ . This is only part of the larger problem of understanding the
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Belyi map completely by computing each βN directly, thereby bridging the
gap from combinatorial group theory to arithmetic in Riemann’s Existence
Theorem. The other, more difficult part is to compute αN directly for any
given N . A weaker approach to that problem is the subject of §3.

1.3. Construction of Ñ . The basic ingredient in the explicit construction
of Ñ is a construction of Serre, given in the first of his two letters published
in this volume. Namely, let G be a finite group, let u ∈ G, and let r be
a positive integer. Following [S, Lemme 0], we consider the abelian group
R consisting of maps f : G → Z/rZ satisfying f(ug) = f(g) for all g ∈ G.
Let e ∈ R be the element corresponding to the characteristic function of
the subgroup 〈u〉 ⊂ G. Also, consider the action of G on R given by
fg(x) := f(xg), where g ∈ G, f ∈ R, x ∈ G. With respect to this action we
form the semidirect product R×|G, and denote this group by Σr(G, u). For
each g ∈ G, let g∗ = eg ∈ Σr(G, u). The following result slightly generalizes
[S, Lemme 0], which considers the case that r = o = p, a prime number.

Lemma 2. (cf. [S]) Let G be a finite group, let u ∈ G, let r be a positive
integer, and let G∗ = Σr(G, u).
(a) Let o = ord(u) in G. Then lcm(r, o) = ord(u∗) in G∗.
(b) If two powers of u∗ are conjugate in G∗ then they are equal.
(c) Under the quotient map G∗ → G, the image of the normalizer NorG∗〈u∗〉
is 〈u〉.

Proof. The proofs of (a) and (b) are straightforward computations. By part
(b), the normalizer NorG∗〈u∗〉 is equal to the centralizer ZG∗(u∗). Since
(following [S]) the group law on G∗ shows that the image of ZG∗(u∗) under
G∗ → G is 〈u〉, part (c) follows. ♦

The two following lemmas are needed for the construction of Ñ .

Lemma 3. Let G be a finite group with generators a, b. Let A = 〈a〉 and
B = 〈a〉, and let Ḡ be the subgroup of A × B × G generated by the two
elements ā := (a, 1, a) and b̄ := (1, b, b). Then
(a) The orders of ā, b̄ in Ḡ are respectively equal to the orders of a, b in G;
(b) The third projection map defines a surjection Ḡ→→ G taking ā, b̄ to a, b;
(c) If i, j ∈ Z and āib̄j lies in the commutator subgroup Ḡ′ of Ḡ, then
āi = b̄j = 1.

Proof. Assertions (a) and (b) are immediate. Since the commutator sub-
group of A × B × G is 1 × 1 × G′, and since āib̄j = (ai, bj , aibj), the last
assertion then follows. ♦

We may combine these constructions as follows: Let a = π(x), b = π(y) ∈
G. Using G, a, b, define Ḡ, ā, b̄ as in Lemma 3 above. Thus we have a



212 David Harbater and Leila Schneps

surjection Ḡ→→ G, taking ā 7→ a and b̄ 7→ b. Choose any positive integer r
that is divisible by the exponent of Ḡ. By the construction in Lemma 2, we
obtain the group Σr(Ḡ, b̄) together with elements ā∗, b̄∗. Again applying this
construction (but with the order of the two elements reversed), we obtain
the group Σr(Σr(Ḡ, b̄), ā∗), together with elements ã := ā∗∗, b̃ := b̄∗∗. Let
G̃ be the subgroup generated by ã, b̃. Thus we have a surjection η̄ : G̃→→ Ḡ

taking ã, b̃ to ā, b̄ respectively. Let π̃ : F̂2 →→ G̃ be the map taking x to ã
and y to b̃, so that the composition π̄ = η̄ ◦ π̃ : F̂2 →→ Ḡ is the map taking
x to ā and y to b̄.

Thus for any finite group G and surjection π : F̂2 →→ G, we obtain in
this manner an explicit choice of finite groups Ḡ, G̃ and a factorization
F̂2

π̃→→ G̃
η̄→→ Ḡ→→ G of π. We then have:

Lemma 4. Let G be a finite group and π : F̂2 →→ G a surjection. Consider
the groups Ḡ, G̃ and factorization F̂2

π̃→→ G̃
η̄→→ Ḡ→→ G of π as above. Write

π̄ = η̄ ◦ π̃. Then:
(a) The orders of π̃(x), π̃(y) ∈ G̃ are divisible by r and the exponent of G.
(b) If two powers of π̃(x) are conjugate in G̃ then they are equal.
(c) η̄

(
NorG̃〈π̃(x)〉

)
= 〈π̄(x)〉 and η̄

(
NorG̃〈π̃(y)〉

)
= 〈π̄(y)〉.

(d) If π̄(x)iπ̄(y)j lies in the commutator subgroup Ḡ′ of Ḡ for some i, j ∈ Z,
then π̄(x)i = π̄(y)j = 1.

Proof. Condition (a) is clear from Lemma 2(a) and the fact that exp(G)
divides exp(Ḡ) and hence r. Condition (b) follows from Lemma 2(b), and
condition (c) follows from Lemma 2(c) applied to each of the two uses of
that construction. Condition (d) is just Lemma 3(c). ♦

Definition of Ñ . Given a normal subgroup N ⊂ F̂2 of finite index, with
π : F̂2 →→ G = F̂2/N the corresponding quotient map, we have defined
F̂2

π̃→→ G̃ →→ G (depending on a choice of positive integer r). Define the
subgroup Ñ associated to N by

Ñ = ker (F̂2 →→ G̃) ⊂ N.

Let n, ñ be the exponents of G, G̃ respectively. Write a = π(x), b = π(y),
ã = π̃(x), and b̃ = π̃(y). As before we let O#

4 /N be the reduction modulo N
of the pairs (x′, y′) ∈ F̂ 2

2 such that x 7→ x′, y 7→ y′ represents an element of
O#

4 ; and similarly for O#
4 /Ñ . For any ` ∈ (Z/ñZ)∗ and s|ñ let `s ∈ (Z/sZ)∗

denote the reduction of ` modulo s, and for any f ∈ G̃ let fN ∈ G denote
its reduction modulo N (i.e. its image in G).

Lemma 5. In the above situation, let (`, f), (k, g) ∈ (Z/ñZ)∗ × G̃′, and
suppose that the pairs (ã`, f−1b̃`f), (ãk, g−1b̃kg) represent the same element
of O#

4 /Ñ . Then



Approximating Galois Orbits 213

(a) `r = kr and hence `n = kn;
(b) fN = gN .

Proof. Since ã`, ãk are conjugate in G̃, Lemma 4(b) says that these two
elements are equal. Thus Lemma 4(a) yields part (a) of the proposition.

So there is an element h ∈ G̃ such that conjugation by h takes (ã`, f−1b̃`f)
to (ã`, g−1b̃kg). Thus h ∈ ZG̃(ã`) = ZG̃(ã), using that ` ∈ (Z/ñZ)∗. Also,
ghf−1 ∈ NorG̃〈b̃`〉 = NorG̃〈b̃〉. Let G̃→→ Ḡ be as in the construction above,
and write N̄ = ker(F̂2 →→ Ḡ), ā = ãN̄ , b̄ = b̃N̄ . By Lemma 4(c), we have

hN̄ = āi, gN̄ ā
if−1
N̄

= (ghf−1)N̄ = b̄j (∗)

for some integers i, j. Since f, g ∈ G̃′, we have that fN̄ , gN̄ ∈ Ḡ′. So
āib̄−j ∈ Ḡ′, and hence āi = b̄−j = 1 by Lemma 4(d). Thus (*) yields
gN̄f

−1
N̄

= 1. So fN̄ = gN̄ and thus fN = gN . ♦

1.4. The main result. Recall that the goal of this section is to make
the section s : O#

4 → A ∩ A#
4 of Theorem 1 explicit. This is done in the

following theorem: for N ∈ Γ and Ñ as above, it shows how to compute
s(F ) modulo N in terms of F modulo Ñ .

Theorem 6. Let N be a normal subgroup of F̂2 of finite index, and let n
be the exponent of G = F̂2/N . Define F̂2

π̃→→ G̃→→ G as in the construction
above, and let Ñ = ker (F̂2 →→ G̃). For F ∈ O#

4 , write F = s(F ) = (λ, f) ∈
A ⊂ Ẑ∗ × F̂ ′

2, and let FN be the image of F in AN ⊂ (Z/nZ)∗ ×G′.

(a) FN depends only on F Ñ , the image of F in O#
4 /Ñ .

(b) Explicitly, FN is given in terms of F Ñ as follows, where we write a =
π(x), b = π(y), ã = π̃(x), b̃ = π̃(y): Let (ã′, b̃′) be any element of the
equivalence class F Ñ . Choose d̃, ẽ ∈ G̃ and ` ∈ Z such that ã′ = d̃−1ã`d̃

and b̃′ = ẽ−1b̃`ẽ, and choose i, j ∈ Z such that ẽd̃−1 ≡ b̃j ã−i mod G̃′. Then
FN = (`n, b−jed−1ai), where `n is the reduction of ` modulo n, and where
d, e are the images of d̃, ẽ in G.

Proof. (a) Assume that F ,E ∈ O#
4 have the same image in O#

4 /Ñ . Let
F = s(F ), E = s(E) ∈ A ∩ A#

4 , and identify these lifts with the corre-
sponding pairs (λF , fF ), (λE , fE) ∈ Ẑ∗ × F̂ ′

2. By hypothesis, the images of
(xλF , f−1

F yλF fF ) and (xλE , f−1
E yλEfE) in G̃×G̃ represent the same element

of O#
4 /Ñ . So by Lemma 5, λF and λE have the same image in (Z/nZ)∗,

and fF and fE have the same image in G′. Thus F,E have the same image
in AN , i.e. FN = EN .

(b) We show that the construction described can be carried out, and that
the asserted equality holds regardless of choices made in the construction.

Let ñ be the exponent of G̃. Viewing F ∈ Aut(F̂2), we have that F (x) =
xλ and F (y) = f−1yf , with f ∈ F̂ ′

2. So each element of the equivalence class
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F Ñ is of the form (ãλñ , f−1

Ñ
b̃λñfÑ ), where λñ ∈ (Z/ñZ)∗ is the reduction

of λ ∈ Ẑ∗ modulo ñ and where fÑ ∈ G̃′ is the reduction of f modulo Ñ .
Thus (ã′, b̃′) is uniformly conjugate to (ãλñ , f−1

Ñ
bλñfÑ ), and so the desired

d̃, ẽ, ` exist (though are not necessarily unique). Since ã, b̃ generate G̃, it
follows that the abelianization G̃ab = G̃/G̃′ is generated by the images of
these elements; hence the desired i, j exist (but again are not unique). Thus
the pair (`n, b−jed−1ai) ∈ (Z/nZ)∗ × G can be constructed. Moreover the
second entry lies in G′, because b̃−j ẽd̃−1ãi ∈ G̃′. It remains to show that
this pair equals FN = (λN , fN ), and so is independent of the above choices.

By Lemma 5, it suffices to show that (ãλñ , f−1

Ñ
b̃λñfÑ ) and (ã`, g̃−1b̃`g̃)

represent the same element of O#
4 /Ñ , where g̃ = b̃−j ẽd̃−1ãi. The first

of these pairs represents the element F Ñ ∈ O
#
4 /Ñ , as does (ã′, b̃′) =

(d̃−1ã`d̃, ẽ−1b̃`ẽ). But the latter pair is uniformly conjugate, via d̃−1ãi,
to (ã`, ã−id̃ẽ−1b̃`ẽd̃−1ãi) = (ã`, g̃−1b̃`g̃). So the two given pairs represent
the same element of O#

4 /Ñ (regardless of choices made above). ♦

As a consequence, we obtain the desired result that the Belyi lifting β :
GQ → Aut(F̂2) is determined, and can be constructed, at finite levels via
α : GQ → Out(F̂2):

Corollary. Given N ∈ Γ of exponent n, let Ñ ∈ Γ be as in the above
construction, and let n be the exponent of GN = F̂2/N . Then for every
σ ∈ GQ, the image βN (σ) ∈ AN ⊂ (Z/nZ)∗×G′

N is determined by αÑ (σ) ∈
O#

4 /Ñ , and is computed by applying the procedure of Theorem 6(b) to that
element.

Proof. This is an immediate consequence of Theorem 6, using the result
from Theorem 1 that β = sα. ♦

Theorem 6 can be reinterpreted as saying that the section s is uniformly
continuous. Namely, as above the Belyi group A ⊂ Aut(K̂(0, 4)) can be
regarded as a subset of Ẑ∗ × F̂ ′

2 (though the group law on A — given by
composition — is not the one induced by the usual group law on Ẑ∗ × F̂ ′

2).
Given N ∈ Γ, let n be the exponent of G = F̂2/N , and consider the map
A →→ AN induced by restricting the map Ẑ∗ × F̂ ′

2 →→ (Z/nZ)∗ × G′ to A.
Consider the weakest topology on A such that these maps A →→ AN (for
N ∈ Γ) are continuous with respect to the discrete topology on AN . In
fact, this is a uniform structure on A, with respect to the partial ordering
of normal subgroups under inclusion. Similarly, we obtain a topology, and
uniform structure, on O#

4 , via its maps to the sets O#
4 /N . Theorem 6(a)

can then be restated as:

Corollary. The section s : O#
4 → A is uniformly continuous.
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Here the uniformity of the continuity corresponds to the fact that s(F )
modulo N is determined by F modulo Ñ , where Ñ is independent of F
(and depends only on N).

§2. Generalization of the Belyi lifting to five-point moduli

This section is an analogue of §1 for the moduli space M0,5 and its fun-
damental group K̂(0, 5) (the profinite pure mapping class group), which
replace M0,4 = P1 − {0, 1,∞} and K̂(0, 4) = F̂2 considered before. To
begin with, we have a natural map µ : GQ → Out

(
K̂(0, 5)

)
, which will

play the role of the natural map α : GQ → Out(K̂(0, 4)) used in §1. Fur-
thermore, Nakamura [N, Theorem A20] generalized the Belyi lifting β to a
lifting ν : GQ → Aut(K̂(0, 5)) of µ. The image of the lifting ν is contained
in a certain group A5 ⊂ Aut(K̂(0, 5)) which generalizes the Belyi group A

considered in §1. Specifically,

A5 :=
{
F ∈ Aut(K̂(0, 5)) | ∃λ ∈ Ẑ∗, f ∈ F̂ ′

2 : F (x12) = xλ12,

F (x23) = f(x12, x23)−1xλ23f(x12, x23),

F (x34) = f(x45, x34)−1xλ34f(x45, x34),

F (x45) = xλ45, F (x51) ∼ (x51)λ
}
.

(This is a slightly different expression than in [N, Appendix], due to minor
differences in choices made in the set-ups.) As in the case of M0,4, an
element of A5 determines the pair (λ, f) ∈ Ẑ∗×F̂ ′

2. Furthermore the liftings
β and ν satisfy a certain agreeable compatibility relation: they associate the
same pair (λ, f) to a given element of GQ. The groups O#

5 and A#
5 were

defined in 1.1, and the images of µ and ν lie in O#
5 and A#

5 respectively.
The structure of this section is exactly parallel to that of §1. In Theorem 7

of 2.1, we give a result from [HS], analogous to Theorem 1 of 1.1, asserting
the existence of a section s5 of the homomorphism A#

5 → O
#
5 such that

ν = s5µ. In 2.2 we use Theorem 7 to outline the precise nature of the
“explicit determination” of ν in terms of µ which is the goal of this section,
and in 2.3 we give a generalization of Serre’s construction to show that ν
is effective in terms of µ, leading to the main result (Theorem 10 and its
corollaries) given in 2.4.

2.1. Symmetric automorphisms of K̂(0, 5).

Let O#
5 and A#

5 be the subgroups of Out(K̂(0, 5)) and Aut(K̂(0, 5)) re-
spectively defined in 1.1. The following result generalizes to the case n = 5
the statement of Theorem 1 which concerned the case n = 4. As above,
µ : GQ → Out

(
K̂(0, 5)

)
is the natural map, and ν : GQ → Aut(K̂(0, 5)) is

Nakamura’s lifting of µ.
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Theorem 7. ([HS], 2.2) There is a unique section s5 of the natural homo-
morphism A#

5 → O
#
5 whose image lies in the generalized Belyi subgroup A5

of Aut
(
K̂(0, 5)

)
. This section satisfies ν = s5µ : GQ ↪→ Aut

(
K̂(0, 5)

)
.

We will also need the following result from [HS, 2.2].

Lemma 8. For each F ∈ A#
5 , let F be the image of F in O#

5 and let
ξ(F ) be the equivalence class of (F (x12), F (x23)) ∈ K̂(0, 5) × K̂(0, 5) with
respect to the equivalence relation ∼ of uniform conjugacy. Then ξ : O#

5 →
K̂(0, 5)× K̂(0, 5)/ ∼ is a well-defined injection.

2.2. Explicit computation of the generalized Belyi lifting. Here we
provide an analogue of our remarks in 1.2, with K̂(0, 5) playing the role of
F̂2 = K̂(0, 4). The goal of §2 is to show that Nakamura’s lifting ν : GQ →
Aut(K̂(0, 5)) is effective in terms of the natural map µ : GQ → Out(K̂(0, 5)).
That is, we show that for any normal subgroup M ⊂ K̂(0, 5) of finite index,
there exists a smaller such subgroup M̃ — which we give explicitly in terms
of M — such that the reduction of ν modulo M is determined by that of µ
modulo M̃ . More generally, consider the map s5 : O#

4 → A
#
5 as in Theorem

7. Thus s5 is the unique section of A#
5 → O

#
5 whose image lies in A5,

and ν = s5 ◦ µ. We show that the map s5 is effective (thus implying the
effectivity of ν in terms of µ), and interpret this (in the second corollary to
Theorem 10) as showing that s5 is uniformly continuous.

Thus, parallel to §1, the goal of this section is to find an explicit M̃ for
each M having the above property, and to describe how to compute s5(F )
modulo M in terms of F modulo M̃ — and thus ν modulo M in terms of
µ modulo M̃ . As before, we first need to define the reductions of µ and ν.

So let Γ5 be the set of normal subgroups M of finite index in K̂(0, 5), and
forM ∈ Γ5 consider the quotient groupGM = K̂(0, 5)/M . For each σ ∈ GQ,
the map ν : GQ → A5 ∩ A#

5 ⊂ Aut(K̂(0, 5)) assigns an automorphism of
K̂(0, 5) that is characterized by a unique pair (λσ, fσ) ∈ Ẑ∗ × F̂ ′

2. (Here,
as before, we regard F̂2 as a subgroup of K̂(0, 5) via the inclusion ι : x 7→
x12, y 7→ x23.) As in §1, we identify elements F ∈ A5 with the associated
pairs (λ, f). For M ∈ Γ5 with exponent m, let A5,M be the image of
A5 under the map Ẑ∗ × F̂ ′

2 →→ (Z/mZ)∗ × H ′
M ⊂ (Z/mZ)∗ × G′

M , where
HM ⊂ GM is the subgroup generated by the images of x12, x23. We then
obtain the reduction νM : GQ → A5,M by composing ν with this map.

Continuing as in 1.2, we define the reduction µM of µ for M ∈ Γ5: For
each F ∈ O#

5 and any lift F ∈ A#
5 of F , consider the pair (F (x12), F (x23)) ∈

K̂(0, 5)×K̂(0, 5). This is well defined in terms of F up to uniform conjugacy
in K̂(0, 5). Conversely, this equivalence class of pairs uniquely determines
F by Lemma 8. So we may identify O#

5 with the set of equivalence classes of
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pairs arising in this manner. For each M ∈ Γ5, let O#
5 /M be the quotient of

this set under translation by M ; this is a set whose elements are equivalence
classes of (certain) pairs of elements of GM . The reduction µM : GQ →
O#

5 /M is then the composition of µ with the reduction map O#
5 →→ O

#
5 /M .

In 2.3 below we construct the desired M̃ in terms of M , and we use this to
compute νM in terms of µM̃ in 2.4. The related problem of understanding µ
modulo M directly is considered in §3 below, in the weaker form of finding
information about the images of µ and ν modulo M .

2.3. Construction of M̃ . We draw here on the construction used in 1.3,
which relied on an idea of Serre. There, for each normal subgroup N of
finite index in F̂2 = K̂(0, 4), we let G = GN be the quotient F̂2/N . We
then associated a certain subgroup N̄ ⊂ N that is also normal in F̂2 of
finite index, and the corresponding quotient group Ḡ = F̂2/N̄ , satisfying
the properties of Lemma 2. Choosing a positive integer r that is divisible
by the exponent of Ḡ (and thus in particular by the exponent of G), we
then applied Serre’s construction twice and obtained a certain group G̃,
corresponding to a normal subgroup Ñ of finite index in F̂2 contained in N .

Using this, we consider the following analogous construction for normal
subgroups M of K̂(0, 5) of finite index. First, recall that for each positive
n ≥ 5 and each i modulo n, there is a surjection pi : K̂(0, n)→→ K̂(0, n− 1)
that suppresses the generators xij of K̂(0, n) for all j; in particular we
may consider p4 with n = 5. In the other direction, there is an inclusion
ι : F̂2 ↪→ K̂(0, 5) given by x 7→ x12, y 7→ x23. Thus ι is a section of
p4 : K̂(0, 5)→→K̂(0, 4) = F̂2. Next, given M ∈ Γ5, let G = GM = K̂(0, 5)/M
and let π : K̂(0, 5) →→ G be the quotient map. Let H ⊂ G be the image
of φ = π ◦ ι : F̂2 → G; i.e. H is generated by the two elements a =
π(x12) = φ(x) and b = π(x23) = φ(y). Let N be the kernel of F̂2→→H, so
that H = F̂2/N . The above construction first yields a certain finite group
H̄. Then, taking a positive integer r that is divisible by the exponents
of H̄ and of G, we obtain a finite group H̃, together with a factorization

F̂2
φ̃→→ H̃

θ̄→→ H̄ →→ H of φ. Let Ñ = ker φ̃ and N̄ = ker φ̄, where φ̄ = θ̄ ◦ φ̃.
Thus H̃ = F̂2/Ñ and H̄ = F̂2/N̄ . Finally, let M̃ = M ∩ p−1

4 (Ñ) and
M̄ = M ∩ p−1

4 (N̄), and let G̃ = K̂(0, 5)/M̃ and Ḡ = K̂(0, 5)/M̄ .
Observe that the inclusion ι : F̂2 ↪→ K̂(0, 5) compatibly lifts the inclusions

ε̃ : H̃ ↪→ G̃ and ε̄ : H̄ ↪→ Ḡ that correspond to the inclusions M̄ ⊂ p−1
4 (N̄)

and M̃ ⊂ p−1
4 (Ñ) of normal subgroups of K̂(0, 5). Similarly, ι lifts the

natural inclusion ε : H ↪→ G. Also, using the definitions of G̃, Ḡ, it is
easy to check that p4 : K̂(0, 5)→→K̂(0, 4) descends compatibly to surjections
q̃ : G̃→→ H̃, q̄ : Ḡ→→ H̄ such that ε̃, ε̄ are sections of q̃, q̄ respectively.

Thus given a normal subgroup M ⊂ K̂(0, 5) of finite index, we have a
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quotient map π : K̂(0, 5) →→ G = K̂(0, 5)/M , a factorization K̂(0, 5) π̃→→
G̃ →→ G of π (depending on a choice of positive integer r), and a finite
index subgroup M̃ = ker π̃ ⊂ M . We also have corresponding quotients
H̃ = F̂2/Ñ and H = F̂2/N . With notation as above, these yield an explicit
commutative diagram

K̂(0, 5)
π̃
� G̃

η̄
� Ḡ �G

∧ ∧ ∧ ∧

ι

∪

ε̃

∪

ε̄

∪

ε

∪

F̂2 = K̂(0, 4)
φ̃
� H̃

θ̄
� H̄ � H

and we identify the lower groups with their images in the upper groups.
Under this identification, π̃(x12), π̃(x23) lie in H̃, since x12, x23 ∈ K̂(0, 5)
are the images of x, y ∈ F̂2. Let m, m̃ be the exponents of G, G̃ respectively.
Write a = π(x12), b = π(x23), ã = π̃(x12), and b̃ = π̃(x23). As above
we have the sets O#

5 /M and O#
5 /M̃ , which consist of certain equivalence

classes of pairs in G2 and G̃2 respectively, under uniform conjugacy. For any
` ∈ (Z/m̃Z)∗ and s|m̃, let `s ∈ (Z/sZ)∗ denote the reduction of ` modulo
s, and for any f ∈ G̃ let fM ∈ G denote its reduction modulo M (i.e. its
image in G). We then have the following analogue of Lemma 5 of 1.3:

Lemma 9. In the above situation, let (`, f), (k, g) ∈ (Z/m̃Z)∗ × H̃ ′, and
suppose that (ã`, f−1b̃`f) and (ãk, g−1b̃kg) represent the same element of
O#

5 /M̃ . Then the pairs also represent the same element of O#
4 /Ñ . Moreover

(a) `r = kr and hence `m = km;
(b) fM = gM .

Proof. The elements ã, b̃, f, g lie in the image of π̃ι = ε̃φ̃ and hence in the
image of ε̃. By hypothesis, there is an element h ∈ G̃ such that conjugation
by h takes (ã`, f−1b̃`f) to (ã`, g−1b̃kg) in G̃2. Applying q̃ : G̃ →→ H̃, and
using that ε̃ is a section of q̃, we deduce that conjugation by q̃(h) ∈ H̃ ⊂ G̃
takes (ã`, f−1b̃`f) to (ã`, g−1b̃kg) in H̃2. Since these two pairs are uniformly
conjugate with respect to H̃ (and not just with respect to G̃), it follows that
they represent the same element of O#

4 /Ñ (and not just of O#
5 /M̃).

Thus the situation here is a special case of that of Lemma 5, so Lemma
5(a) implies that `r = kr. Thus `m = km, since m = exp(G) divides r
by assumption. This yields assertion (a) of the proposition. Also, Lemma
5(b) says that fN = gN . By the commutativity of the above diagram,
fM = ε(fN ) ∈ G and similarly for g; this yields assertion (b). ♦

2.4. The main result. Using this, we obtain the following analogue of
Theorem 6, which makes explicit the section s5 : O#

5 → A5 ∩ A#
5 ⊂ A

#
5
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of Theorem 7. Namely, for M ∈ Γ5 and M̃ as above, it computes s5(F )
modulo M in terms of F modulo M̃ .

Theorem 10. Let M be a normal subgroup of K̂(0, 5) of finite index, and
let m be the exponent of G = K̂(0, 5)/M . Define K̂(0, 5) π̃→→ G̃ →→ G as
in the construction above, and let M̃ = ker (K̂(0, 5) →→ G̃). For F ∈ O#

5 ,
write F = s5(F ) = (λ, f) ∈ A5 ⊂ Ẑ∗ × F̂ ′

2, and let FM be the image of F in
A5,M ⊂ (Z/mZ)∗ ×G′.
(a) Then FM depends only on F M̃ , the image of F in O#

5 /M̃ .
(b) Explicitly, FM is given in terms of F M̃ as follows, where we write a =
π(x12), b = π(x23), ã = π̃(x12), b̃ = π̃(x23): Let (ã′, b̃′) be any element of
the equivalence class F M̃ . Choose d̃, ẽ ∈ H̃ = 〈ã, b̃〉 and ` ∈ Z such that ã′ =
d̃−1ã`d̃ and b̃′ = ẽ−1b̃`ẽ, and choose i, j ∈ Z such that ẽd̃−1 ≡ b̃j ã−i mod H̃ ′.
Then FM = (`m, b−jed−1ai), where `m is the reduction of ` modulo m, and
where d, e are the images of d̃, ẽ in G.

Proof. Theorem 10 follows from Lemma 9 exactly as Theorem 6 followed
from Lemma 5. ♦

Thus parallel to §1, we obtain the desired consequence that Nakamura’s
lifting ν : GQ → Aut(K̂(0, 5)) is determined, and can be constructed, at
finite levels via µ : GQ → Out(K̂(0, 5)):

Corollary. Given M ∈ Γ5 of exponent m, let M̃ ∈ Γ5 be as in the above
construction, and let m be the exponent of GM = K̂(0, 5)/M . Then for
every σ ∈ GQ, the image νM (σ) ∈ A5,M ⊂ (Z/mZ)∗ × G′

M is determined
by µM̃ (σ) ∈ O#

5 /M̃ , and is computed by applying the procedure of Theorem
10(b) to that element.

Proof. This is an immediate consequence of Theorem 10, using the result
from Theorem 7 that ν = s5 ◦ µ. ♦

As in §1, we may put a topology and uniform structure on A5 via the
normal subgroups M ∈ Γ5, and similarly on O#

5 via the maps to the sets
O#

5 /M . Parallel to the second corollary to Theorem 6, we then may restate
Theorem 10 as:

Corollary. The section s5 : O#
5 → A5 is uniformly continuous.

§3. The ĜT 0 and ĜT -orbits of dessins

As discussed in the introduction, we would like to compute the action of
GQ on Galois dessins, thus relating the arithmetic of covers to their combi-
natorics. In the previous sections, we described how to compute canonical
actions of GQ on the fundamental groups of M0,4 = P1 − {0, 1,∞} and
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M0,5 in terms of the natural outer actions. To complete the description we
would like to be able to describe the outer action of an element of GQ on
these fundamental groups K̂(0, 4) and K̂(0, 5). Unfortunately this seems
beyond reach at present, and here we content ourselves with somewhat less
— namely finding the ĜT 0- and ĜT -orbits of a dessin, which approximate
the GQ-orbit and yield information about the field of moduli of the corre-
sponding cover. We do so by using the relationship of ĜT 0 and ĜT to the
groups O#

n considered above.
The ĜT 0- and ĜT -orbits of a dessin will be found by an iterative process,

computing somewhat larger orbits under computable finite groups, which
converge to the true ĜT 0- and ĜT -orbits after finitely many steps (and
thus, in the latter case, to the GQ-orbit, if ĜT turns out to be the same
as GQ). The key idea is that we can explicitly find subgroups of the outer
automorphism groups of finite quotients of K̂(0, n) that are defined by finite-
level properties analogous to the defining properties of O#

n . We explain the
procedure in 3.4 and 3.5, after giving an overview in 3.1 and some necessary
definitions and results in 3.2 and 3.3. Then, in 3.6, we use these orbits to
obtain information about the field of moduli of a Galois dessin.

3.1. Approximation of the Galois orbit of a dessin. Given a dessin
D, it is unknown how to find its GQ-orbit effectively, since this involves
understanding the connection between the combinatorics of a dessin (or of
a branch cycle description) and the arithmetic of a cover. But some GQ-
orbits can be separated, using known invariants such as the geometric Galois
group and valency list of the dessin (as well as less obvious invariants, e.g.
via obstructed components of modular towers [F2]). In the special case of
rigidity, it is possible to understand the GQ-orbit and the field of moduli. In
general, though, the known invariants give only approximative orbits which
contain the Galois orbit but may be quite crude.

However, even approximations are useful for the inverse Galois problem.
For instance the order of an approximative orbit is greater or equal to the
order of the true Galois orbit, and so gives an upper bound on the degree
of the field of moduli of the dessin. Moreover, if the approximative orbit
turns out to consist only of D, then this is also true of the Galois orbit,
so D has field of moduli Q — and its geometric Galois group G is thus a
Galois group over Q, under mild hypotheses on G [CH, 2.8(c)]. This view-
point provides our motivation for finding approximative orbits of dessins.
In keeping with the approach of the preceding sections, we use the fact that
GQ is contained in the larger groups O#

n ⊂ Out
(
K̂(0, n)

)
[HS, 1.2]. By

finding the orbits under these larger groups, we thus obtain approximate
GQ-orbits. This approach takes advantage of the fact that the action of O#

n

on dessins is known, and extends that of the subgroup GQ (though what is
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not known explicitly is the precise injection GQ ↪→ O#
n ). In addition, this

approach reflects the conjecture that the Grothendieck-Teichmüller group
ĜT is isomorphic to GQ, together with the following theorem:

Theorem 11. [HS, 1.3, 2.3] ĜT 0 ' O#
4 and ĜT ' O#

5 .

Thus if the conjecture on ĜT is correct, then by finding the O#
5 -orbit of a

dessin we are actually finding the GQ-orbit. (For definitions and background
on ĜT and the larger group ĜT 0, see the survey on ĜT in this volume.)

3.2. Automorphism groups on finite levels. Before computing ap-
proximations, let us define some important groups of outer automorphisms
of the pure profinite mapping class groups K̂(0, n).

Let On = Out
(
K̂(0, n)

)
be the group of outer automorphisms. As in

1.1, there is a natural outer Sn-action on K̂(0, n), i.e. a homomorphism
σ(n) : Sn → On. In terms of this, we defined the groups O#

n in 1.1.
If N is any characteristic subgroup of finite index of K̂(0, n), then auto-

morphisms of K̂(0, n) preserve N and thus pass to the quotient K̂(0, n)/N .
The same is true for outer automorphisms, giving rise to a natural homo-
morphism

ψnN : On → Out
(
K̂(0, n)/N

)
.

Similarly, for characteristic subgroups M ⊂ N of finite index in K̂(0, n), we
have a homomorphism

ψnM,N : Out
(
K̂(0, n)/M

)
→ Out

(
K̂(0, n)/N

)
.

We then define the mod N reductions of the groups On and O#
n :

• On,N = ψnN
(
On

)
, O#

n,N = ψnN
(
O#
n

)
.

Let σ(n)
N denote the composition of homomorphisms ψnN ◦ σ(n) for n ≥ 4.

As sketched above, we will define the approximations On(N) and O#
n (N)

of the finite groups On,N and O#
n,N as groups of outer automorphisms of

K(0, n)/N having properties analogous to those ofOn andO#
n . (We indicate

“approximations” by putting N in parentheses, whereas the actual images
are indicated by an N in the subscript.) Namely, writing (xij)N for the
image of xij in K(0, n)/N and e for the exponent of K(0, n)/N , we define

• On(N) = Out(K(0, n)/N),

• O#
n (N) =

{
F ∈ On(N) | (i)∃λ ∈

(
Z/eZ

)∗ : (∀i, j)F
(
[(xij)N ]

)
= [(xij)λN ];

(ii) F commutes with σ(n)
N (Sn) in On(N)}.

It is immediate from the definitions that On,N ⊂ On(N); it is also easily
seen that O#

n,N ⊂ O#
n (N) since elements of O#

n,N inherit properties (i)
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and (ii) from the analogous properties in O#
n . The main point is that the

approximative groups On(N) and O#
n (N) can be computed (unlike On,N

and O#
n,N ). Moreover these two groups serve as good approximations since

(as we will show in 3.3) the two above containments become equalities in
the limit, with respect to the inverse systems given by the maps ψnM,N .

3.3. Inverse systems and inverse limits. In this section we prove some
results on inverse limits of the automorphism groups defined in 3.2.

Lemma 12. Let G be any finitely generated group, and let Ĝ denote the
profinite completion of G, i.e. the inverse limit of the quotients of G by all
the normal subgroups of finite index. Then the inverse limit of the quotients
of G by all the characteristic subgroups of finite index is also isomorphic to
Ĝ, i.e. the characteristic subgroups of G form a cofinal system.

Proof. It suffices to show that every normal subgroup N of finite index in
G contains a characteristic subgroup N̆ of finite index. In particular we
can let N̆ be the intersection of all the normal subgroups N∗ of G such
that G/N∗ ' G/N . There are only finitely many of these; indeed, they are
the kernels of the homomorphisms of G into a finite group, and since G is
finitely generated there are only finitely many such homomorphisms. ♦

Corollary. For all n ≥ 4, we have

lim←−
N

K̂(0, n)/N = K̂(0, n)

as N runs over the characteristic subgroups of finite index of K̂(0, n).

Proof. By the lemma, we know that since the discrete pure mapping class
group K(0, n) is finitely generated, it is the inverse limit of the finite quo-
tients K(0, n)/N for characteristic subgroups N of K(0, n). But the char-
acteristic subgroups of finite index of K̂(0, n) are in bijection with those of
K(0, n), so the finite quotients of K(0, n) and of K̂(0, n) by corresponding
subgroups are in one-to-one correspondence. ♦

If N is any characteristic subgroup of finite index in K̂(0, n), then along
with the homomorphism ψnN of 3.2, there are natural homomorphisms

Ψn
N : K̂(0, n)→ K̂(0, n)/N

ψ̃nN : Aut
(
K̂(0, n)

)
→ Aut

(
K̂(0, n)/N

)
.

Similarly, ifM ⊂ N are characteristic subgroups of finite index of K̂(0, n),
then along with ψnM,N of 3.2 we have natural homomorphisms:

Ψn
M,N : K̂(0, n)/M → K̂(0, n)/N

ψ̃nM,N : Aut
(
K̂(0, n)/M

)
→ Aut

(
K̂(0, n)/N

)
.
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The diagram

Aut
(
K̂(0, n)/M

) ψ̃n
M,N- Aut

(
K̂(0, n)/N

)

? ?

Out
(
K̂(0, n)/M

) ψn
M,N- Out

(
K̂(0, n)/N

)
(∗)

commutes, and for all x ∈ K̂(0, n)/M and Φ ∈ Aut
(
K̂(0, n)/M

)
, we have

ψ̃nM,N (Φ)(Ψn
M,N (x)) = Ψn

M,N

(
Φ(x)

)
(∗∗)

Theorem 13. (a) For all n ≥ 4, the groups On,N form an inverse system
as N runs over the characteristic subgroups of finite index of K̂(0, n), and
so do the groups On(N). Moreover, we have

lim←−
N
On,N = lim←−

N
On(N) = On.

(b) For all n ≥ 4, the groups O#
n,N form an inverse system as N runs

over the characteristic subgroups of K(0, n), and so do the groups O#
n (N).

Moreover, we have

lim←−
N
O#
n,N = lim←−

N
O#
n (N) = O#

n .

Proof. (a) The groups On(N) form an inverse system under the maps ψnM,N

since these maps are well-defined. Moreover, whenever M ⊂ N , we have
ψnN = ψnM,N ◦ ψnM , so On,N = ψnN (On) = (ψnM,N ◦ ψnM )(On) = ψnM,N (On,M )
by the definition of the ψnM,n; so the On,N also form an inverse system under
the maps ψnM,N . Next we define homomorphisms from On to lim←−On,N and
to lim←−On(N); then we will define homomorphisms in the other direction
and show that they are mutual inverses, so isomorphisms. Let φ ∈ On. For
N a finite-index characteristic subgroup, φN = ψnN (φ) is in On,N ⊂ On(N);
so φ 7→ (φN )N is a group homomorphism from On to each of the two
inverse limits. Conversely, consider an element (φN )N in either inverse
limit, where the φN ’s are compatible elements of On,N (resp. On(N)).
Then (φN )N gives an outer automorphism φ of K̂ = K̂(0, n), defined by
φ((αN )N ) =

(
φN (αN )

)
N

; here we use the identification in the corollary to
Lemma 12. (This φ really is an outer automorphism since it is trivial on the
identity, respects relations in K̂ and is invertible — all consequences of the
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analogous behavior on the finite levels.) This map (φN )N 7→ φ is inverse to
the previous map φ 7→ (φN )N , so both are isomorphisms. (The difference
between the inverse systems of On,N and of On(N) is that the ψnM,N restrict
to surjections on the ψnM,N , but not necessarily for the On(N).)

(b) The O#
n,N form an inverse system under the restriction to the sub-

groups O#
n,N ⊂ On,N of the homomorphisms ψnM,N for the same reason as

the On,N in (a). To show that
(
{O#

n (N)}, {ψnM,N}
)

also forms an inverse
system, we check that ψnM,N

(
O#
n (M)

)
⊂ O#

n (N). Let φ ∈ O#
n (M), so φ has

the properties (i) and (ii) in the definition of the groups O#
n (M); we need

to check that ψnM,N (φ) has the corresponding two properties.
Let φ ∈ O#

n (M). Let us show that ψnM,N (φ) has property (i), viz. that it
sends the conjugacy class of (xij)N to that of (xij)λN for each pair i, j. Since
φ has property (i) (for M), there is a lifting Φ of φ in Aut

(
K(0, n)/M

)
such

that Φ(xij) = α−1
ij x

λ
ijαij for some αij ∈ K̂(0, n)/M . By (**) with this Φ,

ψ̃nM,N (Φ)
(
(xij)N

)
= ψ̃nM,N (Φ)

(
Ψn
M,N ((xij)M )

)
= Ψn

M,N

(
Φ

(
(xij)M

))
= Ψn

M,N

(
α−1
ij (xij)λMαij

)
= Ψn

M,N (αij)−1(xij)λNΨn
M,N (αij).

But ψ̃nM,N (Φ) is a lifting of ψnM,N (φ) to Aut
(
K̂(0, n)/N

)
by the diagram

(*), and the existence of a lifting sending each (xij)N to a conjugate of
(xij)λN shows that ψnM,N (φ) has property (i). Property (ii), i.e. that ψnM,N

commutes with σ(n)
M (Sn), follows immediately since ψnM,N ◦ σ

(n)
M = σ

(n)
N .

Let us show that the inverse limits of the two systems O#
n,N and O#

n (N)
are both isomorphic to O#

n . For any φ ∈ O#
n , setting φN = ψnN (φ), the

element (φN )N belongs to both lim←−O
#
n,N and lim←−O

#
n (N). Conversely, let

(φN )N lie in lim←−O
#
n,N (resp. lim←−O

#
n (N)). We showed in the proof of (a) that

(φN )N determines an element φ of On, so we only need to show that φ has
properties (i) and (ii) of the definition of O#

n . But these two properties hold
if they hold on every finite level, which proves the result. (Again here, as in
(a), the inverse system of the O#

n,N consists of surjective homomorphisms
whereas this is not necessarily true for the O#

n (N).) ♦

Corollary. The groups ĜT 0 and ĜT are profinite groups.

Proof. We know by Theorem 11 that ĜT 0 = O#
4 and ĜT = O#

5 . By the
preceding theorem O#

4 is the inverse limit of the finite groups O#
4 (N) or

O#
4,N as N runs through the characteristic subgroups of K̂(0, 4), and O#

5

is the inverse limit of the groups O#
5 (M) or O#

5,M as M runs through the
characteristic subgroups of K̂(0, 5). ♦

3.4. Approximation of the ĜT 0-orbit of a dessin. We explain here our
approach to the approximation and computation of the ĜT 0- and ĜT -orbits
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of a dessin D; for simplicity we assume that D is Galois. The somewhat
easier case of ĜT 0 and K̂(0, 4) is actually carried out here, while that of ĜT
and K̂(0, 5) is treated in 3.5. As before we identify F̂2 = 〈x, y, z|xyz = 1〉
with K̂(0, 4) via the isomorphism x 7→ x12, y 7→ x23.

For any finite group G with two generators, the G-Galois dessins D are in
bijection with normal subgroups N ⊂ K̂(0, 4) together with isomorphisms
K̂(0, 4)/N →̃G (determined up to an inner automorphism). They are also
in bijection with uniform conjugacy classes of triples (a, b, c) of generators of
G such that abc = 1; viz. the branch cycle description of the corresponding
G-Galois cover, where a = xN , b = yN , and c = zN . Since abc = 1, we
may classify G-Galois dessins simply by the pair (xN , yN ). Now there is
a natural action of O#

4 on the set of G-Galois dessins, which by Theorem
1 extends the action of GQ on this set. Also, given D,N,G as above, if
N̆ ⊂ K̂(0, 4) is any finite index characteristic subgroup contained in N , the
action of O#

4 on the orbit of D factors through the finite group O#

4,N̆
—

and thus the ĜT 0-orbit of D is the same as the O#

4,N̆
-orbit (and is equal to

the set O#
4 /N of §1). Unfortunately, it is unclear how to find exactly which

elements of the finite group Out(G) lie in O#

4,N̆
, since the definition of O#

4,N̆

involves the infinite group ĜT 0 ' O#
4 .

So instead, we take an indirect approach, using the fact that we can find
the elements of the (possibly) larger finite group O#

4 (N̆) ⊂ Out(G), along
with the fact that the O#

4,N̆
-action extends to an O#

4 (N̆)-action. Namely,

for F ∈ O#
4 (N̆), we define DF to be the G-Galois dessin corresponding

to the equivalence class of the pair
(
(F (xN̆ ))N , (F (yN̆ ))N

)
in G2, where

F ∈ Aut(K̂(0, 4)/N̆) is a lifting of F . (The equivalence class of the pair is
independent of the choice of lifting F .) We call the orbit of D under O#

4 (N̆)
the N̆ -approximative ĜT 0-orbit of D.

We can thus explicitly compute the N̆ -approximative ĜT 0-orbit of any
G-Galois dessin D, where G = K̂(0, 4)/N :

(1) Let N̆ be any characteristic subgroup of finite index in K̂(0, 4) that is
contained in N — e.g. the N̆ in the proof of Lemma 12.

(2) Compute the finite group O#
4 (N̆) from the definition.

(3) For each element F of O#
4 (N̆), compute

(
(F (xN̆ ))N , (F (yN̆ ))N

)
∈ G2.

By taking smaller and smaller choices of N̆ , we can compute the actual
ĜT 0-orbit of D in finitely many steps. Namely, by Lemma 12, there is a
cofinal sequence of finite index characteristic subgroups N0 ⊂ N1 ⊂ · · · of
K̂(0, 4) inside any given normal subgroup N of finite index. In this situation
we have the following corollary of Theorem 13:
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Corollary. Let D be a G-Galois dessin, corresponding to a normal subgroup
N ⊂ K̂(0, 4) of finite index. Let {Ni} be a cofinal sequence of finite index
characteristic subgroups of K̂(0, 4) contained in N . Then for all i >> 0, the
Ni-approximative ĜT 0-orbit of D is equal to the ĜT 0-orbit of D.

Proof. By Theorem 13(b) together with Theorem 11, the inverse limit
of the groups O#

4 (Ni) is isomorphic to O#
4 ' ĜT 0. Thus the descending

intersection of the finite groups ψ4
Ni,N0

(
O#(Ni)

)
is equal to ψ4

N0
(O#

4 ) =
O#

4,N0
⊂ O#

4 (N0). By finiteness, there exists an integer I ≥ 0 such that
ψ4
Ni,N0

(
O#(Ni)

)
= O#

4,N0
⊂ O#

4 (N0) for all i ≥ I. Since the actions of
O#

4 (Ni) and of O#
4 factor through O#

4 (N0), the result follows. ♦

Thus this procedure computes the ĜT 0-orbit of a Galois dessin D, after
finitely many steps. Since GQ ⊂ ĜT ⊂ ĜT 0, the ĜT 0-orbit of D contains
the GQ-orbit — but an even better approximation to the GQ-orbit would be
obtained by computing the ĜT -orbit. That analogous construction is the
subject of 3.5.

3.5. Approximation of the ĜT -orbit of a dessin. By using an analogue
of the procedure of 3.4 with K̂(0, 5) replacing K̂(0, 4), we can find the
ĜT -orbit of a dessin D — thus separating more GQ-orbits and obtaining
finer information about the field of moduli of the corresponding cover of
P1 − {0, 1,∞}. As in 3.4 we rely on Theorem 11, to identify ĜT with
K̂(0, 5). As before, we identify K̂(0, 4) with a subgroup of K̂(0, 5) via
the injection ι : x12 7→ x12, x23 7→ x23. Recall that ι is a section of the
surjection p4 : K̂(0, 5) →→ K̂(0, 4) ' 〈x12, x23〉, and yields a decomposition
K̂(0, 5) ' 〈x14, x24, x34〉×| 〈x12, x23〉.

So let D be a G-Galois dessin and let N be the corresponding normal
subgroup in K̂(0, 4) ' F̂2. Thus G ' K̂(0, 4)/N ' K̂(0, 5)/M , where
M = p−1

4 (N) ' 〈x14, x24, x34〉×|N . By Theorem 7, there is a natural action
of O#

5 on the set of G-Galois dessins. So the O#
5 -orbit of D contains the GQ-

orbit, and is in turn contained in the O#
4 -orbit (by the compatibility of the

O#
4 - and O#

5 -actions [HS, 2.2]). If M̆ ⊂ O#
5 is any finite index characteristic

subgroup contained in M , the action of O#
5 factors through the finite group

O#

5,M̆
— and so the ĜT -orbit of D is the same as the O#

5,M̆
-orbit (and is

equal to the set O#
5 /M of §2). As in 3.4, though, it is unclear how to find

exactly which elements of the finite group Out(G) lie in O#

5,M̆
.

Thus, as with ĜT 0, we take an indirect approach to finding the ĜT -orbit,
by using that we can find the elements of the (possibly) larger finite group
O#

5 (M̆) ⊂ Out(G), along with the fact that the O#

5,M̆
-action extends to an

O#
5 (M̆)-action. Namely, for F ∈ O#

5 (M̆), if F ∈ Aut(K̂(0, 5)/M̆) is any
lifting of F , then we define DF to be the G-Galois dessin corresponding to
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the uniform conjugacy class of the pair
((
F

(
(x12)M̆

))
M
,
(
F

(
(x23)M̆

))
M

)
∈

(K̂(0, 5)/M)2 ' (K̂(0, 4)/N)2 ' G2. This equivalence class is well-defined,
since conjugacy in K̂(0, 5)/M̆ maps to conjugacy in G = K̂(0, 5)/M . We
call the orbit of D under O#

5 (M̆) the M̆ -approximative ĜT -orbit of D.
As in 3.4, we can thus explicitly compute the M̆ -approximative ĜT -orbit

of any G-Galois dessin D, where G = K̂(0, 4)/N :

(1′) Let M̆ be any characteristic subgroup of finite index in K̂(0, 5) that is
contained in M = p−1

4 (N) — e.g. choose M̆ as in the proof of Lemma 12.

(2′) Compute the finite group O#
5 (M̆) from the definition.

(3′) Compute
((
F

(
(x12)M̆

))
M
,
(
F

(
(x23)M̆

))
M

)
∈ G2 for each F ∈ O#

5 (M̆).

Again as in 3.4, by taking smaller and smaller choices of M̆ , we can com-
pute the actual ĜT -orbit of D in finitely many steps. Namely, again by
Lemma 12, there is a cofinal sequence of finite index characteristic sub-
groups M0 ⊂M1 ⊂ · · · of K̂(0, 5) inside M = p−1

4 (N) for any given normal
subgroup N ⊂ K̂(0, 4) of finite index. We then obtain the following ĜT -
version of the corollary in 3.4, whose proof is essentially the same as before:

Corollary. Let D be a G-Galois dessin, corresponding to a normal subgroup
N ⊂ K̂(0, 4) of finite index. Let {Mi} be a cofinal sequence of finite index
characteristic subgroups of K̂(0, 5) contained in M = p−1

4 (N). Then for all
i >> 0, the Mi-approximative ĜT -orbit of D is equal to the ĜT -orbit of D.

This procedure thus computes the ĜT -orbit of a Galois dessin D after
finitely many steps, and so approximates (and conjecturally equals) the GQ-
orbit of D. This complements the construction of §2 (just as that of 3.4
complements the construction of §1). Unlike the constructions in sections 1
and 2, though, the procedure here (and in 3.4) is not effective, because we
do not know how to determine a priori how large i should be, or even when
we have reached the goal! To be better able to exploit this construction, we
would thus like to be able to solve the following

Problem. Given a normal subgroup N ⊂ F̂2 of finite index, corresponding
to a G-Galois dessin D (where G = F̂2/N), find a characteristic subgroup
M ⊂ K̂(0, 5) of finite index such that the M -approximative ĜT -orbit of D
is equal to the ĜT -orbit of D.

Still, successive steps of the above refining procedure either improve the
approximation or leave it unchanged, and thus (even without solving this
problem) they provide increasingly better information about the field of
moduli of D — which can be used as in 3.6 below.
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3.6. Stabilizers and fields of moduli. The above approach may be used
to obtain explicit information about the field of moduli K of a G-Galois
dessin D (i.e. of the corresponding G-Galois cover X → P1 − {0, 1,∞}).
For example, the degree [K : Q] is equal to the order of the GQ-orbit of D
(or of X), since that order is the index of the stabilizer GDQ of D in GQ,
and hence is the degree of the fixed field of GDQ — i.e. the degree of the
field of moduli. Since the ĜT -orbit contains the GQ-orbit, and since any
M̆ -approximative ĜT -orbit of D contains the ĜT -orbit, we obtain

Proposition 14. Let K be the field of moduli of a G-Galois dessin D,
where G = K̂(0, 4)/N . Then [K : Q] is bounded above by the order of the
M̆ -approximative ĜT -orbit of D, for any finite index characteristic subgroup
M̆ ⊂M = p−1

4 (N) of K̂(0, 5).

The approximative ĜT -actions, i.e. the actions of theO#
5 (M̆)’s on dessins,

also provide computable information about the Galois group of the field of
moduli K of a G-Galois dessin D. Below, we write ψ5#

N : O#
5 →→ O

#

5,M̆
for

the restriction of the map ψ5
N : O5 →→ O5,M̆ (cf. 3.2 and Theorem 13). Also,

if a group Γ acts on a set of G-Galois dessins, we denote the stabilizer of D
in Γ by ΓD, and the intersection of the conjugates of ΓD ⊂ Γ by CD(Γ).

Proposition 15. (a) With notation as above, let K̃ be the Galois closure
of K. Then Gal(K̃/Q) is a subquotient of each O#

5 (M̆)/CD(O#
5 (M̆)).

(b) If O#
5 (M̆)D is normal in O#

5 (M̆), then K/Q is Galois, and Gal(K/Q)
is a subgroup of O#

5 (M̆)/O#
5 (M̆)D.

Proof. Since CD(O#
5 (M̆)) is normal in O#

5 (M̆) and contained in O#
5 (M̆)D,

we have that CD
M̆

:= CD(O#
5 (M̆)) ∩O#

5,M̆
is normal in O#

5,M̆
and contained

in (O#

5,M̆
)D. So CD

M̆
⊂ CD(O#

5,M̆
), and O#

5,M̆
/CD

M̆
⊂ O#

5 (M̆)/CD(O#
5 (M̆)).

Since the action of ĜT ' O#
5 on the orbit ofD factors through O#

5,M̆
via ψ5#

N

(cf. 3.4), we have that (ψ5#
N )−1(CD

M̆
) ⊂ CD(O#

5 ) and O#
5 /(ψ

5#
N )−1(CD

M̆
) =

O#

5,M̆
/CD

M̆
. Since the action of GQ on dessins factors through µ : GQ ↪→ O#

5 ,

(ψ5#
N µ)−1(CD

M̆
) ⊂ CD(GQ) and GQ/(ψ5#

N µ)−1(CD
M̆

) ⊂ O#
5 /(ψ

5#
N )−1(CD

M̆
).

Combining the above equalities and inclusions, we have that Gal(K̃/Q) =
GQ/C

D(GQ) is a quotient ofGQ/(ψ5#
N µ)−1(CD

M̆
), which in turn is a subgroup

of O#
5 (M̆)/CD(O#

5 (M̆)). This proves (a).
For (b), observe that GQ

D is the inverse image of O#
5 (M̆)D under the

composition GQ ↪→ ĜT →̃O#
5 →→ O

#

5,M̆
↪→ O#

5 (M̆), since the action of GQ

on the orbit of D factors through these maps. Since O#
5 (M̆)D is normal in

O#
5 (M̆), it follows that GDQ is normal in GQ, so that K is Galois over Q.
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It also follows that O#
5 (M̆)D = CD(O#

5 (M̆)). Thus (ψ5#
N µ)−1(CD

M̆
), which

is the inverse image of CD(O#
5 (M̆)) under the above composition, is equal

to GDQ . So Gal(K/Q) equals (ψ5#
N µ)−1(CD

M̆
), which was observed to be a

subgroup of O#
5 (M̆)/CD(O#

5 (M̆)) = O#
5 (M̆)/O#

5 (M̆)D. ♦

It is also possible to use the actions of the O#
5 (M̆)’s in order to find

cyclotomic number fields that contain the field of moduli of a given G-Galois
dessin (and thus, when G has trivial center, over which the corresponding
G-Galois cover is defined [CH, 2.8(c)]). For m ∈ Z, let O#

n (M̆)m ⊂ O#
n (M̆)

be the subgroup of elements for which we may take λ ≡ 1(modm) in (i) of
the definition of O#

n (M̆) (in 3.2).

Proposition 16. (a) If some O#
n (M̆)0 stabilizes a G-Galois dessin D, then

the corresponding G-Galois cover is defined over Qab.

(b) If m > 0 and some O#
n (M̆)m stabilizes a G-Galois dessin D, then the

field of moduli of the corresponding G-Galois cover is contained in Q(ζm).

Proof. Under GQ → O#
5 (M̆), GQab maps to O#

n (M̆)0 and GQ(ζm) maps to
O#
n (M̆)m for m > 0. So Qab and Q(ζm) contain the respective fields of

moduli. This proves (b), and (a) then follows by [CH, 2.8(a)]. ♦

In particular, taking m = 1, we conclude that if some O#
5 (M̆) stabilizes

a G-Galois dessin D, then the field of moduli of D is equal to Q.
Note that one may obtain stronger conclusions from the above results not

only by shrinking M̆ , but also by replacing O#
5 (M̆) by a smaller subgroup

O◦
5(M̆) that is known to contain O#

5,M̆
. Because of Theorem 7, the defini-

tion of A5, and the fact that the automorphism θ ∈ Aut(K̂(0, 5)) defined
by θ(xi,i+1) = x5−i,6−i descends to an automorphism θ of K̂(0, 5)/M̆ , we
may in particular take O◦

5(M̆) to consist of the elements F ∈ O#

5,M̆
⊂

Out(K̂(0, 5)/M̆) having a lifting F ∈ Aut(K̂(0, 5)/M̆) for which there
is an f ∈ 〈(x12)M̆ , (x23)M̆ 〉 with F

(
(x12)M̆

)
= (x12)λM̆ ; F

(
(x23)M̆

)
=

f−1(x23)λM̆f ; F
(
(x34)M̆

)
= θ(f)−1(x34)λM̆θ(f); and F

(
(x45)M̆

)
= (x45)λM̆ .

(One could shrink O◦
5(M̆) further by also using F

(
(x51)M̆

)
, via the expres-

sion (**) in 0.1 and the analogous result for O#
5 in [HS, 2.2].)

The above raises several questions: For a given characteristic subgroup
M̆ ⊂ M = p−1

4 (N), to what extent does O◦
5(M̆) yield better information

about the field of moduli and the Galois orbit than just using O#
5 (M̆)? As

M̆ shrinks, how fast does the information given by O#
5 (M̆) improve? To

what extent does the information given by O#
5 (M̆) go beyond that given by

O#
4 (N̆), where N̆ = p4(M̆) ⊂ K̂(0, 4)? And to what extent do computations

using the above give information beyond that obtainable by rigidity?



230 David Harbater and Leila Schneps

References

[B] G.V. Belyi, On Galois extensions of a maximal cyclotomic field,
Math. USSR Izvestija (translations) 14 (1980), No. 2, 247-256.

[CH] K. Coombes and D. Harbater, Hurwitz families and arithmetic Galois
groups, Duke Math. J. 52 (1985), 821-839.

[D] V.G. Drinfel’d, On quasitriangular quasi-Hopf algebras and a group
closely connected with Gal(Q/Q), Leningrad Math. J. Vol. 2 (1991),
No. 4, 829-860.

[F1] M. Fried, Fields of definition of function fields and Hurwitz families
— groups as Galois groups, Comm. Alg. 5 (1977), 17-82.

[F2] M. Fried, Introduction to Modular Towers: Generalizing dihedral
group–modular curve connections, in Recent Developments in the
Inverse Galois Problem, M. Fried et al., Eds., AMS Contemp. Math.
Series, vol. 186, 1995, 111-171.

[G] A. Grothendieck, Revêtements étales et groupe fondamental (SGA
1). Lecture Notes in Math. 224, Springer-Verlag, Berlin-Heidelberg-
New York, 1971.

[GTD] The Grothendieck Theory of Dessins d’Enfants, L. Schneps, ed., Lon-
don Math. Soc. Lecture Notes 200, Cambridge University Press,
1994.

[HS] D. Harbater and L. Schneps, Fundamental groups of moduli and the
Grothendieck-Teichmüller group, preprint.

[I1] Y. Ihara, Braids, Galois groups, and some arithmetic functions, Pro-
ceedings of the ICM, Kyoto, Japan, 1990, 99-120.

[I2] Y. Ihara, On the embedding of Gal(Q/Q) into ĜT , in [GTD].
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