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Abstract

We define the universal Ptolemy-Teichmüller groupoid, a generalization of

Penner’s universal Ptolemy groupoid, on which the Grothendieck-Teichmüller

group – and thus also the absolute Galois group – acts naturally as auto-

morphism group. The essential new ingredient added to the definition of the

universal Ptolemy groupoid is the profinite local group of pure ribbon braids

of each tesselation.

§0. Introduction

The goal of this article is to give a completion (by braids) of Penner’s
Ptolemy group G such that there is a natural action of the Grothendieck-
Teichmüller group (and a fortiori, the absolute Galois group Gal(Q/Q)) on
it. This work was motivated on the one hand by the deep relation of the
Ptolemy group – shown to be isomorphic to Richard Thompson’s group and
to the group of piecewise PSL2(Z)-transformations of the circle – and map-
ping class groups and the geometry of moduli spaces in general, most visibly
in genus zero, and on the other by the presence of the remarkable pentagonal
relation, stimulating the natural reflex of the authors to associate every pen-
tagon appearing in nature to that of the Grothendieck-Teichmüller group
ĜT .

The difficulties in defining a ĜT -action on G were the following. Firstly,
the profinite version of ĜT which interests us (mainly by virtue of the fact
that it contains the Galois group) acts on profinite groups, whereas via its
isomorphism with Richard Thompson’s group, G is known to be simple,
and therefore its profinite completion is trivial. Furthermore, G contains no
braids and ĜT naturally seems to introduce them into every situation where
it appears. The undertaking therefore framed itself as follows: instead of
restricting attention to G, is it possible to extend G by braids, in such a
way that it is possible to define a ĜT -action on a profinite version of the
extension, in such a way that the pentagonal relation of G reflects that of
ĜT? The answer turned out to be nearly yes, namely in order to succeed
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it was necessary to use not the group, but the groupoid interpretation of
G, in which its elements are considered as morphisms between marked tes-
selations (this groupoid is known as the Ptolemy groupoid), and to relax
the condition of the Ptolemy groupoid stating that the group of morphisms
from any marked tesselation to itself is trivial to a condition stating that the
group of morphisms from any marked tesselation to itself is isomorphic to
a certain ribbon braid group. It is the profinite completion of the ensuing
braid-groupoid which admits a ĜT -action.

In §1, we give the definition and presentation of the Ptolemy group, and
its interpretation as a groupoid whose objects are marked tesselations of the
Poincaré disk. In §2, we recall the definitions and important properties of
braid and mapping class groups, and their generalizations to ribbon braid
and mapping class groups, which will be the braid groups used to extend
the Ptolemy groupoid to the Ptolemy-Teichmüller groupoid. §3 is devoted
to the actual construction of the Ptolemy-Teichmüller groupoid P∞, with a
“physical” interpretation of the new, added groups of non-trivial morphisms
from a tesselation to itself via braids of ribbons viewed as hanging from the
intervals; at the end of the section we define the profinite completion of the
groupoid P̂∞ by simply taking the profinite completions of each of the local
groups, while preserving the set of objects (i.e. marked tesselations) and
the basic (Ptolemy) morphisms from one to another. §4 contains the main
theorem of the article (theorem 4) explicitly a ĜT -action on the universal
profinite Ptolemy-Teichmüller groupoid P̂∞; the role of the two pentagons
appears in lemma 5. Finally, in §5 we give a very brief discussion of the rela-
tion between the situation considered here and the geometry and arithmetic
of genus zero moduli spaces.

This article was motivated by the idea of discovering a link between num-
ber theory and Penner’s universal Ptolemy groupoid, an idea suggested to
us by Bob Penner who had himself had conversation with Dennis Sulli-
van, and immediately seized upon by us because of the distant echo of the
pentagonal defining relation of ĜT which could be heard (upon listening
carefully) when considering Penner’s sequence of ten moves giving a funda-
mental defining relation of the Ptolemy group. We recall with great pleasure
the enthusiasm of our early discussions with him about the possible links
between those relations; later communal discussions with Dennis Sullivan
and Vlad Sergiescu were both enlightening and stimulating. We warmly
thank all three.
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§1. The universal Ptolemy groupoid

A groupoid is a category all of whose morphisms are isomorphisms. We
begin by giving some basic definitions leading to the definition of the uni-
versal Ptolemy groupoid from [P1, 4.1] (see also [P2]).

Identify the Poincaré upper half-plane with the Poincaré disk via the
transformation (z − i)/(z + i). Traditionally, points on the Poincaré disk
are labeled by the corresponding upper half-plane, so that for instance the
points −1, −i, 1 and i on the unit circle in C are labeled 0, 1, ∞ and −1,
whereas the central point 0 ∈ C is labeled i. In particular, P1R is wrapped
once around the boundary of the disk, the rational numbers of course lie
densely in it. We will be particularly concerned with these rational numbers.

Let a marked tesselation be a maximal (i.e. triangulating) tesselation of
the Poincaré disk such that its vertices lie on the set of rational numbers
on the boundary, equipped with a directed oriented edge. The standard
marked tesselation is the dyadic tesselation T ∗ with the marked edge from
0 to ∞:

0 8

-1

-1/2
-2

1/2

1

2

Figure 1. The standard dyadic tesselation T ∗ with its oriented edge

The elementary move on the oriented edge of a tesselation changes it
from one diagonal of the unique quadrilateral containing it to the other by
turning it counterclockwise; it is of order 4.
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Figure 2. The elementary move on the oriented edge

An arrow-moving move on a marked tesselation is an operation on the
tesselation which moves the oriented edge to another edge without changing
the tesselation itself.

Figure 3. An arrow-moving move

Definition: The universal Ptolemy groupoid is the groupoid defined as
follows:

Objects: The marked tesselations;

Morphisms: Finite sequences (or chains) of elementary moves on the
oriented edge and arrow-moving moves;

Relations: The only morphism from an object to itself is the trivial one.

Remark: The condition that the local groups of morphisms (i.e. groups of
morphisms from an object to itself) are trivial implies that if T1 and T2 are
two marked tesselations, then there is a unique morphism in the groupoid
from T1 to T2.
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On any marked tesselation T , let α denote the elementary move on its
oriented edge, as shown for the standard marked tesselation in Figure 2. Let
the triangle to the “left” of the oriented edge of T denote the triangle lying
to our left if we imagine ourselves to be lying face down on the tesselation
along the oriented edge, with our head in the direction indicated by the
arrow, and let β denote the move which sends the arrow counterclockwise
to the next edge of the triangle to the left of the oriented edge, as in Figure
3. As noted by Penner, the universal Ptolemy groupoid can be given a
group structure, simply because if we write a chain of α’s and β’s, it can
be considered as a morphism on any given tesselation: at each point in the
chain, the tesselation being acted on is the one resulting from application of
all the previous moves. In particular, given a starting tesselation, a word in
α and β uniquely determines a morphism in the groupoid, and conversely,
every morphism in the groupoid can be given as a starting tesselation and
a word in α and β. Moreover, clearly, if a word in α and β gives the trivial
morphism from some tesselation to itself, then the same word will give the
trivial morphisms from every tesselation in the Ptolemy groupoid to itself.
We want to find exactly which words these are, namely to determine the
relations in the group generated by α and β induced by the condition that
the group of local morphisms of a tesselation is trivial. In other words, we
need to determine the chains of α’s and β’s which bring a marked tesselation
to itself.

Theorem 1. All words in α and β taking a given tesselation to itself
are generated by the following words (where square brackets denotes the
commutator):

α4, β3, (αβ)5, [βαβ, α2βαβα2], [βαβ, α2βα2βαβα2β2α2].

Proof. In the contribution to this volume by M. Imbert, it is proved that
Penner’s group G is isomorphic to Richard Thompson’s group. Therefore,
it suffices to show that the group, let us call it G, defined by generators
α and β and relations as in the statement of the theorem is isomorphic to
Thompson’s group. Let us give a presentation of Thompson’s group which
can be found on page 2 of Thompson’s unpublished notes [T] (and under a
different but recognizable notation, [CFP], lemma 5.2.). It is given by three
generators, R, D and c1, and six relations, namely: [R−1D, RDR−1] = 1,
[R−1D, R2DR−2] = 1, c1 = Dc1R

−1D, RDR−1Dc1R
−1 = D2c1R

−2D,
Rc1 = (Dc1R

−1)2 and c3
1 = 1. We define a homomorphism φ from Thomp-

son’s group to G by setting φ(R) = α2β2, φ(D) = α3β and φ(c1) = β. We



330 Pierre Lochak and Leila Schneps

need to check first that φ is really a homomorphism, and second that it is
invertible, so an isomorphism. To see that it is a homomorphism it suffices
to compute the images of both sides of the six defining relations by φ. All
are easily seen to hold in G. Indeed, the first two relations are the analogous
commutator relations in G, and c3

1 = 1 is sent by φ to β3 = 1. The two sides
of the relation c1 = Dc1R

−1D are sent to β and α3βββα2α3β = β and the
two sides of Rc1 = (Dc1R

−1)2 are sent to α2 and (α3βββα2)2 = α2. Finally,
rewriting the remaining relation as D2c1R

−2DRc−1
1 D−1RD−1R−1 = 1, we

see that the left-hand side is sent by φ to

α3βα3β · β·βα2βα2 · α3β · α2β2 · β2 · β2α · α2β2 · β2α · βα2

= α2(αβαβαβαβαβ)α2 = α2(αβ)5α2 = 1.

This shows that φ is a homomorphism; to show it is an isomorphism, it
suffices to define φ−1(α) = c1D

−1 and φ−1(β) = c1 (indeed, the relation
c1 = Dc1R

−1D shows that Thompson’s group is generated by the two
elements c1 and D). ♦
Remark. The generators of this group can be identified with the corre-
sponding moves on marked tesselations in the Ptolemy groupoid. Indeed,
the words α4 and β3 clearly bring a marked tesselation back to itself and
are therefore trivial; similarly (αβ)5 = 1 corresponds exactly to Penner’s
trivial sequence of 10 moves (cf. (c) on p. 179 of [P1]; note that (αβ) si-
multaneously moves the two diagonals of a pentagon whereas Penner moves
one at a time). Finally, the two commutation relations in G imply that
that elementary moves on the diagonals of two neighboring quadrilaterals
commute, and elementary moves on the diagonals of two quadrilaterals sep-
arated only by a triangle; it is a remarkable fact that the commutation of all
pairs of elementary moves taking place in disjoint quadrilaterals (Penner’s
relation (d) on p. 179 of [P]) are consequences of the relations in G.

§2. Ribbon braids

Let us recall the definitions of the Artin ribbon braid groups and the
ribbon mapping class groups. First recall the definitions of the usual Artin
braid and mapping class groups. The Artin braid group Bn for n ≥ 1 is
generated by σ1, . . . , σn−1 with the relations

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n−2 and σiσj = σjσi for |i− j| ≥ 2.

There is a natural surjection ρ : Bn → Sn for n ≥ 1 which induces a
natural surjection ρ : M(0, n) → Sn (for n = 4 we have the surjection ρ :
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B3/Z → S3). The kernel of ρ (denoted by Kn in Bn and K(0, n) in M(0, n))
is known as the pure braid group resp. mapping class group. Both Kn and
K(0, n) are generated by the elements xij := σj−1 · · ·σi+1σ

2
i σ−1

i+1 · · ·σ−1
j−1

for 1 ≤ i < j ≤ n. The center of Bn and of Kn is cyclic generated by
the element ωn = x12x13x23 · · ·x1n · · ·xn−1,n. The mapping class group
M(0, n) (resp. the pure mapping class group K(0, n)) is the quotient of Bn

(resp. Kn) by the following relations:

(i) ωn = 1;
(ii) xi,i+1xi,i+2 · · ·xi,nxi,1 · · ·xi,i−1 = 1; for 1 ≤ i ≤ n, where the indices

are considered in Z/nZ.

The Artin ribbon braid group B∗
n is a semi-direct product

B∗
n ' Zn×|Bn;

it is generated by generators σ1, . . . , σn−1 of the Bn factor and t1, . . . , tn

(all commuting) of the Zn factor, with the “semi-direct” relations given by:




σitiσ
−1
i = ti+1 for 1 ≤ i ≤ n− 1

σiti+1σ
−1
i = ti for 1 ≤ i ≤ n− 1

(σi, tj) = 1 for 1 ≤ i ≤ n− 1, j 6= i, i + 1 .

This group is visualized like the usual braid groups, except that the strands
are replaced by flat ribbons, so that a twist on any one of them is non-trivial.
The subgroup of B∗

n consisting of “flat” braids of the ribbons (i.e. without
twists on the ribbons, cf. Figure 4) is canonically isomorphic to Bn, and
from now on we identify Bn and its generators σi with this subgroup of B∗

n.

Figure 4. The flat braid x12
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We identify Zn with the abelian subgroup of B∗
n generated by a full (2π)

twist ti on each of the n ribbons (cf. Figure 5).

Figure 5. A full twist on a ribbon

This visualization corresponds to the definition of B∗
n as a semi-direct

product Zn×|Bn given above.

Since the twists ti commute with pure braids, the pure ribbon braid
subgroup K∗

n of B∗
n is just a direct product Zn×Kn. Let us define the ribbon

mapping class group M∗(0, n) to be B∗
n modulo the following relations.

Firstly, the center of B∗
n is generated by the element which also generates

the center of Kn, namely ωn = x12x13x23 · · ·x1n · · ·xn−1,n, together with
the subgroup Zn. The first relation we quotient out by is

(i′) ωn =
∏

i ti.

Now, instead of using the usual sphere relations by which we quotient Bn

to obtain M(0, n), we use the ribbon sphere relations:

(ii′) xi,i+1xi,i+2 · · ·xi,nx1,i · · ·xi,i−1 = t2i .

The quotient of B∗
n by the relations in (i′) and (ii′) is the ribbon mapping

class group M∗(0, n).

The surjection of Bn onto Sn extends to B∗
n by sending the subgroup Zn

to 1, and the kernel of this surjection is the pure ribbon braid group K∗
n.

The surjection passes to M∗(0, n) and its kernel in this group is denoted by
K∗(0, n). Attention: although the group B∗

n is a semi-direct product of Bn

with Zn and the subgroup K∗
n is a direct product of Kn with Zn, analogous

statements do not hold for M∗(0, n) or K∗(0, n); although these groups are
extensions of M(0, n) and K(0, n) respectively by Zn, the extensions are
not split. We refer to [MS], Appendix B for a detailed discussion of these
groups in a similar but more geometric context.
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Let us give some admirable properties of the ribbon groups.

(1) It is well-known that removing any strand gives a surjection from Kn

onto Kn−1, which induces a surjection from K(0, n) onto K(0, n−1). There
are analogous natural surjections from K∗

n into K∗
n−1 and from K∗(0, n) into

K∗(0, n − 1) obtained by removing one ribbon. Removing several ribbons
thus gives surjections from K∗(0, n) onto K∗(0, m) for m < n.

(2) The braid obtained by holding two adjacent ribbons i and i+1 firmly by
their bottom ends and twisting them one full turn is equal to titi+1xi,i+1.
We denote this ribbon braid by ti,i+1. It is the same as the full twist on the
single “wide” ribbon obtained by sewing the two adjacent ribbons together.
The expression for the simultaneous full twist of several adjacent ribbons
can easily be deduced from this one by induction.

(3) There are natural injections Km into Kn for m < n given by dividing
up the n strands into m adjacent packets (each of which can consist of one
or more strands) called A1, . . . , Am; the subgroup of Kn generated by the
“flat” braids xAi,Aj (as in Figure 4, considering each packet as a ribbon)
is isomorphic to Km. Analogously, there are natural injections of K∗

m into
K∗

n for any division of the n ribbons into m adjacent packets. Each packet,
considered as adjacent ribbons sewn together, forms a “wide ribbon”, and
the group K∗

m of braids on these wide ribbons is naturally a subgroup of
K∗

n.

Now, there is no such natural injection for the pure mapping class groups
K(0, n), because the twist on a packet of strands is non-trivial whereas the
twist on a single strand is trivial. This problem is eliminated for the ribbon
mapping groups where the ribbons and the wide ribbons behave in the same
way with respect to twists. Therefore we have such injections for the pure
ribbon mapping class groups K∗(0,m) ↪→ K∗(0, n); this point represents the
major advantage of the use of ribbon braid groups with respect to ordinary
braid groups.

§3. The universal Ptolemy-Teichmüller groupoid

The universal Ptolemy-Teichmüller groupoid P∞ is a generalization of
the universal Ptolemy groupoid in the sense that we add morphisms from
a given marked tesselation to itself. The objects of P∞ are those of the
universal Ptolemy groupoid, namely marked braid tesselations; what we do
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here is to relax the condition stating that the local groups are all trivial to
a condition defining the local groups as certain ribbon braid groups.

To explain exactly what is going on, we visualize a marked tesselation T a
little differently; we assume that there is a ribbon hanging from the interval
on the circle delimited by each edge of the tesselation. To be precise, each
edge of the tesselation actually divides the circle into two intervals, and
we want to choose only one of them; we choose to hang the ribbon from
the interval lying entirely on one side of the oriented edge. This makes
sense for every edge except the oriented one, to which we associate the
interval lying to the left of it in the sense explained earlier. Note that
since the ribbons are determined by the edges of T , assuming their presence
does not add anything to T ; the point of adding them is that the non-
trivial morphisms from T to itself which we are going to introduce correspond
exactly to braiding them. Before continuing, we note that if one considers
the infinite trivalent tree dual to the tesselation, then it comes to the same
thing to attach a strand to each of its “ends” (the rationals) and consider
the set of strands in a given interval as forming a ribbon, and this in turn
is equivalent to attaching a strand to each vertex of the tree (uniquely
associated to a rational). This idea, due to Greenberg and Sergiescu (cf.
[GS]) was one of the starting points of this article.

Consider thus from now on each marked tesselation T to come equipped
with its ribbons. Each ribbon is automatically associated to an interval on
the circle (delimited by an edge of T , a fortiori by two numbers in P1Q).
Two ribbons of T are said to be disjoint if their intervals are disjoint except
for at most one common endpoint. They are said to be neighbors if their
associated intervals are disjoint except for exactly one common endpoint.
Two ribbons of T are said to be adjacent if their intervals are delimited by
two sides of a triangle of the tesselation; thus, adjacent ribbons are of course
neighbors and neighbors are disjoint, but the converses are not necessarily
true.

Two neighboring ribbons of a given marked tesselation can always be
made into adjacent ribbons of another tesselation which can be obtained
from the first by a finite number of elementary moves, successively reducing
to zero the (finite) number of edges coming out of the common endpoint
of the two ribbons and lying inside the smallest polygon of the tesselation
having as two of its edges those associated to the ribbons. On the left-hand
side of Figure 6, we show two neighboring ribbons; the smallest polygon
of the tesselation containing having their corresponding edges as edges is a
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quadrilateral and there is just one edge coming out of the common endpoint
of the two ribbons and lying inside it (namely, its diagonal). Thus, after
the elementary move on that diagonal, the two ribbons become adjacent
(right-hand side), associated to two sides of the triangle A.

A

Figure 6. Adjacent and neighboring ribbons of a tesselation

Definition: Let A and B be disjoint ribbons of a given marked tesselation
T . Let tTA denote the full twist on A, oriented as in Figure 5, and let xT

AB

denote the flat braid of A and B shown in Figure 7, where the ribbon on the
left-hand side passes in front of the right-hand one (whether the observer
stands inside or outside the tesselation).

A B

Figure 7. The braid xT
AB
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The local group KT at a marked tesselation T is a group of morphisms
from T to itself, essentially given by braiding the ribbons associated to
intervals of T ; it is defined as follows.

Definition. Let KT be generated by the flat braids xT
AB for all pairs

of disjoint ribbons A and B of T and by the full twists tTA on each of
these ribbons. Define the set of relations in the group KT to be the set of
relations coming from the finite polygons of T containing the oriented edge,
as follows. Let S be such a polygon, say with n sides, and let A1, . . . , An

be the n ribbons associated to the intervals determined by the sides; they
are pairwise disjoint (which would not be the case if the polygon S did not
contain the oriented edge of T and thus lay entirely on one side of it). Let
KT (S) denote the subgroup of KT generated by the twists tTAi

and the flat
braids xT

Ai,Aj
. Then the relations of KT are generated by all the relations

induced by the assertion: For every S, the group KT (S) is isomorphic to
the pure ribbon mapping class group K∗(0, n).

Definition: The universal Ptolemy-Teichmüller groupoid P∞ is defined as
follows:

Objects: Marked tesselations.

Morphisms: They are of two types: firstly, those of the universal Ptolemy
groupoid, which act on marked tesselations as usual, and secondly,
the groups Hom(T, T ) ' KT of morphisms from each marked tesse-
lation to itself.

Relations: The full set of relations in the universal Ptolemy-Teichmüller
groupoid P∞ is given by:

(i) those of the universal Ptolemy groupoid (any sequence of elemen-
tary moves leading from a tesselation to itself is equal to 1);

(ii) those of the local ribbon braid groups;

(iii) commutativity of these two types of morphisms as in
equation (1) below.

The universal Ptolemy-Teichmüller groupoid contains the universal Ptole-
my groupoid as a subgroupoid, because of (i). Let us explain (ii) and (iii)
further. Firstly, from now on we use the term interval to denote an interval
of the circle delimited by two rationals, and an interval of T or equivalently,
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a ribbon of T to denote the interval delimited by an edge of the tesselation
T , as before (the one on the opposite side from the oriented edge of T ). Not
every interval of the circle is an interval of T , of course, but every interval
is the union of a finite number of intervals of T ; we call such an interval
a wide interval or a wide ribbon of T (obtained by sewing together a finite
number of neighboring ribbons of T ). Thus every interval of the circle is
associated to a ribbon or a wide ribbon of T .

Let A and B denote two disjoint intervals (recall that “disjoint” intervals
may have one endpoint in common), equipped with ribbons. Let the braid
xAB denote the usual flat braid (as in Figure 7); this twist can be applied
to ribbons corresponding to any two disjoint intervals of the circle, without
needing to refer to a specific tesselation. However, fixing a tesselation T , we
see that the ribbons associated to the intervals A and B are either ribbons
or wide ribbons of T , which implies that the braid xAB actually lies in KT

for all T . We write xT
AB when we want to consider the braid xAB as an

element of KT .
Recall that given marked tesselations T ′ and T , there is a unique mor-

phism γ in the universal Ptolemy groupoid from T ′ to T . This gives rise to
a canonical isomorphism between KT ′ and KT via KT ′ = γ−1KT γ. For all
pairs of disjoint intervals A and B of the circle, this isomorphism has the
property that

xT ′
AB = γ−1xT

ABγ (1)

in the universal Ptolemy-Teichmüller groupoid. This is what is meant by
the commutation of the morphisms of the universal Ptolemy groupoid with
braids in (iii) above.

Proposition 2. Let T be a marked tesselation.

(i) A set of generators for the group KT is given by the set of braids
xT

AB for all pairs of ribbons A and B corresponding to disjoint intervals of
the circle, and the twists tTA on the wide ribbons of T corresponding to all
intervals of the circle. The set of relations associated to this set of generators
is independent of T .

(ii) A smaller set of generators for KT is given by the twists tTA and
xT

AB where A and B are disjoint ribbons of T . A set of relations for KT

associated to this set of generators is given by the relations between the
generators of each KT (S) for finite polygons S of T .

(iii) Another set of generators for KT is given by the set of twists tTA on
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all ribbons of T and xT
AB where A and B are pairs of adjacent or neighboring

wide ribbons of T . Indeed, if S a finite polygon of T containing the oriented
edge and the ribbons of S are the ribbons of T associated to the edges of S,
then each subgroup KT (S) is generated by the twists on ribbons of S and
the xT

AB where A and B are adjacent or neighboring wide ribbons of S.

Proof. (i) and (ii) are immediate consequences of the definition of KT . For
(iii), we start by showing the statement for KT (S) ⊂ KT . By definition,
this subgroup is isomorphic to K∗(0, n) where n is the number of edges of
the polygon S.

A set of generators for the pure Artin braid group Kn is given by the
elements xi···j,j+1···k for all 1 ≤ i ≤ j < k ≤ n; this braid denotes the flat
braid of the “neighboring packets” of strands numbered i · · · j and j+1 · · · k,
which can be considered as ribbons; it looks like the one in Figure 4, with
one or several strands in place of the ribbons. To see that this set really
generates, it suffices to write each of the usual generators xij of Kn in terms
of these, which can be done via the formula

xij = xi···j−1,jx
−1
i+1···j−1,j

(draw the picture!) If j = i+1, the usual xij is itself a twist of neighboring
packets, which consist of one strand each.

The flat braids of neighboring packets xi···j,j+1···k also generate the quo-
tient K(0, n) of Kn, so adding in the full twists on ribbons, we have a set
of generators for K∗(0, n). Since this group is isomorphic to KT (S), this
proves the statement of (iii) for the groups KT (S). It follows immediately
for KT since the group KT is generated by the subgroups KT (S) as S runs
over all the finite polygons of T containing the oriented edge of T . ♦

Let us now describe the “profinite completion” of the universal Ptolemy-
Teichmüller groupoid P∞. We need the following:

Lemma 3. (i) If S and R are finite polygons containing the oriented edge
of a given marked tesselation T , and S lies inside R, then the subgroup
KT (S) ⊂ KT is contained in KT (R).

(ii) For n ≥ 4, let Sn denote the 2n-gon in the standard marked dyadic
tesselation T ∗ obtained from S4, the basic quadrilateral containing the ori-
ented edge 0∞, by successively dividing every edge into two. Then

KT∗ =
⋃

n≥2

KT∗(Sn),
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where this union of groups is given by the natural inclusion of KT∗(Sn) into
KT∗(Sn+1) induced by the inclusion of Sn in Sn+1, as in (i).

(iii) Let K̂T∗(Sn) denote the profinite completion of KT∗(Sn) for n ≥ 2.
Then the inclusion of Sn into Sn+1 induces a natural inclusion of K̂T∗(Sn)
into K̂T∗(Sn+1).

Proof. Part (i) follows from the existence of injections K∗(0, m) → K∗(0, n)
for m < n, sending ribbons in K∗(0,m) to wide ribbons in K∗(0, n), cf.
property (3) in §2. Part (ii) is a corollary of this, since every polygon of T ∗

lies inside Sn for some sufficiently large n. Finally, (iii) is a consequence of
the fact that like all braid and mapping class groups, the KT∗(Sn) inject
into their profinite completions. ♦

Let us define the profinite local group at T ∗ by

K̂T∗ :=
⋃

n≥2

K̂T∗(Sn).

For any pair of disjoint intervals A, B of the circle, there exists n such
that xT∗

AB lies in KT∗(Sn), since every rational is a vertex of some Sn.
Since KT∗(Sn) injects into its profinite completion, the braid xT∗

AB lies in
K̂T∗(Sn). The group K̂T∗ is topologically described by the same set of
generators and relations as KT∗ . We define the profinite local group at any
marked tesselation T to be the one obtained from K̂T∗ as in equation (1),
i.e. by conjugating by the unique morphism γ in the universal Ptolemy
groupoid which takes T ∗ to T .

Definition: Let the profinite completion P̂∞ of P∞ be the groupoid defined
as follows:

Objects: Marked tesselations T .

Morphisms: All the morphisms of the universal Ptolemy groupoid, together
with the local groups Hom(T, T ) = K̂∗

T at each T .

Relations: (i) those of the universal Ptolemy groupoid;

(ii) those of the local profinite braid groups;

(iii) commutativity of these two types of morphisms as in
equation (1).
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§4. ĜT and the automorphism group of P̂∞

Definition: The automorphism group Aut0(P̂∞) of the completed Ptolemy
groupoid P̂∞ is defined to be the set of automorphisms of the groupoid P̂∞
which act trivially on the set of objects.

The goal of this article is to show that P̂∞, considered as a completion
of the universal Ptolemy groupoid, has the property that the Grothendieck-
Teichmüller groupoid lies in its automoprhism group Aut0(P̂∞) (cf. §0). To
prove this, we begin by recalling the definition of ĜT (cf. the survey [S] for
references and details).

Definition: Let ĜT be the monoid of pairs (λ, f) ∈ Ẑ∗× F̂ ′2, satisfying the
three following relations, the first two of which take place in the profinite
completion F̂2 of the free group on two generators F2, and the third in the
profinite completion K̂(0, 5) of the pure mapping class group:

(I) f(y, x)f(x, y) = 1;

(II) f(z, x)zmf(y, z)ymf(x, y)xm = 1, where m = 1
2 (λ− 1) and z = (xy)−1;

(III) f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1.

Under a suitable multiplication law, this set forms a monoid. The group
ĜT is defined to be the group of invertible elements of the monoid ĜT .
Drinfel’d and Ihara showed that the group ĜT contains the absolute Galois
group Gal(Q/Q) as a subgroup in a natural way (again, cf. [S] for all
relevant references). In particular, whenever ĜT acts on an object, this
object becomes equipped with a Galois action, indicating a – sometimes
quite unexpected – link with number theory, which was one of the main
motivations behind this article.

Theorem 4. There is an injection ĜT ↪→ Aut0(P̂∞).

Proof. Let F = (λ, f) ∈ ĜT . Then we let F act trivially on the set of objects
of P̂∞. The proof is outlined as follows: first we define the action of F to
be trivial on arrow-moving morphisms, next we give its definition on the
morphisms of the universal Ptolemy groupoid (considered as a subgroupoid
of P̂∞) and prove in proposition 5 that the relations of the universal Ptolemy
groupoid are respected, and finally we define the action on a set of generators
of the profinite local group K̂T – using lemma 5 to show that the action
on the generators is well-defined – and prove in lemma 6 that the action
extends to an automorphism of K̂T . This takes care of two of the three
types of morphisms in P̂∞; to conclude, we show that the commutation
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relations of equation (1) are respected.
Let us proceed to the definition of the action of F on the morphisms of

P̂∞.

Arrow-moving morphisms. F acts trivially on these.

Elementary morphisms. The oriented edge of a marked tesselation T deter-
mines two pairs of adjacent edges forming a quadrilateral called the basic
quadrilateral of T ; we call the ribbons hanging from the intervals delim-
ited by these four edges XT , YT , ZT and WT respectively, going around
counterclockwise from the point of the arrow.

Let αT denote the elementary move on the oriented edge of T . We set

F (αT ) = αT · f(xT
XT YT

, xT
YT ZT

). (2)

The profinite braid f(xT
XT YT

, xT
YT ZT

) is a morphism from T to itself, lying
in K̂T , so F (αT ) is a morphism of P̂∞.

X

W

Z

Y
T

T

T

T

Figure 8. The basic quadrilateral of a marked tesselation

Lemma 5. This action of ĜT respects all the relations of the universal
Ptolemy groupoid.

Remark. The lemma can be restated by saying that every element of ĜT is
a groupoid-isorphism from the universal Ptolemy subgroupoid of P̂∞ to its
image. This shows that ĜT respects the first of the three types of relation
in P̂∞.
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Proof. The point is to check that if F = (λ, f) is an element of ĜT , then its
action on any two finite sequences of elementary moves leading from T to T ′

is the same, since in the universal Ptolemy groupoid two such sequences give
the same morphism. It is equivalent to check that F respects the relations
in the groupoid, and these relations were given explicitly in theorem 1. So
we simply need to compute the action of F on the five relations in α and β

given in the statement of theorem 1. Here we index the moves according to
the tesselation they are acting on, so that the group can be recovered from
the groupoid by dropping all indices.

The relation β3 = 1 is trivially satisfied since F fixes β. It is also clear
that F respects the two commutation relations since they involve braids on
disjoint ribbons (or at worst, one braid is made of ribbons all of which are
contained in a single ribbon of the other braid) and such braids commute
in the local braid groups. As for the pentagon relation (αβ)5 = 1, or equiv-
alently (βα)5 = 1, we have F (βα) = βαf(xXY , xY Z), and five repeated
applications of this map, together with the use of equation (1) to push all
the factors of βα to the left, leave us with exactly the famous pentagon
relation (III) defining ĜT , equal to 1.

Let us check the remaining relation, α4 = 1. To start with, fix a marked
tesselation T0, so that αT0 and βT0 are the moves shown in figures 2 and 3.
Then by equation (2), F (αT0) = αT0 f(xT0

XT0YT0
, xT0

YT0ZT0
). Let T1, T2 and

T3 denote the tesselations obtained from T0 via αT0 , αT1αT0 and αT2αT1αT0

(i.e. α, α2 and α3 in the group), and write αi = αTi , so that

α3α2α1α0 = 1.

Note that for the four tesselations Ti, we have

xTi

XiYi
= xTi

ZiWi
and xTi

YiZi
= xTi

WiXi
,

where Xi, Yi, Zi and Wi are the ribbons attached to the four intervals of
the each tesselation Ti shown in figure 8. Applying F to this relation, we
obtain

F (α4) = F (α3α2α1α0) =

α3f(xT3
W3X3

, xT3
X3Y3

)α2f(xT2
Z2W2

, xT2
W2X2

)α1f(xT1
Y1Z1

, xT1
Z1W1

)α0f(xT0
X0Y0

, xT0
Y0Z0

)

= α3α2α1α0f(xT0
Y0Z0

, xT0
X0Y0

)f(xT0
X0Y0

, xT0
Y0Z0

)f(xT0
Y0Z0

, xT0
X0Y0

)f(xT0
X0Y0

, xT0
Y0Z0

)

= α3α2α1α0 = α4 = 1,

since f satisfies f(x, y) = f(y, x)−1 by relation (I) of ĜT . This takes care
of the relation α4 = 1. ♦
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Braids: Let us define the action of ĜT on the local groups K̂T . We begin
by defining an action on a set of generators of K̂T . By (iii) of proposition
2, a set of (topological) generators of K̂T is given by the braids xT

AB where
A and B are neighboring wide ribbons of T , i.e. (finite) unions of neigh-
boring ribbons corresponding to neighboring edges of a finite polygon of T

containing the oriented edge. An example is shown in figure 9.

A

B

Figure 9. Neighboring intervals corresponding to wide ribbons of T

To define the action of F on all the xT
AB for neighboring wide ribbons A

and B of T , it suffices to define it only on the xT
AB for adjacent (possibly

wide) ribbons A and B (recall that adjacent ribbons are ribbons attached
to intervals corresponding to two edges of a triangle of T ) for all tesselations
T ; we can then extend it to pairs of neighboring wide ribbons by equation
(1) and the fact that we know the action of F on morphisms of the universal
Ptolemy groupoid. This works as follows. Firstly, if A and B are adjacent
(possibly wide) ribbons of T we set

F (xT
AB) = (xT

AB)λ. (3)

If A and B are neighboring (possibly wide) ribbons of T , i.e. (unions of)
intervals corresponding to edges of a finite polygon S of T , then we change
T into another tesselation T ′ such that the intervals A and B are two edges
of a triangle of T ′, via a finite number of elementary moves on T , all taking
place inside S. By writing them down explicitly and using (2) and the
action of ĜT on elementary moves, we can compute the explicit expression
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for F (xT
AB) as follows. Choose a finite sequence of marked tesselations

T ∗ = T0, . . . , Tr such that

(1) for i > 0, Ti is obtained from Ti−1 by one elementary morphism gi on
some edge lying inside S (not an edge of S);

(2) each Ti contains the polygon S and is identical to T ∗ outside of S;

(3) the ribbons corresponding to the intervals A and B are adjacent rib-
bons of Tr, i.e. the intervals A and B are two sides of a triangle of Tr.

Let γ = gr ◦ gr−1 ◦ · · · g1; then no matter what choices we make for
T1, . . . , Tr and g1, . . . , gr, γ is the unique morphism of the universal Ptolemy
groupoid taking T ∗ to Tr. By equation (1), we have γ−1xTr

ABγ = XT∗
AB . By

repeated applications of equations (1) and (2), we find an element η ∈
K∗(0, s) ⊂ K∗

T∗ such that F (γ) = γη; the fact that η is well-defined is a
consequence of lemma 5. Thus, the action of F on XT∗

AB when A and B are
neighboring wide ribbons is given by

F (xT
AB) = η−1γ−1

(
xTr

AB

)λ
γη = η−1

(
xT

AB

)λ
η. (4)

Step 2: This action of ĜT on the generators of P̂∞ extends to a groupoid
automorphism of P̂∞. We must check that all the relations of the groupoid
are respected.

Lemma 6. The action defined above of ĜT on the generators xT∗
AB of K̂∗

T∗

for all pairs of adjacent or neighboring clumps A and B of T ∗ determines
an automorphism of K̂∗

T∗ .

Proof. Let F ∈ ĜT . Then the action of F on the generators of each of
the groups K̂∗(0, Sn) for n ≥ 2 extends to an automorphism. Indeed, it is
known (cf. [PS], chapter II) that ĜT is an automorphism group of the pure
mapping class group K̂(0, 2n) in many ways, corresponding to the trivalent
trees with 2n edges; the action we consider here corresponds to the trivalent
tree dual to the polygon Sn. Now, we have the exact sequence

1 → Z2n → K̂∗(0, Sn) → K̂(0, 2n) → 1,

and it is easily seen that the ĜT -action on K̂(0, 2n) extends to an automor-
phism of K̂∗(0, Sn) simply by letting F = (λ, f) ∈ ĜT act on each twist tTA
by sending it to (tTA)λ.

Now let us show that the automorphisms of each K̂∗(0, Sn) given by
F ∈ ĜT respect the natural inclusions K̂∗(0, Sn) ↪→ K̂∗(0, Sn+1). Recall
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that Sn+1 is obtained from Sn by subdividing each interval of Sn into two.
If A and B are neighboring wide ribbons of T , then xT

AB lies in K̂∗(0, Sn)
if and only if A and B are actually supported on Sn, i.e. correspond to
intervals delimited by a finite number of neighboring edges of Sn. Supposing
this is the case, then of course xT

AB is also supported on Sn+1, so xT
AB also

lies in K̂∗(0, Sn+1), as it should since K∗(0, Sn) injects into K̂∗(0, Sn+1).
Furthermore, in order to compute F (xT

AB), we need to use a finite series of
elementary morphisms as explained in the definition of the ĜT -action on
braids, and they consist of moves on edges lying in Sn, and are therefore
the same whether xT

AB is considered as lying in K̂∗(0, Sn) or K̂∗(0, Sn+1),
so that the expression of F (xT

AB) is not dependent on n, i.e. F respects the
injection K̂∗(0, Sn) ↪→ K̂∗(0, Sn+1). ♦
Lemma 7. For A and B disjoint intervals of the circle and T and T ′

different marked tesselations, the commutativity relations xT ′
AB = γ−1xT

ABγ

of equation (1) are respected by the action of ĜT .

Proof. Recall that γ is a finite chain of morphisms in the universal Ptolemy
groupoid taking T ′ to T . In the case where A and B are actually adjacent
ribbons for T , the lemma follows immediately from the definition of the
action of F on the braids xT

AB . If A and B are not adjacent ribbons for T ,
it suffices to take a third tesselation T ′′ such that they are adjacent ribbons
for T ′′ and then again use the definition of F on the braids xT

AB and xT ′
AB , by

commuting them to T ′′ via an element of the universal Ptolemy groupoid.

♦

Lemmas 5, 6 and 7 show that the action of ĜT respects all defining
relations of the universal Ptolemy-Teichmüller groupoid, and this concludes
the proof of theorem 4. ♦

§5. Relations with the ordered Teichmüller groupoids

Let us very briefly sketch the relationship between the universal Ptolemy-
Teichmüller groupoid and the fundamental Teichmüller groupoids of genus
zero moduli space. Let M0,n denote the moduli space of Riemann spheres
with n ordered marked points. The Teichmüller groupoids are the funda-
mental groupoids π1(M0,n;Bn) of the moduli spacesM0,n for n ≥ 4 of genus
zero Riemann surfaces with n ordered marked points, on the set Bn of base
points near infinity of maximal degeneration. The use of these groupoids
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was suggested in [D], page 847, and their structure was investigated in detail
in [PS], chapters I.2 and II. The set Bn is essentially described by isotopy
classes of numbered trivalent trees with n leaves. Let us define ordered Te-
ichmüller groupoids to be the fundamental groupoids of the moduli spaces
M0,n on a certain subset Cn of the base point set Bn, so that the ordered
Teichmüller groupoids are subgroupoids of the full Teichmüller groupoids.
We define the base point sets Cn of the ordered Teichmüller groupoids to
be the set of base points near infinity in M0,n corresponding to trivalent
trees whose n leaves are numbered in cyclic order 1, . . . , n. The set of as-
sociativity moves acts transitively on such trees, so that the paths of the
ordered Teichmüller groupoids are of two types: the braids (local groups),
i.e. the fundamental groups of M0,n based at each base point, which are all
isomorphic to K(0, n), and associativity moves going from one base point
to another.

The universal Ptolemy-Teichmüller groupoid covers all the ordered Te-
ichmüller groupoids for n ≥ 4 in the sense that these groupoids naturally
occur as quotients of subgroupoids in many ways. Indeed, for n ≥ 4, choose
a n-sided polygon S in any given tesselation T , and consider the set of el-
ementary paths on T which act only on edges inside the polygon. In other
words, consider the finite set of tesselations T ′ differing from T only inside
the polygon S. Now consider the set of marked tesselations obtained from
these by marking any chosen edge of T not in the interior of S, and the same
edge on the other tesselations differing from T only inside S. This gives a
subgroupoid of P∞ on a finite number of base points. Now we quotient
the local group at each tesselation by suppressing all the ribbons except
those attached to intervals delimited by edges of the polygon S. The quo-
tient of K∗

T obtained in this way is exactly the pure mapping class group
KT (S) on these ribbons, isomorphic to K∗(0, n); thus we obtain the ordered
Teichmüller groupoid as a quotient of P∞. It is shown in [S1] that there
is a ĜT -action on the profinite completion of the fundamental groupoid
π1(M0,n;Bn); this action fixes the objects of the groupoid, i.e. the ele-
ments of Bn, so it restricts to an action of π̂1(M0,n; Cn). The relation with
the main theorem of this article is that our ĜT -action on P̂∞ passes to the
quotient described here, and gives exactly the usual one on π̂1(M0,n; Cn).



Universal Ptolemy-Teichmüller Groupoid 347

References.

[CFP] J.W. Cannon, W.J. Floyd and W.R. Parry, Notes on Richard Thomp-
son’s groups, preprint (University of Minnesota, 1994), to appear in
Enseignement Math.

[D] V.G. Drinfel’d, On quasitriangular quasi-Hopf algebras and a group
closely connected with Gal(Q/Q), Leningrad Math. J. 2 (1991), 829-
860.

[GS] P. Greenberg and V. Sergiescu, An acyclic extension of the braid
group, Comm. Math. Helv. 66 (1991), 109-138.

[IS] M. Imbert, Sur l’isomorphisme du groupe de Richard Thompson avec
le groupe de Ptolémée, this volume.

[MS] G. Moore and N. Seiberg, Classical and Quantum Conformal Field
Theory, Commun. Math. Phys. 123 (1989), 177-254.

[P1] R.C. Penner, Universal Constructions in Teichmüller Theory, Adv.
in Math. 98 (1993), 143-215.

[P2] R.C. Penner, The universal Ptolemy group and its completions, this
volume.

[PS] Triangulations, courbes arithmétiques et théories des champs, ed. L.
Schneps, issue to appear of Panoramas et Synthèses, Publ. SMF,
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