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In this introduction to Grothendieck-Teichmüller theory,

we will discuss Grothendieck’s idea, expressed in his Esquisse

d’un Programme (1983) of studying GQ, the absolute Galois

group over Q, via its action on geometric and topological ob-

jects (curves, fundamental groups, dessins) such as rather than

algebraic numbers.

The principal object of interest in much of the Esquisse is

the profinite free group F̂2 on two generators, identified with

the algebraic fundamental group of P1 − {0, 1,∞}, and the

canonical outer action of GQ on this group.
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§1A.1. Galois groups and fundamental groups

In sections §2 and §3 of the Esquisse, Grothendieck con-

siders the action of GQ on two types of objects:

• dessins d’enfants; these are graphs embedded into topo-

logical surfaces, whose faces are all cells.

• diffeotopies (really “pro-diffeotopies”) of topological sur-

faces. (The group of diffeotopies is the group of oriented dif-

feomorphisms modulo those isotopic to the identity.)

Recall that the profinite completion of a group is given by

the inverse limit of the system of all its finite quotients:

Ĝ = lim
←

G/N

where N runs through the finite index normal subgroups of G.

The term “pro-diffeotopy” refers to elements of the profi-

nite completion of the group of diffeotopies of a topological

surface.
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The two kinds of actions are really the same: they both

come from the following situation.

If X is an algebraic variety defined over Q, let π1(X) de-

note its topological fundamental group and π̂1(X) its algebraic

fundamental group, which is the profinite completion of the

topological one. Then there is a canonical outer action

GQ → Out
(
π̂1(X)

)
. (1)

A characteristic feature of the Galois action on an algebraic π1

is that it preserves conjugacy classes of inertia groups.
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Here is where that outer Galois action comes from:

X̃ C̃(X) Q̃(X)

| | |
π1(X) Y C(Y ) π̂1(X) Q(Y ) π̂1(X)

| | |
X C(X) Q(X)

| GQ

Q(X)
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§1A.2. The case P1 − {0, 1,∞}

Let X = P1−{0, 1,∞}, so that the topological π1 is F2, the

free group on two generators, which we write 〈x, y, z | xyz = 1〉,
identifying x, y and z with loops around 0, 1 and ∞ respec-

tively.

0 1

x y

We saw in §1 that we have a canonical homomorphism

GQ → Out
(
π̂1(P1 − {0, 1,∞})

i.e.

GQ → Out(F̂2).

8



The inertia groups are 〈x〉, 〈y〉 and 〈z〉, so since GQ pre-

serves inertia, we know that for each σ ∈ GQ, there exist

α, β, λ ∈ Ẑ∗ and f , g ∈ F̂2 such that




σ(x) = xα

σ(y) = g−1yβg
σ(z) = h−1zλh

(∗)

is a lifting of the canonical outer action of σ on F̂2.

In F̂ ab
2 = Ẑ × Ẑ, this means that xαyβzλ = 1, which is

only possible if α = β = λ. Suppose g ≡ xδyε in F̂ ab
2 , and set

f = y−εgxδ. Then

{
σ(x) = xλ

σ(y) = f−1yλf

is the unique lifting of the outer action of σ to an automorphism

of type (*) such that the element conjugating yλ lies in F̂ ′2.

(Indeed, F̂ ′2 can be viewed as the group of elements of F̂2 that

are in the kernel of x 7→ 1 and also in the kernel of y 7→ 1.)
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We have obtained a map

GQ → Ẑ∗ × F̂ ′2.

This map is NOT a group homomorphism. It corresponds to

associating to σ ∈ GQ the automorphism Fσ ∈ Aut(F̂2) associ-

ated to the pair (λσ, fσ) such that x 7→ xλσ , y 7→ f−1
σ yλσfσ.

It follows from Belyi’s theorem (every algebraic curve over

Q can be realized as a finite cover of P1 − {0, 1,∞}) that it is

injective. It is an isomorphism onto its image if that image is

equipped with the multiplication corresponding to composition

of automorphisms, as follows.

If σ, τ ∈ GQ, the product σ · τ corresponds to applying

first the automorphism τ , then σ, so we get

x
τ7→ xλτ

σ7→ xλσλτ

y
τ7→ f−1

τ yλτ fτ
σ7→ Fσ(fτ )−1f−1

σ yλσλτ fσFσ(fτ ).

In other words, the pair corresponding to σ · τ is

(
λσλτ , fσFσ(fτ )

)
.
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§1A.3. Galois action on dessins d’enfants

Definition. A dessin d’enfant is a triple X0 ⊂ X1 ⊂ X2 where

X0 is a finite set of points on a compact topological surface X2

of genus g, and X1 is a set of edges connecting the vertices such

that X2 \X1 is a disjoint union of open cells (simply connected

regions) of X2.

A dessin is defined up to isotopy on the surface, and we

also require it to be bicolorable, i.e. we want to be able to color

the vertices in two colors, black and white, in such a way that

all neighbors of every vertex of a given color are of the opposite

color.
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WHICH ONES ARE DESSINS?
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We have bijections between the following sets

• {
dessins d’enfant

}

• {
finite covers of P1 unramified outside {0, 1,∞}}

,

known as Belyi covers

• {
finite etale covers of P1 − {0, 1,∞}}

• {
conj. classes of subgroups of finite index of F̂2

}

• transitive subgroups of Sn generated by 2 elements

(for all n), up to conjugacy

• {
finite degree extensions of C(T ) unramified

outside (T ), (T − 1), (1/T )
}

• {
finite degree extensions of Q(T ) unramified

outside (T ), (T − 1), (1/T )
}
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The first bijection is given by associating to a Belyi cover

β : X → P1

the preimage β−1([0, 1]) of the segment [0, 1] in P1 (automat-

ically bicolorable). The second and third bijections are ba-

sic facts about Riemann surfaces and topological covers. The

fourth is the geometric Galois correspondence. The fifth is

obtained by identifying the permutations corresponding to x

and y of the fiber over an unramified point of the cover. The

last ones are just the function field analogues (with Lefschetz’

theorem).
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Going from covers to dessins and back

If β : X → P1 is unramified over 0, 1 and ∞, then the

dessin is β−1([0, 1]).

The degree of the cover is equal to the number of edges

of the dessin.

The points over 0 correspond to black vertices of the dessin,

the points over 1 to white vertices.

Example. Genus=0, Degree = 11

5 preimages of 0, 6 preimages of 1

2 preimages of ∞

15



You can visualize the cover topologically by triangulating

the dessin (adding a vertex marked ? in each face, and adding

edges joining it up to the black and white vertices).

This paves the dessin surface with diamonds

* *

each of which contains exactly one edge of the actual dessin.

Topologically, the cover is obtained by identifying the marked

pairs of edges, so the quotient is topologically a sphere with

three branch points.

Putting the Riemann surface structure P1 − {0, 1,∞} on

the quotient determines the Riemann structure on the triangu-

lated cover.
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The group F2 acts on the set of edges of the dessin D as

follows:

Pick any edge e of the dessin and let N = Stab(e); then N

is a finite-index subgroup of F̂2. The stabilizers of the different

flags (=oriented edges) form a conjugacy class of finite-index

subgroups in F̂2, and this conjugacy class corresponds to a

finite cover of P1, namely exactly the Belyi cover β : X → P1.
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The degree of the cover is the number of edges e, and the

set of edges is in bijection with the coset space F̂2/N ; further-

more the action of F̂2 on the edges is exactly the action on

F̂2/N by right multiplication. Obviously, F̂2 acts via a finite

quotient, called the monodromy group of the dessin or the

cover.

You can reconstruct the whole dessin just by know-

ing N (up to conjugacy):

• Edges are in bijection with F̂2/N ;

• orbits of F̂2/N under x are sets of “flowers” centered around

black vertices (edges attached to same black vertex);

• similarly, orbits of F̂2/N under y are sets of “flowers“ centered

around white vertices.
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Galois action on dessins

The action of GQ on F̂2 sends a finite index subgroup N to

Nσ, so it sends the dessin D corresponding to N to the dessin

Dσ corresponding to Nσ. The field

KD = fixed field of {σ ∈ GQ | Nσ = N, i.e. Dσ = D}

is called the moduli field of D.

Thus, each dessin is naturally defined over a num-

ber field, and the set of dessins is naturally equipped

with a Galois action.
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Now, what we would like is to give a list of combinatorial

Galois invariants of dessins, the dream being to give a list

sufficient to determine Galois orbits of dessins. To start with,

there are some obvious Galois invariants:

• number of edges, faces, black, white vertices

• ramification indices, i.e. valencies of black and white

vertices;

• monodromy group...

All these are geometric, i.e. they have to do with the

ramification information of the associated Belyi cover.
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Example:

Every one of the preceding, geometric invariants of these

two dessins is equal. There are 24 dessins having the exact

same ramification indices. However, it is actually possible to

EXPLICITLY COMPUTE the associated number fields and

see that these two dessins are NOT Galois conjugates.
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The valencies at the black vertices are (5, 1, · · · , 1) and at

the white vertices (2, 3, 4, 5, 6). If you take dessins with the

same black valencies and various 5-tuples of white valencies,

you sometimes get a Galois orbit of 24 and sometimes two

Galois orbits of 12, as here.

Y. Kochetkov computed many examples and noticed that the

Galois orbits appeared to split the set of dessins into two parts

exactly when the white valencies are (a, b, c, d, e) such that

abcde(a + b + c + d + e) is a square.

This conjecture was generalized and proved by Leonardo

Zapponi (1997), who actually came up with a NEW GALOIS

INVARIANT for a large family of dessins. This Galois invari-

ant is just a sign ±1, but what is interesting is that it is really

arithmetic, not geometric in nature.
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§1A.4. Galois action on diffeotopies of topological sur-

faces

Now, let S be a topological surface of genus g, with n

marked points.

Let Mg,n denote the moduli space of Riemann surfaces of

type (g, n). The points of Mg,n are isomorphism classes of these

Riemann surfaces; the moduli space can also be considered as

the space of analytic structures on S up to isomorphism.

A path on the moduli space is a continuous deformation

of the analytic structure of the Riemann surface corresponding

to a given starting point x ∈ Mg,n.

In particular, a loop (up to homotopy) corresponds to a

diffeotopy of x, i.e. to an orientation-preserving diffeomor-

phism (up to isotopy).
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Thus, if we define the mapping class group to be

Γg,n = Diff+(S)/Diff0(S),

then we have an isomorphism

Γg,n ' π1(Mg,n).

Topologically, the moduli spaces Mg,n are not always man-

ifolds but sometimes orbifolds, because they are topologically

obtained as the quotient of a topological ball (Teichmüller

space) by the action of Γg,n, which is properly discontinuous

but not always fixed-point free. The fixed points are fixed by

finite subgroups of Γg,n and correspond to Riemann surfaces

with automorphisms. (When g = 0 or n > 2g +3, the Mg,n are

manifolds.)

However, Γg,n always contains a finite-index subgroup with

fixed-point-free action. Thus, there is always a finite cover of

Mg,n that is a manifold.
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Arithmetically, the orbifolds Mg,n are not Q-schemes but

Q-stacks, called Deligne-Mumford stacks, meaning that they

have a finite cover which is a Q-scheme. The canonical Galois

homomorphism exists for stacks just as for schemes: we have

GQ → Out
(
π1(Mg,n)

) ' Out(Γ̂g,n).

We want to know exactly how GQ acts on diffeomorphisms

of S, and we are particularly intrigued by the two following spe-

cial types of diffeomorphisms, each of which forms a generating

set for the mapping class groups:

• Dehn twists

(G-T theory ⇒ Galois action understood)

• Diffeomorphisms of finite order

(Galois action not well understood)
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Dehn twists in Γg,n are related to the “divisor at in-

finity” of the moduli space, i.e. the divisor that is added

in the stable compactification. As paths in the fundamental

group, they represent loops around irreducible components of

the divisor at infinity; thus they play the role of inertia groups

in the fundamental group.

Example. M0,4 ' P1 −{0, 1,∞}; the divisor at infinity is the

three points 0, 1 and ∞, the Dehn twists as paths on moduli

space correspond to the loops x, y, z around 0, 1, ∞.

Finite order elements in Γg,n are related to special

loci of the moduli space, i.e. subsets of points consist-

ing of curves having special automorphism groups; they play

an inertia-like role in the fundamental group corresponding to

controlled ramification over these special loci.
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Dehn twists

As a diffeomorphism, a Dehn twist is given by specify-

ing a simple closed loop on S, and taking the diffeomorphism

obtained as follows:

2πi
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If α denotes a simple closed loop on S, then we write a for

the associated Dehn twist.

Dehn proved that the mapping class group Γg,n is gener-

ated by Dehn twists.

Let a pants decomposition on S be a maximal set of

3g−3+n disjoint simple closed loops; they cut S into “pants”.
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If we erase any one of these loops, then the pants decom-

position becomes a decomposition into many pairs of pants and

one larger piece, which is always

• either a genus zero piece with four boundary components

• or a genus one piece with one boundary component.

We call this piece the neighborhood of the loop in the pants

decomposition.
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• An A-move on a pants decomposition P is a new pants de-

composition obtained from P by erasing one loop and replacing

it by another one which intersects the first one in 2 points and

doesn’t intersect any of the others.

• An S-move on a pants decomposition P is a new pants de-

composition obtained from P by erasing one loop and replacing

it by another one which intersects the first one in 1 point and

doesn’t intersect the others.
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Recall that we have an injective set map

GQ → Ẑ∗ × F̂ ′2

σ 7→ (λ, f),

where F̂2 is the profinite free group on two generators x and y.

The mapping corresponds to the fact that under

GQ → Out(F̂2),

the element σ is mapped to an inertia-preserving outer auto-

morphism, which lifts to an automorphism of the form

{
σ(x) = xλ

σ(y) = f−1yλf.

The pair (λ, f) is unique if we require f ∈ F̂ ′2.
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Notation: For any group homomorphism

F̂2 → G

x, y 7→ a, b

we write f(a, b) for the image of f ∈ F̂2.

For example:

• under id : F̂2 → F̂2, we have f = f(x, y);

• under the map F̂2 → F̂2 exchanging the generators x and y,

we have

f = f(x, y) 7→ f(y, x).
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Most results in Grothendieck-Teichmüller theory concern

the Galois action on the mapping class groups. One of the

main results explicitly determines the Galois action on all Dehn

twists and proves that the Galois group acts locally on Dehn

twists in the sense that this action concerns only a topological

“neighborhood” of the Dehn twists.

Theorem. Let S be a topological surface of type (g, n). For

each pants decomposition P on S, there exists an injective ho-

momorphism

ρP : GQ → Aut(Γ̂g,n)

lifting the canonical homomorphism GQ → Out(Γ̂g,n), such

that:

σ(a) = aλ if α ∈ P,

σ(b) = f(a, b)−1 bλ f(a, b) if α → β is an A-move on P,

σ(c) = f(a2, c2)−1 cλ f(a2, c2) if α → γ is an S-move on P.
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This means that in acting on a Dehn twist a along a loop

α, Galois not only conjugates the χ(σ)-th power (we knew that

– it’s inertia!), but it conjugates it by a local element of Γ̂g,n,

i.e. a profinite product of Dehn twists living right on the neigh-

borhood of the loop α.

A final remark. One of the most interesting open questions

is whether there is analogous theory of the Galois action on

the finite-order elements of the mapping class groups; we don’t

even know whether the Galois group treats them like inertia

(except in g = 0, 1), let alone whether the action is “local” in

some sense.
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