An introduction to

Profinite Grothendieck-Teichmüller theory

MIT, Cambridge, Massachusetts

November 5-9, 2012

Lecture 1B

The Grothendieck-Teichmüller group

Outline

Lecture 1A: Geometric Galois actions
§1A.1. Galois groups and fundamental groups
$\S 1$ A.2. The case $\mathbb{P}^{1}-\{0,1, \infty\}$
§1A.3. Galois action on dessins d'enfants
§1A.4. Galois action on diffeotopies of surfaces

Lecture 1B: The Grothendieck-Teichmüller group
§1B.1. Background for definition: braid groups
§1B.2. $\widehat{G T}$: definition and main properties
§1B.3. The absolute Galois group $G_{\mathbb{Q}} \hookrightarrow \widehat{G T}$
§1B.4. Questions: How similar is $\widehat{G T}$ to $G_{\mathbb{Q}}$?

Lecture 3A: Braided tensor categories and geometry
$\S 3$ A.1. Braided tensor categories
$\S 3 A .2$. The braided tensor category of trivalent trees
\S 3A.3. Quasi-triangular quasi-Hopf algebras
$\S 3 A .4$. The Teichmüller groupoid and tang. base points §3A.5. The tree category and the Teichmüller groupoid \S 3A.6. The profinite version $\widehat{G T}$ of $G T$, and arithmetic

Lecture 3B: G-T theory in higher genus
§3B.1. Higher genus moduli spaces, mapping class groups and morphisms between them
§3B.2. Higher genus Grothendieck-Teichmüller group
§3B.3. The pants-decomposition complex
$\S 3 B .4$. The \mathbb{I}-action on the Teichmüller tower.
§3B.5. Final remarks

§1B.1. Background for definition: braid groups

Let us recall the definitions of the Artin braid groups and the mapping class groups.

Definition. Let B_{n} denote the Artin braid group on n strands generated by $\sigma_{1}, \ldots, \sigma_{n-1}$, with relations

$$
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
$$

and

$$
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad \text { if }|i-j| \geq 2
$$

Let $\Gamma_{0,[n]}$ be the quotient of B_{n} by the relations

$$
\sigma_{n-1} \cdots \sigma_{1}^{2} \cdots \sigma_{n-1}=1 \quad \text { and } \quad\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}=1
$$

Let K_{n} and $\Gamma_{0, n}$ denote the pure subgroups of B_{n} and $\Gamma_{0,[n]}$, i.e. kernels of the natural surjections

$$
B_{n} \rightarrow S_{n}, \quad \Gamma_{0, n} \rightarrow S_{n}
$$

obtained by considering only the permutations of the braidends.

The pure subgroups are generated by the braids

$$
x_{i j}=\sigma_{j-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}, \quad 1 \leq i<j \leq n
$$

In particular, a presentation of $\Gamma_{0,5}$ is given by generators $x_{i, i+1}$ for $i \in \mathbb{Z} / 5 \mathbb{Z}$, and relations

$$
x_{i, i+1} x_{j, j+1}=x_{j, j+1} x_{i, i+1} \quad \text { if } \quad|i-j| \geq 2
$$

and

$$
x_{51} x_{23}^{-1} x_{12} x_{34}^{-1} x_{23} x_{45}^{-1} x_{34} x_{51}^{-1} x_{45} x_{12}^{-1}=1
$$

Moduli spaces of genus zero curves

Let $\Sigma_{g, n}$ denote a topological surface of genus g with n fixed marked points.

The group $\Gamma_{0, n}$ is the group of diffeotopies of the topological surface $\Sigma_{0, n}$ that preserve the marked points. The group $\Gamma_{0,[n]}$ is the group of diffeotopies of $\Sigma_{0, n}$ that permute the marked points.

As we saw in the previous lecture, we have an isomorphism

$$
\Gamma_{0, n} \simeq \pi_{1}\left(M_{0, n}\right)
$$

where $M_{0, n}$ is the moduli space of genus zero Riemann surfaces with n ordered marked points. We also have

$$
\Gamma_{0,[n]} \simeq \pi_{1}\left(M_{0,[n]}\right)
$$

where $M_{0,[n]}=M_{0, n} / S_{n}$ is the moduli space of genus zero Riemann surfaces with n unordered marked points; indeed, $\Gamma_{0,[n]}$ fits into the short exact sequence

$$
1 \rightarrow \Gamma_{0, n} \rightarrow \Gamma_{0,[n]} \rightarrow S_{n} \rightarrow 1 .
$$

Each point of $M_{0, n}$ represents an isomorphism class of Riemann spheres with n marked points; the isomorphisms are given by $\mathrm{PSL}_{2}(\mathbb{C})$, so there is a unique representative of each isomorphism class determined by giving the marked points in the form $\left(0,1, \infty, x_{1}, \ldots, x_{n-3}\right)$.

Thus, the genus zero moduli spaces have a simple geometric structure:

$$
M_{0, n} \simeq\left(\mathbb{P}^{1}\right)^{n-3}-\Delta
$$

where Δ is the "fat" diagonal consisting of all lines $x_{i}=x_{j}$.
They are all manifolds; indeed, $\Gamma_{0, n}$ has no torsion, so no fixed points on Teichmüller space.

Examples. We have

$$
\left\{\begin{array}{l}
M_{0,4} \simeq \mathbb{P}^{1}-\{0,1, \infty\} \\
M_{0,5} \simeq\left(\mathbb{P}^{1}\right)^{2}-\{x=y\}
\end{array}\right.
$$

We can visualize braids in $\Gamma_{0, n}$ as points moving on the Riemann sphere.

We also have

$$
M_{0,[n]} \simeq M_{0, n} / S_{n}
$$

Note that topologically, $M_{0, n}$ is a manifold whereas $M_{0,[n]}$ is an orbifold since the S_{n}-action always has fixed points.

Examples. The point $\left(0,1, \infty, \frac{1}{2}\right)$ is fixed by the transposition $(1,2)$. Indeed, $\left(1,0, \infty, \frac{1}{2}\right)$ is brought back to the standard representative by the automorphism $z \mapsto 1-z$ in $\operatorname{PSL}_{2}(\mathbb{C})$, which fixes $\frac{1}{2}$.

More simply, $\mathbb{P}^{1}-\left\{1, \zeta, \ldots, \zeta^{n-1}\right\}$ where $\zeta^{n}=1$ is fixed under the action of the n-cycle. Thus, the $M_{0,[n]}$ are all orbifolds. In general the $M_{g, n}$ are orbifolds for $g>1$ and small n, but manifolds for $n>2 g+3$.

$\S 1 B .2 . \widehat{G T}$: definition and main properties

For any discrete group G, let \hat{G} denote its profinite completion and \hat{G}^{\prime} the derived group of \hat{G}. Let F_{2} denote the free group on two generators x and y.

For any profinite group homomorphism

$$
\widehat{F}_{2} \rightarrow G: \quad x \mapsto a, \quad y \mapsto b
$$

let $f(a, b) \in G$ denote the image of $f \in \widehat{F}_{2}$.
Definition. [Drinfeld, 1991] Let $\widehat{G T}_{0}$ be the set of pairs $(\lambda, f) \in \widehat{\mathbb{Z}}^{*} \times \widehat{F}_{2}^{\prime}$ such that $x \mapsto x^{\lambda}, \quad y \mapsto f^{-1} y^{\lambda} f$ extends to an automorphism of \widehat{F}_{2}, and (λ, f) satisfies
(I) $f(x, y) f(y, x)=1$
(II) $f(x, y) x^{m} f(z, x) z^{m} f(y, z) y^{m}=1$ where $x y z=1$ and $m=$ $(\lambda-1) / 2$.

Let $\widehat{G T}$ be the subset of $\widehat{G T}_{0}$ whose elements additionally satisfy the pentagon relation in $\widehat{\Gamma}_{0,5}$:
(III) $f\left(x_{12}, x_{23}\right) f\left(x_{34}, x_{45}\right) f\left(x_{51}, x_{12}\right) f\left(x_{23}, x_{34}\right) f\left(x_{45}, x_{51}\right)=1$.

Rephrased definition of $\widehat{G T}$

Let θ be the automorphism of F_{2} and \hat{F}_{2} defined by $\theta(x)=$ y and $\theta(y)=x$.

Let ω be the automorphism of F_{2} and \hat{F}_{2} defined by $\omega(x)=$ y and $\omega(y)=(x y)^{-1}$.

Let ρ be the automorphism of $\Gamma_{0,5}$ and $\hat{\Gamma}_{0,5}$ given by $\rho\left(x_{i, i+1}\right)=x_{i+3, i+4}$.

Then $\widehat{G T}_{0}$ is the set of pairs $(\lambda, f) \in \hat{\mathbb{Z}}^{*} \times \hat{F}_{2}^{\prime}$ such that

$$
x \mapsto x^{\lambda}, \quad y \mapsto f^{-1} y f
$$

extends to an automorphism of \widehat{F}_{2} and
(I) $\quad \theta(f) f=1$,
(II) $\omega^{2}\left(f x^{m}\right) \omega\left(f x^{m}\right) f x^{m}=1$ where $m=(\lambda-1) / 2$.

Similarly, $\widehat{G T}$ is the subset of elements $(\lambda, f) \in \widehat{G T}_{0}$ satisfying the pentagon relation
(III) $\rho^{4}(\tilde{f}) \rho^{3}(\tilde{f}) \rho^{2}(\tilde{f}) \rho(\tilde{f}) \tilde{f}=1$ in $\widehat{\Gamma}_{0,5}$, where $\tilde{f}=f\left(x_{12}, x_{23}\right)$.

Multiplication law on $\widehat{G T}$

By composition, we can put a multiplication law on the pairs $F=(\lambda, f) \in \widehat{\mathbb{Z}}^{*} \times \widehat{F}_{2}^{\prime}$ that induce automorphisms of \widehat{F}_{2} via

$$
F(x)=x^{\lambda}, \quad F(y)=f^{-1} y^{\lambda} f .
$$

The composition law for two such automorphisms is given by

$$
(\lambda, f)(\mu, g)=(\lambda \mu, f F(g)) .
$$

The first main theorem concerning $\widehat{G T}$ is the following non-trivial result:

Theorem 1. $\widehat{G T}_{0}$ and $\widehat{G T}$ are profinite groups.

Indeed, it is not obvious why the composition of two automorphisms satisfying the three relations will also satisfy them; similarly for the inverse of an automorphism.

$\widehat{G T}_{0}$ as automorphism group

Let $F=(\lambda, f) \in \hat{\mathbb{Z}}^{*} \times \hat{F}_{2}^{\prime}$ and assume that

$$
x \mapsto x^{\lambda}, \quad y \mapsto f^{-1} y^{\lambda} f
$$

gives an automorphism of \hat{F}_{2}.
Identify \hat{F}_{2} as a subgroup of \hat{B}_{3} by setting $x=\sigma_{1}^{2}$ and $y=\sigma_{2}^{2}$.

Lemma 1. The automorphism $F=(\lambda, f)$ of \widehat{F}_{2} extends to an automorphism of \hat{B}_{3} via

$$
\sigma_{1} \mapsto \sigma_{1}^{\lambda}, \quad \sigma_{2} \mapsto f^{-1} \sigma_{2}^{\lambda} f
$$

if and only if $(\lambda, f) \in \widehat{G T}_{0}$.

The proof of this lemma consists in an easy direct computation of the constraints imposed on the couple (λ, f) by the relation $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$ and the fact that $\left(\sigma_{1} \sigma_{2}\right)^{3}$ is central in \hat{B}_{3}.

Theorem 1 a). $\widehat{G T}_{0}$ is a profinite group.

Proof. By Lemma 1, two pairs (λ, f) and (μ, g) in $\widehat{G T}_{0}$ give automorphisms of \hat{B}_{3}, so their composition $(\lambda \mu, f F(g))$ also gives an automorphism of \hat{B}_{3}. This composition maps σ_{1} to $\sigma_{1}^{\lambda \mu}$ and σ_{2} to a conjugate of $\sigma_{2}^{\lambda \mu}$, so by Lemma 1 it also lies in $\widehat{G T}_{0}$. The automorphism $F=(\lambda, f)$ also has an inverse F^{-1} which is given by $\left(\lambda^{-1}, F^{-1}\left(f^{-1}\right)\right)$, cf. the multiplication law

$$
(\lambda, f)(\mu, g)=(\lambda \mu, f F(g)) .
$$

Let Out* $\left(\widehat{\Gamma}_{g, n}\right)$ denote the group of outer automorphisms of $\widehat{\Gamma}_{g, n}$ that preserve inertia in the sense of the Galois action, i.e. preserving conjugacy classes of inertia groups.

In genus zero, the inertia generators are the pure braid generators $x_{i j}$ of $\Gamma_{0, n}$, which correspond precisely to loops around the "missing divisors" at infinity (those that are added in the stable compactification). The inertia generators of $\Gamma_{0,[n]}$ are the σ_{i}. The braid $x_{i j}$ corresponds to a Dehn twist along a loop on the sphere surrounding only the points i and j.

It is easy to check that the action of $F=(\lambda, f) \in \widehat{G T}_{0}$ raises the elements $\sigma_{2} \sigma_{1}^{2} \sigma_{2}$ and $\left(\sigma_{1} \sigma_{2}\right)^{3}$ to the λ-th power, so the $\widehat{G T}_{0}$-action on \hat{B}_{3} passes to the quotient $\widehat{\Gamma}_{0,[4]}$, and from Theorem 1 a) we obtain:

Theorem 2 a). $\widehat{G T}_{0} \simeq \operatorname{Out}^{*}\left(\Gamma_{0,[4]}\right)$.

To see that $\widehat{G T}_{0}$ is a profinite group, it suffices to note that it is the inverse limit of its own images in the (finite) automorphism groups of the quotients \hat{F}_{2} / N, where N runs over the characteristic subgroups of finite index of \hat{F}_{2}.

$\widehat{G T}$ as automorphism group

Let $c \in \Gamma_{0,[n]}$ denote the n-cycle $c=\sigma_{n-1} \cdots \sigma_{1}$. The groups $\Gamma_{0,[n]}$ are generated by σ_{1} and c because $c^{-1} \sigma_{i} c=\sigma_{i+1}$. Lemma 2. A pair $F=(\lambda, f) \in \hat{\mathbf{Z}}^{*} \times \hat{F}_{2}^{\prime}$ gives an automorphism of $\hat{\Gamma}_{0,[5]}$ via $\sigma_{1} \mapsto \sigma_{1}^{\lambda}$ and $c^{2} \mapsto \tilde{f} c^{2} \quad\left(\right.$ with $\tilde{f}=f\left(x_{23}, x_{12}\right)$) if and only if the couple lies in $\widehat{G T}$, i.e. satisfies (I), (II), (III).

Proof. One direction: if the proposed action is an automorphism of $\Gamma_{0,[5]}$, then by squaring, it is immediate that the proposed action satisfies $c^{-1} \mapsto f\left(x_{23}, x_{12}\right) f\left(x_{51}, x_{45}\right) c^{-1}$. The subgroup $\left\langle\sigma_{1}, \sigma_{2}\right\rangle \subset \hat{\Gamma}_{0,[5]}$ is isomorphic to \hat{B}_{3}, and this subgroup is preserved by the proposed action since $\sigma_{2}=c^{-1} \sigma_{1} c$ maps to
$f\left(x_{23}, x_{12}\right) f\left(x_{51}, x_{45}\right) c^{-1} \sigma_{1}^{\lambda} c f\left(x_{51}, x_{45}\right)^{-1} f\left(x_{23}, x_{12}\right)^{-1}=\tilde{f} \sigma_{2}^{\lambda} \tilde{f}^{-1}$.
Thus, by Lemma 1, (λ, f) satisfies relations (I) and (II).
The automorphism must also respect $\left(c^{2}\right)^{5}=1$, so $\left(\tilde{f} c^{2}\right)^{5}=$

1. But since $\rho=\operatorname{Inn}(c)$, we have

$$
(c \tilde{f})^{5}=c^{5} \rho^{4}(\tilde{f}) \rho^{3}(\tilde{f}) \rho^{2}(\tilde{f}) \rho(\tilde{f}) \tilde{f}=1
$$

which is exactly relation (III) defining $\widehat{G T}$.

Other direction: we need to show that the action respects all the relations in a presentation of $\hat{\Gamma}_{0,[5]}$. It is easiest to use the presentation with generators $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and σ_{4} and compute the action of (λ, f) on the σ_{i} by using $c^{-i} \sigma_{1} c^{i}=\sigma_{1+i}$.

If $F=(\lambda, f)$ is going to give an automorphism of $\widehat{\Gamma}_{0,[5]}$, then it must act on the σ_{i} by:

$$
\begin{align*}
\sigma_{1} & \mapsto \sigma_{1}^{\lambda} \\
\sigma_{2} & \mapsto f\left(x_{23}, x_{12}\right) \sigma_{2}^{\lambda} f\left(x_{12}, x_{23}\right) \\
\sigma_{3} & \mapsto f\left(x_{34}, x_{45}\right) \sigma_{3}^{\lambda} f\left(x_{45}, x_{34}\right) \tag{*}\\
\sigma_{4} & \mapsto \sigma_{4}^{\lambda} \\
\sigma_{51} & \mapsto f\left(x_{23}, x_{12}\right) f\left(x_{51}, x_{45}\right) \sigma_{51}^{\lambda} f\left(x_{45}, x_{51}\right) f\left(x_{12}, x_{23}\right)
\end{align*}
$$

Assuming now that $(\lambda, f) \in \widehat{G T}$, we check that all the defining relations of $\widehat{\Gamma}_{0,[5]}$ are respected by this action on the σ_{i}; this is straightforward and only one of them requires (III).

Thus we know that $(\lambda, f) \in \widehat{G T}$ yields an automorphism of $\widehat{\Gamma}_{0,[5]}$ by $(*)$. Now we compute the image of c^{2} under this automorphism and easily check that $c^{2} \mapsto \tilde{f} c^{2}$, which concludes the proof.

As in the case of $\widehat{G T}_{0}$, since $\widehat{G T}$ is an automorphism group of a finitely presented profinite group, we immediately obtain the result we are seeking for:

Theorem 1 b). $\widehat{G T}$ is a profinite group.

As an analog of Theorem 2 a):
Theorem 2 b) [Harbater-S, 1997] We have

$$
\widehat{G T}=\operatorname{Out}_{b}^{*}\left(\widehat{\Gamma}_{0,5}\right)
$$

where the b denotes the *-automorphisms of $\Gamma_{0,5}$ that commute with the point-permuting subgroup $S_{n} \subset \operatorname{Out}\left(\widehat{\Gamma}_{0,5}\right)$.

$\widehat{G T}$ acts on all braid groups

Drinfel'd showed that $\widehat{G T}$ acts on all the profinite Artin braid groups by the following simple formula: if $F=(\lambda, f) \in$ $\widehat{G T}$, then

$$
F\left(\sigma_{1}\right)=\sigma_{1}^{\lambda}, \quad F\left(\sigma_{i}\right)=f\left(\sigma_{i}^{2}, y_{i}\right) \sigma_{i}^{\lambda} f\left(y_{i}, \sigma_{i}^{2}\right),
$$

where $y_{i}=\sigma_{i-1} \cdots \sigma_{1} \cdot \sigma_{1} \cdots \sigma_{i-1}$.

This action passes to the quotients $\Gamma_{0,[n]}$ and their pure subgroups $\widehat{\Gamma}_{0, n}$.

The proof is very easy since all braid relations look alike, but the result is striking.

One might think that relations (I), (II) and (III) only imply that $\widehat{G T}$ acts on the braid groups with up to 5 strands, but in fact once one reaches 5 , this action extends to all braid groups. Grothendieck called this the two-level principle and related it to a geometric/topological interpretation (see lecture $3)$.

A geometric way to interpret this result is that $\widehat{G T}$ is the automorphism of the genus zero Teichmüller tower:

$$
\widehat{G T}=\operatorname{Out}^{*}(\mathcal{T})
$$

where \mathcal{T} consists of the collection of $\widehat{\Gamma}_{0, n}$ for all $n \geq 4$ equipped with the homomorphisms $d_{n}: \widehat{\Gamma}_{0, n} \rightarrow \widehat{\Gamma}_{0, n+1}$ obtained by doubling the first strand of a pure braid. We have $\widehat{G T} \hookrightarrow$ Out* $\left(\widehat{\Gamma}_{0, n}\right)$ for $n \geq 4$ and for each d_{n}, the commutative diagram

$$
\begin{gathered}
\widehat{\Gamma}_{0, n} \xrightarrow{d_{n}} \widehat{\Gamma}_{0, n} \\
(\lambda, f) \mid \downarrow \\
\quad \downarrow \quad{ }^{2}(\lambda, f) \\
\widehat{\Gamma}_{0, n} \xrightarrow{d_{n}} \widehat{\Gamma}_{0, n} .
\end{gathered}
$$

The two-level principle consists in the statement that

$$
\widehat{G T}=\operatorname{Out}^{*}\left(\mathcal{I}_{5}\right)
$$

where \mathcal{T}_{5} denotes the little tower of two groups $\Gamma_{0,4}$ and $\Gamma_{0,5}$ with the map $d_{4}: \Gamma_{0,4} \rightarrow \Gamma_{0,5}$. The automorphism group of the two-level tower is the same as the automorphism group of the complete tower.

§1B.3. The absolute Galois group $G_{\mathbb{Q}} \hookrightarrow \widehat{G T}$

There are several ways of apprehending the fact that $\widehat{G T}$ contains the absolute Galois group. We already saw saw that an element $\sigma \in G_{\mathbb{Q}}$ can be associated to a unique pair (λ, f) such that $x \mapsto x^{\lambda}, y \mapsto f^{-1} y^{\lambda} f$ is a lifting of the canonical homomorphism $G_{\mathbb{Q}} \rightarrow \operatorname{Out}\left(\widehat{F}_{2}\right)$ with F_{2} identified with the space $\pi_{1}\left(\mathbb{P}^{1}-\{0,1, \infty\}\right)$. (The lifting corresponds to a choice of "tangential" base point.) The λ associated to $\sigma \in G_{\mathbb{Q}}$ is just the cyclotomic character $\lambda=\chi(\sigma) \in \widehat{\mathbb{Z}}^{*}$.

To prove that $G_{\mathbb{Q}} \hookrightarrow \widehat{G T}$, it remains to show that the pair $\left(\chi(\sigma), f_{\sigma}\right)$ satisfies (I), (II) and (III).

A quick proof is as follows: $\widehat{G T}$ is the group of all automorphisms of $\widehat{\Gamma}_{0,5}$ with certain properties, namely inertiapreserving automorphisms that commute with S_{5}, and $G_{\mathbb{Q}}$ acts on $\widehat{\Gamma}_{0,5} \simeq \widehat{\pi}_{1}\left(M_{0,5}\right)$ with those same properties.

However, this reasoning does not show where the relations that f_{σ} satisfies come from geometrically.

A geometric explanation. $G_{\mathbb{Q}}$ acts on the profinite fundamental groupoid of $M_{0,4}=\mathbb{P}^{1}-\{0,1, \infty\}$ based at all rational points (including "tangential" base points).

Let $\Theta(z)=1-z$.
In the fundamental groupoid of $M_{0,4}$ based at $\overrightarrow{01}$ and $\overrightarrow{10}$, we have paths x (based at $\overrightarrow{01}, p$ (from $\overrightarrow{01}$ to $\overrightarrow{10}$) and $\Theta(x)$ (based at $\overrightarrow{10}$).

We also have $\Theta(p)=p^{-1}$, and for the path r from $\overrightarrow{01}$ to $1 / 2$, we have $\Theta(r)^{-1} r=p$.

The action of $\sigma \in G_{\mathbb{Q}}$ on x is just $\sigma(x)=x^{\lambda}$, where $\lambda=\chi(\sigma)$.

The action of σ on p is given by $\sigma(p)=p f$ for some $f \in$ $\widehat{\pi}_{1}\left(M_{0,4}, \overrightarrow{01}\right)$.

We have $y=p^{-1} \Theta(x) p$, so

$$
\sigma(y)=f^{-1} p^{-1} \Theta\left(x^{\lambda}\right) p f=f^{-1} y^{\lambda} f,
$$

so this is the same as the Galois action we gave earlier on $\widehat{\pi}_{1}\left(M_{0,4}, \overrightarrow{01}\right) \simeq \widehat{F}_{2}$.

Let's show that the pair (λ, f) associated to $\sigma \in G_{\mathbb{Q}}$ satisfies defining relation (I) of $\widehat{G T}$.

For $\sigma \in G_{\mathbb{Q}}$, there also exists $g \in \widehat{\pi}_{1}\left(M_{0,4}, \overrightarrow{01}\right)$ such that $\sigma(r)=r g$, since the endpoints of r are rational.

We have $p=\Theta(r)^{-1} r$, so

$$
\begin{gathered}
\sigma(p)=\Theta(r g)^{-1} r g=\Theta(g)^{-1} \Theta(r)^{-1} r g=\Theta(g)^{-1} p g \\
=p p^{-1} \Theta(g)^{-1} p g=p p^{-1} g(\Theta(x), \Theta(y))^{-1} p g \\
=p g\left(p^{-1} \Theta(x) p, p^{-1} \Theta(y) p\right)^{-1} g(x, y) \\
=p g(y, x)^{-1} g(x, y)=p f
\end{gathered}
$$

Therefore there exists $g \in \widehat{F}_{2}$ such that $f(x, y)=g(y, x)^{-1} g(x, y)$, so $f(x, y)$ certainly satisfies relation (I): $f(x, y) f(y, x)=1$.

We show that relation (II) is satisfied similarly, by using a path from $\overrightarrow{01}$ to a 6 th root of unity in $M_{0,4}$, and relation (III) is done using a path on the moduli space $M_{0,5}$. This explains geometrically why elements of $G_{\mathbb{Q}}$ satisfy (I), (II) and (III).

This gives rise to the natural question: does there exist a g such that $f(x, y)=g(y, x)^{-1} g(x, y)$ for all $(\lambda, f) \in \widehat{G T}$? And similarly for the other relations? The answer is yes.

Theorem 4. Let $(\lambda, f) \in \widehat{G T}$, and let $m=(\lambda-1) / 2$. Then there exist elements g and $h \in \hat{F}_{2}$ and $k \in \hat{\Gamma}_{0,5}$ such that we have the following equalities, of which the first two take place in \hat{F}_{2} and the third in $\hat{\Gamma}_{0,5}$:
$\left(I^{\prime}\right) \quad f=\theta(g)^{-1} g$
$\left(I I^{\prime}\right)$
$f x^{m}= \begin{cases}\omega(h)^{-1} h & \text { if } \lambda \equiv 1 \bmod 3 \\ \omega(h)^{-1} x y h & \text { if } \lambda \equiv-1 \bmod 3\end{cases}$
$\left(I I I^{\prime}\right)$
$f\left(x_{12}, x_{23}\right)= \begin{cases}\rho(k)^{-1} k & \text { if } \lambda \equiv \pm 1 \bmod 5 \\ \rho(k)^{-1} x_{34} x_{51}^{-1} x_{45} x_{12}^{-1} k & \text { if } \lambda \equiv \pm 2 \bmod 5 .\end{cases}$
Interpreting relations (I), (II) and (III) as cocycle relations as in the second definition $\left(\rho^{4}(f) \rho^{3}(f) \rho^{2}(f) \rho(f) f=1\right.$ etc. $)$, the question turns into a computation of cocycles and coboundaries using non-commutative cohomology. Calculations of the noncommutative cohomology groups yields the result.

$\S 1 \mathrm{~B} .4$. Questions: How similar is $\widehat{G T}$ to $G_{\mathbb{Q}}$?

(1) Is the "complex conjugation" element ($-1,1$) self-centralizing in $\widehat{G T}$? This question was asked by Y. Ihara; its answer turns out to be yes. A computation reduces this result to showing that the only element of \hat{F}_{2} which is fixed under the automorphism ι given by $\iota(x)=x^{-1}$ and $\iota(y)=y^{-1}$ is the trivial element, in other words that the centralizer of ι in the semidirect product $\hat{F}_{2} \rtimes\langle\iota\rangle$ is exactly $\langle\iota\rangle$. This can be shown using the same type of non-commutative cohomology calculation as earlier.
(2) The derived subgroup $\widehat{G T}^{\prime}$ of $\widehat{G T}$ is contained in the subgroup $\widehat{G T}^{1}$ of pairs $(\lambda, f) \in \widehat{G T}$ with $\lambda=1$. Are these two subgroups equal? This question was also asked by Y. Ihara, and remains unsolved.
(3) Are there " p-adic" subgroups of $\widehat{G T}$ that would correspond to the p-adic Galois groups $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$ (up to conjugacy) in $G_{\mathbb{Q}}$? Yves André gave an answer to this question.

It follows naturally from his definition of the p-adic "tame fundamental group" of $\mathbb{P}^{1}-\{0,1, \infty\}$, which can be considered as a subgroup of the algebraic fundamental group $\widehat{\pi}_{1}\left(\mathbb{P}^{1}-\right.$ $\{0,1, \infty\})$. One then defines $\widehat{G T}_{p}$ to be the subgroup of $\widehat{G T}$ consisting of automorphisms fixing the p-adic fundamental group. For this definition, André proved that $G_{\mathbb{Q}} \cap \widehat{G T}_{p}=\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$.
(4) Is there any torsion in $\widehat{G T}$ apart from the elements of order 2 given by $(-1,1)$ and its conjugates? After a short discussion with Florian Pop, we were able to prove the weak result that any such torsion elements become trivial in the pro-nilpotent quotient of $\widehat{G T}$; no stronger result seems to be known. Let us indicate the proof of this result by showing there are any elements of order 2 with $\lambda=1$ become trivial in the pronilpotent quotient of $\widehat{G T}$ (note that any torsion element must have $\lambda= \pm 1$). Suppose there exists $(1, f) \in \widehat{G T}$ such that $(1, f)(1, f)=1$. Then $f(x, y) f(x, f(y, x) y f(x, y))=1$. We know that $f \in \hat{F}_{2}^{\prime}$. Considering this equation modulo the second commutator group $\hat{F}_{2}^{\prime \prime}=\left[\hat{F}_{2}, \hat{F}_{2}^{\prime}\right]$, we see that modulo $\hat{F}_{2}^{\prime \prime}$, we have $f(x, y)^{2}=1$, so since there is no torsion in this group, we must have that $f(x, y) \in \hat{F}_{2}^{\prime \prime}$. Working modulo $\hat{F}_{2}^{\prime \prime \prime}$ and so on, we quickly find that f lies in the intersection of all the successive commutator subgroups of \hat{F}_{2}, i.e. that the image of $f(x, y)$ in the nilpotent completion $\hat{F}_{2}^{\text {nil }}$ is trivial.
(5) Is the outer automorphism group of $\widehat{G T}$ trivial? (F. Pop, absolutely unsolved).
(6) Is it possible to determine the finite quotients of $\widehat{G T}$? (Everyone connected with inverse Galois theory; unsolved except for the obvious remark that $(\lambda, f) \mapsto \lambda$ gives a surjection $\widehat{G T} \rightarrow \hat{\mathbb{Z}}^{*}$, and therefore all abelian groups occur, just as for $\left.G_{\mathbb{Q}}.\right)$
(7) Is the subgroup $\widehat{G T}^{1}$ of pairs (λ, f) with $\lambda=1$ profinite free? (Everyone interested in the Shafarevich conjecture; unsolved.)

