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§1B.1. Background for definition: braid groups

Let us recall the definitions of the Artin braid groups and

the mapping class groups.

Definition. Let Bn denote the Artin braid group on n strands

generated by σ1, . . . , σn−1, with relations

σiσi+1σi = σi+1σiσi+1

and

σiσj = σjσi if |i− j| ≥ 2.

i i+1

Let Γ0,[n] be the quotient of Bn by the relations

σn−1 · · ·σ2
1 · · ·σn−1 = 1 and (σ1 · · ·σn−1)n = 1.

.........

........

.......

.......

4



Let Kn and Γ0,n denote the pure subgroups of Bn and

Γ0,[n], i.e. kernels of the natural surjections

Bn →→ Sn, Γ0,n →→ Sn

obtained by considering only the permutations of the braid-

ends.

The pure subgroups are generated by the braids

xij = σj−1 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ−1
j−1, 1 ≤ i < j ≤ n.

i j

In particular, a presentation of Γ0,5 is given by generators

xi,i+1 for i ∈ Z/5Z, and relations

xi,i+1xj,j+1 = xj,j+1xi,i+1 if |i− j| ≥ 2

and

x51x
−1
23 x12x

−1
34 x23x

−1
45 x34x

−1
51 x45x

−1
12 = 1.
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Moduli spaces of genus zero curves

Let Σg,n denote a topological surface of genus g with n

fixed marked points.

The group Γ0,n is the group of diffeotopies of the topolog-

ical surface Σ0,n that preserve the marked points. The group

Γ0,[n] is the group of diffeotopies of Σ0,n that permute the

marked points.

As we saw in the previous lecture, we have an isomorphism

Γ0,n ' π1(M0,n)

where M0,n is the moduli space of genus zero Riemann surfaces

with n ordered marked points. We also have

Γ0,[n] ' π1(M0,[n])

where M0,[n] = M0,n/Sn is the moduli space of genus zero Rie-

mann surfaces with n unordered marked points; indeed, Γ0,[n]

fits into the short exact sequence

1 → Γ0,n → Γ0,[n] → Sn → 1.
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Each point of M0,n represents an isomorphism class of

Riemann spheres with n marked points; the isomorphisms are

given by PSL2(C), so there is a unique representative of each

isomorphism class determined by giving the marked points in

the form (0, 1,∞, x1, . . . , xn−3).

Thus, the genus zero moduli spaces have a simple geomet-

ric structure:

M0,n ' (P1)n−3 −∆,

where ∆ is the “fat” diagonal consisting of all lines xi = xj .

They are all manifolds; indeed, Γ0,n has no torsion, so no

fixed points on Teichmüller space.

Examples. We have

{
M0,4 ' P1 − {0, 1,∞}
M0,5 ' (P1)2 − {x = y}.

We can visualize braids in Γ0,n as points moving on the Rie-

mann sphere.
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We also have

M0,[n] ' M0,n/Sn.

Note that topologically, M0,n is a manifold whereas M0,[n] is

an orbifold since the Sn-action always has fixed points.

Examples. The point (0, 1,∞, 1
2 ) is fixed by the transposition

(1, 2). Indeed, (1, 0,∞, 1
2 ) is brought back to the standard rep-

resentative by the automorphism z 7→ 1− z in PSL2(C), which

fixes 1
2 .

More simply, P1 − {1, ζ, . . . , ζn−1} where ζn = 1 is fixed

under the action of the n-cycle. Thus, the M0,[n] are all orb-

ifolds. In general the Mg,n are orbifolds for g > 1 and small n,

but manifolds for n > 2g + 3.
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§1B.2. ĜT : definition and main properties

For any discrete group G, let Ĝ denote its profinite com-

pletion and Ĝ′ the derived group of Ĝ. Let F2 denote the free

group on two generators x and y.

For any profinite group homomorphism

F̂2 → G : x 7→ a, y 7→ b

let f(a, b) ∈ G denote the image of f ∈ F̂2.

Definition. [Drinfeld,1991] Let ĜT 0 be the set of pairs

(λ, f) ∈ Ẑ∗ × F̂ ′2 such that x 7→ xλ, y 7→ f−1yλf extends to

an automorphism of F̂2, and (λ, f) satisfies

(I) f(x, y)f(y, x) = 1

(II) f(x, y)xmf(z, x)zmf(y, z)ym = 1 where xyz = 1 and m =

(λ− 1)/2.

Let ĜT be the subset of ĜT 0 whose elements additionally

satisfy the pentagon relation in Γ̂0,5:

(III) f(x12, x23)f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51) = 1.
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Rephrased definition of ĜT

Let θ be the automorphism of F2 and F̂2 defined by θ(x) =

y and θ(y) = x.

Let ω be the automorphism of F2 and F̂2 defined by ω(x) =

y and ω(y) = (xy)−1.

Let ρ be the automorphism of Γ0,5 and Γ̂0,5 given by

ρ(xi,i+1) = xi+3,i+4.

Then ĜT 0 is the set of pairs (λ, f) ∈ Ẑ∗ × F̂ ′2 such that

x 7→ xλ, y 7→ f−1yf

extends to an automorphism of F̂2 and

(I) θ(f)f = 1,

(II) ω2(fxm)ω(fxm)fxm = 1 where m = (λ− 1)/2.

Similarly, ĜT is the subset of elements (λ, f) ∈ ĜT 0 sat-

isfying the pentagon relation

(III) ρ4(f̃)ρ3(f̃)ρ2(f̃)ρ(f̃)f̃ = 1 in Γ̂0,5, where f̃ = f(x12, x23).
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Multiplication law on ĜT

By composition, we can put a multiplication law on the

pairs F = (λ, f) ∈ Ẑ∗ × F̂ ′2 that induce automorphisms of F̂2

via

F (x) = xλ, F (y) = f−1yλf.

The composition law for two such automorphisms is given by

(λ, f)(µ, g) =
(
λµ, f F (g)).

The first main theorem concerning ĜT is the following

non-trivial result:

Theorem 1. ĜT 0 and ĜT are profinite groups.

Indeed, it is not obvious why the composition of two auto-

morphisms satisfying the three relations will also satisfy them;

similarly for the inverse of an automorphism.
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ĜT 0 as automorphism group

Let F = (λ, f) ∈ Ẑ∗ × F̂ ′2 and assume that

x 7→ xλ, y 7→ f−1yλf

gives an automorphism of F̂2.

Identify F̂2 as a subgroup of B̂3 by setting x = σ2
1 and

y = σ2
2 .

Lemma 1. The automorphism F = (λ, f) of F̂2 extends to an

automorphism of B̂3 via

σ1 7→ σλ
1 , σ2 7→ f−1σλ

2 f

if and only if (λ, f) ∈ ĜT 0.

The proof of this lemma consists in an easy direct compu-

tation of the constraints imposed on the couple (λ, f) by the

relation σ1σ2σ1 = σ2σ1σ2 and the fact that (σ1σ2)3 is central

in B̂3.
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Theorem 1 a). ĜT 0 is a profinite group.

Proof. By Lemma 1, two pairs (λ, f) and (µ, g) in ĜT 0 give

automorphisms of B̂3, so their composition (λµ, fF (g)) also

gives an automorphism of B̂3. This composition maps σ1 to

σλµ
1 and σ2 to a conjugate of σλµ

2 , so by Lemma 1 it also lies in

ĜT 0. The automorphism F = (λ, f) also has an inverse F−1

which is given by
(
λ−1, F−1(f−1)

)
, cf. the multiplication law

(λ, f)(µ, g) = (λµ, f F (g)).
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Let Out∗(Γ̂g,n) denote the group of outer automorphisms

of Γ̂g,n that preserve inertia in the sense of the Galois action,

i.e. preserving conjugacy classes of inertia groups.

In genus zero, the inertia generators are the pure braid gen-

erators xij of Γ0,n, which correspond precisely to loops around

the “missing divisors” at infinity (those that are added in the

stable compactification). The inertia generators of Γ0,[n] are

the σi. The braid xij corresponds to a Dehn twist along a loop

on the sphere surrounding only the points i and j.

It is easy to check that the action of F = (λ, f) ∈ ĜT 0

raises the elements σ2σ
2
1σ2 and (σ1σ2)3 to the λ-th power, so

the ĜT 0-action on B̂3 passes to the quotient Γ̂0,[4], and from

Theorem 1 a) we obtain:

Theorem 2 a). ĜT 0 ' Out∗(Γ0,[4]).

To see that ĜT 0 is a profinite group, it suffices to note

that it is the inverse limit of its own images in the (finite)

automorphism groups of the quotients F̂2/N , where N runs

over the characteristic subgroups of finite index of F̂2.
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ĜT as automorphism group

Let c ∈ Γ0,[n] denote the n-cycle c = σn−1 · · ·σ1. The

groups Γ0,[n] are generated by σ1 and c because c−1σic = σi+1.

Lemma 2. A pair F = (λ, f) ∈ Ẑ∗×F̂ ′2 gives an automorphism

of Γ̂0,[5] via σ1 7→ σλ
1 and c2 7→ f̃ c2 (with f̃ = f(x23, x12)) if

and only if the couple lies in ĜT , i.e. satisfies (I), (II), (III).

Proof. One direction: if the proposed action is an automor-

phism of Γ0,[5], then by squaring, it is immediate that the pro-

posed action satisfies c−1 7→ f(x23, x12)f(x51, x45)c−1. The

subgroup 〈σ1, σ2〉 ⊂ Γ̂0,[5] is isomorphic to B̂3, and this sub-

group is preserved by the proposed action since σ2 = c−1σ1c

maps to

f(x23, x12)f(x51, x45)c−1σλ
1 cf(x51, x45)−1f(x23, x12)−1 = f̃σλ

2 f̃−1.

Thus, by Lemma 1, (λ, f) satisfies relations (I) and (II).

The automorphism must also respect (c2)5 = 1, so (f̃ c2)5 =

1. But since ρ = Inn(c), we have

(cf̃)5 = c5ρ4(f̃)ρ3(f̃)ρ2(f̃)ρ(f̃)f̃ = 1,

which is exactly relation (III) defining ĜT .
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Other direction: we need to show that the action respects

all the relations in a presentation of Γ̂0,[5]. It is easiest to use

the presentation with generators σ1, σ2, σ3 and σ4 and compute

the action of (λ, f) on the σi by using c−iσ1c
i = σ1+i.

If F = (λ, f) is going to give an automorphism of Γ̂0,[5],

then it must act on the σi by:

σ1 7→ σλ
1

σ2 7→ f(x23, x12)σλ
2 f(x12, x23)

σ3 7→ f(x34, x45)σλ
3 f(x45, x34)

σ4 7→ σλ
4

σ51 7→ f(x23, x12)f(x51, x45)σλ
51f(x45, x51)f(x12, x23).

(∗)

Assuming now that (λ, f) ∈ ĜT , we check that all the defining

relations of Γ̂0,[5] are respected by this action on the σi; this is

straightforward and only one of them requires (III).

Thus we know that (λ, f) ∈ ĜT yields an automorphism

of Γ̂0,[5] by (*). Now we compute the image of c2 under this

automorphism and easily check that c2 7→ f̃ c2, which concludes

the proof.
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As in the case of ĜT 0, since ĜT is an automorphism group

of a finitely presented profinite group, we immediately obtain

the result we are seeking for:

Theorem 1 b). ĜT is a profinite group.

As an analog of Theorem 2 a):

Theorem 2 b) [Harbater-S, 1997] We have

ĜT = Out∗[ (Γ̂0,5),

where the [ denotes the ∗-automorphisms of Γ0,5 that commute

with the point-permuting subgroup Sn ⊂ Out(Γ̂0,5).
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ĜT acts on all braid groups

Drinfel’d showed that ĜT acts on all the profinite Artin

braid groups by the following simple formula: if F = (λ, f) ∈
ĜT , then

F (σ1) = σλ
1 , F (σi) = f(σ2

i , yi)σλ
i f(yi, σ

2
i ),

where yi = σi−1 · · ·σ1 · σ1 · · ·σi−1.

This action passes to the quotients Γ0,[n] and their pure

subgroups Γ̂0,n.

The proof is very easy since all braid relations look alike,

but the result is striking.

One might think that relations (I), (II) and (III) only im-

ply that ĜT acts on the braid groups with up to 5 strands,

but in fact once one reaches 5, this action extends to all braid

groups. Grothendieck called this the two-level principle and

related it to a geometric/topological interpretation (see lecture

3).
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A geometric way to interpret this result is that ĜT is the

automorphism of the genus zero Teichmüller tower:

ĜT = Out∗(T )

where T consists of the collection of Γ̂0,n for all n ≥ 4 equipped

with the homomorphisms dn : Γ̂0,n → Γ̂0,n+1 obtained by

doubling the first strand of a pure braid. We have ĜT ↪→
Out∗(Γ̂0,n) for n ≥ 4 and for each dn, the commutative dia-

gram

Γ̂0,n

dn //

(λ,f)

²²

Γ̂0,n

(λ,f)

²²
Γ̂0,n

dn // Γ̂0,n.

The two-level principle consists in the statement that

ĜT = Out∗(T5)

where T5 denotes the little tower of two groups Γ0,4 and Γ0,5

with the map d4 : Γ0,4 → Γ0,5. The automorphism group of

the two-level tower is the same as the automorphism group of

the complete tower.
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§1B.3. The absolute Galois group GQ ↪→ ĜT

There are several ways of apprehending the fact that ĜT

contains the absolute Galois group. We already saw saw that

an element σ ∈ GQ can be associated to a unique pair (λ, f)

such that x 7→ xλ, y 7→ f−1yλf is a lifting of the canonical

homomorphism GQ → Out(F̂2) with F2 identified with the

space π1(P1 − {0, 1,∞}). (The lifting corresponds to a choice

of “tangential” base point.) The λ associated to σ ∈ GQ is just

the cyclotomic character λ = χ(σ) ∈ Ẑ∗.

To prove that GQ ↪→ ĜT , it remains to show that the pair

(χ(σ), fσ) satisfies (I), (II) and (III).

A quick proof is as follows: ĜT is the group of all au-

tomorphisms of Γ̂0,5 with certain properties, namely inertia-

preserving automorphisms that commute with S5, and GQ acts

on Γ̂0,5 ' π̂1(M0,5) with those same properties.

However, this reasoning does not show where the relations

that fσ satisfies come from geometrically.
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A geometric explanation. GQ acts on the profinite funda-

mental groupoid of M0,4 = P1 − {0, 1,∞} based at all rational

points (including “tangential” base points).

�
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�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

1/2

p

0 1r

θ

θ(r)

(x)x

8
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Let Θ(z) = 1− z.

In the fundamental groupoid of M0,4 based at −→01 and −→10,

we have paths x (based at −→01, p (from −→01 to −→10) and Θ(x)

(based at −→10).

We also have Θ(p) = p−1, and for the path r from −→01 to

1/2, we have Θ(r)−1r = p.

The action of σ ∈ GQ on x is just σ(x) = xλ, where

λ = χ(σ).

The action of σ on p is given by σ(p) = pf for some f ∈
π̂1(M0,4,

−→01).

We have y = p−1Θ(x)p, so

σ(y) = f−1p−1Θ(xλ)pf = f−1yλf,

so this is the same as the Galois action we gave earlier on

π̂1(M0,4,
−→01) ' F̂2.
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Let’s show that the pair (λ, f) associated to σ ∈ GQ

satisfies defining relation (I) of ĜT .

For σ ∈ GQ, there also exists g ∈ π̂1(M0,4,
−→01) such that

σ(r) = rg, since the endpoints of r are rational.

We have p = Θ(r)−1r, so

σ(p) = Θ(rg)−1rg = Θ(g)−1Θ(r)−1rg = Θ(g)−1pg

= pp−1Θ(g)−1pg = pp−1g(Θ(x),Θ(y))−1pg

= pg(p−1Θ(x)p, p−1Θ(y)p)−1g(x, y)

= pg(y, x)−1g(x, y) = pf.

Therefore there exists g ∈ F̂2 such that f(x, y) = g(y, x)−1g(x, y),

so f(x, y) certainly satisfies relation (I): f(x, y)f(y, x) = 1.

We show that relation (II) is satisfied similarly, by using a

path from −→01 to a 6th root of unity in M0,4, and relation (III)

is done using a path on the moduli space M0,5. This explains

geometrically why elements of GQ satisfy (I), (II) and (III).
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This gives rise to the natural question: does there exist a

g such that f(x, y) = g(y, x)−1g(x, y) for all (λ, f) ∈ ĜT? And

similarly for the other relations? The answer is yes.

Theorem 4. Let (λ, f) ∈ ĜT , and let m = (λ − 1)/2. Then

there exist elements g and h ∈ F̂2 and k ∈ Γ̂0,5 such that we

have the following equalities, of which the first two take place

in F̂2 and the third in Γ̂0,5:

(I ′) f = θ(g)−1g

(II ′)

fxm =
{

ω(h)−1h if λ ≡ 1 mod 3
ω(h)−1 xy h if λ ≡ −1 mod 3

(III ′)

f(x12, x23) =
{

ρ(k)−1k if λ ≡ ±1mod 5
ρ(k)−1 x34x

−1
51 x45x

−1
12 k if λ ≡ ±2 mod 5.

Interpreting relations (I), (II) and (III) as cocycle relations as

in the second definition (ρ4(f)ρ3(f)ρ2(f)ρ(f)f = 1 etc.), the

question turns into a computation of cocycles and coboundaries

using non-commutative cohomology. Calculations of the non-

commutative cohomology groups yields the result.
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§1B.4. Questions: How similar is ĜT to GQ?

(1) Is the “complex conjugation” element (−1, 1) self-centralizing

in ĜT? This question was asked by Y. Ihara; its answer turns

out to be yes. A computation reduces this result to showing

that the only element of F̂2 which is fixed under the automor-

phism ι given by ι(x) = x−1 and ι(y) = y−1 is the trivial

element, in other words that the centralizer of ι in the semi-

direct product F̂2o〈ι〉 is exactly 〈ι〉. This can be shown using

the same type of non-commutative cohomology calculation as

earlier.

(2) The derived subgroup ĜT
′
of ĜT is contained in the sub-

group ĜT
1

of pairs (λ, f) ∈ ĜT with λ = 1. Are these two

subgroups equal? This question was also asked by Y. Ihara,

and remains unsolved.
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(3) Are there “p-adic” subgroups of ĜT that would correspond

to the p-adic Galois groups Gal(Fp/Fp) (up to conjugacy) in

GQ? Yves André gave an answer to this question.

It follows naturally from his definition of the p-adic “tame

fundamental group” of P1 − {0, 1,∞}, which can be consid-

ered as a subgroup of the algebraic fundamental group π̂1(P1−
{0, 1,∞}). One then defines ĜT p to be the subgroup of ĜT

consisting of automorphisms fixing the p-adic fundamental group.

For this definition, André proved that GQ∩ĜT p = Gal(Fp/Fp).
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(4) Is there any torsion in ĜT apart from the elements of order

2 given by (−1, 1) and its conjugates? After a short discussion

with Florian Pop, we were able to prove the weak result that

any such torsion elements become trivial in the pro-nilpotent

quotient of ĜT ; no stronger result seems to be known. Let

us indicate the proof of this result by showing there are any

elements of order 2 with λ = 1 become trivial in the pro-

nilpotent quotient of ĜT (note that any torsion element must

have λ = ±1). Suppose there exists (1, f) ∈ ĜT such that

(1, f)(1, f) = 1. Then f(x, y)f
(
x, f(y, x)yf(x, y)

)
= 1. We

know that f ∈ F̂ ′2. Considering this equation modulo the sec-

ond commutator group F̂ ′′2 = [F̂2, F̂
′
2], we see that modulo F̂ ′′2 ,

we have f(x, y)2 = 1, so since there is no torsion in this group,

we must have that f(x, y) ∈ F̂ ′′2 . Working modulo F̂ ′′′2 and

so on, we quickly find that f lies in the intersection of all the

successive commutator subgroups of F̂2, i.e. that the image of

f(x, y) in the nilpotent completion F̂ nil
2 is trivial.
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(5) Is the outer automorphism group of ĜT trivial? (F. Pop,

absolutely unsolved).

(6) Is it possible to determine the finite quotients of ĜT? (Ev-

eryone connected with inverse Galois theory; unsolved except

for the obvious remark that (λ, f) 7→ λ gives a surjection

ĜT → Ẑ∗, and therefore all abelian groups occur, just as for

GQ.)

(7) Is the subgroup ĜT
1

of pairs (λ, f) with λ = 1 profinite

free? (Everyone interested in the Shafarevich conjecture; un-

solved.)
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