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The graded Grothendieck-Teichmüller Lie algebra

Let Lie Pn be the n-strand braid Lie algebra given by

Generators: xij , 1 ≤ i < j ≤ 5

Relations: [xij , xij + xik + xjk] = 0∑
j 6=i xij = 0

[xij , xkl] = 0 if {i, j} ∩ {k, l} = ∅
In particular, Lie P4 is free on x12, x23 and Lie P5 is gen-

erated by x12, x23, x34, x45, x15.

Definition. The Grothendieck-Teichmüller Lie algebra grt is
given by

grt =
{
f ∈Lie≥3[x, y]|(I) f(x, y) + f(y, x) = 0

(II) f(x, y) + f(z, x) + f(y, z) = 0 if x + y + z = 0
(III) f(x12, x23) + f(x34, x45) + f(x51, x12)

+ f(x23, x34) + f(x45, x51) = 0 in LieP5

}

Every f ∈ Lie[x, y] yields a derivation Df of Lie[x, y]:

Df (x) = 0, Df (y) = [y, f ].

We can put a Lie bracket on Lie[x, y] called the Poisson or
Ihara bracket via

{f, g} = [f, g] + Df (g)−Dg(f),

corresponding to bracketing derivations:

[Df , Dg] = D{f,g}.
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Theorem 1. (Ihara) grt forms a Lie algebra under the Poisson
bracket.

Definition. A special derivation D of LiePn is a deriva-
tion such that for 1 ≤ i < j ≤ n, there exists tij ∈ Lie Pn

such that D(xij) = [xij , tij ]. Special derivations (also spe-
cial outer derivations) form a graded Lie algebra. Sn acts on
Lie Pn by permuting the indices of the xij . Let Dn denote the
Lie algebra of Sn-invariant special outer derivations of Lie Pn.
(Sn-invariant means invariant under the action of Sn on special
outer derivations induced by σ ◦D ◦ σ−1.)

Theorem 2. (Ihara) Let grt0 be defined by relations (I) and
(II) only. Then D4 = grt0 and Dn = grt for all n ≥ 5.

Remarks. (1) In other words, only relation (III) is needed
to ensure that elements of grt0 extend to D5, and then they
automatically also act on Dn for all n since in fact the Dn are
all equal for n ≥ 5.

(2) This is the exact Lie analog of the profinite result show-
ing that {

ĜT 0 ' Out∗S4
(Γ̂0,4)

ĜT = Out∗S5
(Γ̂0,5) = Out∗Sn

(Γ̂0,n).
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Theorem 3. (Furusho) If f ∈ Lie[x, y] satisfies relation (III),
then it satisfies (I) and (II); thus grt needs only one defining
relation.

Remark. The implication (III) ⇒ (I) is trivial by pulling out
one strand of the braid, and was observed for both grt and
ĜT by Furusho in 1999. But his new implication (III) ⇒ (II)
led to a lot of research trying to prove the same result for
ĜT . This would be a very useful result, as it would make it
possible to compute the image of ĜT in finite quotients using
the coboundary expressions of elements of ĜT . Then we could
compare those images on examples directly with the Galois
image.

Unfortunately, the attempts actually ended up giving some
heuristic arguments why in fact ĜT may simply not satisfy
the implication (III) ⇒ (II). This is maybe the first important
result about grt that seems to have a chance of actually being
false for ĜT , so a significant difference between the profinite
and Lie situations.

Sketch of proof. Write fijk = f(xij , xjk), so the pentagon
is f123 + f345 + f512 + f234 + f451 = 0. Any permutation of
{1, 2, 3, 4, 5} also yields a valid pentagon, and Furusho thus
adds up four pentagons differing by permutations to get

(
f123+f345+f512+f234+f451

)
+

(
f431+f125+f543+f312+f254

)

+
(
f542+f231+f154+f423+f315

)
+

(
f134+f425+f513+f342+f251

)
= 0.

Simplifying by fijk = −fkji leaves only twelve terms:
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(
f123 + f231 + f312

)
+

(
f512 + f125 + f251

)

+
(
f234 + f423 + f342

)
+

(
f254 + f542 + f425

)
= 0.

This is in fact a sum of four permuted copies of relation
(II). (Furusho claims to have thought of this proof while watch-
ing a soccer match and admiring the way pentagons surround
hexagons on the ball.) Furusho then uses a cute trick to show
that if this sum of four is zero, then each one must be zero.

The trick consists in noting that the remaining sum of four
triangles can be written in the four variables x12, x23, x24, x25.
Indeed, the first triangle contains x12, x13, x23, but since x12 +
x13 + x23 commutes with all three, bracketing any expression
with x13 is equal to bracketing it with −x12 − x23, so x13 can
be eliminated from the first triangle, which can be written as a
polynomial R(x12, x23). Similarly, the second can be expressed
in x12, x25, the third in x23, x24 and the fourth in x24, x25. The
four variables sum to zero.

Furusho then considers each of the four triangles under
the mapping x12 7→ x, x23 7→ y, x24 7→ x and x25 7→ −2x − y,
obtaining R(x, y), R(x, y), R(x,−2x− y), R(x,−2x− y).

Thus the sum of four relations maps to 2R(x, y)+2R(x,−2x−
y). But Furusho shows that for a Lie element of this form, we
have R(x,−2x − y) = R(2x, y) = 2R(x, y), so we see that
R(x, y) = 0, i.e. f satisfies relation (II). QED
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Modular forms and Bernoulli numbers in grt

The Lie algebra grt is weight-graded (i.e. by degree), and
it has a decreasing filtration by depth (=smallest number of y’s
in any monomial).

It is easy to calculate elements of grt in small weight. In
weights 3, 5, 7 and 9 grtn is 1-dimensional; in weights 4 and 6
it is zero. Let fn be a generator for n = 3, 5, 7, 9, normalized
to have integer coefficients. We have

f3 = [x, [x, y]]− [[x, y], y].

Ihara discovered a surprising identity:

2{f3, f9} − 27{f5, f7} ≡ 0 mod 691.

This polynomial also has no terms of depth < 4.

Exploration of the latter fact led to the following theorems.

Theorem 4. (Ihara,Takao) For even n ≥ 12, the dimension
of the space of linear combinations

[ n−4
4 ]∑

i=1

ai{f2i+1, fn−2i−1} (∗)

having no terms in depth < 4 is equal to

dim Sk

(
SL2(Z)

)
=

[n− 4
4

]− [n− 2
6

]
.

7



Definition. Let n be even ≥ 12 and let g(z) be a cusp form
of weight n for SL2(Z). The reduced period polynomial of
g is the polynomial

=
∫ +i∞

0

g(z)(z −X)n−2dz

minus its (Xn−2 − 1)-factor.

Theorem 5. (S,2006) Normalize the fn so that the coefficient
of xn−1y is equal to 1. Then a linear combination of the form

[ n−4
4 ]∑

i=1

ai{f2i+1, fn−2i−1}

has no terms in depth < 4 if and only if the associated polyno-
mial

P (X) =
[ n−4

4 ]∑

i=1

ai(Xn−2i−2 −X2i)

is the reduced period polynomial of a cusp form of weight n for
SL2(Z).

Example. The modified period polynomial of the weight 12
Ramanujan ∆(z) is

(X8 −X2)− 3(X6 −X4).

Ihara’s polynomial rewritten for normalized fn becomes:

{f3, f9} − 3{f5, f7} has no terms of depth < 4.
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The appearance of the numerators of Bernoulli
numbers (such as 691 in weight 12) is still mysterious!

Such congruences occur in higher weight, but in a less
obvious manner since when dim grtn > 1 (i.e. when n > 10),
there is no single choice of a generator fn, so one has to ask
whether there exist choices that work?

For example, we have dim grt11 = 2 and dim grt13 = 3.
There exists a single (reduced) period polynomial in weight 16,
given by

2(X12−X2)− 7(X10−X4) + 11(X8 −X6).

Fix a choice of f11 and f13. Then all choices are given by f11 +
a{f3, {f3, f5}} and f13+b{f5, {f3, f5}}+c{f3, {f3, f7}}. There
are an infinite number of choices for the parameters (a, b, c) to
make the Bernoulli congruence

2{f3, f13} − 7{f5, f11}+ 11{f7, f9} ≡ 0 mod 3617

hold, but not all choices work. We call these elements arising
from period polynomials “modular elements” in grt.
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Open question: When do such congruences occur?

Numerical exploration gave rise to another, similar phe-
nomenon.

Observation (in small weight): Let P (X, Y ) be a homog-
enized period polynomial in weight n (degree n − 2), let M
denote the associated modular element for some choice of fn,
and let T denote the “truncated” modular element, meaning
that we keep only the terms of the form xayxby3. Write

T =
∑

(a,b)

ca,bx
ayxby3

and
Q(X,Y ) =

∑

(a,b)

ca,bX
a+1Y b+1

for commutative variables X, Y . Then there exist choices of fn

for which
Q(X,Y ) = k P (X, Y )

and k ≡ 0 modulo a prime dividing the numerator of the
Bernoulli number Bn. This phenomenon seems to occur at the
same time as the Ihara congruences, and the constant seems to
be divisible by the same Bernoulli numerator.
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At least we have a conjectural answer about when this
happens, if not yet about why.

Conjecture. (S) Let n ≥ 12 be even and

• let p be a prime dividing Bn

n

• let g(z) be a cusp form g of weight n for SL2(Z) which
is an eigenform for the Hecke operators

• let P (X, Y ) =
∑n−4

2
i=1 aiX

n−2−2iY 2i denote the modified
period polynomial of g.

• let M denote the associated modular element
[ n−4

4 ]∑

i=1

ai{f2i+1, fn−2i−1}

• let Q(X, Y ) denote the associated truncated polynomial

• let Gn(z) denote the Eisenstein series of weight n.

Then the following are equivalent:

(1) g(z) ≡ Gn(z) mod p.

(2) there exists a choice of depth 1 elements fj ∈ ds for odd
j ≥ 3 such that M ≡ 0 moduli p.

(3) there exists a choice of depth 1 elements fj ∈ ds for odd
j ≥ 3 such that the truncated polynomial Q(X, Y ) associated
to M satisfies

Q(X,Y ) = k P (X, Y )

with k ≡ 0 mod p.
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