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Introduction to multiple zeta values

For each sequence (k1, . . . , kr) of strictly positive integers,
k1 ≥ 2, the multiple zeta value is defined by the convergent
series

ζ(k1, . . . , kr) =
∑

n1>···>nr>0

1
nk1

1 · · ·nkr
r

.

These real numbers have been studied since Euler (1775).

We will see that they form a Q-algebra, the multizeta al-
gebra Z.
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Two multiplications of multizeta values

1. Shuffle multiplication

Straightforward integration yields

ζ(k1, . . . , kr) = (−1)r

∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

dtn
tn − εn

· · · dt2
t2 − ε2

dt1
t1 − ε1

where

(ε1, . . . , εn) = (0, . . . , 0︸ ︷︷ ︸
k1−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k2−1

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
kr−1

, 1).

The product of two simplices is a union of simplices, giving
an expression for the product of two multizeta values as a sum
of multizeta values. This is the shuffle product.
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Example. We have

ζ(2) =
∫ 1

0

∫ t1

0

dt2
1− t2

dt1
t1

ζ(2, 2) =
∫ 1

0

∫ t1

0

∫ t2

0

∫ t3

0

dt4
1− t4

dt3
t3

dt2
1− t2

dt1
t1

ζ(3, 1) =
∫ 1

0

∫ t1

0

∫ t2

0

∫ t3

0

dt4
1− t4

dt3
1− t3

dt2
t2

dt1
t1

and
ζ(2)2 = 2 ζ(2, 2) + 4 ζ(3, 1).

Indeed we have

ζ(2)2 =
∫ 1

0

∫ t1

0

dt2
1− t2

dt1
t1

·
∫ 1

0

∫ t3

0

dt4
1− t4

dt3
t3

=
∫

0<t2<t1<1,0<t4<t3<1

dt2
1− t2

dt1
t1

dt4
1− t4

dt3
t3

and the integration region can be broken up into six simplices:
{ 0 < t4 < t3 < t2 < t1 < 1, 0 < t4 < t2 < t3 < t1 < 1,

0 < t4 < t2 < t1 < t3 < 1, 0 < t2 < t4 < t3 < t1 < 1,
0 < t2 < t4 < t1 < t3 < 1, 0 < t2 < t1 < t4 < t3 < 1.

Bringing them all back to 0 < t4 < t3 < t2 < t1 < 1 by variable
change gives the result.
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The x, y notation for shuffle

Definitions.

• For two words u, v ∈ Q〈x, y〉, the shuffle product sh(u, v)
is the set or formal sum of permutations of the letters of u and
v where the letters of each word remain ordered.

Example. sh(y, xy) = yxy + 2xyy.

• A convergent word w ∈ Q〈x, y〉 is a word w = xvy.

The reason for this notation is that it gives a bijection

{tuples with k1 ≥ 2} ↔ {convergent words}

given by
(k1, . . . , kr) ↔ xk1−1y · · ·xkr−1y.

As a notation, we use this to write

ζ(k1, . . . , kr) = ζ(xk1−1y · · ·xkr−1y).

The usefulness is that the shuffle relation on ζ-values is simply:

ζ(u)ζ(v) = ζ
(
sh(u, v)

)
.
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2. Stuffle multiplication

The product of two series over ordered indices can be ex-
pressed as a sum of series over ordered indices. This is the
stuffle product of multizeta values.

Example. We have

ζ(2)2 =
(∑

n>0

1
n2

)(∑
m>0

1
m2

)

=
∑

n>m>0

1
n2m2

+
∑

m>n>0

1
n2m2

+
∑

n=m>0

1
n4

= 2ζ(2, 2) + ζ(4).

Each of these two multiplication laws shows that
the Q-vector space Z has a Q-algebra structure.
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The x, y notation for stuffle

We write

st
(
(k1, . . . , kr), (l1, . . . , ls)

)

for the formal sum of sequences that come from this way of cal-
culating the product of ζ(k1, . . . , kr)ζ(l1, . . . , ls). For example

st
(
(2), (2)

)
= (2, 2) + (2, 2) + (4).

A recursive formula for the stuffle is given by

st
(
1, (r1, . . . , ri)) = st

(
(r1, . . . , rj), 1

)
= 1,

st
(
(r1, . . . , ri), (s1, . . . , sj)

)
=

(
r1, st

(
(r2, . . . , ri), (s1, . . . , sj)

))
+(

s1, st
(
(r1, . . . , ri), (s2, . . . , sj)

))
+

(
r1+s1, st

(
(r2, . . . , ri), (s2, . . . , sj)

))
.

We can also express the sequences as convergent words,
and write the stuffle product as u∗v, for example st((2), (2)) =
(2, 2) + (2, 2) + (4) becomes

xy ∗ xy = xyxy + xyxy + xxxy = 2xyxy + x3y.

Finally, writing yi = xi−1y, we note that all convergent words
in x, y can be written yi1 · · · yir , and the stuffle can be written

st
(
yi1 , . . . , yir ), (yj1 , . . . , yjs)

)
=

yi1 · st
(
yi2 , . . . , yir ), (yj1 , . . . , yjs)

)

+yj1 · st
(
yi1 , . . . , yir ), (yj2 , . . . , yjs)

)

+yi+1+j1 · st
(
yi2 , . . . , yir ), (yj2 , . . . , yjs)

)
.
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Formal multizeta values

For every convergent word w ∈ xQ〈x, y〉y, let Z(w) denote
a formal symbol associated to w.

The formal multizeta value Q-algebra FZ is generated by
the symbols Z(w) subject to the relations:

Z(u)Z(v) = Z
(
sh(u, v)

)

Z(u)Z(v) = Z
(
st(u, v)

)

Z
(
st(y, w)− sh(y, w)

)
= 0.

Notice that in the last relation, the term yw disappears, so it
is a sum of convergent multizetas.

For a (formal) multizeta value Z(k1, . . . , kr):

weight n = k1 + · · ·+ kr, depth = r.

The algebra FZ = ⊕nFZn is weight-graded (NOT KNOWN
for Z).





FZ0 = Q
FZ1 = {0},
FZ2 = 〈Z(2)〉
FZ3 = 〈Z(3)〉
FZ4 = 〈Z(4)〉
FZ5 = 〈Z(5), Z(2)Z(3)〉
FZ6 = 〈Z(2)3, Z(3)2〉
FZ7 = 〈Z(7), Z(2)Z(5), Z(2)2Z(3)〉
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The double shuffle Lie algebra

It is useful to quotient by products in order to seek ring
generators of FZ.

Let I be the ideal of FZ generated by

FZ0, FZ2, and all products FZ2
>0.

The vector space of new formal multizeta values (ring
generators) is the quotient

nfz = FZ/I.

10



Duality

We have the following duality diagram (Z(w) denotes the
symbolic dual of a word w ∈ Q〈x, y〉):

Q〈Z(w)〉
double shuffle

²²²²

duality // Q〈x, y〉

FZ
mod products

²²²²

duality // Uds
?Â

OO

nfz
duality// nfz∗ = ds

?Â
Lie inclusion

OO

The enveloping algebra Uds is the dual of FZ.

Goncharov defined an explicit coproduct on Q(Z(w)). He
did not show that it passes to FZ or to a cobracket on nfz,
but this result follows from a remarkable theorem due to G.
Racinet: the vector space dual ds of nfz is a Lie algebra.
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Double shuffle Lie algebra ds

For every f ∈ Lie[x, y], define a derivation Df of Lie[x, y]
by Df (x) = 0, Df (y) = [y, f ]. Define the Poisson Lie bracket
on Lie[x, y] by

[Df , Dg] = D{f,g}, so {f, g} = [f, g] + Df (g)−Dg(f).

The double shuffle Lie algebra ds can be defined as above
by duality, or defined directly:

ds = {f ∈ Lie[x, y] | πy(f) + fcorr primitive for ∆∗}

where

fcorr =
∑

n≥1

(−1)n−1

n
(f |xn−1y)yn

1

and ∆∗ is the coproduct defined on Q〈yi〉 by

∆∗(yi) =
∑

k+l=i

yk ⊗ yl.

Theorem 6. (Racinet) The vector space ds is weight-graded
and it is a Lie algebra under the Poisson bracket. Thus nfz is
a Lie coalgebra, and it can be seen explicitly that Goncharov’s
cobracket is dual to the Poisson bracket.
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Why study the double shuffle Lie algebra?

The Lie algebra ds contains all the structural infor-
mation for FZ, and it is easier to study explicitly, because it
is a Lie algebra of polynomials.

It is known (by using the Drinfeld associator) that for each
odd weight n ≥ 3, there exists an element of depth 1 in
dsn. The dimensions of ds3, ds5, ds7, ds9 are equal to 1.

f3 = [x, [x, y]] + [[x, y], y]

f5 = [x, [x, [x, [x, y]] + 2[x, [x, [[x, y], y]]]− 3
2
[[x, [x, y]], [x, y]]

+ 2[x, [[[x, y], y], y]] +
1
2
[[x, y], [[x, y], y]]

+ [[[[x, y], y], y], y]

Depth 1 elements for ds11, ds13 etc. can easily be calcu-
lated, but it is still hard to see how to make a “really good
choice”. One obvious canonical-looking candidate is to let fn

be the element corresponding to ζ(n) ∈ nfz under the isomor-
phism inherited from Q〈x, y〉 ' Q[Z(w)] mapping a word w
to its dual symbol Z(w). But this choice does not have any
particularly wonderful number-theoretic properties.
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Double shuffle Lie algebra ds

!!Major object of study in formal multizeta theory!!

Are there canonical depth 1 elements in each odd weight??

Do they generate??

Are they free ??

Some motivations for believing that the answers to these
questions are all yes are given in the next sections.

Fundamental structure conjecture on multizeta values.
Double shuffle relations generate ALL algebraic relations be-
tween multizeta values.

Main Conjecture. We have an isomorphism grt ' ds given
by f(x, y) 7→ f(x,−y).
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Motivations for the conjecture

The inspiration is the Drinfeld associator

φ(x, y) = 1 +
∑

w∈Q〈x,y〉
ζ(w)w.

Theorem 7. (Drinfeld) Let φ̄ denote the power series φ(x, y)
with coefficients reduced from Z to nz. Then

• φ̄(x,−y) satisfies the double shuffle relations;

• φ̄(x, y) satisfies the defining pentagon relation of grt.

So real (reduced) ζ values satisfy the pentagon relation: it
is natural to ask whether formal zeta values also do.

Calculations gave evidence for the conjecture by showing
up to weight 19:

grtn ' dsn

f(x, y) 7→ f(x,−y)
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About four years ago, a breakthrough:

Theorem 8 (Furusho, 2008) The map f(x, y) 7→ f(x,−y) gives
an injection

grt ↪→ ds

Example of relations between double zeta values

Gangl-Kaneko-Zagier proved that there are dim Sk

(
SL2(Z)

)
independent linear relations between formal double zetas for
every even weight n ≥ 12. By definition, these relations do
come from double shuffle.

For example:

28 ζ(9, 3) + 150 ζ(7, 5) + 168 ζ(5, 7) =
5197
691

ζ(12)

in weight 12.

But do these relations come from grt? It turns out that
they do. In fact, they are related to the period-polynomial
relations in grt, which via grt ↪→ ds are also valid in ds. We
have:

Theorem 9. Under the duality-isomorphism of Uds with FZ,
the period-polynomial relations in grt give rise to period-polynomial
relations in ds that are exactly dual to the GKZ relations be-
tween formal multiple zeta values.
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Proof of Furusho’s injection grt ↪→ ds

Furusho actually works with unipotent groups. His proof
uses double polylogarithms and a relation they satisfy similar
to stuffle. The proof we give is a simplified version that works
directly in the Lie situation.

Main objects: (1) Bar construction: Let V0,5 denote the
dual of the braid Lie algebra Lie P5. The duals of the generators
xij are the five 1-forms

ω12 =
dx

x
, ω23 =

dx

1− x
, ω34 =

dy

1− y
, ω45 =

dy

y
, ω24 =

xdy + ydx

1− xy
.

The space V0,5 is called the “bar-construction”, and its ele-
ments are sums of words in the ωij , called “bar-symbols” and
denoted [ωi1,j1 | · · · |ωin,jn ]. They are the elements that annihi-
late the kernel FreeLie[x12, x23, x34, x45, x24] →→ Lie P5.

A defining property for elements of V0,5 inside the alge-
bra of all bar-words is that if I is an index set of pairs in
{(12), (23), (34), (45), (24)} and v =

∑
I ai[ωi1 | · · · |ωir ], then v

lies in V0,5 if and only if

v =
∑

I

ai[ωi1 | · · · |ωij ∧ ωij+1 |ωir ] = 0 (P )

for j = 1, . . . , r − 1.
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Examples. In weight 1, there is no kernel, so all the ωij

lie in V0,5. In weight 2, we have [x12, x45] = 0 in Lie P5, so
the element [ω12|ω45] + [ω45|ω12] lies in V0,5. In weight 3, an
example is given by [ω24|ω12|ω24] + [ω24|ω45|ω24]. Indeed for
j = 1 and j = 2 we need (P) to hold, i.e.

{
[ω24 ∧ ω12 + ω24 ∧ ω45|ω24] = 0
[ω24|ω12 ∧ ω24 + ω45 ∧ ω24] = 0,

which both hold since

ω24 ∧ ω12 + ω24 ∧ ω45 =
xdy + ydx

1− xy
∧ dx

x
+

xdy + ydx

1− xy
∧ dy

y

=
xdy

1− xy
∧ dx

x
− ydx

1− xy
∧ dy

y

=
dx dy

1− xy
− dx dy

1− xy

= 0.
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(2) Chen iterated integrals: The iterated integral of a word
along a path γ : (0, 1) → M0,5 is defined by

∫

0<t1<···<tn<1

ωi1,j1

(
γ(t1)

) · · ·ωin,jn

(
γ(t1)

)
.

The elements of V0,5 are characterized in the vector space spanned
by all words as being precisely those linear combinations having
the property that an iterated integral over one these elements
is independent of the homotopy class of the integration path γ.

(3) Generalized stuffle: Let Sh≤(r, s) be the set of surjective
maps σ : {1, . . . , r + s} → {1, . . . , N} such that σ(1) < · · · <
σ(r) and σ(r + 1) < · · · < σ(r + s). For each σ ∈ Sh≤(r, s), let

cσ(a,b) = (c1, . . . , cN )

be defined by

ci =





ak + bl−r if σ−1(i) = {k, l} with k ≤ r < l
ak if σ−1(i) = {k} with k ≤ r
bk−r if σ−1(i) = {k} with k > r,

let
σ(a,b) =

(
(c1, . . . , cj), (cj+1, . . . , cN )

)

where j = min(σ(r), σ(r + s)), and finally, let

σ(X, Y ) =





(X,Y ) if σ−1(N) = r + s
(Y, X) if σ−1(N) = r
XY if σ−1(N) = {r, r + s}.

Note that the cσ(a,b) are nothing but the stuffle of a and
b, and the σ(a,b) are the same sequences, but cut into two
subsequences.
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(4) Consider the single-polylogarithm functions

Lia(X) =
∑

0<m1<···<mk

Xmk

ma1
1 · · ·mak

k

.

They can be obtained as iterated integrals over bar symbols in
V0,5 in just the two 1-forms ω12, ω23.

Example. We have

Li(2)(X) =
∑
m>0

Xm

m2

=
∫

0<t1<t2<X

[ω12|ω23]

=
∫

0<t1<t2<X

[ω12|ω23]

=
∫ X

0

∫ t2

0

dt2
t2

dt1
1− t1

=
∑

i≥0

1
(i + 1)

∫ X

0

dt2
t2

ti+1
2

=
∑

i≥0

1
(i + 1)

∫ X

0

ti2 dt2

=
∑

i≥0

1
(i + 1)2

Xi+1

=
∑
m>0

Xm

m2
.
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Similarly, consider the double polylogarithms

Lia,b(X,Y ) =
∑

0<m1<...<mk
<n1<...<nl

XmkY nl

ma1
1 · · ·mak

k nb1
1 · · ·nbl

l

.

As for the simple polylogs, these can be obtained as iterated
integrals on M0,5 of elements of V0,5, denoted by lX,Y

a,b , along a
path γ : (0, 1) → M0,5 from (0, 0) to (X, Y ).

Example. lX,Y
(2,1) = [ω24|ω12|ω24] + [ω24|ω45|ω24].

Both the double polygarithms and the corresponding bar-
symbols satisfy a “lifted” version of the stuffle product:

∑

σ∈Sh≤(r,s)

Liσ(a,b(σ(X, Y )) = Lia(X)Lib(Y )

and ∑

σ∈Sh≤(r,s)

l
σ(X,Y )
σ(a,b) = lXa lYb .

Remark. The generalized stuffle relations for polylogs are
not mysterious. Polylogs are just generalizations of multiple
zeta values, integrating over paths ending at arbitrary points.
The multiple zeta values satisfy stuffle because of the way one
multiplies their series expression, and the generalized stuffle for
polylogs comes up exactly the same way.
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Now we can prove Furusho’s theorem. Let iijk : Lie[x, y] →
Lie P5 be defined by iijk(x) = xij , iijk(y) = xjk. Let pj :
Lie P5 → Lie[x, y] be defined by pj(xij) = 0 for all i. (In par-
ticular p3(x45) = p3(x12) = x, p3(x51) = y.) Then a long but
straightforward lemma shows that





lXY
a = la ◦ p3 for all (a,b)
lX,Y
a,b ◦ i123 = 0 for all (a,b)
lY,X
a,b ◦ i543 = 0 for all (a,b)
lX,Y
a,b ◦ i451 = lab for all (a,b)
lY,X
a,b ◦ i215 = lab for all (a,b)
lY,X
a,b ◦ i432 = 0 for all (a,b) 6= (

(1, . . . , 1), (1 . . . , 1)
)

Now, take two sequences a, b not both made of 1’s. As-
sume f ∈ Lie[x, y] satisfies the pentagon. Then we have

lXY
a

(
f(x45, x51)+f(x12, x23)

)
= la◦p3

(
f(x45, x51)+f(x12, x23)

)
=

la ◦ p3

(
f(x45, x51))

)
= la(f),

and
lX,Y
a,b

(
f(x45, x51) + f(x12, x23)

)
=

lX,Y
a,b ◦ i451(f) + lX,Y

a,b ◦ i123(f) = lab(f),

and finally

lY,X
a,b

(
f(x45, x51) + f(x12, x23)

)
=

lY,X
a,b

(
f(x43, x32) + f(x21, x15) + f(x54, x43)

)

= lY,X
a,b ◦ i432(f) + lY,X

a,b ◦ i215(f) + lY,X
a,b ◦ i543(f)

= lY,X
a,b ◦ i215(f) = lab(f).
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Now using the stuffle-type relation for the symbols, we find
that

0 =
∑

σ∈Sh≤(r,s)

l
σ(X,Y )
σ(a,b)

(
f(x45, x51) + f(x12, x23)

)

=
∑

σ∈Sh≤(r,s)

lcσ(a,b)(f)

=
∑

c∈st(a,b)

lc(f).

This shows that f satisfies stuffle when the sequences are not all
1’s. A final proposition shows that such an f can be uniquely
modified by the addition of a single term in yn to satisfy the
whole stuffle. QED

Note: Converse still open!
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