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Roles and avatars of ĜT

The relation structure of the different objects we’re con-

sidering in these lectures can be schematized as follows:
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§3A.1. Braided tensor categories

Definition. Let C be a category and f a morphism of C. A

tensor product on C is a functor ⊗ : C × C → C.

Definition. An associativity constraint on a category with

tensor product is a set of isomorphisms

aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

for every triple of objects (U, V, W ), such that for every triple

(f, g, h) of morphisms of C with

{
f : U → U ′

g : V → V ′

h : W → W ′
,

the following diagram commutes

(U ⊗ V )⊗W
aU,V,W //

(f⊗g)⊗h

²²

U ⊗ (V ⊗W )

f⊗(g⊗h)

²²
(U ′ ⊗ V ′)⊗W ′aU′,V ′,W ′

// U ′ ⊗ (V ′ ⊗W ′).
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An associativity constraint satisfies the pentagon axiom if

for every quadruple of objects (U, V, W,X) of C, the following

diagram commutes:

((U ⊗ V )⊗W )⊗X

aU⊗V,W,X

²²

aU,V,W⊗idX

**TTTTTTTTTTTTTTTT

(U ⊗ V )⊗ (W ⊗X)

aU,V,W⊗X

²²

(U ⊗ (V ⊗W ))⊗X

aU,V⊗W,X

²²
U ⊗ (V ⊗ (W ⊗X)) U ⊗ ((V ⊗W )⊗X).

idU⊗aV,W,X

oo

Definition. A monoidal tensor category is a category C with

a tensor product with an associativity constraint satisfying the

pentagon axiom*.

* Fairly large part of the definition left out, with further

axioms.
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Definition. A Let C be a tensor category. A commutativity

constraint on C is a collection of isomorphisms cU,V : U ⊗ V →
V ⊗U for every pair (U, V ) of objects of C, such that for every

pair of morphisms (f, g) of C with

{
f : V → V ′

g : W → W ′

the following diagram commutes

V ⊗W
cV,W //

f⊗g

²²

W ⊗ V

g⊗f

²²
V ′ ⊗W ′ cV ′,W ′

// W ′ ⊗ V ′.
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The commutativity constraint is said to satisfy the two

hexagon axioms if the two following diagrams commute for ev-

ery triple (U, V, W ) of objects of C:

(U ⊗ V )⊗W
aU,V,W //

cU,V ⊗id

²²

U ⊗ (V ⊗W )
cU,V⊗W// (V ⊗W )⊗ U

aV,W,U

²²
(V ⊗ U)⊗W

aV,U,W // V ⊗ (U ⊗W )
id⊗cU,W// V ⊗ (W ⊗ U)

and

(U ⊗ V )⊗W
cU⊗V,W// W ⊗ (U ⊗ V )

a−1
W,U,V // (W ⊗ U)⊗ V

U ⊗ (V ⊗W )
idU⊗cV,W//

a−1
U,V,W

OO

U ⊗ (W ⊗ V )
a−1

U,W,V // (U ⊗W )⊗ V.

cU,W⊗idV

OO
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Definition. A braided tensor category is a category with

• a tensor product

• an associativity constraint

• a commutativity constraint,

satisfying the pentagon and hexagon axioms.
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§3A.2. The braided tensor category of trivalent trees

In this section we construct an actual example of a com-

binatorial braided tensor category C. It is a groupoid, i.e. all

morphisms are isomorphisms.

* The set of objects of C is the set of trivalent trees equipped

with:

(i) a cyclic order on the edges coming out of each vertex;

(ii) a numbering on the tails of the following type: one

tail is distinguished and numbered 0, and every other tail is

indexed with a strictly positive integer.

The n-tailed trees are called (n− 1)-objects of C. The tail

numbered 0 is the distinguished edge, and its trivalent vertex

is distinguished too. Note that this definition automatically

equips trees with a cyclic order on the indices of tails.
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Let a branch denote the part of a tree determined by a

given vertex and a given edge coming out of it.
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* The tensor product of two trees T and T ′ is given by gluing

together their 0 tails, adding a new 0 tail, and equipping the

new trivalent vertex with the cyclic order 0, T , T ′. The tensor

product of an n-object with an m-object is an (n + m)-object.
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Remark. Every n-object of C for n ≥ 1 decomposes uniquely

into a tensor product of n not necessarily distinct 1-objects.
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* There are three types of elementary morphisms in C; all mor-

phisms are obtained by taking compositions and tensor prod-

ucts of these.

Identity morphisms. Every object A of C has an identity

morphism idA.

Commutativity morphisms. A tree T is changed to another

tree T ′ by flatly exchanging the two branches coming out of

the distinguished vertex.

A

A

B

0 0
c(A,B)

T T’

B
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Associativity morphisms. If T has at least three vertices, then

let C ′ and C denote the two branches coming out of the dis-

tinguished vertex, so that T = C ′ ⊗C. The associativity mor-

phism is only defined on T if C ′ has more than one edge, so

that C ′ = A⊗B. Then T = (A⊗B)⊗C, and the associativity

morphism changes it to T ′ = A⊗ (B ⊗ C).

A

CB

A

C
B

0
0

T T’
a(A,B,C)

* Relations in C. The pentagon and hexagon axioms. If two

sequences of a and c morphisms go from T to T ′, they are

identified in Hom(T, T ′) if and only if one can be obtained

from the other by a finite number of substitutions from the

pentagon and hexagon diagrams.
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Proposition. If T and T ′ are two objects of C having the

same indices on the tails in the same cyclic order, then there

exists a unique morphism in C built only of identity and asso-

ciativity morphisms, taking T to T ′. (You can do it in many

ways, but the pentagon assures that they are all equivalent as

morphisms.)

Proof by picture:
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The way to visualize the morphisms of C is by visualizing

objects of C as having a strand hanging from each tail except

0: then

• commutativity morphisms correspond to crossing two packets

of strands whenever the two packets of strands correspond to

branches meeting at a vertex;

• associativity morphisms don’t braid any strands but change

the internal form of the tree. By the Proposition, this en-

ables one to get any two adjacent packets of tails into adjacent

branches, for instance in order to apply the next commutativity

morphism.

U

V

W

W

U

V
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Proposition. Let T be an n-object of C with distinct indices.

Then

Hom(T, T ) ' Kn

where Kn is the pure Artin braid group on n strands.

Proof. The way of visualizing morphisms in the tree category

is the main point of the proof. The hexagon and pengagon

axioms are the following braid identities:
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The usual braid identities (σiσi+1σi = σi+1σiσi+1 and commu-

tation) are more complicated diagrams of a’s and c’s but can

be deduced from the hexagons and pentagon. QED
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Automorphisms of braided tensor categories

Definition. Let an automorphism of a pure braided tensor

category C (like the tree category) be a morphism F : C → C
which fixes objects of C and respects the tensor product. Such

a morphism modifies only the commutativity and associativity

constraints.

Drinfel’d determined the description of such morphisms F .

He found that the commutativity and associativity morphisms

must be modified as follows.

For objects U , V and W of Ĉ, set





T = (U ⊗ V )⊗W
T1 = (V ⊗ U)⊗W
T2 = U ⊗ (V ⊗W )
T3 = U ⊗ (W ⊗ V )
xT

UV = cT1(V, U)cT (U, V )
xT

V W = a(U, V, W )−1cT3(W,V )cT2(V,W )a(U, V, W ).

Then F must act via a pair (m, f) ∈ Z× F2, by

F
(
cT (U, V )

)
= cT (U, V )(xT

UV )m = (xT1
V U )mcT (U, V )

F
(
a(U, V, W )

)
= a(U, V,W )f(xT

UV , xT
V W ).
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In order to respect the two hexagons, the pair (m, f) must

satisfy

(I) f(y, x)f(x, y) = 1 in F2;

(II) f(z, x)zmf(y, z)ymf(x, y)xm = 1 in F2, where z = (xy)−1.

In order to satisfy the pentagon, it must satisfy

(III) f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1

in the braid group B4, where x45 = x12x13x23 and x51 =

x23x24x34 (actually Drinfel’d’s expression was uglier, this sym-

metric expression is due to Ihara).

Definition. The discrete Grothendieck-Teichmüller group GT

is the set of pairs (λ, f) ∈ Z × F2 such that setting m = (λ −
1)/2, the pairs (m, f) satisfy (I), (II) and (III).

Disgruntling Lemma. GT =
{
(1, 1), (−1, 1)

}
.

Corollary. At any rate, GT is a group.
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Drinfeld defined a quasi-triangular quasi-Hopf algebra over

a field k with axioms ensuring essentially that the category of

representations of a qtqH algebra is precisely a braided tensor

category.

Drinfel’d then considered the case where the qtqH alge-

bra is a quantized universal enveloping algebra over the ring

k[[h]] for a characteristic 0 field k: this is a topological quasi-

triangular quasi-Hopf algebra (A, ∆, ε, Φ, R) over k[[h]] such

that A/hA is a universal enveloping algebra and A (as a topo-

logical k[[h]]-module) is isomorphic to V [[h]] where V is some

vector space over k.

The group of modifications of the braided tensor category

in this situation is more than a discrete group; it is a k-pro-

unipotent group that he denoted by GT (k) and which is much

bigger than {(1, 1), (1,−1)}. There is a Lie algebra associated

to the k-pro-unipotent group which is equal to grt when k = Q.

However, here we want to go directly to a profinite version

of ĜT .
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§3A.3. The Teichmüller groupoid and tangential base

points

A groupoid is a category all of whose morphisms are iso-

morphisms. In particulier, for any object P of a groupoid,

Hom(P, P ) is a group.

If P̃ is a simply connected region of X containing a point

P0, we write π1(X; P̃ ) for the group of homotopy classes of

paths whose endpoints lie in P̃ . This group is canonically iso-

morphic to π1(X; P0), so from now on, we consider a “base

point” to be a simply connected region, and a set of base points

will be a set of disjoint simply connected regions.

Definition. The fundamental groupoid π1(X; A) of X based

at a set A of base points is the set of homotopy classes of paths

on X whose endpoints lie in A.

Because the space X is connected, all the groups Hom(P, P ) =

π1(X; P ) for P ∈ A are isomorphic.
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From now on, let X = M0,n, the moduli space of Riemann

spheres with n distinct ordered marked points. Recall that

M0,n ' (P1 − {0, 1,∞})n−3 −∆.

Recall also that we have an isomorphism

π1(M0,n; x0) ' Γ0,n = Diff+(Σ)/Diff0(Σ),

where Σ is a topological surface of type (g, n), and the right-

hand group is the pure mapping class group (not permuting

the marked points of Σ).

As we saw, this group is generated by the diffeomorphisms

known as Dehn twists along simple closed loops.
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2πi
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• A pants decomposition of a topological sphere with n ordered

punctures is a choice of n−3 disjoint simple closed loops cutting

it into n−3 three-holed spheres, modulo the action of the pure

mapping class group.

• A Riemann sphere with n marked ordered points is said to

be almost degenerate if there exists a pants decomposition on

it some of whose geodesic circles have length smaller than some

small ε; if they all are, it is almost maximally degenerate. The

set of almost degenerate spheres forms the neighborhood of in-

finity in M0,n; the set of almost maximally degenerate spheres

forms the neighborhood of the points of maximal degeneration.

• A point of maximal degeneration is a Riemann sphere with

n points, equipped with a pants decomposition the length of

all of whose circles is zero; it corresponds to a point in the

stable compactification of M0,n. Such a point is determined

by a pants decomposition, and a pants decomposition is also

determined by an n-tailed numbered tree.
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Proposition. The neighborhood in M0,n of a given point of

maximal degeneration is homeomorphic to Dn−3
∗ . The real part

of this neighborhood (corresponding to spheres with n points de-

fined over R) falls naturally into 2n−3 simply connected regions.

Definition. For n ≥ 4, let Bn denote the union of these 2n−3

regions in M0,n over each of the points of maximal degener-

ation in M0,n. We call Bn the set of tangential base points.

Let Cn denote the full subcategory of C whose objects are the

n-tailed trees numbered 0, 1 . . . , n−1 (equipped with the cyclic

order on the vertices).
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Proposition. The set Bn is in bijection with the objects of Cn.

Proof. As in the diagram above, the non-planar n-tailed trees

indexed from 0 to n− 1 (or from 1 to n) are in bijection with

the points of maximal degeneration of M0,n. The objects of Cn

are these trees equipped with all possible choices of cyclic order

on the indices of the tails, which is equivalent to equipping

them with planar embeddings. A trivalent n-tailed tree has

n − 3 inner edges, each of which can be “flipped” to give all

the planar embeddings, so there are 2n−3 trees in Cn for each

non-planar tree. Thus there is a bijection with Bn.

It can be given a more precise geometric meaning by plac-

ing the tree inside a circle representing the real equator of P1.

Place the 0 tail on the edge at ∞ and the attached trivalent

vertex at the center of the circle; the two remaining branches

extend towards 0 and 1 with branchings corresponding to de-

creasing orders of magnitude (FIGURE NEEDED HERE).

26



Example: The 8-tailed tree in the figure
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corresponds to a near-degenerate tangential base point de-

scribed by small real values of ε in the sphere with marked

points:

(∞,−ε− ε2,−ε+ ε2, ε, 1− ε− ε2, 1− ε+ ε2, 1+ ε− ε2, 1+ ε+ ε2).
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§3A.4. The tree category and the Teichmüller groupoid

Definition. The Teichmüller groupoid of M0,n is the funda-

mental groupoid based at the set Bn of tangential base points,

i.e. π1(M0,n;Bn).

Main Structure Theorem. For n ≥ 4, there is a surjection

Cn
∼→ π1(M0,n;Bn).

Proof. We describe the images of the objects and morphisms

of Cn.

• The objects of Cn correspond to topological tangential base

points in Bn as described above.

• Take an associativity morphism a of Cn; it sends a tree T to

another tree T ′ with the same cyclic order of the numbering.

Consider the region in M0,n of all spheres with n real marked

points in the order corresponding to the order of the indices

of T . This region is simply connected and therefore there is a

unique path (up to homotopy) on M0,n from the base point
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corresponding to T to that corresponding to T ′, which is the

path in π1(M0,n;Bn) we associate to a. It corresponds to slid-

ing points along the real axis without ever having them cross

each other.

• Take a commutativity morphism in Cn. Remember it looks

like a crossing of two packets on a numbered trivalent tree,

which is associated to a certain almost maximally degenerate

sphere.

U

V

W

W

U

V
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Draw that almost degenerate sphere with simple closed

loops cutting off the branches U , V and W .

W

U

V

Make a half-twist along the right-hand geodesic and two

inverse half-twists along the other two.

This induces a continuous deformation of the analytic struc-

ture, and therefore draws a path on moduli space ending up at

the right new maximally degenerate sphere.

Finally, if T 7→ b ∈ Bn, then the map

Hom(T, T ) ' Kn → Γ0,n ' π(M0,n; b)

completes the proof of the surjective homomorphism.
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§3A.5. The profinite version ĜT of GT , and arithmetic

Recall the main theorem:

Theorem. There is an injective homomorphism

Gal(Q/Q) ↪→ ĜT .

We saw some sketches of proofs, but here is one that welds

Drinfeld’s original conception with the geometry of the mod-

uli spaces. Let Ĉ denote the profinite completion of the tree

category (obtained by replacing all local groups of C by their

profinite completions).

• ĜT acts on the profinite tree category Ĉ, preserving each

of the subgroupoids Ĉn and acting on their local groups, which

are the profinite Artin braid groups B̂n, in an inertia-preserving

way.

• The absolute Galois group Gal(Q/Q) acts on the profinite

Teichmüller groupoid π̂1(M0,n;Bn), and its action on the local
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groups is of course inertia-preserving since they are fundamen-

tal groups.

• The two actions are compatible with the map

Cn → π̂1(M0,n;Bn).

In fact, an element σ ∈ GQ acting on the right-hand space can

be lifted via the map to the left-hand space and thus corre-

sponds to the action of a unique (λ, f) ∈ ĜT .

Essentially, where Drinfeld considered the discrete GT as

modifications of a braided tensor category and the k-pro-unipotent

version as a generalization, classifying modifications of a quasi-

triangular quasi-Hopf algebra, the profinite ĜT classifies mod-

ifications of the profinite braided tensor category given geomet-

rically by the fundamental groupoid of M0,n (n ≥ 5) based at

tangential base points.
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