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Grothendieck in his Esquisse made some suggestions about
how to study the absolute Galois group geometrically:

• we should try to characterize GQ as a group of automor-
phisms of algebraic fundamental groups of moduli spaces re-
specting certain Galois-like group-theoretic properties such as
preserving inertia, and also respecting morphisms between the
moduli spaces,

• we should explain the action ofGQ (or Grothendieck-Teichmüller-
type groups) on these fundamental groups as a sort of “lego”
game corresponding to the fact that topological surfaces can
be cut into smaller pieces.

• we should understand the 2-level principle, which refers to the
fact that the automorphism groups of the fundamental groups
of moduli spaces of dimension ≤ 2 should also act on all the
fundamental groups of the higher dimensional moduli spaces
(as we saw for ĜT in the genus zero situation).

All of these suggestions came to fruition when we tried to
pass to higher genus curves.

We could not prove that ĜT acts on the algebraic funda-
mental groups of moduli spaces of higher genus curves. But
we were able to add just one relation, coming from the 2-
dimensional moduli space M1,2 to obtain a subgroup of ĜT
that does.
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§3B.1. Higher genus moduli spaces, mapping class
groups and morphisms between them

The morphisms between moduli spaces that Grothendieck
mentioned are those coming from topological operations on the
curves themselves:

• erasing or adding marked points

• cutting the curves along simple closed loops.

We will first look at the morphisms these operations give
between moduli spaces and between their fundamental groups,
the mapping class groups.

Let Σm
g,n denote a topological surface with genus g ≥ 0,

n ≥ 0 punctures, and m ≥ 0 boundary components.

The associated pure mapping class group Γm
g,n is the group

of classes of orientation-preserving diffeomorphisms of Σm
g,n fix-

ing the boundaries pointwise, modulo those which are isotopic
to the identity fixing the boundaries pointwise. As we saw
in the genus zero case, this are identified with the fundamental
group of the moduli space of Riemann surfaces of type (g, n,m).

Also, as in the genus zero case, the group Γm
g,n is generated

by Dehn twists a along simple closed curves α on Σm
g,n.
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An explicit presentation of the mapping class groups Γm
g,n

is known, the generators being the Dehn twists.
We define the following braid relations:

(C) ab = ba if |α ∩ β| = 0

(B) aba = bab if |α ∩ β| = 1

The doughnut relation, taking place on a subsurface Σ′ of
Σ of type (1, i, j) with i+ j = 1, is given by

(D) (aba)4 = d

where δ is the boundary loop of Σ′ (so it may just surround a
puncture), and α and β are as in the figure below.

d
a

b
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Finally, the lantern relation, taking place on a subsurface
Σ′ of Σ of type (0, i, j) with i+ j = 4, is given by

(L) a1a2a3a4 = b1b2b3

where the αi are loops on Σ bounding Σ′ (we allow αi to be a
loop surrounding a puncture, so that ai = 1) and β1, β2 and
β3 are the loops in the interior of Σ′ shown in the figure below.

b
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Presentation Theorem. A presentation for the pure map-

ping class group Γm
g,n for every g, n,m ≥ 0 is given by taking

all Dehn twists along simple closed loops as generators and

imposing all the relations (C), (B), (D) and (L).
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Erasing marked points

The maps between topological surfaces obtained by erasing
marked points give morphisms between the moduli spaces and
the associated fundamental groups (mapping class groups).

If the n-th point is erased from a Riemann surface with n
ordered marked points, we get a Riemann surface with n−1 or-
dered marked points, giving a morphism from Mg,n to Mg,n−1.
This map is defined over Q and therefore respected by the Ga-
lois action.

For the fundamental groups, we obtain a quotient map
that is easily understood on the Dehn-twist generators: they
become equal if they differ only by the marked point that is
erased.
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Cutting out subsurfaces along simple closed loops

The map between topological surface that we call “subsurface-
inclusion”, corresponding to a subsurface cut out of a larger
surface along disjoint simple closed loops, is harder to under-
stand on the moduli spaces; it involves mapping the smaller
moduli space to the divisor at infinity in the Deligne-Mumford
compactification of the larger one. This map is, however, de-
fined over Q and therefore respected by the Galois action.

However, the corresponding homomorphism of mapping
class groups is very simple; a Dehn twist on the subsurface
maps to the same one on the larger surface.
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§3B.2. Higher genus Grothendieck-Teichmüller group

We start with a more topological formulation of the defi-
nition of ĜT .

Definition. Let ĜT 1 be the set of elements (λ, f) ∈ ĜT with
λ = 1. For simplicity, we only work with this group from now
on.

We can reformulate the usual three relations in ĜT 1 using
Dehn twists on topological surfaces as follows.

(I) f(a2
2, a

2
1)f(a2

1, a
2
2) = 1 in Γ̂1

1, where α1 and α2 are as in
figure 1(a);

(II) f(b3, b1)f(b2, b3)f(b1, b2) = 1 in Γ̂4
0, where β1, β2 and β3

are as in figure 1(b);

(III) f(b3, b4)f(b5, b1)f(b2, b3)f(b4, b5)f(b1, b2) = 1 in Γ̂5
0, where

the βi are as in figure 1(c).
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Figure 1
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Let IΓ be the subset of ĜT 1 consisting of the elements
f ∈ F̂ ′2 satisfying the following additional relation, taking place
in Γ̂2

1, where the loops αi and εi are as in figure 2.

(R) f(e3, a1)f(a2
2, a

2
3)f(e2, e3)f(e1, e2)f(a2

1, a
2
2)f(a3, e1) = 1.

α
1

3

α
2α

3

ε

2
ε

1
ε

Figure 2

Our first main result concerning IΓ is the following:

Theorem 1. IΓ is a group under the multiplication inherited
from ĜT , and we have the inclusions

Gab
Q ⊂ IΓ ⊂ ĜT

1
.

Remark. We use Gab
Q only because we took λ = 1 for sim-

plicity. It is not hard to generalize the new relation (R) to the
general case, and all the results still hold.
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Another result in higher genus shows that not only does
IΓ act on all the profinite higher genus mapping class groups,
but its action on the Dehn-twist generators has a “locality”
property.

In fact, every closed loop on a topological surface has a
topological neighborhood of one of only two possible types: a
genus 0 subsurface with four boundary components or punc-
tures, or else a genus 1 subsurface with one boundary compo-
nent.
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��
��
�� ��

��
��
��

The “locality” property says that the action of IΓ on a
Dehn twist essentially only involves the Dehn twists along loops
supported on the neighborhood.
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If Σ is a surface of type (g, n,m), we say that P be a pants
decomposition of Σ, i.e. a maximal collection of 3g − 3 + n

disjoint simple closed loops; this necessarily cuts the surface
into 2g − 2 + n “pants” (surfaces of type (0,3)).
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The precise statement of the result is as follows.
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Theorem 2. Let Σ be a surface of type (g, n,m) and let P be

a pants decomposition of Σ. Then

(i) There exists a group homomorphism

ψP : IΓ → Aut
(
Γ̂m

g,n

)

such that setting FP = ψP (f), the automorphism FP has the

following “local properties”:





FP (a) = a for all α ∈ P
FP (b) = f(a2, b2)−1bf(a2, b2) if |β ∩ α| = 1 for some α ∈ P

and |β ∩ α′| = 0
for all α′ ∈ P , α′ 6= α

FP (c) = f(a, c)−1cf(a, c) if |γ ∩ α| = 20 for some α ∈ P
and |γ ∩ α′| = 0
for all α′ ∈ P , α′ 6= α.

(ii) The homomorphisms IΓ → Out
(
Γ̂(Σ)

)
induced by the

ψP for different P are all equal and give rise to a canonical

homomorphism

ψm
g,n : IΓ → Out(Γ̂m

g,n) (∗)
for each g, n,m ≥ 0.
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We also obtain the following results showing that the IΓ-
action possesses the main Galois-type properties.

Theorem 3. (i) Considering GQ ⊂ ĜT , the intersection

GQ ∩ IΓ = Gab
Q ,

and the homomorphism (*) restricted to Gab
Q is the canonical

Galois homorphism

Gab
Q → Out∗(Γ̂m

g,n)

coming from the fact that Γ̂m
g,n is the algebraic fundamental

group of a moduli space of curves, which is defined over Q.

(ii) The image of the map

ψm
g,n : IΓ → Out(Γ̂m

g,n)

of theorem 2 actually lands in Out∗(Γ̂m
g,n). Indeed, the IΓ-action

conjugates all Dehn twists, i.e. it is inertia-preserving.

(iii) For every point-erasing or subsurface inclusion map

ι : Γ̂m
g,n → Γ̂m′

g′,n′

and every F = (1, f) ∈ IΓ, the following diagram commutes:

Γ̂m
g,n

ι //

F

²²

Γ̂m′
g′,n′

F

²²
Γ̂m

g,n
ι // Γ̂m′

g′,n′ .
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Remarks. The proof of the theorem actually gives an explicit
“lego”-procedure to calculate the action of IΓ on any Dehn
twist, even for a given pants decomposition. This also gives
the explicit inner automorphism relating ψP and ψQ for two
pants decomposition.

This “lego”-procedure is a generalization to higher genus
of the associativity moves in the braided tensor category and
on the genus zero moduli space that we saw previously.

Finally, the whole theorem can be generalized to non-
trivial λ and all of GQ, only ugly small terms appear in all
the expressions.
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§3B.3. The pants-decomposition complex

Let Σ be a topological surface of type (g, n): boundary
components and marked points or punctures play the same role
in our construction, so we make no difference between them.

The pants-decomposition complex P is a 2-dimensional
complex defined as follows.

• the vertices of P are the pants decompositions of Σ (up to
isotopy);

• there is a path, called an ”S-move”, from P to Q if Q can be
obtained from P by replacing just one simple closed loop α of
P by a simple closed loop β that intersects α in one point;

• there is a path, called an ”A-move”, from P to Q if Q can
be obtained from P by replacing just one simple closed loop α
of P by a simple closed loop β that intersects α in two points
(with algebraic intersection equal to 0).

S - move
A-move

Figure 3

Note that erasing one loop from P leaves a piece of type
(0, 4) or (1, 1) in the pants decomposition. An S-move can
only be made on a loop if it lives on a type (1, 1) piece, and an
A-move only if it lives on a type (0, 4) piece.
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It is not hard to see that compositions of S-moves and A-
moves act transitively on the set of pants decompositions of Σ;
we can get from any pants decomposition to any other by a
string of such moves. So the pants-decomposition complex is
connected.

• the faces of P are of five types: commutativity, the A and S
triangles, the A-pentagons and the mixed hexagons.

(3A) On a piece of type (0, 4) obtained by deleting one loop:
there are loops β1, β2, and β3, shown in figure 4(a), which
yield a cycle of three A-moves: β1 → β2 → β3 → β1.

(3S) On a piece of type (1, 1) obtained by deleting one loop:
there are loops β1, β2, and β2, shown in figure 4(c), which
yield a cycle of three S-moves: β1 → β2 → β3 → β1.

(5A) On a piece of type (0, 5) created by deleting 2 loops: there
is a cycle of five A-moves involving the loops βi shown in
figure 4(b): {β1, β3} → {β1, β4} → {β2, β4} → {β2, β5} →
{β3, β5} → {β3, β1}.

β
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β
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β
2

β
3

β3

β4

β4

β5

β5β1

β
1

β2

β2

β
2

β
1

β
3

(a) (b) (c)
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(6AS) On a piece of type (1, 2) obtained by deleting 2 loops:
there is a cycle of four A-moves and two S-moves shown
in figure 5: {α1, α3} → {α1, ε3} → {α2, ε3} → {α2, ε3} →
{α2, ε2} → {α2, ε1} → {α3, ε1} → {α3, α1}.

A A

AA

S S

α
1

3

α
2

α
2

α
2

α
1

α
3

α
3

ε

3ε

2ε
1

ε

1
ε

Figure 5

(C) If two moves which are either A-moves or S-moves are
supported in disjoint subsurfaces of Σ, then they commute,
and their commutator is a cycle of four moves. We call
them disjoint moves.

Remark. The face that the four basic relations 3A, 3S, 5A
and 6AS live on surfaces of type (0, 4), (1, 1), (0, 5) and (1, 2)
respectively corresponds to Grothendieck’s “2-level principle”:
dimensions 1 and 2 are all that are needed for the theory to
work for all moduli spaces.
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Theorem 4. The pants decomposition complex P is simply

connected.

The proof of this, due to Allen Hatcher, uses Cerf theory
and sophisticated topological methods.

Remark. The theorem has the following meaning. If you
have two pants decompositions P and Q, and two paths, i.e.
sequences of A and S-moves from P to Q, then they are “equal”
in the complex, which means that the second sequence can
be deduced from the first by a finite number of insertions or
deletions of the five types of cycles, together with the trivial
operation of inserting or deleted a move followed by its inverse.

Example. Let Σ be of type (1, 1). Then a pants decomposi-
tion consists of a single circle, only S-moves are possible, and
all the faces are given by (3S) triangles. The different pants
decompositions (i.e. isotopy classes of circles) are indexed by
rational slopes, and P is equal to the Farey tesselation:

0/1

1/1

1/2

1/3

1/4

1/0

2/1

3/2

5/2

5/3

4/3

3/5

3/4

3/1

4/1

2/3

2/5

-1/1
-3/2

-5/2

-5/3

-4/3

-3/1

-4/1

-1/3

-1/4

-2/3

-2/5

-3/5

-3/4

-1/2-2/1

20



§3B.4. The IΓ-action on the Teichmüller tower.

We’re now ready to indicate the proofs of the main theo-
rems in a series of steps. We fix Σ of type (g, n) and a pants
decomposition P on Σ.

Proof of theorem 2. To each F = (1, f) ∈ IΓ, associate a
“candidate” automorphism FP ∈ Out∗(Γ̂g,n) which acts on the
Dehn twists as follows:




FP (a) = a for all α ∈ P

FP (b) = f(a2, b2)−1bf(a2, b2) if α 7→ β is an S-move

FP (c) = f(a, c)−1cf(a, c) if α 7→ γ is an A-move

From this definition of the action of FP on certain Dehn
twists, we can extend the definition of the action of FP on all
Dehn twists as follows. To consider the Dehn twist d along any
loop δ, we choose a pants decomposition Q containing δ and a
finite sequence Mαr,δr ◦ · · · ◦Mβ1,δ1 taking P to Q (so that δ is
one of the loops δi of Q). We then define the action of FP on
d as:

FP (d) = inn
( 1∏

i=r

f(aεi
i , d

εi
i )

)
(d)

= f(aε1
1 , d

ε1
1 )−1 · · · f(aεr

r , d
εr
r )−1 d f(aεr

r , d
εr
r ) · · · f(aε1

1 , d
ε1
1 ),

(∗)
where

εi =
{

1 if Mαi,δi is an A-move
2 if Mαi,δi is an S-move.
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Step 1: Show that this definition of FP (d) is well-defined,
independent of the choice of sequence of moves from P to Q.

The main point is that P is simply connected. Thus, as
we saw, if we take a different sequence of moves from P to Q,
it can be obtained from the first one by substitutions of (3A)
and (3S)-cycles, (5A)-cycles and (6AS)-cycles.

This comes down to inserting the corresponding 3-cycles,
5-cycles and 6AS-cycles of f -terms in the expression in (*) (for
example, f(b1, b2)f(b3, b1)f(b2, b3) for a 3-cycle). But these are
all equal to 1, precisely thanks to relations (I), (II), (III) and
(R).

The definition of FP (d) is also independent of the choice
of Q containing δ, simply because all moves involving parts of
the pants decomposition away from the neighborhood of δ will
commute with δ and thus disappear from the expression (*).

Step 2: Show that this definition of FP on all Dehn twist gen-
erators of Γ̂g,n extends to an automorphism of Γ̂g,n by checking
that defining relations (C), (B), (L) and (D) are respected.

We first show that each relation is respected by some FQ

for a suitable choice of Q.
For (C), suppose β1 and β2 are two disjoint loops on Σ and

let Q be a pants decomposition containing both of them. Then
by definition, FQ(b1) = b1 and FQ(b2) = b2, so they commute.
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For braid relations (B), let β1 and β2 be loops intersecting
in one point, and let Q be a pants decomposition containing β1

and not intersecting β2. Then the definition above shows that
FQ(b1) = b1 and FQ(b2) = f(b22, b

2
1)b2f(b21, b

2
2). Let γ = b1(β2).

Relation (B) states that c = b1b2b
−1
1 . Computing the right-

hand side gives

FQ(b1)FQ(b2)FQ(b1)−1 = b1f(b22, b
2
1)b2f(b21, b

2
2)b

−1
1

= f(b1b22b
−1
1 , b21)b1b2b

−1
1 f(b21, b1b

2
2b
−1
1 )

= f(c2, b21)cf(b21, c
2).

On the other hand, since the loop γ can be obtained from
β1 by a single simple move, the definition of FQ shows that
FQ(c) = f(c2, b21)cf(b21, c

2), so that relation (B) is respected by
FQ.

For lantern relations (L) of the form a1a2a3a4 = b1b2b3 in
Γ̂(Σ), we let Q be a pants decomposition containing the loops
αi for 1 ≤ i ≤ 4 (bounding a subsurface of type (1, i, j) with
i + j = 4) and β1. Then FQ(ai) = ai and FQ(b1) = b1, so in
particular we have

FQ(a1)FQ(a2)FQ(a3)FQ(a4) = a1a2a3a4,

so we just have to check that FQ preserves b1b2b3. The loop
b2 is obtained from b1 by an A-move Ab1,b2 , and b3 is obtained
from b1 by an A-move Ab1,b3 , so the definition of the action FQ

on b2 and b3 gives

FQ(b2) = f(b2, b1)b2f(b1, b2) and FQ(b3) = f(b3, b1)b3f(b1, b3).
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Thus

FQ(b1)FQ(b2)FQ(b3) = b1f(b2, b1)b2f(b1, b2)f(b3, b1)b3f(b1, b3)

= b1f(b2, b1)b2f(b3, b2)b3f(b1, b3) = a1a2a3a4

where the last equality is obtained by using the inverse of equa-
tion (1) and the fact that a1a2a3a4 is central.

For doughnut relations (D) of the form (a1a2a1)4 = d,
let Q be a pants decomposition containing α1 and δ. Then
FQ(d) = d, F (a1) = a1 and since α2 is obtained from α1 by
a single S-move, we have FQ(a2) = f(a2

2, a
2
1)a2f(a2

1, a
2
2). We

compute

FQ(a1)FQ(a2)FQ(a1) = a1f(a2
2, a

2
1)a2f(a2

1, a
2
2)a1

= f(a1a
2
2a
−1
1 , a2

1)a1a2f(a2
1, a

2
2)a1

= f(a1a
2
2a
−1
1 , a2

1)f(a2
2, a1a

2
2a
−1
1 )a1a2a1

= f(a2
2, a

2
1)a1a2a1.

The last equality is obtained by applying relation (II), which
is legitimate since setting x = a2

1, y = a2
2 and z = a1a

2
2a
−1
1 , we

have xyz = (a1a2)3 which commutes with x, y and z. So we
have

FQ(a1)FQ(a2)FQ(a1) = f(a2
2, a

2
1)a1a2a1 = a1a2a1f(a2

1, a
2
2)

(the second equality comes from passing the a1a2a1 to the left
by conjugating the arguments of f), so
(
FQ(a1)FQ(a2)FQ(a1)

)2 = a1a2a1f(a2
1, a

2
2)f(a2

2, a
2
1)a1a2a1 = (a1a2a1)2
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by relation (I). A fortiori, we find that

(
FQ(a1)FQ(a2)FQ(a1)

)4 = (a1a2a1)4 = d = FQ(d).

Step 3: Show that FP respects the relations (C), (B), (L) and
(D) for all P .

For each relation, let Q be the pants decomposition in
the proof above, and let Q be any pants decomposition. let
Mβr,γr

◦ · · · ◦Mβ1,γ1 be a finite sequence of S- and A-moves
taking Q to P . Let (1, f) ∈ IΓ, and set

x =
1∏

i=r

f(bεi
i , c

εi
i ) ∈ Γ̂(Σ).

Then for all Dehn twists b, we have the equality

FP (b) =
(
inn(x) ◦ FQ

)
(b). (∗∗)

This proves that if FQ respects a relation, then so does FP

for any pants decomposition P . This completes the proof
that the FP are automorphisms of Γ̂g,n for all P .
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Step 4: IΓ is a group.

Consider IΓ as a subset of ĜT 1 . We need to show that
for all f, g ∈ IΓ, the inverse f∗ of f and the composition g · f
satisfy relation (R).

In Steps 1-3 above, we showed that for every f ∈ IΓ, there
exists a family

(
FP

)
P of automorphisms of Γ̂(Σ), whose mem-

bers are related by inner automorphisms. Let g ∈ IΓ and let
h = g · f ∈ ĜT 1 . Set HP = GP ◦ FP for every P ∈ P.

We first note that even though we don’t know that h ∈ IΓ,
we still have

HP (b) =
(
inn(x) ◦HQ

)
(b) (1)

just as we do for FP , FQ or GP , GQ, where x is a product of
f -terms reflecting a series of S and A-moves from P to Q.

Now, consider the case where Σ is of type (1, 2). The
group Γ1,2 is isomorphic to B4/Z, the quotient of the Artin
braid group on four strands modulo its center. Let P be the
pants decomposition of Σ given by the loops α1 and α3 shown
in figure 5, and let Q = P .

A A

AA

S S

α
1

3

α
2

α
2

α
2

α
1

α
3

α
3

ε

3ε

2ε
1

ε

1
ε
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The sequence of moves (6AS) takes P to itself. Thus by
(1), we find that

HP = inn
(
h(e3, a1)h(a2

2, a
2
3)h(e2, e3)h(e1, e2)h(a

2
1, a

2
2)h(a3, e1)

)
HP .

Thus the element h(e3, a1)h(a2
2, a

2
3)h(e2, e3)h(e1, e2)h(a

2
1, a

2
2)h(a3, e1)

lies in the center of Γ̂1,2. However, each factor of this expression
belongs to the derived subgroup of Γ̂1,2, and the intersection of
the derived subgroup with the center (generated by the Dehn
twists along the two boundary components) is trivial. This
shows that if f, g ∈ IΓ, then h = g · f ∈ IΓ.

It remains to show that if f ∈ IΓ, then f∗ is also in IΓ.
This time we consider the family

(
F−1

P

)
P
. We know that

FP = inn
(
f(bε, cε)

) ◦ FQ;

and inverting this formula gives

F−1
P = F−1

Q ◦ inn
(
f(cε, bε)

)

= inn
(
F−1

Q (f(cε, bε))
) ◦ F−1

Q

= inn
(
f∗(bε, cε)

) ◦ F−1
Q .

Indeed, f∗ is defined by f∗(x, y)F−1
(
f(x, y)

)
= 1 with F (x) =

x and F (y) = f(y, x)yf(x, y), so under the homomorphism
x 7→ c and y 7→ b, F corresponds to FQ and we have f∗(bε, cε) =
F−1

Q

(
f(cε, bε)

)
. As for h above, using the cycle (6AS) in Γ̂1,2

to bring P to Q = P , we find that

f∗(e3, a1)f∗(a2
2, a

2
3)f

∗(e2, e3)f∗(e1, e2)f∗(a2
1, a

2
2)f

∗(a3, e1) = 1.
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This proves that f∗ ∈ IΓ. Thus, IΓ is a group.

Corollary. By (1), the FP are all related to each other by
inner automorphisms, and thus we have a canonical group ho-
momorphism

IΓ → Out∗(Γ̂g,n).

This completes the proof of theorem 2.

Proof of theorem 3. Let us now prove theorem 3, which
states a collection of Galois-type properties of IΓ.

The first statement was that IΓ preserves inertia, i.e. con-
jugates all Dehn twists, which was proved above.

The next statement is that F ∈ IΓ respects the point-
erasing and subsurface inclusion homomorphisms between map-
ping class groups. This follows essentially from the construc-
tion using pants decomposition.

For the point-erasing homomorphism, let P be a pants
decomposition containing two loops α and β that become equal
when the point is erased. Then since they are in the the pants
decomposition, FP (a) = a and FP (b) = b, so this action passes
to the quotient a = b.

For the subsurface-inclusion homomorphism, we choose a
pants decomposition P on the larger surface containing the
disjoint simple closed loops cutting out the smaller surface.
By the locality property of the IΓ-action, the action on the
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subgroup corresponding to the smaller surface is exactly the
action on the mapping class group of the smaller surface.

The last statement is the intersection GQ∩IΓ = Gab
Q . For a

sketch of the proof, we use the characterization of IΓ ⊂ ĜT
1 ⊂

ĜT as being exactly those automorphisms of Γ0,4 that extend
to Γ̂1,2 under the subsurface-inclusion morphism corresponding
to;

Since we know that the group homomorphisms correspond-
ing to subsurface inclusion come from morphisms between mod-
uli spaces that are defined over Q, the GQ-action on Γ̂0,4 and
Γ̂1,2 certainly respects this morphism, so GQ lies in IΓ.

As a consequence, we obtain the precise description of the
GQ-action on Dehn twists, local with respect to a pants de-
composition and calculated on all Dehn twists via the lego of
A and S-moves, that was given in the first lecture.
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§3B.5. Final remarks

Remark 1. In the genus zero case, there are no S-moves, so the
pants decomposition complex is given only by (3A) triangles
and (5A) pentagons. It is exactly the same as the MacLane
complex with associativity moves we saw earlier.

Remark 2. Just as we saw how the braided tensor category
corresponded to a combinatorial description of the fundamental
groupoid of the genus zero moduli spaces based at tangential
base points, we can use the pants decomposition complex to
describe the fundamental groupoid of the moduli spaces in all
genera (including zero). The A- and S-moves correspond to
precise paths along the divisor at infinity of the moduli space.

Remark 3. It is a very legitimate question whether ĜT itself
acts on the higher genus mapping class groups, or whether the
fourth relation is really necessary. Although intuitively it seems
necessary, who knows?

B. Enriquez has studied the higher-genus braid groups,
meaning the groups of braids on higher genus surfaces. They
are subgroups of the mapping class groups. Recently he showed
that ĜT acts on B1,3. This is a surprising result - but it might
just be an ungeneralizable fluke!
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