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§1. The graded Grothendieck-Teichmüller Lie algebra

Definition
Characterization as derivations of braid Lie algebras
H. Furusho’s single-relation theorem
Modular forms and Bernoulli numbers

§2. Connections with other parts of mathematics

A) Multiple zeta values (“double shuffle”)
Definition
Furusho’s theorem: injection grt ↪→ ds

B) Gal(Q/Q) and the Deligne-Ihara Lie algebra DIp

Definition
Ihara’s theorem: injection DIp ↪→ grt⊗Qp

C) Kashiwara-Vergne Lie algebra
The Kashiwara-Vergne problem (Alekseev-Torossian)
Schneps’ theorem: injection grt ↪→ kv

D) Mixed Tate motives and motivic multizetas
Definitions, properties of MTM and motivic multizetas
The fundamental (free) Lie algebra fr of MTM
Brown’s theorem: motivic multizetas generate MTM
Corollaries: DIp = fr⊗Qp and fr ↪→ grt ↪→ ds.
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§2.B. Gal(Q/Q) and Deligne-Ihara Lie algebra DI

Let π = π1(P1 − {0, 1,∞}), π(`) denote the pro-` comple-
tion.

Let
(
π(`)

)i denote the groups of the descending central
sequence

(
π(`)

)0 = π(`),
(
π(`)

)i =
(
π(`),

(
π(`)

)i−1
)
.

Let GQ = Gal(Q/Q) and set

Gi
Q = Ker

(
GQ → Out

(
π(`)/

(
π(`)

)i
))

.

This is an ascending filtration

G0
Q ⊂ G1

Q ⊂ G2
Q ⊂ · · ·

We have

G0
Q = GQ, G1

Q = {σ ∈ GQ | χ`(σ) = 1}
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The successive quotients Gi
Q/Gi−1

Q are Z`-modules. The
Deligne-Ihara Lie algebra

(⊕

i≥1

Gi
Q/Gi−1

Q

)

is a Lie algebra over Z` with Lie bracket coming from commu-
tators στσ−1τ−1 in GQ. We write DI` for the tensor product
of this Lie algebra with Q`.

Theorem 10. There is an injection

DI` ↪→ grt⊗Q`

coming from the injection of profinite groups from Grothendieck-
Teichmüller theory

GQ ↪→ ĜT . (∗)

Remarks. (1) This conjecture is much weaker than the con-
jecture that (*) is an isomorphism.

(2) The (*) isomorphism would mean that knowledge of certain
“combinatorial” (ĜT ) properties of the action of GQ on π1’s of
moduli spaces of curves determines GQ completely.

(3) The Lie algebra conjecture means that knowledge of certain
analogous “combinatorial” properties (being stable derivations
of Lie[x, y] =Lie π1 of P1−{0, 1,∞}) is equivalent to knowledge
of the Galois action on the pro-` π1 of P1 − {0, 1,∞}.
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Theorem 11. (Hain-Matsumoto) The Lie algebra DI` is gen-
erated by one generator σn in each odd weight n ≥ 3 (“dual to
Soulé character κm”, see below).

Questions: (1) Ihara asked whether the Q`-Lie algebras DI`

are motivic (independent of `), i.e. all given by tensor products
with Q` of a Q-Lie algebra.

(2) A long standing conjecture asked about the freeness of the
Hain-Matsumoto generators.

Both questions were solved recently, as consequences of
Francis Brown’s result on motivic multiple zetas (see next lec-
ture). Thus we now have the following result:

Theorem 12. (Brown) For each `, DI` is freely generated by
the Hain-Matsumoto generators. Thus, letting

fr ' Lie[s3, s5, s7, . . .]

be the free Q-Lie algebra with one generator in each odd weight
≥ 3, we have

DI` ' fr⊗Q`.
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Supplement

Fix a prime `, let K = Q(µ`∞), and M the maximal ex-
tension of K unramified outside `. Let L denote the subexten-
sion of the maximal abelian extension of K generated by all
`-powerth roots of ζ − 1 for all ζ ∈ µ`∞ − {1}.

For each odd m ≥ 1, the Soulé character

κm : Gal(L/K) → Z`(m)

is defined by

(( ∏
a(mod `n)

(a,`)=1

(ζa
n − 1)〈a

m−1〉
)1/`n)σ−1

= ζκm(σm)
n

for all n ≥ 1 (where 〈am−1〉 is the representative of am−1 be-
tween 0 and `n).

Let Mm denote the fixed field of Gm
Q . Then

Gm
Q /Gm+1

Q ' Gal(Mm/Mm−1).

The Soulé character κm induces a homomorphism Gal(Mm ∩
L/K) → Z` and thus a homomorphism Gal(Mm/K) → Z`;
it can be shown that it passes to a non-trivial homomorphism
Gal(Mm/Mm−1) → Z`. The “dual elements” σm ∈ Gm

Q /Gm+1
Q '

Gal(Mm/Mm−1) are chosen so that κm(σm) generates the im-
age of this homomorphism.
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§2.C. Kashiwara-Vergne problem (1978)

Characterize pairs A, B ∈ Lie[x, y] such that

x + y − ch(y, x) = (1− e−ad(x))A + (ead(y) − 1)B ∈ Lie[x, y]

div(A,B) =
1
2
tr

(
b(x) + b(y)− b(ch(x, y))

) ∈ Cyc2

where

• ch(x, y) = x + y + 1
2 [x, y] + · · · = Campbell-Hausdorff law

• Cyc2 = Q〈x, y〉/〈ab − ba〉 (not commutative!) Cyclic means
mod cyclic permutation of the letters: xxyy = yxxy = yyxx =
xyyx, xyxy = yxyx.

• tr : Q〈x, y〉 → Cyc2 quotient map

• div(A,B) = tr(Axx + Byy) ∈ Cyc2,
where A = Axx + Ayy and B = Bxx + Byy.

The KV-problem was solved by Alekseev-Meinrenken in
2006.
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Tangent KV-problem: Find pairs A, B ∈ Lie[x, y] (homoge-
neous of degree n, say) such that

[x,A] + [y,B] = 0 ∈ Lie[x, y] (A)

div(A,B) = tr
(
xn + yn − (x + y)n

) ∈ Cyc2. (B)

Definition. Let k̂v be the space of solutions.

Theorem 13. (Alekseev-Torossian) k̂v is a graded Lie algebra
under the Ihara bracket, and there is an injective map

grt ↪→ k̂v

f(x, y) 7→ (
f(x, z), f(y, z)

)

with x + y + z = 0. In fact, (A) was already proven by Ihara
who showed that in grt we have

[x, f(z, x)] + [y, f(z, y)] = 0.
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Theorem 14. (S) We have an injection

ds ↪→ k̂v

f(x, y) 7→ (
f(z,−x), f(z,−y)

)
.

The proof of this theorem uses a combinatorial rephrasing
of the defining properties of k̂v, and some interesting symmetry
properties of elements of ds.

Summary: So far, we now have the following Q-Lie algebra
injections:

fr ↪→ grt ↪→ ds ↪→ kv.

All these are conjectured to be isomorphisms.
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§2.D. Mixed Tate motives

As before, let

fr = Lie[s3, s5, s7, . . .].

Then fr is a pro-nilpotent Lie algebra. Let U be the associated
pro-unipotent group

U = exp(fr).

Let Gm act on the pro-unipotent group U according to the
weight grading on fr defined by weight(si) = −2i.

Let MTM denote the category of mixed Tate motives un-
ramified over Z.

There is an equivalence of categories between MTM and
the category of finite-dimensional vector spaces which are equipped
with a (UoGm)-module structure.

The Gm action on such a vector space defines a grading
on it.

From now on, we will think of a mixed Tate motive M as
a vector space in this way, and write gr M for the associated
graded. Roughly speaking, the geometric aspect of motives
comes from the fact that the vector spaces that turn up as
mixed Tate motives are cohomology groups of schemes/stacks.
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A framing on a mixed Tate motive M is a pair

{
f : Q(−n) → gr2nM
v : Q(0) → gr0M

∗.

So we can think of v as being in the 0th homology group, and
f as being a differential n-form.

A framed mixed Tate motive is an equivalence class of
framed motives, where the equivalence relation is a linear map
between the graded vector spaces that carries one framing to
the other.

There is a period map from mixed Tate motives to R
given by “integrating f over v”. This is equal to the value

〈v, f〉,

which is well-defined since gr M and gr M∗ are also dual spaces.

Theorem 15. (Beilinson-Goncharov) The framed mixed Tate
motives form a Hopf algebra under the tensor product.
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The Beilinson virtuous circle

Let C be a Tannakian subcategory of MTM , ω : C →
VectQ the fiber functor.

To C we associate UL = Aut(ω) and L = Der(ω), the
automorphisms and derivations of the fiber functor.

Then L is a Lie algebra and UL = exp(L) is the pro-
unipotent part of the fundamental group of the Tannakian cat-
egory C. This means that C is equivalent to the category of
representations of ULoGm.

Example. We saw this above for C = MTM , where

• L = fr

• U = exp(fr)

• MTM is equivalent to Rep(UoGm)

To the subcategory C, we can also associate the Hopf al-
gebra AC of equivalence classes of framed motives of C. In our
example,

• AMTM ' Q[s3, s5, s7, . . .] viewed as a commutative Hopf
algebra generated by monomials, with multiplication given by
the shuffle product.

Theorem 17. The Hopf algebras UL and AC are dual.
Equivalently, AC can be identified with the Hopf algebra of

affine functions on U .
Equivalently, the Lie algebra L = Der(ω) is dual to the

Lie coalgebra L obtained by quotienting AC by constants and
products.

12



Motivic multizeta values

Goncharov-Manin (adapting an earlier definition by Goncharov-
Deligne based on P1−{0, 1,∞}) defined a Tannakian subcate-
gory MTM ′ of MTM of motives arising from genus zero mod-
uli spaces of curves.

The multiple zeta motive associated to a multizeta value
ζ(k1, . . . , kr) is constructed roughly as follows.

Let n = k1 + · · · + kr and let (ε1, . . . , εn) be the tuple
of 0’s and 1’s associated to (k1, . . . , kr) as in the definition of
multizeta values. Let f be the differential n-form

f = (−1)r dt1
t1 − ε1

dt2
t2 − ε2

· · · dtn
t1 − εn

.

Let v be the simplex 0 < t1 < · · · < tn < 1 on the n-
dimensional moduli space M0,n+3.

Let M be the relative cohomology group

H2n
(
M0,n −A,B − (B ∩A)

)
,

where A is the part of the divisor at infinity where f has poles,
and B is the union of the irreducible components of the divisor
at infinity along which f does not have poles.

Then Goncharov-Manin show that (M, f, v) is a framed
mixed Tate motive over Z; its associated period is given by

∫

v

f = ζ(k1, . . . , kr).
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We use the notation

ζm(k1, . . . , kr) = Im(0; εn, . . . , ε1; 1)

for this motivic multiple zeta; for example

ζm(2) = Im(0; 1, 0; 1).

• Let MZ = AMTM ′ denote the Hopf algebra of the motivic
multizeta values Im(0; ε1, . . . , εn; 1), i.e. the Hopf algebra of
framed mixed Tate motives in MTM ′.

• Let nmz be the quotient of MZ by the ideal generated by
MZ0, MZ2 and products MZ2

>0.

Goncharov with the P1−{0, 1,∞} formulation, and Soudères
directly with the M0,n formulation (thesis) proved that the el-
ements of MZ satisfy the double shuffle relations.

Thus this Hopf algebra is a quotient of the Hopf alge-
bra FZ of formal multizeta values satisfying only double shuf-
fle. But the motivic ones may satisfy other relations: it is not
known.
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Letting L′ = Der(ω′) for the fiber functor ω′ of MTM ′,
and U ′ = exp(L′), then since MTM ′ ⊂ MTM , we have a
surjective map U →→ U ′.

Taking the logs, we have a surjection of Lie algebras

fr = log(U) →→ log(U ′). (∗)

To identify the Lie algebra log(U ′), we use the Beilinson circle.

Let MZ be the Hopf algebra of motivic multizeta values,
and let nmz be its quotient modulo constants and products as
above.

Then we know from the Beilinson circle that

log(U ′) = nmz∗.

So (*) says that we have a Lie algebra surjection fr →→ nmz∗

and so
U fr →→ Unmz∗ = MZ∗.

Because we are using graded duals, we have

dimMZn = dimMZ∗n for all n.
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For all n > 2, we have

MZn →→ Zn

by the period map that associates a framed motive to its period.
(The motivic multizeta value ζM (2) = 0.) Let

M̃Z = MZ ⊗Q[s2].

Then for n ≥ 1 we have

dimZn ≤ dimM̃Zn ≤ dim
(U frn ⊗Q[s2]

)
.

Let d0 = 1, d1 = 0, d2 = 1, dn = dn−2 + dn−3. Then

∑

n≥0

dntn =
1

1− t2 − t3
;

these are the dimensions of U frn ⊗Q[s2].

Thus we obtain the Zagier upper bound:

Theorem 18: dimZn ≤ dn.

This theorem is the main result in multizeta value
theory where the theory of motives seems indispens-
able for the proof.

It was independently proved by Goncharov, Terasoma.

17



Connection with double shuffle Lie algebra

Since we also have an injection nmz∗ ↪→ ds, this gives

fr →→ nmz∗ ↪→ ds.

The above-mentioned theorem by Francis Brown (next lec-
ture) shows that in fact fr ' nmz∗.

Every choice of a depth 1 element fi in dsi for odd i ≥ 3
gives a map

fr → ds

si 7→ fi.

While weaker than finding canonical depth 1 ele-
ments for ds in each odd weight, the result fr ' nmz∗ ↪→
ds shows that there is a canonical image of fr inside ds:
“some choices are better than others”.

As we saw earlier, the map fr ' nmz∗ ↪→ ds factors through

fr ' nmz∗ ↪→ grt ↪→ ds.

Main conjecture. These maps are isomorphisms.

Remark. If true, this would show that the Hopf algebra of
formal zeta values is isomorphic to the Hopf algebra of motivic
multizetas, and that all relations between motivic multizetas
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come from double shuffle. This would solve the mystery of the
“further relations” possibly satisfied by motivic zetas.

It would also provide the “sandwich” corollary fr ' grt,
which is a Lie version of the Shafarevich conjecture.
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