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The goal of this article is to consider the role played by finite-order elements in the mapping class groups and
special loci on moduli spaces, within the framework of Grothendieck–Teichmüller theory, and in particularly in
the genus zero case. Quotienting topological surfaces by finite-order automorphisms induces certain morphisms
between moduli spaces; we consider the corresponding special homomorphisms between mapping class groups.
In genus zero, these morphisms are always defined over Q, so that the canonical outer Galois action on profinite
genus zero mapping class groups respects the induced homomorphisms. For simplicity, we consider only the
subgroup dGT 1

0,0 of elements F = (λ, f) ∈ dGT with λ = 1 and conditions on the Kummer characters ρ2(F ) =

ρ3(F ) = 0. We define a subgroup dGS 1
0,0 ⊂ dGT 1

0,0 by considering only elements of dGT 1
0,0 respecting these

homomorphisms on the first two levels in genus zero. Our main result states that the subgroup dGS 1
0,0, which is

thus defined using only properties occurring in genus zero, possesses many remarkable geometric Galois-type
properties not visibly satisfied by dGT itself, the most striking of which is that it is also an automorphism group
of the profinite mapping class groups in all genera.
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1 Introduction

Let S = Sg,n denote a topological surface of genus g with n ordered marked points, and let M(S) denote
the moduli space of Riemann surfaces of topological type S (this moduli space is often denoted Mg,n). The
permutation group Sn acts naturally on M(S) by permuting the marked points on the Riemann surfaces; for any
subgroupG ⊂ Sn, we write MG(S) = M(S)/G. Topologically, the spaces MG(S) are orbifolds in general; in
fact MG(S) is a quotient of a simply connected space of complex dimension 3g − 3 + n, the Teichmüller space
T (S), by the action of a discrete group ΓG(S), the mapping class group, which acts properly discontinuously but
not, in general, freely. The mapping class group is the group of orientation-preserving diffeomorphisms of Sg,n
which permute the marked points only according to the permutations contained in the group G, modulo those
diffeomorphisms which are isotopic to the identity. By the above, they can also be considered as the orbifold
fundamental groups of the moduli spaces. If G = {1}, we write M(S) = M{1}(S) and Γ(S) = Γ{1}(S).

When S = S0,n is a sphere equipped with n ordered marked points, the full mapping class groups ΓSn(S)
are particularly well understood, as they are quotients of the Artin braid groups Bn. The group Bn is generated
by elements σ1, . . . , σn−1 satisfying σiσi+1σi = σi+1σiσi+1, and Γ(S0,n) is the quotient of Bn by the center
relation, (σ1 . . . σn−1)n = 1, and the sphere relation σ1 . . . σn−1 · σn−1 . . . σ1 = 1. Set xi,i+1 = σ2

i . We
write Γ̂G(S) for the profinite completion of ΓG(S), so that Γ̂G(S) can be considered as the geometric orbifold
fundamental group ofMG(S). The moduli spaceM(S0,4) is isomorphic to P1−{0, 1,∞}, so that its fundamental
group Γ(S0,4) is isomorphic to the free group on two generators F2.

The Grothendieck–Teichmüller group ĜT was first defined by Drinfel’d in [2]. Let us recall the definition
here, with the modified version of relation (III) given by Ihara–Matsumoto [11].
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Definition 1.1 Let ĜT be the group defined as follows:

ĜT =
{
(λ, f) ∈ Ẑ∗ × F̂ ′

2 | (λ, f) defines an automorphism of F̂2 via x �→ xλ, y �→ f−1yλf

and (λ, f) satisfies the three following relations :
(1.1)

(I) f(y, x)f(x, y) = 1 ,

(II) f(z, x)zmf(y, z)ymf(x, y)xm = 1 where m = (λ− 1)/2 and xyz = 1 ,

(III) f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1 in Γ̂(S0,5)
}
.

(1.2)

The multiplication law is given by composing the corresponding automorphisms of F̂2.

This group has been much studied. Drinfel’d indicated in [2] that it contained the absolute Galois group GQ;
a complete and detailed proof was given by Ihara in [9]. Drinfel’d also showed that ĜT acts on the genus zero
profinite groups Γ̂(S0,n) via the formula

(λ, f)(σi) = f
(
σ2
i , yi

)
σλi f

(
yi, σ

2
i

)
(1.3)

where yi = σi−1 . . . σ1 · σ1 . . . σi−1. Nakamura ([13, Appendix]) (for n = 5) and Ihara and Matsumoto ([11])
in general showed that this action extends the GQ-action on these groups which occurs naturally by consider-
ing them as fundamental groups of moduli spaces and using a tangential base point to lift the canonical outer
automorphisms to actual automorphisms.

Over the last ten years, various refined versions of ĜT have been defined. These groups are subgroups of
ĜT (which are never actually known to be strict subgroups). They contain GQ, or at least some “typical large
subgroup” of GQ (see below), and they are defined on purpose in order to ensure the possession of various
geometric properties which are known for GQ, but not for ĜT . Such geometric properties, for example, are that
like those of GQ, the elements of the group should act as automorphisms on the profinite mapping class groups
in all genera, where they should preserve conjugacy classes of Dehn twists, and they should also respect various
homomorphisms between these groups which come from natural Q-morphisms between the moduli spaces.

These “new versions of ĜT ” are defined by adding relations to ĜT of types similar to (I), (II), (III) above. In
this article, we define (yet) another new subgroup of ĜT , called ĜS 1

0,0, with two new relations coming from the
action of finite-order automorphisms of genus zero surfaces.

Technical restriction. For simplicity, we choose to work in this article over the extension K of Q generated
by all roots of unity and all roots of 2 and 3. In this way, the past and new relations added to ĜT that we
recall below will have much simpler forms. Let us explain exactly what is meant by this, before stating the main
theorems of this article.

We begin by recalling Ihara’s definition of Kummer characters (cf. [16])

ρn : ĜT −→ Ẑ∗ .

The quotient group F̂ ′
2/F̂

′′
2 is acted on by the ring Ẑ

[[
Ẑ2(1)

]]
-module via conjugation, and in fact it is a free

Ẑ
[[

Ẑ2(1)
]]

-module of rank 1. Thus for F = (λ, f) ∈ ĜT , since f ∈ F̂ ′
2, there exists a unique element of

Ẑ
[[

Ẑ2(1)
]]

such that

f ≡ AF (x, y) · [x, y] mod F̂ ′′
2 .

For every integer n ≥ 2, we set

ρn(F ) =
1
n

n−1∑
i=0

(ζin − 1)AF (ζin, 1)

where ζn is a primitive n-th root of unity. Then it is easy to see that restricted to elements (λσ, fσ) ∈ ĜT
corresponding to σ ∈ GQ, these ρn(σ) satisfy

σ
(
r
√
n

)
= ζρn(σ)

n
r
√
n .
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In this article, we consider only the subgroup ĜT 1
0,0 of ĜT consisting of elements F = (λ, f) ∈ ĜT having

λ = 1 and ρ2(F ) = ρ3(F ) = 0, so that rather than GQ, ĜT 1
0,0 contains the “large subgroup” which is the

absolute Galois group GK . This restriction is purely technical and serves to simplify all the formulae.
We now proceed to describe the main contents of the article.

Definition 1.2 Let ĜS 1
0,0 denote the subset of elements f ∈ ĜT 1

0,0 satisfying the following two relations, of

which the first takes place in the group Γ̂S5(S0,5) and the second in the group Γ̂S6(S0,6):

f
(
σ−1

3 σ2σ3, σ
−1
3 σ−1

2 σ2
1σ

2
3σ2σ3

)
f
(
σ2

1σ
2
3 , σ

−1
3 σ2σ3

)
= f

(
x51, σ4x51σ

−1
4

)
f(x34, x23)f(x12, x51) ,

(∗)

f
(
σ1σ2σ3σ4σ

−1
3 σ−1

1 , σ2
1σ

2
3σ

2
5

)
f
(
σ2

2σ
2
4σ

2
61, σ1σ2σ3σ4σ

−1
3 σ−1

1

)
= f(x12,3, x34)f(x23, x12)f(x23,4, x1,23)f(x234,5, x1,234)f(x45, x23,4) ,

(∗∗)

where the element σ61 ∈ ΓS6(S0,6) is according to the notation

σn 1 = σ1 . . . σn−2σn−1σ
−1
n−2 . . . σ

−1
1 ∈ ΓSn(S0,n) ,

and the braid xAB for two adjacent packets of strands A and B is the flat double crossing of the two packets.

Remarks 1.3 (1) The first main result of this article (see below and Theorem 3.1) explains that the relations
(∗) and (∗∗) are just explicit expressions of the commutation of two commutative diagrams which arise from
natural morphisms between moduli spaces. In some ways, this more natural definition would be better as a direct
definition of ĜS 1

0,0. However, we prefer not to use it as a definition because it takes large parts of Section 2 and
part of Section 3 to define the morphisms in the diagrams, whereas the relations can be given directly.

(2) An equivalent form of relation (∗) is the conjugation form

σ
f(σ2

1σ
2
3 , σ2)

2 = σ
f(x34, x23)f(x12, x51)
2 = σ

f(x12, x23)f(x34, x45)
2 , (1.4)

where xα = α−1xα; here, the first equality is obvious after substituting

f
(
σ2

3 , σ
−1
2 σ2

3σ2

)
= f

(
σ2

2 , σ
−1
2 σ2

3σ2

)
f
(
σ2

3 , σ
2
2

)
for the middle term on the right-hand side of (∗) by relation (II), and the second equality follows from the
pentagon relation (III).

(3) Relation (∗) was originally written in the more complicated form

f
(
σ2, σ

−1
2 σ2

1σ
2
3σ2

)
f
(
σ2

1σ
2
3 , σ2

)
= f

(
σ2

3σ
2
2 , σ

−1
2 σ2

1σ2

)
f
(
σ2

3 , σ
−1
2 σ2

3σ2

)
f
(
σ2

1 , σ2σ
2
3σ2

)
. (1.5)

The discovery that this relation (conjugated by σ3) is equivalent to the better form given above is due to H. Tsuno-
gai [20] (see details in the proof of Theorem 3.1, §3.1). He also observed that (∗) is equivalent to the relation
(3.12) which plays a key role in the proof of Theorem 3.4 (see §3.2) and was originally introduced as an indepen-
dent relation. He furthermore generalized the expressions of these relations to the fully general situation over Q
rather than K ([21]).

In this article, we prove two results, whose precise statements are given as Theorems 3.1 and 3.4 of §3.
Necessary definitions and background are provided in §2. Essentially, the first result is as follows.

• The two defining relations (∗) and (∗∗) of ĜS 1
0,0 come from requiring elements of ĜT 1

0,0 to respect the
two first non-trivial special homomorphisms between genus zero moduli spaces, i.e., homomorphisms coming
from automorphisms of genus zero curves. These two homomorphisms are given explicitly at the end of §2. As a
corollary, this characterization of relations (∗) and (∗∗) shows that ĜS 1

0,0 is a group.

In order to state the second result, we need to have a closer look at some of the relations which have been
added, at different times, to the three original defining relations of ĜT in order to define subgroups of ĜT having
specific “geometric Galois properties”. We continue to restrict to ĜT 1

0,0 in order to simplify the expressions of
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these relations. Note that this list is not exhaustive; there are variants of these relations, and entire families of
other relations which have been added to ĜT

(
see in particular the definition of ĜTA due to Ihara [10]

)
which

are perhaps also consequences of genus zero geometry. We consider the five relations in the list below. For the
first relation (R), we recall that Γ(S1,2) is isomorphic to the quotient of B4 = 〈σ1, σ2, σ3〉 modulo its center,
which is generated by (σ1σ2σ3)4.

List of relations added to ĜT in the various papers [8], [14], and [15]:

(R) f(e3, σ1)f
(
σ2

2 , σ
2
3

)
f(e2, e3)f(e1, e2)f

(
σ2

1 , σ
2
2

)
f(σ3, e1) in Γ̂(S1,2), with e1 = (σ1σ2)6.

e3 = (σ2σ3)6, e2 = σ3σ2σ1σ
−1
2 σ−1

3 .

(III′) f
(
σ1σ3, σ

2
2

)
= f

(
σ2

4 , σ4σ51σ4

)
f(x12, x23)f(x34, x45) in Γ̂S5(S0,5),

(IV) f
(
σ4

1 , σ2

)
= f

(
σ2

1 , σ
2
2

)
in Γ̂S4(S0,4),

(NT1) f
(
σ2

1 , σ
2
2

)
= f

(
σ1σ2σ1, σ

2
2

)
f
(
σ2

1 , σ1σ2σ1

)
in B̂3,

(NT2) f
(
σ2

1 , σ
2
2

)
= f

(
σ2σ1, σ

2
2

)
f
(
σ2

1 , σ2σ1

)
, also in B̂3.

Geometric properties associated to these relations. The first of these relations was added to ĜT 1
0,0 in [8]

in order to pick out the elements of ĜT 1
0,0 which extend to automorphisms of the profinite mapping class groups

in all genera respecting point-erasing and subsurface-inclusion homomorphisms. Relations (III′) and (IV) were
introduced in [14]

(
which actually gives their general forms, corresponding to the full group ĜT , as well as the

general form of (R)
)
; in particular, relation (IV) actually implies (R). We show in §3 that relations (III′) and

(IV) can be subsumed into just one relation, coming from respecting a single genus zero special homomorphism.
Finally, relations (NT1) and (NT2) (which are also introduced in their general forms in [15]) were introduced in
order to make sure that for all subgroupsG ⊂ S4, ĜT respects the two homomorphisms

Γ̂(S0,4) −→ Γ̂G(S0,4)

coming from the two natural morphisms

M(S0,4) −→ MG(S0,4) ,

namely the quotient and the inclusion.
We can now state the main result of this article, given explicitly as Theorem 3.4.

• Elements of ĜS 1
0,0 satisfy the above five relations.

Putting the two results together, we perceive that requiring elements of ĜT 1
0,0 to satisfy the first two genus

zero special homomorphisms implies that several other geometric Galois properties are automatically satisfied.
In particular, the fact that by imposing conditions on elements of ĜT 1

0,0 coming purely from the geometry in
genus zero we automatically obtain the passage to all genera is the most striking and unexpected result of this
article.

We are very grateful to H. Tsunogai for the helpful remarks, computations and simplifications specified above,
which much improved this article.

2 Special loci and special homomorphisms: definitions and genus zero case

It is well-known that for every subgroup G ⊂ Sn, the partially pure mapping class group group ΓG(S) acts
properly discontinuously on the Teichmüller space T (S), but not always freely (although the pure mapping class
groups Γ(S) act freely when S is of genus zero). In general, however, some points of Teichmüller space have
isotropy groups inside the mapping class groups. The following facts are well-known:

(1) the isotropy groups in the mapping class groups are always of finite order;

(2) every element of finite order in the mapping class group ΓG(S) has at least one fixed point in T (S);
(3) the isotropy group of a point in Teichmüller space is equal to the group of automorphisms of the corre-

sponding Riemann surface.

www.mn-journal.com c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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The quotient of a simply connected space by a group acting in this way is called a topological orbifold, and the
groups themselves are the orbifold fundamental groups of the quotient spaces (cf. [5] for an introduction to these
groups). Thus the mapping class group ΓG(S) should be considered as the topological orbifold fundamental
group of the moduli space MG(S), which we simply denote by π1(MG(S)).

Definition 2.1 The images in moduli space of the points with non-trivial isotropy in Teichmüller space are
called special orbifold points. If ϕ is an element of finite order in ΓG(S), then we consider the set of points in
T (S) fixed by ϕ; the image of this set in the quotient moduli space MG(S) is called the special locus of ϕ and
denoted MG(S, ϕ). It depends only on the conjugacy class of the cyclic group generated by ϕ.

Much work has been devoted to studying and determining these special loci (cf. for example [3], [7] for a
geometric approach, [1] for a complete classification of the maximal special loci in the case g ≥ 1, n = 0, or
[12] for more explicit descriptions).

Let us recall here the essential facts concerning special loci which we will use in this article; they come from
[7] and [18], and concern essentially the group theoretic aspect of the special loci, i.e., the way in which inclusions
of special loci into moduli spaces can be reflected in homomorphisms of the mapping class groups.

Theorem 2.2 ([7]) Let ϕ be a finite element of ΓSn(S). Then ϕ permutes the marked points of S. Let [ϕ]
denote the associated permutation, and let G ⊂ Sn be the subgroup generated by the disjoint cycles of [ϕ].
Then in the moduli space MG(S), the special locus of ϕ is closely related to the moduli space M(T ) of the
topological quotient T = S/ϕ. More explicitly, if T (S, ϕ) denotes the set of points in the Teichmüller space
fixed by ϕ, then T (S, ϕ)/NormΓG(S)(ϕ) is isomorphic to the normalization M̃G(S, ϕ) of the special locus
MG(S, ϕ), and associating to the Riemann surface corresponding to a point of MG(S, ϕ) its quotient by the
action of the automorphism ϕ yields a natural covering map of finite degree

M̃G(S, ϕ) −→ M(T ) . (2.1)

Corollary 2.3 (Well-known, cf. [18]) The morphism (2.1) corresponds to a group homomorphism

NormΓG(S)(ϕ) −→ Γ(T ) (2.2)

whose kernel is 〈ϕ〉. Indeed, these two groups are the orbifold fundamental groups of M̃G(S, ϕ) and of M(T )
respectively. This group homomorphism can also be deduced directly from the fact that a diffeomorphism of S
passes to T if and only if it normalizes ϕ.

Definition 2.4 If the homomorphism (2.2) is surjective, we say that ϕ has the surjectivity property. This
corresponds to the restriction of the morphism (2.1) to each connected component being one-to-one, i.e., a degree
1 covering. Indeed, it is not difficult to see (cf. [18]) that in general the image of (2.2) will always be of finite
index in Γ(T ), and therefore it determines a finite cover of M(T ). If the homomorphism (2.2) is split, we say
that ϕ has the splitting property, which corresponds to a certain triviality of the orbifold structure automatically
possessed by M̃G(S, ϕ) because of the automorphism ϕ at each point. When ϕ has both the surjectivity and the
splitting properties, we have non-canonical inverse homomorphisms

Γ(T ) −→ NormΓG(S)(ϕ) ⊂ ΓSn(S) , (2.3)

called special homomorphisms.

Let us now turn to the special case of genus zero. As it turns out, the special homomorphisms exist for every
ϕ in genus zero. Let us recall the three main genus zero results from [18], which are are necessary to compute
the three fundamental examples at the end of this section, on which the definition in §3 of a new version of ĜT
is based.

Fact 1. All finite-order elements of the genus zero mapping class groups ΓG(S) (for S a sphere with marked
points) are rotations which can be explicitly described.

Indeed, for n ≥ 5, the fact that all finite-order elements are rotations follows from [7, Corollary p. 508]; this
result states that in ΓSn(S), (i) there are no elements of finite order strictly greater than n, (ii) there is exactly one
conjugacy class of elements of order n (resp. n− 1, resp. n− 2), (iii) every finite-order element is conjugate to a
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power of an element of order n, n− 1 or n− 2. It is easy to then display a rotation of ΓSn(S) of order n, (resp.
n− 1, resp. n− 2) as the rotation given by placing n (resp. n− 1, resp. n− 2) points on the equator and making
a 2π/n, 2π/(n− 1) or 2π/(n− 2) rotation around a north-south axis as in the left-hand figure below (where 0,
1 or 2 of the points at the north and south poles may be marked, according to how many lie on the equator). By
the above, all other finite-order elements are conjugates of powers of these, so that a permutation of the marked
points associated a rotation is necessarily of the form c1 . . . ck, where the ci are disjoint cycles of length j with
jk = n, n− 1 or n− 2; we represent such a rotation as in the right-hand figure below.

Fact 2. Let ϕ be a finite-order element of ΓSn(S) with S of genus 0 and n marked points, and let G ⊂ Sn

be the subgroup generated by the disjoint cycles of the permutation associated to ϕ. Then the special locus
MG(S, ϕ) in the genus zero moduli space MG(S) can be explicitly described and is defined over Qab.

This is a consequence of the following theorem from [18], where a more complete version is given, explicitly
describing special loci in genus zero in the ordered moduli space M(S) and the unordered space MSn(S) as
well as the intermediate space MG(S) we consider here.

Theorem 2.5 ([18, Theorem 3.5.1 (ii)]) Let S be a sphere with n numbered marked points, and let ϕ be a
rotation as in Figure 1, with n = jk + 2 (i.e., we assume that the north and south poles, fixed points of the
rotation, are marked points of S). Up to replacing ϕ by a conjugate of ϕ, which has the same special locus as ϕ,
we may assume that the points of S are numbered so that the permutation associated to ϕ is given by

[ϕ] =
(
1 . . . j

)(
(j + 1) . . . 2j

)
. . .

(
(j(k − 1) + 1) . . . jk

)
.

Let G ⊂ Sn be the subgroup generated by the disjoint cycles c1, . . . , ck of [ϕ]. Let T be the orbifold quotient
S/ϕ, which has k marked points with ramification index 1 and 2 marked points with ramification index j. Then
the special locus of ϕ in the quotient space M(S)/G = MG(S) consists of |(Z/jZ)∗| disjoint connected
components Cζ indexed by the primitive j-th roots of unity ζ. Each Cζ is isomorphic to(

P1 − {0, 1,∞}
)k−1 − ∆ � M(T ) ,

and is thus defined over Q; however the embeddings M(T ) → Cζ ⊂ MG(S) are defined over Q(ζ).

Fig. 1 Rotation of order n, n− 1 or n− 2 and power of such a rotation

Fact 3. Every finite-order element of the genus zero mapping class groups gives rise to special homomor-
phisms, which can be explicitly computed.

For this we use the results from [18] summarized in the following theorem.

Theorem 2.6 ([18, Theorems 4.3.1 and 4.3.2, and Corollary]) When g = 0, i.e., when S is a sphere with
marked points, every finite-order element ϕ of ΓSn(S) possesses both the surjectivity and splitting properties,
and therefore there exist special homomorphisms

Γ(T ) −→ ΓSn(S) (2.4)

associated to ϕ as in Definition 2.4.

The homomorphisms between mapping class groups in (2.4) are simply the homomorphisms of fundamental
groups associated to the morphisms of moduli spaces

M(T ) −→ Cζ ⊂MG(S)
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of Theorem 2.5; the important point is that they can be computed explicitly. Details are given in [18, §5];
we restrict ourselves here to giving the two basic examples of special homomorphisms which will be used in
the subsequent sections to define a new version of ĜT . For each of the examples below, we proceed by first
determining a lifting of each generator of Γ(T ) to ΓSn(S), and then checking that (i) these liftings define a
homomorphism on Γ(T ), (ii) the liftings all normalise ϕ. An informal indication of the procedure is shown in
the figures.

Example 2.7 S of type (0, 5), T of type (0, 4). The mapping class group ΓS5(S) is generated by σ1, σ2,
σ3 and σ4 with the usual braid relations and the relations

σ4σ3σ2σ
2
1σ2σ3σ4 = (σ1σ2σ3σ4)5 = 1 .

The element ϕ′ we consider in this example is

ϕ′ = σ1σ2σ1σ3σ2σ1σ4σ3σ2σ1 .

Its associated permutation is (15)(24). Direct computation (manipulation with the braid relations) shows that
ϕ′2 = (σ4σ3σ2σ1)5 = 1. In fact, ϕ′ corresponds to the 180o rotation around the axis shown in the figure below.

22

3

4

51

3

1

4

S
T

Fig. 2 The finite-order diffeomorphism ϕ′

The quotient T has 4 marked points coming from the 5 marked points of S and the orbifold point at the south
pole.

Writing

π1(S) = 〈x1, x2, x3, x4, x5 | x1x2x3x4x5 = 1〉
and

π1(T ) =
〈
c1, c2, c3, c4 | c1c2c3c4 = 1, c24 = 1

〉
,

the inclusion of π1(S) in π1(T ) corresponding to the cover S → T = S/ϕ′ is given by

π(S) ↪→ π1(T )

x1 �−→ c1c2c3c
−1
2 c−1

1

x2 �−→ c1c2c
−1
1

x3 �−→ c21

x4 �−→ c2

x5 �−→ c3 .

Now, we know that Γ(T ) is isomorphic to the pure braid group on three strands, which in fact is a free group on
two generators x and y, which can be taken to be the Dehn twists along the dotted and undotted loops shown in
the right-hand part of Figure 2, respectively. We can take two splittings of the type (2.4), given by

F̃ϕ′ : Γ(T ) −→ ΓS5(S)
x �−→ σ2σ3σ2 ,

y �−→ σ2
1σ

2
4 ,

(2.5)
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or

Fϕ′ : Γ(T ) −→ ΓS5(S)
x �−→ σ51 ,

y �−→ σ2
1σ

2
4 .

(2.6)

The latter becomes a little simpler if we replace ϕ′ by ϕ = (σ1σ2σ3σ4)2ϕ(σ1σ2σ3σ4)−2. Then the splitting
Fϕ = inn(σ1σ2σ3σ4)3 ◦ Fϕ′ is given by

Fϕ : Γ(T ) −→ ΓS5(S)
x �−→ σ2 ,

y �−→ σ2
1σ

2
3 .

(2.7)

Example 2.8 S of type (0, 6), T of type (0, 4). The element ψ we consider in this example is

ψ = σ2
1σ2σ3σ4σ5σ1σ2σ3σ4 .

It is of order 3, and its associated permutation is (135)(246). The diffeomorphism (up to isotopy) ψ is represented
by the 2π/3 rotation around the axis shown in the figure below.

1

2

3

4
6

4

2

1

3

5

S T

Fig. 3 The order three rotation ψ

The orbifold T now has two marked points and two branch points of ramification index 3. The group π1(T )
is now given by

π1(T ) =
〈
c1, c2, c3, c4 | c1c2c3c4 = c31 = c34 = 1

〉
,

Γ(T ) is the same as in the previous example with the same generators x and y, and we have the splitting homo-
morphism

Fψ : Γ(T ) −→ ΓS6(S)

x �−→ σ1σ2σ3σ4σ
−1
3 σ−1

1 ,

y �−→ σ2
1σ

2
3σ

2
5 ,

(2.8)

indicated by the loops in the figure, whose image is easily checked to normalize ψ.

3 Properties of the group ĜS1
0,0

3.1 Precise statement of the first main theorem

In this section, we explain in what sense the two defining relations (∗) and (∗∗) of ĜS 1
0,0 (cf. §1) come from

special loci in the moduli spaces on the first two levels and their associated homomorphisms.
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Letting T denote the 4-punctured sphere, S the 5-punctured sphere and S′ the 6-punctured sphere, they come
from considering the finite-order elements ϕ ∈ ΓS5(S) and ψ ∈ ΓS6(S′) introduced in Examples 2.7 and 2.8 at
the end of §2, namely

{
ϕ = (σ1σ2σ3σ4)2σ1σ2σ1σ3σ2σ1σ4σ3σ2σ1(σ1σ2σ3σ4)−2 with Gϕ = 〈(23), (14)〉 ,
ψ = σ2

1σ2σ3σ4σ5σ1σ2σ3σ4 with Gψ = 〈(135), (246)〉 ,

and the corresponding morphisms

ηϕ : M(T ) −→ MGϕ(S) and ηψ : M(T ) −→ MGψ(S′) ,

with their associated homomorphisms

Fϕ : Γ(T ) −→ ΓGϕ(S) ⊂ ΓS5(S) and Fψ : Γ(T ) −→ ΓGψ(S) ⊂ ΓS6(S
′)

given by (2.7) and (2.8).

Let A denote the standard tangential base point on M(T ) described by the left-hand figure below, and let
Bϕ and Bψ denote the tangential base points ηϕ(A) on MGϕ(S) and ηψ(A) on MGψ(S′) respectively. For
later convenience, we will also consider two other tangential base points on MGψ(S′); the standard tangential
base point A′ and the tangential base point B′

ϕ, which reduces to Bϕ if the 3th point is erased (and 4, 5, 6 are
renumbered to 3, 4, 5). The pointB′

ϕ is not tangential to a point of maximal degeneration, since it has a vertex of
valency 4; this means that it is a symmetry point of a 1-dimensional stratum at the infinite divisor.

1

5

6

Bψ

2

4

3

5

3

Bϕ

3
5

5

3

Bϕ

2 4

1 6

’

1

2 4

6
1

2 3

A

4

2

1 4

A’

Fig. 4 Some useful tangential base points

We recall (cf. [19, §6 of ] for details) that the diagrams in the figure above can be read as tangential base points
on the moduli space M(T ) and M(S) by considering the trees to be inscribed in a circle which represents the
real line on P1, with their endpoints giving the marked points on P1 which are tangentially close. Explicitly, a
topological description of these base points can be given by considering the regions on the corresponding moduli
spaces described by the spheres with marked points given as follows, as ε varies in a small real positive segment
(0, ε0): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0, ε, 1,∞) for A ,

(0, ε, 1 − ε, 1,∞) for Bϕ ,

(−ε− ε2,−ε+ ε2, ε, 1 − ε, 1 + ε− ε2, 1 + ε+ ε2) for A′ ,
(−ε, ε, 1, 1/ε,−1/ε,−1) for B′

ϕ ,

(−ε, ε, 1 − ε, 1 + ε, 1/ε,−1/ε) for Bψ .

Computing the action of an element (λ = 1, f) of ĜT as an automorphism of the associated profinite mapping
class group with respect to each of the base points in Figure 4 is standard practice. We give these automorphism
actions explicitly below, denoting by fC the automorphism corresponding to the base point C. For the definition
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of fB′
ϕ

, recall that that g denotes the unique element in F̂2 such that f(x, y) = g(y, x)−1g(x, y).

fA : Γ(T ) −→ Γ(T ){
x �−→ f(x, y)xf(y, x) ,
y �−→ y ;

(3.1)

fBϕ : ΓS5(S) −→ ΓS5(S)⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ1 �−→ σ1 ,

σ2 �−→ f(x45, x34)f(x23, x12)σ2f(x12, x23)f(x34, x45) ,
σ3 �−→ σ3 ,

σ4 �−→ f(x45, x34)σ4f(x34, x45) ;

(3.2)

fA′ : ΓS6(S
′) −→ ΓS6(S

′)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1 �−→ σ1 ,

σ2 �−→ f(x23, x12)σ2f(x12, x23) ,
σ3 �−→ f(x34, x12,3)σ3f(x12,3, x34) ,
σ4 �−→ f(x45, x123,4)σ4f(x123,4, x45) ,
σ5 �−→ σ5 ;

(3.3)

fB′
ϕ

: ΓS6(S
′) −→ ΓS6(S

′) is given by fB′
ϕ

= inn(f(x45, x123,4)g(x12,3, x3,45)) ◦ fA′ , (3.4)

fBψ : ΓS6(S
′) −→ ΓS6(S

′) is given by fBψ = inn(f(x34, x12,3)) ◦ fA′ , (3.5)

where inn(α)(x) = α−1xα.
Saying that (∗) and (∗∗) come from the morphisms ηϕ and ηψ explicitly means the following.

Theorem 3.1 Let f ∈ ĜT 1
0,0. Then f satisfies relation (∗) (resp. relation (∗∗)) of the definition of ĜS 1

0,0 if
and only if the left-hand (resp. right-hand) diagram below commutes:

Γ̂(T )
Fϕ ��

fA

��

Γ̂S5(S)

fBϕ

��
Γ̂(T )

Fϕ �� Γ̂S5(S),

Γ̂(T )
Fψ ��

fA

��

Γ̂S6(S′)

fBψ
��

Γ̂(T )
Fψ �� Γ̂S6(S′).

P r o o f. The proof of this theorem is a direct computation. The very first step is to prove that (∗) is equivalent
to the form (1.5) given in §1. This observation is due to H. Tsunogai ([20]). One begins by substituting the
equality g(x51, x45) = f(σ2

51, σ4σ51σ4) into the right-hand side of (∗). Then, conjugating (∗) by σ3, we obtain

f
(
σ2, σ

−1
2 σ2

1σ
2
3σ2

)
f
(
σ2

1σ
2
3 , σ2

)
= f

(
σ2

51, σ3σ4σ
2
51σ

−1
4 σ−1

3

)
f
(
σ2

3 , σ3σ
2
2σ

−1
3 )f(σ2

1 , σ
2
51

)
= f

(
σ2

51, σ
−1
2 σ2

1σ2

)
f
(
σ2

3 , σ3σ
2
2σ

−1
3 )f(σ2

1 , σ
2
51

)
= f

(
σ2

3σ
2
2 , σ

−1
2 σ2

1σ2

)
f
(
σ2

3 , σ
−1
2 σ2

3σ2)f(σ2
1 , σ2σ

2
3σ2

)
.

(3.6)

Here, the second equality is obtained using the identity x51 = σ−1
4 σ−1

3 σ−1
2 σ2

1σ2σ3σ4 for the equality of the first
terms, and the third uses the identities

f
(
σ2

3σ
2
2 , σ

−1
2 σ2

1σ2

)
= σ−1

2 f
(
σ2σ

2
3σ2, σ

2
1

)
σ2 = σ−1

2 f
(
σ2

51, σ
2
1

)
σ2 = f

(
σ2

51, σ
−1
2 σ2

1σ51

)
for the equalities of the first and last terms.

With (1.5), the proof of the theorem is a direct computation using the two diagrams of the statement, the
definitions Fϕ(x) = σ2, Fϕ(y) = x12x34 (cf. (2.7)) and Fψ(x) = σ1σ2σ3σ4σ

−1
3 σ−1

1 , Fψ(y) = x12x34x56 (cf.
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(2.8)), and (3.1)–(3.5) above. We simply check directly that an element f of ĜT 1
0,0 belongs to ĜS 1

0,0 if and only

if the two diagrams commute, i.e., if and only if on the two generators x and y of Γ̂(T ), we have

fBϕ ◦ Fϕ = Fϕ ◦ fA and fBψ ◦ Fψ = Fψ ◦ fA .

These two equalities are immediate on the generator y. Let us consider x. If f satisfies (∗), or equivalently, (1.5),
we have

fBϕ ◦ Fϕ(x) = fBϕ(σ2)

= f(x45, x34)f(x23, x12)σ2f(x12, x23)f(x34, x45)

= f(x51, x12)f(x23, x34)σ2f(x34, x23)f(x12, x51) by (III)

= σ2f
(
x51, σ

−1
2 x12σ2

)
f
(
x23, σ

−1
2 x34σ2

)
f(x34, x23)f(x12, x51)

= σ2f
(
x51, σ

−1
2 x12σ2

)
f
(
x34, σ

−1
2 x34σ2)f(x12, x51

)
by (II)

= σ2f
(
σ2, σ

−1
2 σ2

1σ
2
3σ2

)
f
(
σ2

1σ
2
3 , σ2

)
by (1.5)

= f
(
σ2, σ

2
1σ

2
3

)
σ2f

(
σ2

1σ
2
3 , σ2

)
= Fϕ

(
f(x, y)xf(y, x)

)
= Fϕ ◦ fA(x) .

(3.7)

This proves that relation (∗) implies the first equality, i.e., the commutation of the first diagram. Conversely, if
we assume that the first diagram commutes, then the same sequence of equalities shows that f satisfies (∗).

Now assume that f satisfies (∗∗) and consider the second diagram. We use a standard formula

fA′(σ1σ2σ3σ4) = f(x23, x12)f(x23,4, x1,23)f(x234,5, x1,234)σ1σ2σ3σ4 .

Thus, since fBψ = innf(x34, x12,3) ◦ fA′ by (3.5), we have

fBψ(σ1σ2σ3σ4) = f(x12,3, x34)f(x23, x12)f(x23,4, x1,23)f(x234,5, x1,234)σ1σ2σ3σ4f(x34, x12,3)

= f(x12,3, x34)f(x23, x12)f(x23,4, x1,23)f(x234,5, x1,234)f(x45, x23,4)σ1σ2σ3σ4 .
(3.8)

Since fBψ(σ1) = σ1 and f(Bψ)(σ3) = σ3, this yields

fBψ(σ1σ2σ3σ4σ
−1
3 σ−1

1 ) = f(x12,3, x34)f(x23, x12)f(x23,4, x1,23)f(x234,5, x1,234)

· f(x45, x23,4)σ1σ2σ3σ4σ
−1
3 σ−1

1 .
(3.9)

So we obtain

fBψ ◦ Fψ(x) = fBψ
(
σ1σ2σ3σ4σ

−1
3 σ−1

1

)
= f(x12,3, x34)f(x23, x12)f(x23,4, x1,23)f(x234,5, x1,234)

· f(x45, x23,4)σ1σ2σ3σ4σ
−1
3 σ−1

1 by (3.9)

= f
(
σ1σ2σ3σ4σ

−1
3 σ−1

1 , σ2
1σ

2
3σ

2
5

)
f
(
σ2

2σ
2
4σ

2
61, σ1σ2σ3σ4σ

−1
3 σ−1

1

)
· σ1σ2σ3σ4σ

−1
3 σ−1

1 by (∗∗)
= f

(
σ1σ2σ3σ4σ

−1
3 σ−1

1 , σ2
1σ

2
3σ

2
5

)
σ1σ2σ3σ4σ

−1
3 σ−1

1 f
(
σ2

1σ
2
3σ

2
5 , σ1σ2σ3σ4σ

−1
3 σ−1

1

)
= Fψ

(
f(x, y)xf(y, x)

)
= Fψ ◦ fA(x) .

As above, the same sequence of equalities shows that if f is assumed to make the second diagram commute, then
f necessarily satisfies (∗∗), which concludes the proof of Theorem 3.1.

Corollary 3.2 ĜS 1
0,0 is a group.
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P r o o f. By Theorem 3.1, ĜS 1
0,0 is the set of elements f ∈ ĜT 1

0,0 ⊂ ĜT which make the two diagrams of
Theorem 3.1 commute. For i = 1, 2, consider the set

Ei =
{
f ∈ ĜT 1

0,0 | f makes the i-th diagram commute
}
.

Then ĜS 1
0,0 is just the intersection E1 ∩ E2. This intersection is a group simply because each Ei is a group.

Indeed, suppose that f, g ∈ ĜT 1
0,0 lie in Ei. Then, taking (F,A,B) to be (Fϕ, A,Bϕ) if i = 1 and (Fψ , A,Bψ)

if i = 2, we have

F ◦ ((fg)A) = F ◦ fA ◦ gA = fB ◦ F ◦ gA = fB ◦ gB ◦ F = ((fg)B) ◦ F ,

so fg ∈ Ei, and

fA ◦ F = F ◦ fB =⇒ F ◦ f−1
B = f−1

A ◦ F ,

so the inverse of f in ĜT 1
0,0 lies in Ei if f does. This shows that E1 and E2 are groups, so their intersection

ĜS 1
0,0 is a group.

Corollary 3.3 Let K be the fixed field of the subgroup of σ ∈ GQ such that χ(σ) = 1, ρ2(σ) = ρ3(σ) = 0.
Then GK ⊂ ĜS 1

0,0.

P r o o f. We know thatGQ ⊂ ĜT , so the biggest subgroup ofGQ which could lie in ĜS 1
0,0 is exactlyGK , but

this whole subgroup does indeed lie in ĜS 1
0,0 since all Galois elements make the two diagrams in Theorem 3.1

commute.

3.2 The second main theorem

As explained in the introduction, the second main result of this article states that assuming the two conditions (∗)
and (∗∗) yield many relations on elements of ĜT previously introduced in the literature.

Theorem 3.4 Elements of ĜS 1
0,0 satisfy the five relations (R), (III′), (IV), (NT1) and (NT2) introduced in §1.

P r o o f. Let T denote the 4-punctured sphere, S the 5-punctured sphere and S′ the 6-punctured sphere as
before. Let us begin with the relations (NT1) and (NT2). We show that (∗∗) implies (NT2)

(
which in turn then

implies relation (II) of ĜT 1
)
, and then that (∗) and (I) imply (NT1).

Derivation of (NT2) by pulling out the 2nd and 4th strands from (∗). The relation (∗∗) is pure in the 2nd and
4th strands, so we can pull them out to obtain a relation in Γ̂S4(T ); renumbering 3 to 2, 5 to 3 and 6 to 4, and
using x34 = x12 and x14 = x23 in Γ̂(T ), we obtain

f
(
σ1σ2, σ

2
1

)
f
(
σ2

2 , σ1σ2

)
= f(x23, x12) = f

(
σ2

2 , σ
2
1

)
. (3.10)

Conjugating this relation by σ1σ2σ1, which exchanges σ1 and σ2, we obtain

f
(
σ2σ1, σ

2
2

)
f
(
σ2

1 , σ2σ1

)
= f

(
σ2

1 , σ
2
2

)
, (3.11)

which is (NT2). Let us recall how (NT2) implies relation (II) of ĜT 1. Let ω denote the order 3 inner automor-
phism of ΓS4(T ) given by

ω(X) = (σ2σ1)−1X(σ2σ1) .

If we let X be the left-hand side of (3.11) and compute ω2(X)ω(X)X , we trivially obtain the identity. However,
if we let X be the right-hand side f

(
σ2

1 , σ
2
2

)
of (3.11) and compute ω2(X)ω(X)X , we obtain

f
(
σ1σ

2
2σ

−1
1 , σ2

1

)
f
(
σ2

2 , σ1σ
2
2σ

−1
1

)
f
(
σ2

1 , σ
2
2

)
.
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Thus this expression is equal to 1. This is exactly relation (II) of ĜT 1, since inside Γ̂S4(T ), setting x = σ2
1 and

y = σ2
2 , we have z = (xy)−1 = σ1σ

2
2σ

−1
1 .

Derivation of (NT1) from (∗) with (I), (II) and (III). We begin by showing that (∗) implies the relation

f
(
σ2σ3σ2, σ

−1
2 σ−1

3 σ−1
2 σ2

1σ
2
4σ2σ3σ2

)
f
(
σ2

1σ
2
4 , σ2σ3σ2

)
= f

(
σ−1

2 σ2
1σ2, σ

−1
2 σ−1

3 σ−1
2 σ2

1σ2σ3σ2

)
f
(
σ2

4 , σ
−1
2 σ−1

3 σ2
4σ3σ2

)
f
(
σ2

1 , σ
−1
2 σ2

1σ2

)
.

(3.12)

This relation actually comes directly from the commutation of the diagram

Γ̂(T )
F̃ϕ′

��

fA

��

Γ̂S5(S)

fBϕ

��
Γ̂(T )

F̃ϕ′
�� Γ̂S5(S)

analogous to the first diagram of Theorem 3.1, except with Fϕ replaced by the homomorphism F̃ϕ′ : Γ̂(T ) →
Γ̂S5(S) given in (2.5) of Example 2.7 in §2. It is not obvious that the commutation of this diagram actually
follows from the other one, i.e., that (∗) implies (3.12). This key computation is due to Tsunogai ([20]). To prove
it, we rewrite (3.12) as follows, making use several times of the following standard trick: since f(x, y) lies in the
derived subgroup F̂ ′

2 of F̂2, for any γ commuting with both α and β in a profinite group G, we have

f(α, β) = f(α, βγ) . (3.13)

For the left-hand side, we use the fact that (σ2σ3σ2)−1σ51 commutes with both σ2σ3σ2 and with σ2
1σ

2
4 ,

and for the right-hand side the identity σ51 = σ4σ3σ2σ1σ
−1
2 σ−1

3 σ−1
4 = σ−1

4 σ−1
3 σ−1

2 σ1σ2σ3σ4 which leads to
σ−1

2 σ−1
3 σ−1

2 σ2
1σ2σ3σ2 = σ−1

51 σ
2
4σ51, so that (3.12) becomes

f
(
σ51, σ

−1
51 σ

2
1σ

2
4σ51

)
f
(
σ2

1σ
2
4 , σ51

)
= f

(
σ1σ

2
2σ

−1
1 , σ−1

51 σ
2
4σ51

)
f
(
σ2

4 , σ1σ
2
51σ

−1
1

)
f
(
σ2

1 , σ1σ
2
2σ

−1
1

)
.

Conjugating this by (σ1σ2σ3σ4)2, which advances all indices by 2 modulo 5, this gives

f
(
σ2, σ

−1
2 σ2

3σ
2
1σ5

)
f
(
σ2

1σ
2
3 , σ2

)
= f

(
σ3σ

2
4σ

−1
3 , σ−1

2 σ2
1σ2

)
f
(
σ2

1 , σ3σ
2
2σ

−1
3

)
f
(
σ2

3 , σ3σ
2
4σ

−1
3

)
.

(3.14)

We saw at the beginning of the proof of Theorem 3.1 that conjugating (∗) by σ3 yields the equivalent relation

f
(
σ2, σ

−1
2 σ2

1σ
2
3σ2

)
f
(
σ2

1σ
2
3 , σ2

)
= f

(
x51, σ

−1
2 σ2

1σ2

)
f
(
σ2

3 , σ3σ
2
2σ

−1
3

)
f(x12, x51) . (3.15)

So in order to prove that (∗) implies (3.12), it suffices to show that the right-hand sides of (3.15) and (3.14) are
equal. Conjugating them both by σ3 and using the equality σ−1

3 σ−1
2 σ2

1σ2σ3 = σ4x51σ
−1
4 , this means we must

show the equality

f
(
x51, σ4x51σ

−1
4

)
f
(
σ2

3 , σ
2
2)f(x12, x51

)
= f

(
σ2

4 , σ4x51σ
−1
4

)
f
(
σ2

1 , σ
2
2

)
f
(
σ2

3 , σ
2
4

)
.

Rewriting this as

f
(
σ4x51σ

−1
4 , x45

)
f
(
x51, σ4x51σ

−1
4

)
= f(x12, x23)f(x34, x45)f(x51, x12)f(x23, x34) ,

we see by a simple application of relation (II) that the left-hand side is equal to f(x51, x45), and therefore that
the entire equality holds by (III). We have thus shown that (∗) implies (3.12).

Now, relation (3.12) is pure in the 5th strand; pulling it out and using the identity σ2
1 = σ2

3 in Γ̂(T ) yields

f
(
σ2σ3σ2, σ

2
2

)
f
(
σ2

3 , σ2σ3σ2

)
= f

(
σ−1

2 σ2
1σ2, σ

2
2

)
f
(
σ2

1 , σ
−1
2 σ2

1σ2

)
= f

(
σ2

3 , σ
2
2

)
(3.16)
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in Γ̂(S0,4), the second equality being a simple consequence of relation (II) and σ2
1 = σ2

3 .
Conjugating this relation by σ1σ2σ1σ3σ2σ1 inside Γ̂S4(T ), which exchanges σ1 and σ3 and fixes σ2, it be-

comes

f
(
σ2

1 , σ
2
2

)
= f

(
σ1σ2σ1, σ

2
2

)
f
(
σ2

1 , σ1σ2σ1

)
, (3.17)

which is exactly (NT1). Note that since there is a unique g such that

f
(
σ2

1 , σ
2
2

)
= g

(
σ2

2 , σ
2
1

)−1
g
(
σ2

1 , σ
2
2

)
,

we find that

g
(
σ2

1 , σ
2
2

)
= f

(
σ2

1 , σ1σ2σ1

)
. (3.18)

Derivation of a new relation from (∗) using (I), (II) and (III). For this, we use the conjugation form of (∗)
given in (1.4), namely

σ
f(σ2

1σ
2
3 , σ2)

2 = σ
f(x12, x23)f(x34, x45)
2

in Γ̂S5(S0,5). Thus, we have

f
(
σ2

1σ
2
3 , σ2

)
= αf(x12, x23)f(x34, x45) (3.19)

for some α ∈ Γ̂S5(S0,5) commuting with σ2.
In order to compute α, we need to use the fact that f also satisfies relation (III) of ĜT . Using this relation,

there is a standard trick which works as follows. Let η be the order 2 automorphism of Γ̂S5(S0,5) given by
η(σ1) = σ3, η(σ2) = σ2, η(σ3) = σ1, η(σ4) = σ51 = σ4σ3σ2σ1σ

−1
2 σ−1

3 σ−1
4 , and η(σ51) = σ4. Then (3.19)

yields

1 = f
(
σ2, σ

2
1σ

2
3

)
f
(
σ2

1σ
2
3 , σ2

)
= η

(
f
(
σ2

1σ
2
3 , σ2

))−1
f
(
σ2

1σ
2
3 , σ2

)
= η(αf(x12, x34)f(x34, x45))−1 · αf(x12, x23)f(x34, x45)

= f(x51, x12)f(x23, x34)η(α)−1αf(x12, x23)f(x34, x45) .

(3.20)

By the pentagon relation (III) satisfied by f , we find that

η(α)−1α = f(x45, x51) .

Then we know that there is a unique solution for α, namely

α = g(x45, x51) = g
(
σ2

4 , σ
2
51

)
= f

(
σ2

4 , σ4σ51σ4

)
by (3.14) above. Therefore (3.19) can be rewritten precisely as

f
(
σ2

1σ
2
3 , σ2

)
= g(x45, x51)f(x12, x23)f(x34, x45)

= f(x45, σ4σ51σ4)f(x12, x23)f(x34, x45) .
(3.21)

Let us show now that this striking relation implies both (IV) and (III′).
Derivation of (III′) and (IV) from (∗) via (3.17). We just saw that (∗) implies (3.21). Now, since (3.21) is

pure in the 5th strand, we can pull that out; then, using σ2
1 = σ2

3 , i.e., x34 = x12 in Γ̂S4(S0,4), we find

f
(
σ4

1 , σ2

)
= f(x12, x23) = f

(
σ2

1 , σ
2
2

)
,

which is relation (IV).
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For relation (III′), we note that Equation (3.21) is similar but not equivalent to (III′), since the left-hand sides
differ, (III′) being given by

f
(
σ1σ3, σ

2
2

)
= f(x45, σ4σ51σ4)f(x12, x23)f(x34, x45) .

However, note that σ2
1 �→ σ1σ3 and σ2 �→ σ2 gives a group homomorphism from the subgroup 〈σ2

1 , σ2〉
of B̂4 (in which (IV) actually takes place) to the subgroup 〈σ1σ3, σ2〉 of Γ̂S5(S0,5). Therefore, applying this
homomorphism to (IV), we find that

f
(
σ2

1σ
2
3 , σ2

)
= f

(
σ1σ3, σ

2
2

)
,

so that as (3.21) implies (IV), it also implies (III′).
Derivation of (R) from (∗). We just saw that (*) implies (IV), so to conclude the proof of Theorem 3.4, it

suffices to recall that in fact (IV) (together with (I), (II) and (III)) implies (R). Indeed, we first rewrite (R) as

f
(
(σ2σ3)6, σ1

)
f(σ2

2 , σ
2
3)f

(
σ3σ2σ1σ

−1
2 σ−1

3 , (σ2σ3)6
)

· f
(
(σ1σ2)6, σ3σ2σ1σ

−1
2 σ−1

3

)
f(σ2

1 , σ
2
2)f

(
σ3, (σ1σ2)6

)
= 1 .

Applying relation (IV) to the 1st, 3rd, 4th and 6th factors yields

f(x51, x12)f(x23, x34)f(x14, x51)f(x45, x14)f(x12, x23)f(x34, x45) .

Applying (II) to the middle two terms yields

f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23)f(x34, x45) ,

which is just the pentagon, so is equal to 1. This concludes the proof of Theorem 3.4.
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98–107 (1984).
[6] D. Harbater and L. Schneps, Fundamental groups of moduli and the Grothendieck–Teichmüller group, Trans. Amer.

Math. Soc. 352, No. 7, 3117–3148 (2000).
[7] W. J. Harvey and C. MacLachlan, On mapping class groups and Teichmüller spaces, Proc. London Math. Soc. (3) 30,

496–512 (1975).
[8] A. Hatcher, P. Lochak, and L. Schneps, On the Teichmüller tower of mapping class groups, J. Reine Angew. Math 521,

1–24 (2000).
[9] Y. Ihara, On the embedding of Gal(Q/Q) into dGT , in: The Grothendieck Theory of Dessins d’Enfants, London Math-

ematical Society Lecture Notes Vol. 200 (Cambridge Univ. Press, Cambridge, 1994).
[10] Y. Ihara, On beta and gamma functions associated with the Grothendieck–Teichmüller group II, J. Reine Angew. Math.

527, 1–11 (2000).
[11] Y. Ihara and M. Matsumoto, On Galois actions on profinite completions of braid groups, in: Recent Developments in the

Inverse Galois Problem, Contemporary Mathematics Vol. 186 (Amer. Math. Soc., Providence, RI, 1995), pp. 173–200.
[12] K. Magaard, T. Shaska, S. Shpectorov, and H. Völklein, The locus of curves with prescribed automorphism group,

ArXiv Math. preprint math.AG/0205314, 2002.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 279, No. 5–6 (2006) 671

[13] H. Nakamura, Galois rigidity of pure sphere braid groups and profinite calculus (Appendix), J. Math. Sci. Univ. Tokyo
1, 71–136 (1994).

[14] H. Nakamura and L. Schneps, On a subgroup of the Grothendieck–Teichmüller group acting on the tower of profinite
Teichmüller modular groups, Invent. Math. 141, 503–560 (2000).

[15] H. Nakamura and H. Tsunogai, Harmonic and equianharmonic equations in the Grothendieck–Teichmüller group,
Forum. Math. 15 (6), 877–892 (2003).

[16] H. Nakamura and H. Tsunogai, Harmonic and equianharmonic equations in the Grothendieck–Teichmüller group II,
preprint (2003).

[17] T. Oda, Etale homotopy type of the moduli spaces of algebraic curves, in: Geometric Galois Actions I, edited P. Lochak
and L. Schneps, London Mathematical Society Lecture Notes Vol. 242 (Cambridge University Press, Cambridge, 1997).

[18] L. Schneps, Special loci in moduli spaces of curves, to appear in: Galois Groups and Fundamental Groups, MSRI
Publications (Cambridge University Press).

[19] L. Schneps, Groupoı̈des fondamentaux des espaces de modules en genre 0 et catégories tensorielles tressées, in: Espaces
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