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Abstract

A 6-parameter family of cyclic extensions of degree 8 is given over any field. This
family parametrizes all Cg extensions over a number of fields including @, any field con-
taining /2 or v/—1, all number fields having a single prime over 2, all local fields whose
residue field has characteristic different from 2 and all these fields with any number of
indeterminates adjoined.

Let G be a finite group and K a field. Let P(X,¢;,...,t,) be a polynomial defined
over K(ti,...,t,), where tq,...,t, are indeterminates. Let E be the splitting field of P
over K (ty,...,t,), and suppose that P has the following properties:

(i) the Galois group of E over K (t1,...,t,) is G,

(ii) every Galois extension Ey of K such that Gal(Fy/K) ~ G is the splitting field of
a polynomial of the form P(X,ay,...,a,) for some ay,...,a, € K.

We say that the polynomial P parametrizes all G-extensions of K. It is said to be
versal or generic for K if it satisfies the following additional property:
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(iii) Let F' be any field containing K. Then every Galois extension E; of F such that
Gal(E1/F) ~ G is the splitting field of a polynomial of the form P(X, «a,...,a,) for some
a1y...,0, € F.

Versal polynomials have been constructed for all cyclic groups of odd order (cf. [Sm]).
However the methods fail in the case of cyclic 2-groups of order > 8; in fact it is known
that there is no versal polynomial for the cyclic group of order 8 over @, for there exists a
Galois Cg-extension of Q, which cannot be obtained as the splitting field of a polynomial

obtained by specialization to values in @, of any Cg polynomial defined over Q(tq,...,t,)
(cf. [L],[Sal).
In this article we give an explicit extension F of K (t1,...,ts) having Galois group Cs

and which actually parametrizes all Cg-extensions of K (but is not versal) whenever K
satisfies a certain hypothesis. I owe particular thanks to J-P. Serre for asking me about
Cs extensions, and noticing that the hypothesis applies to more fields than I thought. I
also thank the ETH Ziirich for its hospitality and financial support during the preparation
of this paper. Finally, certain statements (in particular improvements of some parts of
Lemma 4 and the remark at the very end of the article) are due to helpful remarks by the

referee.

Let ¢ = /—1. Let Bra(K) be the kernel of multiplication by 2 in the Brauer group of
K. We write this group additively and denote by (a,b) the class of the quaternion algebra
(a,b) for a, b € K. We say that K satisfies hypothesis (H) if the following is true for K:

Hypothesis (H): For all d € K such that (—1,d) = 0 in Bra(K) and (2,d) = 0 in
Br, (K (7)), we have (2,d) = 0 in Bry(K).

After describing the extension E and proving that it parametrizes all Cg-extensions
of K whenever K satisfies (H), we give a list of fields satisfying (H), calculate an explicit
family of Cy extensions and consider what can happen over some fields not satisfying (H).

We construct a Cg-extension F of K (t1,...,ts) as follows. Let
D=1t +1t3 -t +2,
= (2tyt3 —t3 +t3 —t2+2)/D,

Yy = (2t2t3 — 2t1t2)/D,

(t2 — 2t1t3 +t2 +t2 + 2)/D,
w = (2t3 — 2t1)/D,

z

d=22+9y% = 22 — 2u?,

r=t; + 2,



u =tyr —t5y — t4y — tsz,

V=147 =ty +lay + s

up = (1/z)(ve — uy + uv/d)

vy = (1/z)(uz + vy — vV/d) and

v = (z+\/3)<2rd+u1\/m>-

Let K¢ = K(t1,...,t¢) and E = Kg(1/t6y). Let P(X,t1,...,ts) be the minimal
polynomial of \/tgy over Kg. It is easy to calculate P using a computer, however every
coefficient, even factored, takes several lines to write down, so we do not give it here. At
the end of the article we give an example of a one-parameter family of Cg polynomials.

Main Result: The Galois group Gal(E/Kg) is Cs. Moreover, if K is a field satisfying
(H), then every extension of K having Galois group Cg comes from E by specialization of
the parameters ¢; to values in K: that is, every such extension is the splitting field of a
polynomial of the form P(X,ay,...,a,) for a; € K.

The proof is contained in Lemmas 2 and 3. The essential idea of the construction
is the following. We first construct the complete set of Cy extensions of K which can be
embedded into a Cg extension. Let L be such a C, extension and K (v/d) its quadratic
subfield: we then construct the complete set of C; extensions of K(v/d) containing L.
Finally, we give the subset of these fields which are actually Galois over K.

Before proving the main result we recall some general facts about Cy extensions.

Lemma 1: Let d € K. Then

(i) There exists a Cy extension L/K containing K (v/d) if and only if (—1,d) = 0, i.e.
d is the sum of two squares x? + y2. If this is the case the complete set of such fields is

(L, = K(\/rd+ryVd) | r € K*}.

(ii) Suppose we have a Cy extension L, as in (i). Then L, can be embedded in a Cy
extension E/K if and only if (2,d) + (—1,7d) = 0 in Bra(K).

given by

(iii) Let d € K. Then K (v/d) can be embedded into a cyclic extension of K of degree
8 if and only if (—1,d) = 0 and there exists r € K such that (2,d) = (—1,7). If K satisfies
(H), these conditions become: (—1,d) = (2,d) = 0.

Proof: (i) A field K(vd)(y/a) for a € K(+/d) is a Galois Cy extension of K if and
only if Ny g x() = da® for some a € K*. Clearly this is the case for all the fields
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L.. If K(vd)(y/a) is a Cy extension, then all others containing K (v/d) are given by
K(Vd)(y/ra) for r € K*, so when d = z? + y?, the L, give the complete set. Now
suppose L is a Cy extension of K and K (v/d) is its quadratic subfield. Then we can write
L = K(v/d)(y/a) where a € K(+/d) and Ny (vayx (@) = da?, so writing a = a1 + a2V/d,

1

we have a3 — da? = da?, so d = a?(a® + a3) ™!, so it is the sum of two squares.

(ii) We briefly recall the main result about obstructions to embedding problems. Let
H be a group, G an extension of H by Cy and L/K a Galois extension with Galois group
H. Let {v, | ¢ € H} be a system of representatives for G/C> and let  be the factor
system defined by v,v, = ((0,T)vsr. The field L can be embedded in a Galois extension
E/K of Galois group G if and only if the crossed-product algebra (L/K, () splits (cf. [R])

In our case, we have H = Cy = Gal(L/K) and G = Cs. Let € be a generator of Cg so
e = —1, and take 1, €, €2 and € for the set {v,}. The algebra (L/K,() can be written
Z?:o Le*, where multiplication is given by ea = €(a)e, € acting on L via H. Since the
dimension of this algebra is 16 and it is killed by 2, it can be written as a a tensor product
of the two quaternion algebras. We claim that we can take (2, d) and (—1,10rd) to be these

two algebras, generated as follows. Let 0 = € — €3 and \ = \/rd + ryvd + \/rd — ryv/de2.
Then (2, d) is generated by o and v/d and (-1, 10rd) is generated by €2 and A+o o /2 (note
that each pair of generators anticommutes). To check that (L/K, () is a tensor product of
these two algebras it suffices to show that the generators of (2,d) commute with those of
(—1, 107d) and to notice that each of them is contained in (L/K, (). Note that (—1,10) =0
in Bro(K) so (—1,10rd) = (—1,rd), and the obstruction to the embedding problem as an
element of Bry(K) is (2,d) + (—1,rd). For similar considerations, see [K].

(iii) First suppose (—1,d) = 0 and there exists r such that (2,d) = (—1,7). Then
by (i), d = 2 +y? and L, = K(\/rd + ryv/d) is a Cy extension of K and by (ii), since
(2,d) + (—1,7d) = (2,d) + (—1,7) = 0, L, admits a Cs extension. Now suppose that E is
a Cg extension of K and let L be its Cy subfield and K (v/d) its quadratic subfield. Then
since K (v/d) admits the extension L, by (i) we must have (-1,d) = 0, d = 22 + y? and
L = L, for some r. Moreover, L, is embedded in the Cg extension F, so the obstruction to
the embedding problem (2,d) 4+ (—1,rd) must be trivial, so (2,d) = (—1,r). If K satisfies
(H), this condition implies that (2,d) = 0.

We now prove the main result in Lemmas 2 and 3.

Lemma 2: Gal(E/Kg) = Cs.

Proof: FE is an extension of degree 8 which contains a cyclic 4 extension of K, namely

L, = K(y/rd + ryv/d). To see that E is a Cg extension, it suffices to show that L, (,/7) is
one, which we do by checking the following two properties: firstly, L,(,/7) is a Galois Cjy
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extension of K (v/d) and secondly, L,(,/7) is Galois over K.
The field L, (,/7) is a cyclic 4 extension of K (v/d) by the identity

4r2d® — ud(rd + ry\/g) =vi(rd + ry\/a),

as in the proof of (i) of Lemma 1. The left hand side is, up to squares, just NLT/K(\/E) (),

so the field L,(,/7) is given by adjoining to K (v/d)(y/rd + ryv/d) the square root of an
element whose norm is, up to squares, equal to rd + ry+/d: such an extension is cyclic of
degree 4 (as in the proof of (i) in Lemma 1).

In order to verify that L. (,/7) is Galois over K it suffices to show that the product of
v with each of its conjugates is a square. This is clear for the conjugates of v over K (\/E)
since L, (7) is Galois over K (v/d). Therefore it suffices to check that v+ is a square where
~' is the conjugate of v under the map v/d — —v/d. This follows from the identity

2
vy = w? <2rd + \/47"2d2 +2((v? —u)z — 2uvy)r\/3> .

Thus, v times any of its conjugates is a square and therefore L, (,/7) is a Galois extension
of Kg of Galois group Cf§.

Lemma 3: If K satisfies (H), then the extension E of K¢ described above parametrizes
all Cg-extensions of K.

Proof: By Lemma 1, the set of d € K such that K (v/d) is contained in a Cg extension is
given by

In other words, d can be written in the form x2 +y? and also z2 — 2w?. Since the equation
z? 4+ y% — 22 + 2w? has an obvious solution (1,0, 1,0), the complete set of solutions can be
parametrized (the result is given in the description of the extension E/Kg).

By Lemma 1, the complete set of cyclic 4 extensions of K containing K (\/3) for such

a d and embeddable into a C's extension of K is given by L, = K(\/rd + ry\/a) forr € K*
such that (2,d) + (—1,7d) = (—1,7) = 0. This condition is parametrized by r = t7 + tZ.
Finally, over any such L,, we saw in Lemma 2 that L,(,/7) is a Cy extension of K, so the
complete set of Cs extensions of K containing L, is given by L,(,/57), s € K*.

We now take a look at which fields actually satisfy the hypothesis. The following list

is certainly not exhaustive.

Lemma 4: The following fields K satisfy hypothesis (H):

(i) K contains v/2 or /—1 or v/—2



(ii) K is a local field whose residue field is of characteristic different from 2

(iii) K = @

(iv) K is a number field with the following property: at most one of the completions
K, at the places v lying over 2 does not satisfy (H)

(v) K = k(t) where t is an indeterminate and k is an infinite field of characteristic
different from 2 which satisfies (H).

Proof: (i) If K contains v/2 then (2,d) = 0 in Bry(K). If K contains v/—1 and (2,d) =
(—1,z) then (2,d) = 0. Finally if K contains /-2, then (—1,d) =0 = (2,d) = (—2,d) =
0.

For (ii), it suffices to notice that any local field whose residue field is of characteristic
p # 2 contains the square root of —1, 2 or —2, for these numbers are units in X and thus
quadratically dependent. As pointed out by the referee, if a local field contains none of
these three square roots, it cannot satisfy (H), for if K satisfies (H) and does not contain
v/—1, then (2,d) = 0 in Bry(K(v/—1) for every d € K (by local class field theory). In
particular, (—1,d) = 0 = (2,d) = 0, and thus the square classes represented by —1 and 2
must be dependent, so 2 or —2 is a square in K.

Part (iii) is a direct consequence of (i) and (ii) since if (2,d) = 0 in Bry(IR) and
Bry(Q,) for all p # 2, then by the product formula (2,d) = 0 in Bry(Q,) and thus in
Bry(Q). Part (iv) is the same argument: if (2,d) = 0 in the Brauer groups of completions
of K at all places of K except one (the place over 2), then it is 0 everywhere and therefore
also in Bry(K).

(v) For this part, we need to use the following two basic facts about the Galois
cohomology of function fields (cf. [A]).

(1) Let X denote the set of discrete valuations of K which are trivial on k. For each
v € X let us write k(v) for the residue field of K,, the completion of K at v. Then we
have the following exact sequence:

0 — Bra(k) — Bra(K) — [ H' (k(v),2/28).

The last arrow is given by [ [, Res, where for each v € X,

Bry(K) — Bry(K,) 3 H (k(v),T/2) ~ k(v)*/k(v)*>.

(2) Let a = Y, (a;(t),b;(t)) be an element of Bry(K), and suppose its image under
I, Res, is trivial. Then by the above exact sequence « is an element of Bry(k). For
any value to € k which is not a zero or a pole of any of the a;(t) or the b;(t), we have

a =3 (ai(to), bi(to))-



We can now finish the proof of part (v) of the Lemma. Let d = d(t) and x = z(t) be
elements of K such that (—1,d) = 0 and (2,d) = (—1,z) in Bra(K). We first show that the
image of (2, d) under the map [] Res, is trivial. For any symbol (a,b) € Bra(K), the local
symbol (a,b), at a place v € X is trivial if there exist elements o’ and b’ € K such that
(a,b) = (a’,V’) in Bry(K) and o’ and b’ both have even valuations at v. We show that this
is the case for the symbol (2, d) at every place v € X. Since 2 and —1 have even valuations
and (2, d) is equal to (—1, ) by hypothesis, if either d or = has an even valuation at v the
local symbol (2,d), is trivial. If both d and x have odd valuations, then since (—1,d) =0
by hypothesis, we have (2,d) = (—1,z) = (—1,dz) and dz has an even valuation so again,
the local symbol (2, d), is trivial. This is true for every v € X so by the exact sequence in
(1), we find that (2,d) is in Bra(k).

By remark (2) above, if the symbol (2,d) = (2,d(t)) is in Bra(k), then for any tq € k
which is not a zero or pole of d(t) (and we can always find such a ¢ since k is an infinite
field), we have (—1,d) = (—1,d(to)) and (2,d) = (2,d(to)) = (—1,x) = (—1,x(to)). Thus,
since k satisfies hypothesis H, we must have (2,d) = (2,d(tp)) = 0 in Bra(k), so K satisfies
hypothesis (H). As remarked by the referee, this kind of argument shows that the field
K = k((t)) also satisfies (H). This concludes the proof of Lemma 4.

The minimal polynomial of the element ¢gy in 6 indeterminates is long and compli-
cated. However, it is easy to calculate various explicit families of Cs extensions. We give
one here over the field Q(t). Let d = 1 + t*. Then since d = (1 + t2)2 — 22, we have
(—1,d) = (2,d) = 0. Let L = Q(t)(v/d + t2+/d) be a cyclic 4 extension of Q(t) containing
Q(t)(Vd). Set

y= (1+t2+\/ﬁ)<2d+ (d+(1—t2)\/ﬁ)\/d+t2\/ﬁ>.

Then L(,/7) is a Galois Cy extension of Q(t). It is the splitting field of the polynomial:

X8 —8(1+t3) (1 4+t X + 82 (4 + t2) (1 + t4)>X* — 32t (1 + )3 X% 4+ 1653 (1 + t*)3.

Over fields K which do not satisfy (H), the extension E/Kg does not parametrize all
Cs-extensions of K. The easiest example is K = Q,. If we set d = 5, we have (—1,5), = 0.
But (2,5)2 # 0: yet (2,5)2 = (—1,3)s. In fact for any d € Z, d = 5 (mod 8), we obtain
such a counterexample. It is easy to construct number fields not satisfying (H) as well.
For example, let K be an extension of Q) of even degree such that 2 splits and there exist
primes p and ¢ € Q, inert in K, with p = 3 (mod 8) and ¢ = 5 (mod 8). Then (—1,¢) =0
and (2,¢) = (—1,p). Thus K(,/q) can be embedded into a Cs extension not obtained by
specialization from F.
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