On cyclic field extensions of degree 8

Leila Schneps

U.R.A.741 du CNRS, Laboratoire de Mathématiques Faculté des Sciences de Besançon 25030 Besançon Cedex

Abstract

A 6-parameter family of cyclic extensions of degree 8 is given over any field. This family parametrizes all C_8 extensions over a number of fields including \mathbb{Q} , any field containing $\sqrt{2}$ or $\sqrt{-1}$, all number fields having a single prime over 2, all local fields whose residue field has characteristic different from 2 and all these fields with any number of indeterminates adjoined.

*

Let G be a finite group and K a field. Let $P(X, t_1, ..., t_n)$ be a polynomial defined over $K(t_1, ..., t_n)$, where $t_1, ..., t_n$ are indeterminates. Let E be the splitting field of P over $K(t_1, ..., t_n)$, and suppose that P has the following properties:

- (i) the Galois group of E over $K(t_1, \ldots, t_n)$ is G,
- (ii) every Galois extension E_0 of K such that $Gal(E_0/K) \simeq G$ is the splitting field of a polynomial of the form $P(X, \alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in K$.

We say that the polynomial P parametrizes all G-extensions of K. It is said to be versal or generic for K if it satisfies the following additional property:

(iii) Let F be any field containing K. Then every Galois extension E_1 of F such that $\operatorname{Gal}(E_1/F) \simeq G$ is the splitting field of a polynomial of the form $P(X, \alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in F$.

Versal polynomials have been constructed for all cyclic groups of odd order (cf. [Sm]). However the methods fail in the case of cyclic 2-groups of order ≥ 8 ; in fact it is known that there is no versal polynomial for the cyclic group of order 8 over \mathbb{Q} , for there exists a Galois C_8 -extension of \mathbb{Q}_2 which cannot be obtained as the splitting field of a polynomial obtained by specialization to values in \mathbb{Q}_2 of any C_8 polynomial defined over $\mathbb{Q}(t_1,\ldots,t_n)$ (cf. [L],[Sa]).

In this article we give an explicit extension E of $K(t_1, \ldots, t_6)$ having Galois group C_8 and which actually parametrizes all C_8 -extensions of K (but is not versal) whenever K satisfies a certain hypothesis. I owe particular thanks to J-P. Serre for asking me about C_8 extensions, and noticing that the hypothesis applies to more fields than I thought. I also thank the ETH Zürich for its hospitality and financial support during the preparation of this paper. Finally, certain statements (in particular improvements of some parts of Lemma 4 and the remark at the very end of the article) are due to helpful remarks by the referee.

Let $i = \sqrt{-1}$. Let $Br_2(K)$ be the kernel of multiplication by 2 in the Brauer group of K. We write this group additively and denote by (a, b) the class of the quaternion algebra (a, b) for $a, b \in K$. We say that K satisfies hypothesis (H) if the following is true for K:

Hypothesis (H): For all $d \in K$ such that (-1, d) = 0 in $Br_2(K)$ and (2, d) = 0 in $Br_2(K(i))$, we have (2, d) = 0 in $Br_2(K)$.

After describing the extension E and proving that it parametrizes all C_8 -extensions of K whenever K satisfies (H), we give a list of fields satisfying (H), calculate an explicit family of C_8 extensions and consider what can happen over some fields not satisfying (H).

We construct a C_8 -extension E of $K(t_1, \ldots, t_6)$ as follows. Let

$$\begin{split} D &= t_1^2 + t_2^2 - t_3^2 + 2, \\ x &= (2t_1t_3 - t_1^2 + t_2^2 - t_3^2 + 2)/D, \\ y &= (2t_2t_3 - 2t_1t_2)/D, \\ z &= (t_3^2 - 2t_1t_3 + t_1^2 + t_2^2 + 2)/D, \\ w &= (2t_3 - 2t_1)/D, \\ d &= x^2 + y^2 = z^2 - 2w^2, \\ r &= t_4^2 + t_5^2, \end{split}$$

$$u = t_4 x - t_5 y - t_4 y - t_5 x,$$

$$v = t_4 x - t_5 y + t_4 y + t_5 x$$

$$u_1 = (1/x)(vx - uy + u\sqrt{d})$$

$$v_1 = (1/x)(ux + vy - v\sqrt{d}) \text{ and}$$

$$\gamma = (z + \sqrt{d}) \left(2rd + u_1\sqrt{rd + ry\sqrt{d}}\right).$$

Let $K_6 = K(t_1, ..., t_6)$ and $E = K_6(\sqrt{t_6\gamma})$. Let $P(X, t_1, ..., t_6)$ be the minimal polynomial of $\sqrt{t_6\gamma}$ over K_6 . It is easy to calculate P using a computer, however every coefficient, even factored, takes several lines to write down, so we do not give it here. At the end of the article we give an example of a one-parameter family of C_8 polynomials.

Main Result: The Galois group $Gal(E/K_6)$ is C_8 . Moreover, if K is a field satisfying (H), then every extension of K having Galois group C_8 comes from E by specialization of the parameters t_i to values in K: that is, every such extension is the splitting field of a polynomial of the form $P(X, \alpha_1, \ldots, \alpha_n)$ for $\alpha_i \in K$.

The proof is contained in Lemmas 2 and 3. The essential idea of the construction is the following. We first construct the complete set of C_4 extensions of K which can be embedded into a C_8 extension. Let L be such a C_4 extension and $K(\sqrt{d})$ its quadratic subfield: we then construct the complete set of C_4 extensions of $K(\sqrt{d})$ containing L. Finally, we give the subset of these fields which are actually Galois over K.

Before proving the main result we recall some general facts about C_8 extensions.

Lemma 1: Let $d \in K$. Then

(i) There exists a C_4 extension L/K containing $K(\sqrt{d})$ if and only if (-1, d) = 0, i.e. d is the sum of two squares $x^2 + y^2$. If this is the case the complete set of such fields is given by

$$\{L_r = K(\sqrt{rd + ry\sqrt{d}}) \mid r \in K^*\}.$$

- (ii) Suppose we have a C_4 extension L_r as in (i). Then L_r can be embedded in a C_8 extension E/K if and only if (2,d) + (-1,rd) = 0 in $\operatorname{Br}_2(K)$.
- (iii) Let $d \in K$. Then $K(\sqrt{d})$ can be embedded into a cyclic extension of K of degree 8 if and only if (-1, d) = 0 and there exists $r \in K$ such that (2, d) = (-1, r). If K satisfies (H), these conditions become: (-1, d) = (2, d) = 0.
- Proof: (i) A field $K(\sqrt{d})(\sqrt{\alpha})$ for $\alpha \in K(\sqrt{d})$ is a Galois C_4 extension of K if and only if $N_{K(\sqrt{d})/K}(\alpha) = da^2$ for some $a \in K^*$. Clearly this is the case for all the fields

 L_r . If $K(\sqrt{d})(\sqrt{\alpha})$ is a C_4 extension, then all others containing $K(\sqrt{d})$ are given by $K(\sqrt{d})(\sqrt{r\alpha})$ for $r \in K^*$, so when $d = x^2 + y^2$, the L_r give the complete set. Now suppose L is a C_4 extension of K and $K(\sqrt{d})$ is its quadratic subfield. Then we can write $L = K(\sqrt{d})(\sqrt{\alpha})$ where $\alpha \in K(\sqrt{d})$ and $N_{K(\sqrt{d})/K}(\alpha) = da^2$, so writing $\alpha = a_1 + a_2\sqrt{d}$, we have $a_1^2 - da_2^2 = da^2$, so $d = a_1^2(a^2 + a_2^2)^{-1}$, so it is the sum of two squares.

(ii) We briefly recall the main result about obstructions to embedding problems. Let H be a group, G an extension of H by C_2 and L/K a Galois extension with Galois group H. Let $\{v_{\sigma} \mid \sigma \in H\}$ be a system of representatives for G/C_2 and let ζ be the factor system defined by $v_{\sigma}v_{\tau} = \zeta(\sigma,\tau)v_{\sigma\tau}$. The field L can be embedded in a Galois extension E/K of Galois group G if and only if the crossed-product algebra $(L/K,\zeta)$ splits (cf. [R]) In our case, we have $H = C_4 = \operatorname{Gal}(L/K)$ and $G = C_8$. Let ϵ be a generator of C_8 so $\epsilon^4 = -1$, and take $1, \epsilon, \epsilon^2$ and ϵ^3 for the set $\{v_{\sigma}\}$. The algebra $(L/K,\zeta)$ can be written

 $\epsilon^4=-1$, and take 1, ϵ , ϵ^2 and ϵ^3 for the set $\{v_\sigma\}$. The algebra $(L/K,\zeta)$ can be written $\sum_{i=0}^3 L\epsilon^i$, where multiplication is given by $\epsilon\alpha=\epsilon(\alpha)\epsilon$, ϵ acting on L via H. Since the dimension of this algebra is 16 and it is killed by 2, it can be written as a a tensor product of the two quaternion algebras. We claim that we can take (2,d) and (-1,10rd) to be these two algebras, generated as follows. Let $\sigma=\epsilon-\epsilon^3$ and $\lambda=\sqrt{rd+ry\sqrt{d}}+\sqrt{rd-ry\sqrt{d}}\epsilon^2$. Then (2,d) is generated by σ and \sqrt{d} and (-1,10rd) is generated by ϵ^2 and $\lambda+\sigma\lambda\sigma/2$ (note that each pair of generators anticommutes). To check that $(L/K,\zeta)$ is a tensor product of these two algebras it suffices to show that the generators of (2,d) commute with those of (-1,10rd) and to notice that each of them is contained in $(L/K,\zeta)$. Note that (-1,10)=0 in $\mathrm{Br}_2(K)$ so (-1,10rd)=(-1,rd), and the obstruction to the embedding problem as an element of $\mathrm{Br}_2(K)$ is (2,d)+(-1,rd). For similar considerations, see [K].

(iii) First suppose (-1,d)=0 and there exists r such that (2,d)=(-1,r). Then by (i), $d=x^2+y^2$ and $L_r=K(\sqrt{rd+ry\sqrt{d}})$ is a C_4 extension of K and by (ii), since (2,d)+(-1,rd)=(2,d)+(-1,r)=0, L_r admits a C_8 extension. Now suppose that E is a C_8 extension of K and let L be its C_4 subfield and $K(\sqrt{d})$ its quadratic subfield. Then since $K(\sqrt{d})$ admits the extension L, by (i) we must have (-1,d)=0, $d=x^2+y^2$ and $L=L_r$ for some r. Moreover, L_r is embedded in the C_8 extension E, so the obstruction to the embedding problem (2,d)+(-1,rd) must be trivial, so (2,d)=(-1,r). If K satisfies (H), this condition implies that (2,d)=0.

We now prove the main result in Lemmas 2 and 3.

Lemma 2: $Gal(E/K_6) = C_8$.

Proof: E is an extension of degree 8 which contains a cyclic 4 extension of K, namely $L_r = K(\sqrt{rd + ry\sqrt{d}})$. To see that E is a C_8 extension, it suffices to show that $L_r(\sqrt{\gamma})$ is one, which we do by checking the following two properties: firstly, $L_r(\sqrt{\gamma})$ is a Galois C_4

extension of $K(\sqrt{d})$ and secondly, $L_r(\sqrt{\gamma})$ is Galois over K.

The field $L_r(\sqrt{\gamma})$ is a cyclic 4 extension of $K(\sqrt{d})$ by the identity

$$4r^{2}d^{2} - u_{1}^{2}(rd + ry\sqrt{d}) = v_{1}^{2}(rd + ry\sqrt{d}),$$

as in the proof of (i) of Lemma 1. The left hand side is, up to squares, just $N_{L_r/K(\sqrt{d})}(\gamma)$, so the field $L_r(\sqrt{\gamma})$ is given by adjoining to $K(\sqrt{d})(\sqrt{rd+ry\sqrt{d}})$ the square root of an element whose norm is, up to squares, equal to $rd+ry\sqrt{d}$: such an extension is cyclic of degree 4 (as in the proof of (i) in Lemma 1).

In order to verify that $L_r(\sqrt{\gamma})$ is Galois over K it suffices to show that the product of γ with each of its conjugates is a square. This is clear for the conjugates of γ over $K(\sqrt{d})$ since $L_r(\gamma)$ is Galois over $K(\sqrt{d})$. Therefore it suffices to check that $\gamma\gamma'$ is a square where γ' is the conjugate of γ under the map $\sqrt{d} \to -\sqrt{d}$. This follows from the identity

$$\gamma \gamma' = w^2 \left(2rd + \sqrt{4r^2d^2 + 2((v^2 - u^2)x - 2uvy)r\sqrt{d}} \right)^2.$$

Thus, γ times any of its conjugates is a square and therefore $L_r(\sqrt{\gamma})$ is a Galois extension of K_6 of Galois group C_8 .

Lemma 3: If K satisfies (H), then the extension E of K_6 described above parametrizes all C_8 -extensions of K.

Proof: By Lemma 1, the set of $d \in K$ such that $K(\sqrt{d})$ is contained in a C_8 extension is given by

$${d \in K \mid (-1,d) = (2,d) = 0}.$$

In other words, d can be written in the form $x^2 + y^2$ and also $z^2 - 2w^2$. Since the equation $x^2 + y^2 - z^2 + 2w^2$ has an obvious solution (1, 0, 1, 0), the complete set of solutions can be parametrized (the result is given in the description of the extension E/K_6).

By Lemma 1, the complete set of cyclic 4 extensions of K containing $K(\sqrt{d})$ for such a d and embeddable into a C_8 extension of K is given by $L_r = K(\sqrt{rd + ry\sqrt{d}})$ for $r \in K^*$ such that (2,d) + (-1,rd) = (-1,r) = 0. This condition is parametrized by $r = t_4^2 + t_5^2$. Finally, over any such L_r , we saw in Lemma 2 that $L_r(\sqrt{\gamma})$ is a C_8 extension of K, so the complete set of C_8 extensions of K containing L_r is given by $L_r(\sqrt{s\gamma})$, $s \in K^*$.

We now take a look at which fields actually satisfy the hypothesis. The following list is certainly not exhaustive.

Lemma 4: The following fields K satisfy hypothesis (H):

(i) K contains
$$\sqrt{2}$$
 or $\sqrt{-1}$ or $\sqrt{-2}$

- (ii) K is a local field whose residue field is of characteristic different from 2
- (iii) $K = \mathbb{Q}$
- (iv) K is a number field with the following property: at most one of the completions K_v at the places v lying over 2 does not satisfy (H)
- (v) K = k(t) where t is an indeterminate and k is an infinite field of characteristic different from 2 which satisfies (H).

Proof: (i) If K contains $\sqrt{2}$ then (2,d)=0 in $\operatorname{Br}_2(K)$. If K contains $\sqrt{-1}$ and (2,d)=(-1,x) then (2,d)=0. Finally if K contains $\sqrt{-2}$, then $(-1,d)=0 \Rightarrow (2,d)=(-2,d)=0$.

For (ii), it suffices to notice that any local field whose residue field is of characteristic $p \neq 2$ contains the square root of -1, 2 or -2, for these numbers are units in K and thus quadratically dependent. As pointed out by the referee, if a local field contains none of these three square roots, it cannot satisfy (H), for if K satisfies (H) and does not contain $\sqrt{-1}$, then (2,d)=0 in $\operatorname{Br}_2(K(\sqrt{-1}))$ for every $d\in K$ (by local class field theory). In particular, $(-1,d)=0 \Rightarrow (2,d)=0$, and thus the square classes represented by -1 and 2 must be dependent, so 2 or -2 is a square in K.

Part (iii) is a direct consequence of (i) and (ii) since if (2, d) = 0 in $Br_2(\mathbb{R})$ and $Br_2(\mathbb{Q}_p)$ for all $p \neq 2$, then by the product formula (2, d) = 0 in $Br_2(\mathbb{Q}_2)$ and thus in $Br_2(\mathbb{Q})$. Part (iv) is the same argument: if (2, d) = 0 in the Brauer groups of completions of K at all places of K except one (the place over 2), then it is 0 everywhere and therefore also in $Br_2(K)$.

- (v) For this part, we need to use the following two basic facts about the Galois cohomology of function fields (cf. [A]).
- (1) Let X denote the set of discrete valuations of K which are trivial on k. For each $v \in X$ let us write k(v) for the residue field of K_v , the completion of K at v. Then we have the following exact sequence:

$$0 o \operatorname{Br}_2(k) o \operatorname{Br}_2(K) o \prod_{v \in X} H^1ig(k(v), \mathbf{Z}/2\mathbf{Z}ig).$$

The last arrow is given by $\prod_{v} \operatorname{Res}_{v}$ where for each $v \in X$,

$$\operatorname{Br}_2(K) o \operatorname{Br}_2(K_v) \overset{\operatorname{Res}_v}{ o} H^1ig(k(v), \mathbf{Z}/2\mathbf{Z}ig) \simeq k(v)^*/k(v)^{*\,2}.$$

(2) Let $\alpha = \sum_i (a_i(t), b_i(t))$ be an element of $\operatorname{Br}_2(K)$, and suppose its image under $\prod_v \operatorname{Res}_v$ is trivial. Then by the above exact sequence α is an element of $\operatorname{Br}_2(k)$. For any value $t_0 \in k$ which is not a zero or a pole of any of the $a_i(t)$ or the $b_i(t)$, we have $\alpha = \sum_i (a_i(t_0), b_i(t_0))$.

We can now finish the proof of part (v) of the Lemma. Let d = d(t) and x = x(t) be elements of K such that (-1,d) = 0 and (2,d) = (-1,x) in $\operatorname{Br}_2(K)$. We first show that the image of (2,d) under the map $\prod \operatorname{Res}_v$ is trivial. For any symbol $(a,b) \in \operatorname{Br}_2(K)$, the local symbol $(a,b)_v$ at a place $v \in X$ is trivial if there exist elements a' and $b' \in K$ such that (a,b) = (a',b') in $\operatorname{Br}_2(K)$ and a' and b' both have even valuations at v. We show that this is the case for the symbol (2,d) at every place $v \in X$. Since 2 and -1 have even valuations and (2,d) is equal to (-1,x) by hypothesis, if either d or x has an even valuation at v the local symbol $(2,d)_v$ is trivial. If both d and x have odd valuations, then since (-1,d)=0 by hypothesis, we have (2,d)=(-1,x)=(-1,dx) and dx has an even valuation so again, the local symbol $(2,d)_v$ is trivial. This is true for every $v \in X$ so by the exact sequence in (1), we find that (2,d) is in $\operatorname{Br}_2(k)$.

By remark (2) above, if the symbol (2, d) = (2, d(t)) is in $Br_2(k)$, then for any $t_0 \in k$ which is not a zero or pole of d(t) (and we can always find such a t_0 since k is an infinite field), we have $(-1, d) = (-1, d(t_0))$ and $(2, d) = (2, d(t_0)) = (-1, x) = (-1, x(t_0))$. Thus, since k satisfies hypothesis H, we must have $(2, d) = (2, d(t_0)) = 0$ in $Br_2(k)$, so K satisfies hypothesis (H). As remarked by the referee, this kind of argument shows that the field K = k(t) also satisfies (H). This concludes the proof of Lemma 4.

The minimal polynomial of the element $t_6\gamma$ in 6 indeterminates is long and complicated. However, it is easy to calculate various explicit families of C_8 extensions. We give one here over the field $\mathbb{Q}(t)$. Let $d=1+t^4$. Then since $d=(1+t^2)^2-2t^2$, we have (-1,d)=(2,d)=0. Let $L=\mathbb{Q}(t)(\sqrt{d+t^2\sqrt{d}})$ be a cyclic 4 extension of $\mathbb{Q}(t)$ containing $\mathbb{Q}(t)(\sqrt{d})$. Set

$$\gamma = (1 + t^2 + \sqrt{d}) \left(2d + \left(d + (1 - t^2)\sqrt{d} \right) \sqrt{d + t^2\sqrt{d}} \right).$$

Then $L(\sqrt{\gamma})$ is a Galois C_8 extension of $\mathbb{Q}(t)$. It is the splitting field of the polynomial:

$$X^8 - 8(1+t^2)(1+t^4)X^6 + 8t^2(4+t^2)(1+t^4)^2X^4 - 32t^4(1+t^4)^3X^2 + 16t^8(1+t^4)^3.$$

Over fields K which do not satisfy (H), the extension E/K_6 does not parametrize all C_8 -extensions of K. The easiest example is $K = \mathbb{Q}_2$. If we set d = 5, we have $(-1,5)_2 = 0$. But $(2,5)_2 \neq 0$: yet $(2,5)_2 = (-1,3)_2$. In fact for any $d \in \mathbb{Z}$, $d \equiv 5 \pmod 8$, we obtain such a counterexample. It is easy to construct number fields not satisfying (H) as well. For example, let K be an extension of \mathbb{Q} of even degree such that 2 splits and there exist primes p and $q \in \mathbb{Q}$, inert in K, with $p \equiv 3 \pmod 8$ and $q \equiv 5 \pmod 8$. Then (-1,q) = 0 and (2,q) = (-1,p). Thus $K(\sqrt{q})$ can be embedded into a C_8 extension not obtained by specialization from E.

References

- [A] J. Arason, Cohomologische Invarianten Quadratischer Formen. J. Algebra 36 (1975), 448-491.
- [K] I. Kiming, Explicit classification of some 2-extensions of a field of characteristic field of characteristic different from 2, Can. J. Math 42 (1990), 825-855.
- [L] H.W. Lenstra, Jr. Rational functions invariant under a finite abelian group. *Inv. Math.* **25** (1974), 299-325.
- [Re] I. Reiner, *Maximal Orders*. London-New York- San Francisco, Academic Press, 1975.
- [Sa] D. Saltman. Generic Galois extensions and problems in field theory. Adv. in Math. 43 (1982), 250-283.
- [Sm] G.W. Smith, Construction of generic cyclic polynomials, *Comm. Alg.* **19(12)** (1991), 3367-3391.