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Abstract. Let ds denote the double shuffle Lie algebra, equipped with the
standard weight grading and depth filtration; we write ds = ⊕n≥3dsn and denote
the filtration by ds1 ⊃ ds2 ⊃ · · ·. The double shuffle Lie algebra is dual to the new
formal multizeta space nfz = ⊕n≥3nfzn, which is equipped with the dual depth
filtration nfz1 ⊂ nfz2 ⊂ · · · Via an explicit canonical isomorphism ds

∼→ nfz, we
define the “dual” in nfz of an element in ds. For each weight n ≥ 3 and depth
d ≥ 1, we then define the vector subspace dsn,d of ds as the space of elements in
dsd

n − dsd+1
n whose duals lie in nfzd

n. We prove the direct sum decomposition

ds =
⊕
n≥3

⊕
d≥1

dsn,d,

which yields a canonical vector space isomorphism between ds and its associated
graded for the depth filtration, dsn,d ' dsd

n/dsd+1
n . A basis of ds respecting

this decomposition is dual-depth adapted, which means that it is adapted to the
depth filtration on ds, and the basis of dual elements is adapted to the dual depth
filtration on nfz. We use this notion to give a canonical depth 1 generator fn for
ds in each odd weight n ≥ 3, namely the dual of the new formal single zeta value
ζ(n) ∈ nfzn. At the end, we also apply the result to give canonical irreducibles
for the formal multizeta algebra in weights up to 12.

§1. Formal multizeta values and the double shuffle Lie algebra

We begin by briefly recalling the definitions of the Hopf algebra of formal multizeta values, the double
shuffle Lie algebra, their duals, and the relations between them.

Consider the following diagram, in which the four top spaces are Hopf algebras. The top right-hand
space is the free polynomial ring in two non-commutative variables, and the top left-hand space is its dual,
with the dual of a word w ∈ Q〈x, y〉 denoted by the formal symbol Z(w). The space Q〈x, y〉 is equipped with
the standard coproduct defined by ∆(x) = x⊗ 1 + 1⊗ x and ∆(y) = y ⊗ 1 + 1⊗ y, and its dual is equipped
with the Goncharov coproduct ∆G (cf. [3]). The multiplication on Q[Z(w)] is the shuffle; the multiplication
on Q〈x, y〉 is difficult to write down explicitly, but is defined by being dual to ∆G. The top horizontal arrow
simply maps a word w to the formal dual symbol Z(w).

Q[Z(w)]

����

Q〈x, y〉∼oo

FZ

����

FZ∗
?�

OO

∼oo

nfz ds
?�

OO

∼oo

(1)

The Hopf algebra of formal multizeta values FZ is the quotient of Q[Z(w)] modulo the regularized shuffle
and stuffle relations; we write Z(w) for the image of Z(w) in this space.

All spaces in the diagram inherit the positive weight grading from the top level, which is simply the
degree of monomials in x and y. On the left-hand side of the diagram, this follows from the fact that the
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linear relations defining the quotients all take place within fixed weights. In particular, the weight 0 part of
the top four spaces is equal to Q.

At the bottom left is the Lie coalgebra of new formal multizeta values, obtained by quotienting FZ
by the ideal generated by FZ0 = Q, by Z(xy) (usually denoted Z(2) under the frequently used notation
Z(xk1−1y · · ·xkr−1y) = Z(k1, . . . , kr) for words w ending in y), and by products

(
FZ≥1

)2. The Goncharov
coproduct passes to a Lie cobracket δG on nfz (by first removing the primitive part, i.e. setting ∆′

G(x) =
∆G(x) − x ⊗ 1 − 1 ⊗ x, and then taking δG to be ∆′

G modulo products). Any vector basis of nfz, together
with 1 and Z(2), yields a system of multiplicative generators (irreducibles) for the Q-algebra FZ. One of the
frequently asked questions about FZ is whether there exists a canonical, or at least a very natural system
of irreducibles.

The dual of nfz is known as the double shuffle Lie algebra ds. The horizontal arrows in the diagram are
duality isomorphisms obtained by restricting the top arrow w 7→ Z(w) to the lower right-hand entries of the
diagram, which are subsets of Q〈x, y〉.

The space Q〈x, y〉 is equipped with a depth filtration defined by taking the depth of a polynomial f(x, y)
to be the smallest number of y’s occurring in any monomial of f ; the space Qd〈x, y〉 is the vector space of
polynomials of depth ≥ d. This is a decreasing filtration Qd〈x, y〉 ⊃ Qd+1〈x, y〉, and by intersection it induces
a decreasing filtration on the subspaces FZ∗ and nfz∗ = ds. Each of the left-hand spaces A is equipped
with the dual filtration, in which on each horizontal level A ← A∗, we define Ad to be the subspace of A
annihilated by (A∗)d+1; thus the filtration on the left-hand spaces is increasing, Ad ⊂ Ad+1. The filtrations
induce filtrations on each weight graded piece An and A∗n. By duality, on each horizontal level A ← A∗ of
the diagram we have

(A∗)d
n/(A∗)d+1

n ' Ad
n/Ad−1

n . (2)

One can also give a direct definition of the double shuffle Lie algebra by characterizing the polynomials
of Q〈x, y〉 which lie in ds as follows.

Let Lie[x, y] denote the free Lie algebra on two generators, with a weight grading given by polynomial
degree. For a polynomial f in x and y and any word w in x and y, let (f |w) denote the coefficient of the
word w in f , and extend this definition to (f |g) for polynomials g in x and y by right linearity.

Then the underlying vector space of the double shuffle Lie algebra ds can be defined as follows:

ds =
{
f ∈ Lie≥3[x, y]

∣∣∣∣(f |st(u, v)
)

= 0 ∀ u, v ∈ Q〈x, y〉 y
}
,

where st(u, v) denotes the stuffle product of words ending in y. For every f ∈ Lie[x, y], let Df be the
associated derivation of Lie[x, y] defined by Df (x) = 0, Dg(y) = [y, f ]. The Poisson bracket

{f, g} = [f, g] + Df (g)−Dg(f)

arises naturally from bracketing derivations since [Df , Dg] = Df ◦ Dg − Dg ◦ Df = D{f,g}. The space ds
is a Lie algebra under the Poisson bracket. There are three independent and very different proofs of this
fact. Racinet [4] gave a direct proof, whereas Goncharov proved it by showing that his cobracket δG on nfz
is dual to the Poisson bracket, i.e. 〈δG(z), f ∧ g〉 = 〈z, {f, g}〉 for z ∈ nfz and f, g ∈ ds. Ecalle [1] gave a very
different proof, by embedding the whole situation in the vaster “ARI/GARI” theory.

§2. Canonical dual-depth adapted decomposition of the double shuffle Lie algebra

In this section we show how the double shuffle Lie algebra ds is canonically isomorphic to its associ-
ated graded ⊕dsd

n/dsd+1
n , and how this leads to the choice of particularly well-adapted bases for the depth

filtrations of ds and its dual nfz.
The striking fact about placing the Lie algebra ds and its new formal multizeta value dual nfz within

the diagram (1) is that the canonical top arrow induces explicit canonical duality isomorphisms

δ : FZ∗ ∼→ FZ, δ : ds
∼→ nfz. (3)

2



This map δ is completely explicit: to calculate the image of a polynomial f under δ, one first replaces
each word w in f by the formal symbol Z(w), then replaces each non-convergent symbol Z(w) by a linear
combination of convergent symbols (“shuffle regularization”) using for example the explicit formulas in [2,
Prop. 3.2.3], and finally passes to the quotient modulo the linear system of regularized stuffle relations.

For odd n ≥ 3, let z(n) ∈ nfz denote the image in nfz of the single zeta value Z(n) ∈ FZ. The intuition
which makes it desirable to single out elements of ds which are “dual to” the new single zeta values z(n) ∈ nfz
for odd n ≥ 3 acquires a meaning in this context; there is a “dual element” of z(n) in ds, namely the unique
depth 1 element fn ∈ dsn which maps to z(n) under the duality isomorphism δ of (3).

Definition. A canonical system of depth 1 generators in odd weights n ≥ 3 for ds is given by the set of
elements

fn ∈ dsn such that δ(fn) = z(n) ∈ nfzn.

In the following theorem, we generalize this approach to finding “good” bases of the double shuffle Lie
algebra, and in §3, we will use the map δ to turn these bases into systems of ring generators for FZ.

Theorem 1. (i) The Lie algebra ds has a canonical decomposition as a direct sum of subvector spaces

ds =
⊕
n≥3

⊕
d≥1

dsn,d, (4)

where dsn,d =
{
f ∈ dsd

n − dsd+1
n

∣∣ δ(f) ∈ nfzd
n

}
.

(ii) For every n ≥ 3, d ≥ 1, the map

dsn,d → dsd
n/dsd+1

n (5)

sending an element of dsn,d ⊂ dsd
n to the quotient is an isomorphism. Thus, as a vector space, ds is

canonically isomorphic to its associated graded for the depth filtration.

Remark 1. The existence of a canonical system of irreducibles (ring generators) for FZ has been an open
question for a long time. The present paper does not give a unique system of irreducibles, but it gives rise to
systems having the agreeable property of being dual-depth adapted. To obtain a set of irreducibles for FZ
from a basis of ds, one considers the basis elements as lying in FZ∗, and takes their duals (images under δ)
in FZ. Note that in fact, the choice of irreducible is canonical up to scalar multiple whenever dim dsn,d = 1;
this is always the case for d = 1 and odd n, as we saw (the spaces dsn,1 = 0 for even n), and also for all d
in weights up to 12. We can thus give a complete table of canonical irreducibles for FZ up through weight
12, which is done in §3.

Remark 2. The decomposition (4) of ds does not respect the Lie algebra structure of ds, in the sense that

{dsn,d, dsn′,d′} 6⊂ dsn+n′,d+d′ .

Indeed, take f3 ∈ ds1
3, f9 ∈ ds1

9; then the dual of the Poisson bracket {f3, f9} lies in nfz412 but not in nfz212.

The proof of theorem 1 is just a consequence of totally general results on filtered vector spaces and their
filtered duals, when these vector spaces are linked by an explicit isomorphism mapping.

Definition. Let V be a finite-dimensional vector space equipped with an increasing (resp. decreasing)
filtration and a fixed isomorphism δ : V ∗ → V . A basis for V is said to be adapted to the filtration if the
images of the basis elements in V d−V d−1 (resp. V d−V d+1) form a basis for the filtered quotient V d/V d−1

(resp. V d/V d+1). A basis of V ∗ is said to be adapted to the dual filtrations if it is adapted to the filtration
on V ∗, and the dual basis elements (images of the basis elements under the isomorphism V ∗ → V ) form a
basis adapted to the dual filtration of V .

In the cases of FZ∗ and FZ, or ds and nfz, equipped with the dual depth filtrations and the isomorphisms
that descend from the top level of diagram (1), we say that a basis adapted to the dual filtrations is dual-depth
adapted.
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Lemma 2. Let V be a finite dimensional Q-vector space V equipped with an increasing filtration {0} = V 1 ⊂
· · · ⊂ V d ⊂ V d+1 ⊂ · · ·. Equip the dual space V ∗ with the dual decreasing filtration (V ∗)1 = V ∗ ⊃ · · · ⊃
(V ∗)d ⊃ (V ∗)d+1 ⊃ · · · such that (V ∗)d annihilates V d−1. Let δ : V ∗ ∼→ V be an explicit isomorphism having
the property that δ

(
(V ∗)d+1

)
∩V d = {0} for each d ≥ 1. Then for every d ≥ 1 and every g ∈ (V ∗)d−(V ∗)d+1,

there exists a unique g′ ∈ (V ∗)d+1 such that δ(g + g′) ∈ V d.

Proof. Let g ∈ (V ∗)d−(V ∗)d+1. We want to show the existence of a unique g′ ∈ (V ∗)d+1 such that δ(g+g′) ∈
V d. Note that by hypothesis on δ, the injection δ : (V ∗)d+1 → V induces an injection δ̄ : (V ∗)d+1 → V/V d

which is an isomorphism, considering the dimensions. Thus, there exists a unique g′ ∈ (V ∗)d+1 such that
δ̄(g′) is equal to the image of −δ(g) in the quotient V/V d. In other words, δ(g) + δ(g′) ∈ V d. ♦

Lemma 3. Let δ : V ∗ ∼→ V be as in lemma 2. Then there exists a basis adapted to the dual filtrations for
V ∗.

Proof. Let m = dim V ∗ and let h1, . . . , hm be a basis adapted to the filtration for V , i.e. a basis such that
the elements hi ∈ (V ∗)d − (V ∗)d+1 pass to a basis of (V ∗)d/(V ∗)d+1. Correct each hi by an h′i as in lemma
2, and let g1, . . . , gm denote the corrected elements. Then δ(g1), . . . , δ(gm) form a basis for V . Let us show
that it is depth adapted for the filtration on V . By definition of the correction, if gi ∈ (V ∗)d − (V ∗)d+1,
then δ(gi) ∈ V d. Furthermore, the set of gi ∈ (V ∗)d− (V ∗)d+1 passes to a basis for (V ∗)d/(V ∗)d+1, which is
isomorphic to V d/V d−1, so the δ(gi) for these gi pass to a basis of V d/V d−1. Thus the basis g1, . . . , gm of
V ∗ is adapted to the dual filtration. ♦

Lemma 4. Let δ : V ∗ ∼→ V be as in lemma 2. Let V ∗
d denote the subspace of elements g ∈ (V ∗)d − (V ∗)d+1

such that δ(g) ∈ V d. Then V ∗ = ⊕dV
∗
d , and the bases of V ∗ respecting this direct sum decomposition are

exactly the bases of V ∗ adapted to the dual filtrations.

Proof. Let g1, . . . , gm be a basis for V ∗ adapted to the dual filtrations. Let (V ∗)d denote the subspace
spanned by the gi ∈ (V ∗)d− (V ∗)d+1. We claim that (V ∗)d is the subspace of elements h ∈ (V ∗)d− (V ∗)d+1

such that δ(h) ∈ V d. Indeed, because the basis is adapted to the filtration, h =
∑

i>p aigi, where g1, . . . , gp

are the basis elements of level < d for the filtration. But then δ(h) =
∑

i>p aiδ(gi) and because the basis
is adapted to the dual filtrations, this element lies in V d if and only if aj = 0 for all gi ∈ (V ∗)d+1. Thus
any basis adapted to the dual filtrations respects the direct sum decomposition, and conversely, any basis
respecting the decomposition is obviously adapted to the dual filtrations. ♦

Lemma 5. Let δ : V ∗ ∼→ V and the spaces (V ∗)d be as in lemma 4. Then (V ∗)d ' (V ∗)d/(V ∗)d+1 for d ≥ 1.

Proof. We saw in lemma 4 that if g1, . . . , gm is a basis adapted to the dual filtrations, then the gi ∈
(V ∗)d− (V ∗)d+1 form a basis for (V ∗)d. Since in particular they form a basis adapted to the filtration, they
also pass to a basis of (V ∗)d/(V ∗)d+1, yielding the desired isomorphism. ♦

Proof of theorem 1. For each n ≥ 3, set V ∗ = dsn, V = nfzn, and δ the map in (3). Let us show that δ
satisfies the property of lemma 2, i.e. that δ

(
dsd+1

n

)
∩ nfzd

n = {0} for d ≥ 1.
Let f ∈ dsd+1

n and write f =
∑

w aww over words w all having at least d + 1 y’s, and suppose that
δ(f) ∈ nfzd

n. Then by definition of the dual filtrations, which are the depth filtrations in this situation, the
scalar product

(
f | δ(f)

)
= 0. But if we consider f ∈ Q〈x, y〉, then we can consider δ(f) ∈ Q[Z(w)], and the

value of the scalar product of f and δ(f) is the same, namely(
f | δ(f)

)
=

∑
w

a2
w.

Thus it is equal to zero if and only if f = 0, showing that δ satisfies the hypothesis of lemma 2.
Then lemma 3 shows that dual-depth adapted basis exist. From lemma 5, we deduce that the direct-sum

decomposition exists, that the dual-depth adapted bases are in bijection with the bases that respect it, and
finally, the isomorphism with the associated graded. ♦
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§3. Canonical ring generators for the formal multiple zeta value algebra

By the duality isomorphism δ, any explicit basis of ds yields not only a basis of nfz, but by considering
ds ⊂ FZ∗, also a set of irreducibles (ring generators) for FZ. Thus, a dual-depth adapted basis for ds yields
a set of irreducibles, and in particular, for any values of n and d such that dim dsd

n/dsd+1
n = 1, we obtain a

canonical irreducible (up to scalar multiple).
No dimensions larger than 1 appear in the associated graded for weights 3 ≤ n ≤ 12; thus the dual-

depth adapted bases for dsn for these values of n are uniquely determined (up to scalar multiple), providing
canonical irreducibles in those weights.

For the depth 1 irreducibles that occur for odd values of n, we fix the scalar multiple by choosing the
unique fn ∈ dsn satisfying δ(fn) = z(n) ∈ nfzn for n = 3, 5, 7, 9, 11. For example, f3 = 1

12

(
[x, [x, y]] +

[[x, y], y]
)
. The first main result of this paper is the singling out of these canonical depth 1 irreducibles in

odd weight, which conjecturally form a set of generators for the Lie algebra ds.
The second main result is the production of irreducibles in higher depth, by taking dual-depth adapted

bases of dsn for each n, but the irreducibles obtained this way are not uniquely determined except for those
of depths d where dim dsd

n/dsd+1
n = 1. Since dim ds4

12/ds5
12 = 1, our method does produce two canonical (up

to scalar multiple) irreducible generators of weight 12 in FZ12. Such explicit canonical generators have not
been found previously in any depth, even d = 1 (though J. Ecalle has proposed several alternative methods
to find bases, cf. [1]).

We give the dual-depth adapted bases of dsn up to weight n = 12 in the following table, where the fn

denote the canonical elements defined by δ(fn) = ζ(n) ∈ nfzn.

Dual-depth adapted bases up to weight 12

n = 3: f3

n = 4: 0

n = 5: f5

n = 6: 0

n = 7: f7

n = 8: {f3, f5}

n = 9: f9

n = 10: {f3, f7}

n = 11: f11 (depth 1)
{f3, {f3, f5}} (depth 3)

n = 12: 114347612538029{f3, f9}+ 29498081529840{f5, f7} (depth 2)
373659143{f3, f9} − 1022930370{f5, f7} (depth 4).

The next table translates these bases into canonical irreducible generators for FZ. This calculation is
done based on the diagram (1). The Lie algebra ds is contained in the Hopf algebra FZ∗ ⊂ Q〈x, y〉, so
elements of ds are nothing but polynomials which lie in FZ∗. If f =

∑
w aww is an element of ds, we can

thus consider it in FZ∗, and its dual is simply given by δ(f) =
∑

w awZ(w) ∈ FZ. To simplify the final
expressions, we have fixed a basis of FZn in each weight 3 ≤ n ≤ 12 (the chosen basis contains irreducible
multizeta values and products), and used a computer program to express each Z(w) in this basis to obtain
a simpler expression for δ(f).
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Dual-depth adapted irreducibles of FZ up to weight 12

FZ1
3

Z(3)

FZ1
5

Z(5)− 3
11

Z(2)Z(3)

FZ1
7

Z(7)− 61
213

Z(2)Z(5)− 226
2343

Z(3)Z(2)2

FZ2
8

−24453
2

Z(6, 2)− 60027
10

Z(2)4 +
77649

2
Z(3)Z(5)− 1683 Z(2)Z(3)2

FZ1
9

Z(9)− 1242768
13065005

Z(2)2 Z(5)− 3697886
91455035

Z(2)3 Z(3)− 1479309
5226002

Z(2)Z(7) +
50274

2613001
Z(3)3

FZ2
10

−6614309
32

Z(8, 2) +
7569029

16
Z(5)2 − 5656181999

61600
Z(2)5 − 703339

4
Z(5)Z(2)Z(3) +

7205263
8

Z(3)Z(7)

+
84201

2
Z(2)Z(6, 2)− 2698111

80
Z(2)2 Z(3)2

FZ1
11

Z(11)− 89344789701892
4831579726916775

Z(2)4 Z(3)− 1139040
28492287937

Z(3)Z(6, 2)− 71379583588
256430591433

Z(2)Z(9)

+
30559167920
541353470803

Z(5)Z(3)2− 3101026096
541353470803

Z(2)Z(3)3− 47806388544
541353470803

Z(2)2 Z(7)− 143810356328
3789474295621

Z(5)Z(2)3

FZ3
11

−1841904 Z(8, 2, 1)− 425314163
4

Z(11)+
104438821

140
Z(2)4 Z(3)−1333368 Z(3)Z(6, 2)+

204483287
6

Z(2)Z(9)

+
3279105

2
Z(5)Z(3)2 − 78972 Z(2)Z(3)3 +

36753903
4

Z(2)2 Z(7) +
124168102

35
Z(5)Z(2)3
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FZ2
12

−195054138110588251
64

Z(10, 2)− 8653643469032603353873
7644000

Z(2)6 +
1077831097314738125

64
Z(3)Z(9)

+
1161844161287230993

64
Z(5)Z(7)− 110785136392182147

64
Z(2)Z(5)2− 194318216436736119

64
Z(7)Z(2)Z(3)

−591899366895484531
1680

Z(2)3 Z(3)2−266292350528747767
160

Z(5)Z(3)Z(2)2+
32687838480401691

160
Z(2)2 Z(6, 2)

+
81857357214535231

128
Z(2)Z(8, 2) +

1256483182613535
16

Z(3)4

FZ4
12

−2088509495
48

Z(8, 2, 1, 1) +
40513131683

256
Z(10, 2)− 12283082576753783

168168000
Z(2)6 +

328220974925
384

Z(3)Z(9)

+
1782213740011

1536
Z(5)Z(7)−69224488487

768
Z(2)Z(5)2−19970763059

128
Z(7)Z(2)Z(3)−553292096341

20160
Z(2)3 Z(3)2

−131370683233
2880

Z(5)Z(3)Z(2)2−48581102573
1440

Z(2)2 Z(6, 2)−454799848867
4608

Z(2)Z(8, 2)+
2024205035

576
Z(3)4
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