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Abstract

Let ¢ be a power of 2 at least equal to 8 and ( be a primitive q-th root of unity, and
let K be any field of characteristic zero. We define the group of special projective conorms
Sk as a quotient of the group of elements of K(() of norm 1: Sk is obviously trivial if the
group Gal(K (¢)/K) is cyclic. We prove that for some fields K, the group S is finite, and
it is even trivial for certain fields such as Q or Q(Xy,...,X,,). We then prove that the
group Sg completely parametrizes the cyclic extensions of K of degree q. We exhibit an
explicit polynomial defined over Q(Ty, ..., T,/2) which parametrizes all cyclic extensions
of K of degree q associated to the trivial element of Sk. In particular, this polynomial
parametrizes all cyclic extensions of K of degree ¢ whenever the group Sk is trivial.

§1. Introduction

Let ¢ be a power of a prime p and let G be the cyclic group of order q. We consider the
problem of proving that it is possible to parametrize all G-Galois extensions of a given field
K. It has been known for some time (see [Sal]) that versal (or generic) polynomials exist
for G over every field of characteristic different from p such that the group Gal(K (¢)/K)
is cyclic. Such polynomials have been explicitly constructed by G. Smith ([Sm]) for odd
p. Therefore, we do not consider the case where the group Gal(K({)/K) is cyclic. That
is why, for the remainder of the paper, we assume that ¢ is a power of 2 at least equal
to 8, and we seek a parametrization of G-Galois extensions in characteristic zero. In this
case, it is known (see [Sal]) that there is no versal polynomial for G over Q : there exists a
cyclic Galois extension of (Q; of degree 8 which cannot be obtained as the splitting field of
a polynomial obtained by specialization to values in Q2 of any cyclic polynomial of degree
8 defined over Q(X1,...,X,,) (cf. [L], [Sal)).
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The object of this paper is to explicitly determine a family of polynomials parametriz-

ing all G-Galois extensions of a given field K of characteristic zero. In particular, we prove
that for certain fields K such as number fields or fields k(7T') where k is a number field,
the family consists of a finite number of polynomials, and for certain fields K such as Q or

Q(X1,...,Xm), there exists a single polynomial P € Q[Tp, ...

, Tq/2, X] which parametrizes

all G-Galois extensions of K. We are able to give P explicitly via the following adaptation

of Smith’s method in the odd case (see [Sm]).

From now on:
— let ¢ be a fixed primitive g-th root of unity;
— for all u € Z, let u denote its class modulo ¢;

— for all v € Z/qZ, let <v> denote the integer in {0,1,..

The polynomial P is constructed as follows.

Let To,...,Tq/2 be ¢/2 + 1 indeterminates over Q.

Q(To, . ..,Ty)2), define B; for all i € (Z/qZ)* by
q/2-1

B;= Y T;¢Y.
j=0

Let us choose A € F such that
2
A — Tq/27

and C; € F for all i € (Z/qZ)* such that
Cl! = B,.

Define E; € F for all j € (Z/qZ)* by

B=A [ oo

JE(Z/qL)*

Finally, define R; € F for all i € Z/qZ by

Ri= > E(Y.

Je(Z/q2)*
Definition: Let P € F[X] be the polynomial

P= ][] X-Ry.

i€7/qT.

2

.,q — 1} such that <v> = v.

In an algebraic closure F' of



Of course, it will be shown (in §4) that this polynomial is independent of all choices
made. We will prove (in §4) that this polynomial is actually defined over Q(Ty,...,T,/2),
and in fact that its coefficients are polynomials in To, ..., T, .

In §2, we recall Saltman’s description of G-Galois extensions of K in terms of elements
of K(¢) of norm 1. In §3, we introduce the group of special projective conorms Sk
associated to any field K and study the fields for which Sk is finite or trivial. Finally, in
§4, we show that Sk indexes a family of polynomials parametrizing all G-Galois extensions
of K and that a polynomial associated to the trivial element of Sk is the polynomial P
given above. Note that a consequence of these results is that the number of polynomials
needed to parametrize all G-Galois extensions of K depends only on K and not on q.

To conclude this introduction, we would like to thank D. Saltman for giving us helpful
insights into his own work, and J-P. Serre for communicating to us his letter to Platonov.
We also thank R. Dentzer, who applied the above algorithm using MAPLE to compute an
irreducible polynomial of degree 16 having cyclic Galois group of order 16 over Q(T"). He
choose to calculate

1
Q= P(T,1,0,0,0,0,0, 2, X).

The result is

Q=X —8(T® +1) X' +4(16T° — 14T* + 6T% + 5)(T® + 1) X2
— 8(24T"% — 2870 + 6T + 367° — 317* 4 1372 + 2)(T® + 1) X '°
— 2(1287"® — 12076 — 1447 + 5607"% — 488710
+ 144T® + 164T° — 136T* + 5672 + 1)(T® + 1) X®

— 8(16T22 + 16T2° — 120T*® 4 2087'° — 1087

— 64T + 1647 — 128T® + 737° — 20T* + 372 + 2)T*(T® + 1) X°
+ 4(64T2* — 192722 + 20872° + 8078 — 432716

+ 5207 — 31672 + 1127 + 18T® — 66T° 4 67T* — 26T + 5)T*(T® + 1) X*
— 8(T® +1)(3272* — 1127%° + 160T*® — 72T*°

— 84T 4 14472 — 86710 4 28T® — 177° + 17T* — 7T% + 1)T° X?
+ (T® +1)(8T"° — 16T® + 127° — 4T% + 1)*T®



§2. Background on cyclic extensions

Let K be a field of characteristic zero. In this section, we essentially recall Saltman’s
description of the cyclic extensions of degree ¢ of K (cf. [Sal] and [Sa2]). This description
uses Kummer theory. Before considering cyclic extensions of K, we need a little machinery
on the group Gal(K (¢)/K). Since the group Gal(Q(¢)/Q) is isomorphic to (Z/qZ)*, we
can easily state (see [Sal] and [Sa2] for the proof)

Lemma 2.1: (i) [Sal] Suppose that the group Gal(K (¢)/K) is cyclic and of order s, s > 1.
Let T be a generator of this group. Then either (T = (=L, or (T = (™ with <m>= m and
(m® —1)/q odd.

(ii) [Sa2] Suppose that the group Gal(K(¢)/K) is not cyclic and of order 2s. Then
it has two generators o and T such that (¢ = ("' and (T = (™, with <™ >= m and
(m® —1)/q odd.

From now on, let L be a cyclic extension of K of degree q. Let n be a generator of
Gal(L/K). As we do not want the two Galois groups Gal(L/K) and Gal(K (¢)/K) to
intersect non-trivially, we do not consider the field L({) but the ring L ® x K(({), which
we denote by L ® K ({). This ring is a direct sum of fields and is a field itself if and only
if LNEK(¢) =K.

The group of the Galois extension L ® K(() of K as commutative ring (cf. [DM-I]) is
the direct product of the group Gal(L/K) and the group Gal(K (¢)/K). So it is an abelian
group. Let us extend, in the obvious way, n, o (when it is defined) and 7 to L ® K (). We
identify L with L ® 1 and K (¢) with 1 ® K ({) in L ® K(().

Definition: Let o € L®K({). We say that « is a generator of L® K(() if we have
LK (C) = K(C)(a) and n(a) = Ca.

Remark: Such an o always exists, by Kummer theory. If we have one such «, then the
complete set of them is given by

{ha [ A e K(O)"}

Proposition 2.2: [Sal] Suppose that the group Gal(K(C)/K) is cyclic of order 2, with a
generator T such that (T = (~1. Then there exist y € K* and b € K(()* such that
T -1 bT

o’ =ya and oﬂ:yq/Z?.



Proof: As the group Gal(L® K(¢)/K) is abelian, 7 and 1 commute. In particular, we
have @™ = a7, that is (a”)” = ("la”. So there exists y € K({) such that o™ =
ya~l. Since 72 = idrgr(¢), it is clear that y™ = y. This means y € K*. Furthermore,

ady~9/2(a9y=9/2)T =1 so b exists by Hilbert’s theorem 90.

Proposition 2.3: [Sal| Suppose that the group Gal(K(()/K) is cyclic of order s, s > 1,
with a generator T such that (T = (™ with <m >= m and (m® — 1)/q odd. Then there
exists b € K(C)* such that

o =b"'a™ and o™ !'= H (bmi_l)

Proof: There exists b € K (¢)* such that o™ = b~1a™ exactly as in proposition 1: 7 and 7

commute. By induction, we prove that

o — o™ ﬁ ((b_l)mi,l)r
=1

Since s is the order of 7, the proof is complete.

s—1

Proposition 2.4: [Sa2] Suppose that the group Gal(K(C)/K) is mot cyclic. Let o, T, m
and s be as in part (ii) of lemma 2.1. Then there exists b € K({)* and z € K({)* such
that

29 =z

27 /2™ =bb?
a’ = Z—la—l
a” = b ta™

Proof: We proceed exactly as in proposition 2.2: there exist b € K ({)* and z € K(¢)* such
that oo’ = 27! and a” = b~'a™ because ¢ and n commute and so do 7 and 7. Since
o? = idzer(c), we have 27 = 2. Since ¢ and 7 commute, we have 27 /z™ = bb°. Finally,

the last equality holds exactly as in proposition 2.2.



§3. The group of special projective conorms

Let K be a field of characteristic zero. In this section, we let K’ denote the field K (()
and K the field K({+¢™'). Then if Gal(K'/K) is not cyclic, it is generated by elements
7 and o where 7 acts on ¢ via (T = (™ and o by (? = (71, asin §2. If Gal(K'/K) is cyclic
it is generated by an element 7 such that (" = (™. In this case let o denote the identity
element of Gal(K'/K).

Definition: The group of special projective conorms Sk is the quotient of the group
{c€ K’ | Ngijr(c) = 1}

by the subgroup consisting of the following elements of norm 1 in K':

T w?

The group Sk arises naturally in relation to the cyclic Galois extensions of K of degree
q. In §4 we will use it to index a family of polynomials parametrizing all such extensions
of K. Before doing so, we devote a paragraph to the study of the group Sk, relating it
to the Brauer group of K via Saltman’s work and studying for which fields Sk is finite
or even trivial. It is an immediate consequence of Hilbert’s theorem 90 that S is trivial
whenever Gal(K'/K) is cyclic. Therefore, for the remainder of this section, we assume
that Gal(K'/K) is not cyclic.

We note that the terminology “special projective conorms” was introduced by Plato-
nov [P]] in the context of the study of the Tannaka-Artin problem. Platonov defines the
group as a subgroup P(L, R,K) C R*/K* Ny, /gr(L*), where K C R C L are field extensions
and R/K is cyclic with Galois group generated by 7 (in our case, L = K’ and R = KT).
His definition is as follows: an element a* € R*/K*Ny ,r(L*) is in P(L, R, K) if for any
representative a € R of the class a*, we have a” /a € Ny /gr(L*). In the following lemma,
we show that his definition coincides with ours, that is, that the group P(K', Kt K) is
isomorphic to Sk.

Lemma 3.1: Let ¢ : Sk — P(K', K™, K) be defined as follows: ¢([c]) = [2] where for any
c € K' which is a representative of [c] € Sk and any z € K+ which is a representative of

21 € P(K',K*,K), we have cc® = 27 /z. Then ¢ is a group isomorphism.

Proof: We first show that ¢ is well-defined. In fact, ¢ can be deduced from a map
¢ : K| — (KT)*/K* where K/ is the set of elements ¢ € K' with Nk /k(c) = 1. For
c € K| set ¢ = cc?. Then since N+ i (€) = 1, there exists z € K defined up to K* such
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that & = 27 /z. Let Z be the image of z in (KT)*/K*N(K'*): then we can define ¢(¢) = .
The kernel of ¢ is exactly the set of elements ¢ € K such that ¢ = (z z°)7/(z z") for some
z € K'. But if this is the case, then there exists w € K’ such that ¢ = (w?/w) (27 /z). So
¢ induces an injection ¢ : S — (KT)*/K*N(K"™). We claim that the image is the group
P(K',K*,K). For suppose some a* € (K*)*/K*N(K'*) is in the image of ¢. Then there
exists ¢ € Ky and a € KT such that a is a representative of the class a* and ¢ = a”/a. So
a”/a € N1 e+ ((KT)*), which means a* € P(K', KT, K).

In response to a letter of Platonov, Serre [Se|] proved that Sk is finite when K is a
number field. His proof is reproduced in the proof of part (i) of theorem 2.

Before considering number fields and other special cases, we give the theorem relating
the group of special projective conorms to the Brauer group of K.

Theorem 3.2: The group Sk is isomorphic to
Coker{Br(K*/K) & Br(K(i)/K) — Br(K'/K)}.

Proof: Let us associate a Z € (KT)*/Ng: g+ (K'™) to each element A of Br(K'/K) as
follows: let (K'/K™,2) be the quaternion algebra of elements of A which commute with
K*. Clearly z € (K)* is defined up to Ng/ /g« (K'), so we let Z be its equivalence
class. Let H* be the subgroup of (K*)* /Ny /x(K") consisting of elements which can be
obtained in this way. An element Z € (KT)* /N g+ (K'*) is actually in H* if and only if
for every representative z € (KT)* of Z, the element 27 /2 € Ng g+ (K')*.

By lemma 3.1, the group Sk is isomorphic to the quotient of H* by K*. From
the map Br(K'/K) — H* just described, we thus obtain a map Br(K'/K) — Sk,
whose kernel is given by the set of elements A € Br(K'/K) whose associated quater-
nion algebra (K'/K™, z) can be written with some z € K*. This is clearly the case
for any decomposed algebra A € Br(K’'/K), i.e. any algebra which can be written
A= (K'/K,y) ® (K(i)/K,z), for y,z € K*, since the elements commuting with K
are given by (K(i)/K,z) @ K* = (K'/K™,2). But any algebra A having associated al-
gebra (K'/K*,z) for = € K* must be decomposed, which concludes the proof of the
theorem.

We now turn to considering fields K whose associated group Sk is finite or trivial
(the list is certainly not complete!).

Theorem 3.3: Let K be a field such that Gal(K'/K) is not cyclic. Then the group Sk is
finite in the following cases



(i) K is a number field. In this case, Sk is an elementary abelian 2-group.

(ii) K = k(T') where Sy is finite. In this case, S ~ Sk.

Proof: (i) Let G = Gal(K'/K) = C1 x Cy where C; = Gal(K+/K) and Cy = Gal(K'/K ™),
and write 7 and o for generators of C; and C3 as usual. Let H be the subgroup of (K)*
generated by the elements /2 and z/z" for all z € (K')*. Then the quotient of the group
of elements of norm 1 of K’ by the subgroup H is the group Sg. We claim that in fact
it is the Tate cohomology group H ™1 (G, (K")*). For the group H-! (G, (K")*) is just the
elements of norm 1 modulo the group generated by the set {z/z” | p € Gal(K'/K)}, which
is clearly the same subgroup as H. The following classical lemma (cf. [CF] for example)
shows that Sx is finite:

Lemma 3.4: The Tate cohomology groups I:Ii(G, (K')*) are all finite for odd i.

In order to show that Sk is an elementary abelian 2-group, we show that every element
is of order at most 2. Indeed, let ¢ be an element of K’ of norm 1, and let x € K’ be such
that cc” = 27 /z. Then ¢? = (¢/c?)(x7 /x), so the image of ¢? in Sk is trivial.

(ii) For this part, we need to use the following two basic facts about the Galois
cohomology of function fields (cf. [Ar]). Let k£ be an infinite field of characteristic different
from 2 and let K = k(7).

(1) Let V denote the set of discrete valuations of K which are trivial on k. For each
v € V let us write k(v) for the residue field of K, the completion of K at v. Then we
have the following exact sequence:

0 — Bra(k) — Bra(K) — [[ H' (k(v),2/22).
veV

The last arrow is given by [[, Res, where for each v € V,

Bry(K) — Bry(K,) " H' (k(v), Z/2Z) ~ k(v)* /k(v)*?.

(2) Let o = >, (a;(T),b;(T)) be an element of Bry(K), and suppose its image under
I, Res, is trivial. Then by the above exact sequence « is an element of Bry(k). For
any value ¢t € k which is not a zero or a pole of any of the a;(T") or the b;(T), we have

o = Zz (ai (t), bz(t)) .

We now proceed to the proof of part (ii) of the theorem. Suppose k is a field such
that Gal(k'/k) is not cyclic and Sy is finite. Choose a set of representatives {7} for the
elements of Si in k. We claim that the same set {7} forms a set of representatives in K’
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for Si. Let K = k(T), K' = K(¢) and K™ = K(¢+¢™!). Let ¢(T) € K’ be an element
of norm 1, and set ¢(T') = ¢(T)c(T)? € K. Then by Hilbert’s theorem 90, there exists
z(T) € Kt such that ¢(T ) = z(T)"/z(T). Since (¢(T),—1) = 0 in Bry(K ™), we have
(#(T),-1) = (&(T)", —1) = --- = (Z(T)"" ", —1) where s is the order of 7. We will show
that there exists a choice of & ( ) (which is defined up to K*) with a special property.

Lemma 3.5: There evists an element &(T) € K™, defined up to multiplication by an
element of k*, such that é(T) = &(T)"/Z(T) and (£(T),—1) is a constant symbol, i.e.
(%(T),—1) € Bra(k™).

Proof: Let Zo(T) be any element of K satisfying ¢(T') = Zo(T)" /Zo(T). Let z(T) be the
unique polynomial in K obtained by multiplying #o(7T') by an element of K, such that
Z(T) is not divisible by any polynomial factor defined over k. As remarked above, we we
have the set of equalities

(#(T),-1) = (#(T)7,~1) =--- = FD)" ", -1)

in the Brauer group Bry(K ™). If the symbol (Z(T'), —1) has any poles they must lie at
a common root of the polynomials &(T), #(T)",...,#(T)™ . But if o is such a common
root, then the minimal polynomial of o over K must divide #(T'). For let Py(T) € K'
be the minimal polynomial of o over K'. Then Py(T) divides #(T)™ for 0 < i < s — 1,
S0 PO(T)T_i divides #(T') for 0 < i < s — 1. Now, Py(T) is irreducible so for each i,
Py(T)™ is either equal to Py(T) or relatively prime to it. Let P;(T) be the product of the
distinct Po(T)"".
Z(T'). Moreover P;(T)? divides Z(T')? = #(T'), and the minimal polynomial of o over K is
equal to P, (T) if P;(T)? = Py(T') and P;(T)P;(T)? otherwise, so this minimal polynomial
divides (7). But this is contrary to the assumption that Z(7') has no polynomial factor

Then P;(T) is the minimal polynomial of o over K (i), and it divides

defined over k. Thus the symbol (Z(T'), —1) has no poles and is therefore a constant symbol
by (1) above.

Let Z(T') be as in lemma 3.5. By (2) above, if the symbol (Z(T"), —1) is a constant
symbol then its value is given by (Z(t),—1) for some ¢t € k such that Z(¢t) # 0. Then
z(t) € k™. Moreover c(t) € k' and ¢(t) € k. Now c(t) can be written v(w? /w)(z" /)
for some w and = € k', where ~ is one of the set of representatives for S chosen above.
Set #; = wz°. Let ¢1(T) = v 1¢(T). Then ¢;(T) € K' is also an element of norm
1 from K’ to K. Let ¢&1(T) = c1(T)e§(T) € K*. Then by lemma 3.5, we have an
71(T) € KT such that ¢ (T) = 21(T)"/z1(T) and (z1(T), —1) is a constant symbol. Now,
since Z1(t)7/Z1(t) = é1(t) = £7/%1, we see that #;(t) differs from #; by multiplication by
an element of k*. But lemma 3.5 only gives Z1(T) up to an element of k*, so we may
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assume that #;(t) = Z;. Then (%,(T),—1) = (#1,—1) = 0. This means that ¢;(7") can be
(

written (w(T)? /w(T))(x(T)" /=

T)), which concludes the proof of part (ii).

Finally, we have some special cases where although Gal(K'/K) is not cyclic, the group
Sk 1s trivial.

Theorem 3.6: The group Sk is trivial for the following fields K :
(i) K = Q.

(ii) K is any number field having only one place lying over 2 or such that at most
one place over 2 has decomposition group equal to Gal(K'/K).

(iii) K is any local field whose residue field has characteristic different from 2.
(iv) K = k(T) where k is any field such that Sy is trivial.

Proof: The group Sk is trivial if and only if for every element ¢ € K’ such that N,k (c) =
1, there exist elements  and w € K’ such that ¢ = (27 /z)(w? /w). In each part we show
how to obtain such elements for any given ¢, using properties of the Brauer group of K.

(i) Let K = Q and let ¢ € K’ be an element of norm 1. We will exhibit an explicit
r € K' and a w € K’ defined up to (KT)* such that ¢ = w?z7/(wz). We proceed as
follows. Let ¢ = cc” € K*. Then ¢ is an element of Kt with Ng+/,o(¢) = 1, so by
Hilbert’s theorem 90, there exists # € KT, defined up to Q*, such that ¢ = 7 /Z. Fix a
choice of such a Z. Now, K’ = K7(i) so the symbol (¢,—1) = 0 in the Brauer group of
K*. Thus (27/%,—1) =0 and so (&, —1) = (27, —1) in Bro(K™).

For any prime p of K, let K} denote the completion of K* at p. The condition
(Z,—1) = (7, —1) ensures that the local symbols (Z, —1), are either simultaneously trivial
or simultaneously non-trivial for all p lying over a given odd prime p in Z, or lying over
00. They are trivial for any p such that [K;{ : Q] > 1, for this degree must be a power of
2 and p?" =1 mod 4 for all odd p when r > 1, so there is a square root of —1 in the field
K?.

Lemma 3.7: There exists an element & € QT such that ¢ = 27 /% and (£,—1) = 0 in

Brz(Q+).

Proof: Let py,...,p, be the set of odd primes such that for all primes p of K lying over
one of the p;, the local symbol (Z,—1)p is non-trivial in Bry(K[). If (Z, —1) is trivial at
all the places at co of KT set a = p; - -+ p,, and if it is non-trivial set a = —p; - -+ ppy.

Let & = aZ. Clearly & satisfies ¢ = 27 /Z. Moreover, the symbol (Z, —1) is trivial at
oo by the choice of a, and it is trivial at every prime p of K lying over an odd prime p of
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Z, by construction (the symbol (—1,p;) is non-trivial only in B1r2(K;,L ) for primes p lying
over p; or over 2). But K7 is a totally ramified extension of Q, so there is only one prime
of KT lying over 2. So (%, —1) must be trivial also at that prime, and thus (£, —1) = 0 in
Bro(KT).

We now finish the proof of (i). Let & be as in lemma 3.7. Then since (&,—1) = 0
in Bry(K ™), there exists an element z € K’ = KT (i) such that £ = zz”. This gives
¢= (z7/z)(z7/z)°. So cis equal to 2" /z up to a element of K’ whose norm to K7 is 1:
by Hilbert’s theorem 90 such an element can be written w?/w for some w € K’ and we
obtain ¢ = (27 /z) (w7 /w).

(ii) The reasoning is identical to (i). Given ¢ € K' with Nk /k(c) = 1, and setting
¢ = cc?, we can give an element £ € KT such that ¢ = 27 /& and such that the local symbol

(
R

i.e. over all places) of K.

, —1)p is trivial in Bry(K) for places p of K lying over all except at most one place

(iii) Let K be a local field with maximal ideal (p). Then K has just one prime p
lying over p. Let ¢ € K’ satisfy Ng//x(c) = 1 and let Z € KT be such that ¢ = 7 /Z.
Then the local symbol (Z, —1), must be trivial by the product formula.

(iv) This is an immediate consequence of theorem 2, part (ii).
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§4. Construction of cyclic extensions

For every field K of characteristic zero, choose an algebraic closure K of K. All ex-
tensions of K are considered as subfields of K. Let €x denote the set of cyclic Galois
extensions of K of degree q. For a field L in €x, we will use the notation of §2. For every
field K of characteristic zero such that the group Gal(K (¢)/K) is not trivial, we choose
two integers m and s as in lemma 2.1 and set k = (m® — 1) /q.

We now describe the connection between the set €x and the group Sk which was
defined in the previous section.

Lemma 4.1: Suppose that the group Gal(K(C)/K) s not cyclic. Then the following map

1s well-defined :
m: Cx — Sk
L +— ]

where [c] is the class of c = bz(M=Y/2 in Sk and b and z are as in proposition 2.4.

Proof: We must first prove that N () x(c) = 1. Since 27 = 2, we have cc” = bbozm L,
Since 27 /z™ = bb?, we obtain cc’ = 27 /z and this completes the first part of the proof.

It remains to prove that the class of ¢ does not depend on the choice of the generator o
of LK (¢). So let a be such a generator and let A be in K ({)*. Let b, z and ¢ (respectively
b', 2’ and ¢’) be associated to « (respectively to Aa) as in proposition 2.4. Then we have
z=2'AX7 and b’ = b (A™/A"). Therefore we have ¢ = ¢’ (\"/)) ((A(m=1D/2)7 /\(m=1)/2),
So [¢'1 =[c].

Remark: If the group Gal(K (Q)/K ) is cyclic, then the group Sk is trivial so the map
m: Cx — Sk is defined in an obvious way.

Let us explain how the group Sk parametrizes the set Cx.

Theorem 4.2: Let 6 be an element in Sk such that the set 7=1({0}) is not empty.
Then there exists an integer n and a polynomial Py € K (Ty,...,T,)[X] of degree q, where
Ty, ..., T, are indeterminates over K, which parametrizes all extensions L in Cx such
that m(L) = 6. This means that for each such L, there exist to, ..., t, in K such that the
polynomial Py(to,...,tn, X) € K[X] is irreducible and L is its splitting field.

Before proving the theorem, we need a technical lemma.

Lemma 4.3: Suppose that the group Gal(K (¢)/K) is not cyclic. Let § € Sk be such that
the set 7= ({0}) is not empty. Lett and X be in K ({)* such that Ng(¢y/k(t) =1, (t] =6,
A7 =Xandtt? = AT/
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Let L € €k be such that n(L) = 6. Then there exist a generator o of L® K((),
z € K({)* and y € K* such that

b=t(Ay)L"™/2(27/2)  and 2= Ay,
where b and z are as in proposition 2.4.

Proof: Let L € €k be such that 7(L) = 6. Let a be a generator of L ® K(() and
let ¢ = bzMm=1/2 which is corresponded to. Since [c] =[t], there exist u € K({)* and
v € K(¢)* such that c =t (u” /u) (v™ /v). Let ¢’ be associated to the generator va. We then
have ¢’ =t ((uv(1=™)/2)7 /3 y(1=m)/2)  Therefore we can choose the generator a such that
c=t(z%/x), with z € K(¢)*. In this case, set y = z/A. We have y"/y = (27/2) (A/\7),
ie. Y7y = cc® (A/AT) = tt? (A/A7) = 1. We clearly have y* = y so y € K*. As
b=cz(1=™)/2 the equality for b holds.

Proof of theorem 4.2: If the group Gal(K (¢)/K) is cyclic, the theorem holds: indeed, it is
known that there is a generic Galois extension for the cyclic group of order ¢ over K (see
[Sa 1], theorem 2.1).

Therefore, for the remainder of this proof, we assume that the group Gal(K (()/K )
is not cyclic. Let ¢ and A be in K({)* as in lemma 4.3. Let Xj,...,Xos be 2s + 1
indeterminates over K (). Since the group Gal(K (¢, Xo, ..., X2s)/K (Xo, ..., X2s)) is iso-
morphic to Gal(K (¢)/K), let o and 7 also denote the elements of Gal(K (¢, Xo, . .., Xas)/
K(Xo, ..., X)) such that ¢ = (7! and {7 = (™. Set

2s5—1 25—1 -1
Z=XXss and B=tz0-m)/2 ( > XiC‘i) ( > X C’) :
i=0

For all j € (Z/qZ)*, define F; € K((, Xo,...,X2s) by

s§—x

F]_:]_, Zk:k:HBk:’mml ,

l o s o (m _<ml>)/q
F. (HB ki ) (H(B’f’mx BN ) Ve {l,...,s—1}
r=1

=1

L s (mf+<-m‘>)/q
Foome = (Z275) (H (BEE™ ) (H(B"“'mm )" ) :
=1

13



F; =0 otherwise.

For all integers p such that 1 < p < ¢ and for all (j1,...,7,) € ((Z/qZ)*)p, set

. R § t1j1++ip]
a]lv"'y.]p - C par.

(i15--ip) €(Z/qZ)P
Zliilp

We prove by induction on p, that aj, .. ; is aninteger and aj, .. ; = 0if j1 +---+jp £ 0.
For all integers p, denote by R, a set of representatives of the natural action of the
symmetric group S, on ((Z/ qZ)*)p. For all integers p such that 1 < p < ¢, define A, €
K((, Xo,...,X25) by

s (<gi>++<ip>)/a
1ooz—1\ 757%
Ap: Z aj17-~-7ijjl ---Fjp (H(Bkm ) ) .

(F1sees J'p)emp r=1
J1ttip=0

First of all, it is clear that this sum does not depend on the choice of JR,,. Secondly, let us
compute A,” and A,". We have Z? = Z and B B? = Z7 /Z™. Therefore, we deduce that

s . (m<G>—<jm>)/q
ij _ FjTFm<j> (H(Bk’mml)T )

r=1

and

Fjo = F_J Zkk’<j> H (Bk:'ma:*l)Ts_z,
=1
s B (<jr>++<jp>)/q
for all j € (Z/qZ)*. Let us set B, = Fj ... F} (H(B’“'mr'l)T )
=1
All computations done, we find that we have

s (<jim>+--+<jpm>)/q
1oz—1\ 757%
By =Fjm... Fjm (H(B’“m ) )

=1

and
s ) (<—ji>++<—jp>)/a

Bpo’ — F—jl . -F_jp (H(Bk;’mml)r —

=1
for all (j1,...,Jp) € ((Z/qZ)*)p such that j; + -+ + j, = 0. Consequently, we have
A" =A, and A,° = A, that is A, € K(Xo, ..., X2s).
Let now Py € K(Xy,...,X25)[X] be the polynomial

q
Pp=X9+) (~1)P A, XT°P.
p=1
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On the other hand, let o be a generator of L® K(({) as in lemma 4.3. For all j €
(Z/qZ)*, define e; € LK ({) by

o/‘“k’)T‘i and e_—¢ = (ak’k”)ml, Vle {0,1,...,s—1} and e; =0 otherwise.

emlz( m

We clearly have e;” = e_; and e;7 = ejm, for all j € (Z/qZ)*. Since (aFk' )1 = cak |
it follows that e;7 = (’e;, for all j € (Z/qZ)*. As G. Smith did in [Sm], let us introduce
ri € LQK () for all i € Z/qZ by

r, = Z €j C”

JE(Z/qL)*

It is clear that 7o? = rg and ro” = ro. So we have ry € L, that is K(rg) C L. Since L/K is
an abelian extension, K (r¢)/K is a Galois extension. As ro" =r; foralli € Z /qZ, we have
K(ro) = K(ri)icz/qz Finally, we notice that gey = >3,c5 /077 (7%, s0 €1 € K (r9) @ K ().
Since LK (¢) = K(¢)(e1), this yields K(rg) = L. Thus, the minimal polynomial of rg
over K is of degree ¢ and is given by

Q=[] (x-r).

i€7/qT.

We clearly have

q
Q=X+ Z(_l)p o, X977,
p=1

with
Op = Z Qjy,.ojy €1 - €5y YD E {1, .. g}

Now let ¢ € K(¢)* and y € K* be as in lemma 4.3. Let us write z = Zfiglxz ¢t
and prove that Q@ = Py(zg,...,225-1,y). We clearly have b = B(zyp,...,225-1,y) and

z=Z(xg,...,225_1,y). Since
s s—x
q k:'m””71 T
e; = H (b ) ,
r=1
Cm AN !
S
em
1
and

€jm e; \ fem\ <G>—<jm>
jm _ J m m — m .
<gm> |\ _<i> <_m> er ™’ MG e (Z/qT)7,

15



we prove by induction that

e; . .
€1<;> = Fj(zo,...,725-1,Y), Vj € (Z/qZ)".

Therefore, we deduce that Q@ = Py(zo,...,T25-1,y). This completes the proof.

Let us now study the case 6 = 1. If the group Gal(K (¢)/K) is not cyclic, then we can
take t =1 and A = 1, ¢t and A being those of lemma 4.3. So the polynomial P; is defined
over Q(Xo, ..., X2,). Actually, we will exhibit a polynomial defined over Q[Ty, ..., T, /2]
wich parametrizes all extensions of € over 1 € Sk, for every field K of characteristic zero.

This polynomial is the polynomial P € Q(Ty,...,T,/2)[X] wich was defined in §1 and is a
generalization of the generic polynomial of degree a power of an odd prime p of G. Smith
[Sm], to p = 2.

In the next and last theorem, P denotes the polynomial defined in §1.

Theorem 4.4: (i) The polynomial P is independent of the choice of C;, of A and of (.
(ii) We have P € Q[To, ..., Ty, X].

(iii) Let (to,...,ty/2) € KV be such that the polynomial P(to, ... ,t,/9, X) € K[X]
1s irreducible. Then the Galois group of the splitting field of this polynomial over K is
cyclic of order q. Moreover, the mapping r; — 1,41, i € Z/qZ, defines a generator of this
Galois group, where r; is the specialization of R; for all i € Z/qZ.

(iv) For every cyclic Galois extension L/K of order q such that m(L) = 1, there exists
(to,--.,tgs2) € K92*1 such that the polynomial Pl(to,...,t,, X) € K[X] is irreducible
and L is its splitting field over K.

Proof: (i) For all i € (Z/qZ)*, let us change the choice of the ¢-th root of B;. Set
Ci; = Ci(¥, a; € Z/qZ for all i € (Z/qZ)* and define E} for all j € (Z/qZ)* and R;
for all i € Z/qZ, as E; and R;, by changing C; to C.. Let o € Z/qZ be defined by
a = icz/qn- @i . We then have E} = E; (7* for all j € (Z/qZ)* and R} = Rj;q for
all ¢ € Z/qZ. This completes the first part of the proof. Now it is clear that if we change
A to —A, then, R; is changed to R; 4/, for all i € Z/qZ. Finally, if we change ¢ to ¢k,
k € (Z/qZ)*, then B; is changed to By for all i € (Z/qZ)*. Thus, if we change C; to Cj
for all i € (Z/qZ)*, the R;’s are not changed. This completes the proof of (i).

Before proceeding to the proof of (ii) and (iii) of theorem 4.4, we give a technical

lemma.
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Lemma 4.5: Let F be a field of characteristic zero and let (to,...,t,2) € F¥/?TL.
For alli € (Z/qZ)* define b; € F(() by

q/2—-1

bi= > t;¢Y.

j=0

For all i € (Z/qZ)*, let us choose ¢; € F such that ¢! = b; and a € F such that a® =t,5.
Define in F
Vi€ (Z/qn)" ej=a [[ 7
i€(Z/qL)*
VieZ/qZ, r;= Z e; ¢y,
Je(Z/qL)*

Then Q(ro,-..,mq—1) € F for all Q € F[X1,...,Xy]%, where X1,..., X, are q indetermi-
nates over F' and G is the subgroup of the symmetric group &, generated by the g-cycle
(12...9).

Proof: Since F' is of characteristic zero, we must prove that

q
V(a,...,aq) € NI, Z HWHOM e F

1€Z/qZl=1

Thus, let (a,...,aq) be in N?. We have

q
DI EREED D SRS S § ) OO TSR

i€7/q7 €=1 i€7/q7 1<t<a g, . €(7/qZ)* \ &m
1<m<ay ’
that is
ST D> St Y ¢
op 14 Jje, ? Je,
Hm+e t= Hejl,m (Lat”™ Lum Tt ¢ aetm B
i€Z/qZ =1 1<t<a G, e(Z/qZ)* \ £ym i€Z/qL

1<m<ay

U IDINED SN A | | O
Z,m

LSESa g €E/aD)*
1<m<a .
=m=t El,m Je,m=0

But if Z&m Je,m = 0, then

Vi€ (Z/qZ)", Z<]gm] >€qZ and ai+...+ap€ 27,
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and so we have

H eij = tq/Q(a1+...+a£)/2 H bj (Z<jl,mj_1>)/q’
tm i€ /qz)

and consequently

q
S [Lree € Q).
€L /qZ =1
As b7 = by if ¢ € Gal(K(¢)/K) and (9 = ¢*, with ¢ € (Z/qZ)*, it is clear that
> iez/qz 17—, ri+¢®™ is invariant under the group Gal(K (¢)/K). This completes the proof.

Proof of theorem 4.4: (ii) Write P = X7 + Zgzl(—l)p ¥, X?7P, We can apply lemma

4.5 with F = @(TO,---,Tq/Z), tj = Tj, bl = Bi, C; = Cz', €; — Ej and r; = Rl Since

coefficients of a polynomial are symmetric polynomials of roots, we then have ¥, € F.
(iii) Let us choose a € K and (e;);e(z/q7)- € K ? such that

/21 <ji '>

a®> =t, and ef = H Z ty C¥ , Vje(Z/qzZ)*.
i€(Z/qL)* \ €=0

Let r; € F be defined by r; = D ie7)q7. 8 ¢%, for all i € Z/qZ. According to the relations
between coefficients and roots of a polynomial, we have P(to,...,t5/2, X) = HiEZ/qZ(X —
ri) (see the proof of theorem 4.2 for the computation of the coefficients of [ [, /.7 (X —7:)).
Let L denote the field K (7;);cz /qz.

Let X,..., X, be ¢ indeterminates over K and let G be the subgroup of &, generated
by the g-cycle (12...q). Let us define the rings B and A by B = K[X3,...,X,| and
A=BNK(Xy,...,X,)¢ Let f: B — L be the ring homomorphism which extends the
identity of K and such that f(X;) = r; for all i € {1,2,...,¢}. This homomorphism is
onto, so Q = Kerf is a maximal ideal of B. According to lemma 4.5, we have f(A) = K.
Since B is integral over A, the natural group homomorphism Dg — Gal(L/K) is onto,
where Dg is the decomposition group D = {g € G, Q9 = Q}. On the other hand, the
polynomial P(to,...,t./2, X) € K[X] is irreducible and K is of characteristic zero, so this
polynomial is separable. It follows that for all (i,j) € (Z/qZ)?, we have i # j = r; # ;.
So the natural homomorphism Dq — Gal(L/K) is injective, therefore is an isomorphism.
Then, for each element g € Gal(L/K), there exists a € Z/qZ such that r;9 = r;,,, for all
i € Z/qZ. This completes the proof, since P(to,...,tq/2, X) € K[X] is irreducible, so the
group Gal(L/K) permutes the r; transitively.

Before the proof of (iv) of theorem 4.4, we need the following useful lemma.
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Lemma 4.6: Let L be a cyclic extension of K of degree q. Let S be a subset of the group
Gal(L® K (¢))/L such that S generates this group. Let ty;o € K* and (b;)icz/qz)- €

(K(C)*)q/2 such that b;% = by, for alli € (Z/qZ)* and for all g € S with (9 = (¢, Suppose
q/2

that there exists (e;)je(z/qz)- € (LROK(C))"" such that
LRK(C) = K(¢)(e1)
e1 = Cey
e19 =ep, Vg €S, with (9 = (*
a1 e
ie(Z/q2)*

€ _ ,(1-<5>)/2 (<Gt >=<g><iTt>) /g . *

=55 =ty IT ¢ , Vi € (Z/qZ)*.
(! i€(Z/q2)*

Then, there exists (to,...,tq/2-1) € K92 such that the polynomial P(to,. cotgra, X) €
K|[X] is irreducible and L is its splitting field.

Proof: Let g € S be such that (9 = (¢ with ¢ € (Z/qZ)*. Let j € (Z/qZ)*; we compute

e;j9. We have

g
(ej ) _ 4(1=<5>)/2 H b (<FiTH>—<G><ime>) /g

o <I> q/2
1 1€(Z/qZ)*
On the other hand, we have
€il <G> —<j><L> f(1=<G>+<><>=<je>)/2
<> 71 q/2
€y
H b(<ji‘1£>—<j><i‘1£>+<i‘1>(<j><£>—<j£>))/q
) )
i€(Z/q7)*

It follows that
(<G><t>—<jl>)/q

g .
) <j3>
€j € _ | oma 492 H p<it>
<j> . L "q/2 g ’

i€(Z/q7)*

that is

Since €19 = ¢4, we deduce that e;9 = ejy.
Let us now introduce r; € LK ((), for all i € Z/qZ, by
r, = Z €j C”
J€(Z/qZ)*
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So ri9 =y, for all i € Z/qZ. As S generates Gal(L® K (¢))/L, this means that r; € L
for all i € Z/qZ. Since ejel_<j> € K(¢)* and e;" = (ey, we have ¢;7 = (Je; for all
Jj €(Z/qZ)*, so r;" = r;yq for all i € Z/qZ. As in the proof of Theorem 4.2, we prove that
K(ro) = L and that the minimal polynomial of ro over K is [[;c7 /,7(X —ri). Finally, let

(to,...,tq/2) € (K(C))q/2 be the solution of the Vandermonde system:

q/2-1

Z tj Cij = 0;, Vi € (Z/qZ)*

j=0
Let g € S be such that (9 = ¢*; since b;9 = by, for all i € (Z/qZ)*, it is clear that t;9 =t;
for all j € {0,...,q/2 —1}. It follows that (to,...,t5/2-1) € K%/2. To conclude, we have
[Licz/qz(X — i) = P(to, ... tg/2, X) according to the relations between coefficients and
roots of a polynomial.

Proof of theorem 4.4 (iv): Let L be a cyclic extension of K of degree ¢ such that (L) = 1.

First case (the most important one): The group Gal(K (¢)/K) is not cyclic.
We can then choose S = {0, 7} in lemma 4.6. We know that we can choose ¢ = 1 and
A =1 in lemma 4.3. There so exist « € LK ({), z € K(¢)* and y € K* such that

(LOK(() = K(¢)(a)

a" =(a
a’ = y—la—l
a7 = ym-1/2 L om

xa

s z° mi~117
\ =1

Let k' be an integer such that k&’ = 1modgq. For all j € (Z/qZ)*, define b; € K(¢)* by

o —k;’ Ti—l
we{o,l,...,s—1},{bml_(x ) -
c= (@)

—m
b; =1 otherwise.

Since o is of order 2, 7 is of order s and ¢ and 7 commute, it is clear that we have b;” = b_;
and b;" = by for all i € (Z/qZ)*. Set ty, = y~**' . We have tg/2 € K*. Define now

(e))se/qn) € (LOK(C))™? by

mi—? —-m

61 _ akkl H b(<m“1>—m“1)/q b(m171+<—m171>)/q
=1

. " . € L (1-<5>)/2 (<ji t>—<ji><i™t>)/
Vie(Z/qZ)*, j#1, e<;> =t,/ J H b;~’ j q
1 i€(Z/qZ)*
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Let us check that the e;’s satisfy the hypothesis of lemma 4.6. As era k¢ K({)*, we
have
LRK(C) = K(¢)(e1) and e1 = (ey.

’ mifl
Since of*'4 = tqg Hie(Z/qZ)*(bml—i/b_ml—i) , we deduce that

q
e = tgg H bi<rl>.
i€(Z/q2)*

Since of*’ (akk')a = tq/2, we have e;e1? = tg/o HiE(Z/qZ)* b;. Using definition of e_1, it

_ _ i*l
follows that e e_1 = e t. 4 [T, /qzy b3 >

we deduce that

yle. ere_1 =ty Hie(Z/qZ)* b;. Hence

€1 —e€_1.
. . NT ’m 1—m)/2 k
Finally, since (akk ) a~kkm — t((l/2 )/ (b_m/bm) ,we have

m ~ q/2

e1T_t(1_m)/2 H b§<mi_1>—m<i_1>)/q‘
i€(Z/qZ)*

By the definition of ez, we have

€1

Il
Q
]

This completes the proof.

Second case: The group Gal(K(¢)/K) is cyclic.
a) The group Gal(K(¢)/K) is trivial.

We can choose S = ) in lemma 4.6. Let o € L be such that L = K(a) and o” = (a.
Let us define (e;);ez/qz) € L by ej = a<7> for all j € (Z/qZ)*. Then, the e;’s satisfy
the hypothesis of lemma 4.6, if we take t,/» = 1, by = a? and b; = 1 for all i € (Z/qZ)*,
i# 1.
b) The group Gal(K (¢)/K) is {1, 7}, with (" = (™.

Take S = {7} in lemma 4.6. By proposition 2.2, there exist o € L®k((), y € K* and
b € K(¢)* such that

L&k(C) = k(O (@)

al =«
OéT:yOé_l

,
aQ:yQ/zb_ .

b

Define (e;);jez/qz)+ € (L(X)K(C))q/2 by e; = by(1=<i>)/20<3> for all j € (Z/qZ)*. Tt is
easy to check that the e; are as in lemma 4.6, if we take t,/» =y, by = b7, b_1 = b and
b; =1 forall i € (Z/qZ)* not equal to 1 or —1.
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c) Finally, if we are not in the two previous cases, we know (see lemma 2.1) that the group
Gal(K (¢)/K) is generated by 7 of order s, with (" = (™ and k = (m® — 1)/q odd. Let
us also take S = {7} in lemma 4.6. By proposition 2.3, there exist o« € L® K(¢) and
b € K({)* such that

Lak(¢) = k(¢)(a)
a” =b"ta™

ok =TT (™)

=1

s—1

Let k' be an integer such that kk’ = 1modgq. For all j € (Z/qZ)*, define b; € K(¢)* by

Vi € {0, 1, ey 8 — 1}, bmz = (bk’)7i71
bj =1 otherwise.

Since 7 is of order s, it is clear that b;” = b;m forall i € (Z/qZ)*. Define now (e;) c(z/qz)* €
(LoK(¢)"* by

kk' H p(< m' Tt >—m'Th)/q

e]' = mlfi
1€(Z/qZ)*
. * . (24 ~,L~—1 _ - ’i_l
Vi€ (/L) j#1, == [ b T
€1 ie(7/q7)*

Let us check that the e;’s satisfy the hypothesis of lemma 4.6 if we take ¢,/ = 1. Since
e1a ** ¢ K(¢)*, we have

LRK(()=K({)(e1) and e;7={(e;.

. ! i—1
Since %7 = [[i_, b™,_;, we have
- m

q _ <i7l>
e] = H b; .

i€(Z/qL)*

. 1 1
Let us now compute e;”. Since af* ™ /(a*¥)7 = bE_ we have

- A

m
1

er” (<mi t>—m<i 1>)/q
I I b .
i€(Z/qL)*

So we deduce that
elT

I
o
3

This completes the proof.



We then clearly have

Corollary 4.7: Let K be a field of characteristic zero. If the group Sk is trivial then,
for every cyclic Galois extension L/K of order q, there exists (to,...,tq/2) € K9/2+1 gych
that the polynomial P(to, ..., tq 2, X) is irreducible and L its splitting field.

Remark: By theorem 3.6, this is the case if K = Q or Q(X1, ..., X,,) where X1, ..., X,

are m indeterminates over Q.
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