Construction explicite de 2-groupes extra-spéciaux

comme groupes de Galois sur $\mathbb{Q}(T)$

Leila Schneps

Soit C_2 le groupe cyclique d'ordre 2. Dans cet article nous construisons explicitement en tant que groupes de Galois sur le corps $\mathbb{Q}(T)$ tous les 2-groupes G vérifiant une suite exacte:

$$1 \rightarrow C_2 \rightarrow G \rightarrow C_2^n \rightarrow 1$$

pour tout entier $n \geq 1$. Les 2-groupes dits 'extra-spéciaux' sont ceux de ces groupes ayant centre et sous-groupe commutateur isomorphe à C_2 ; la structure de ces groupes a été examinée de près par Lam et Smith dans l'article [L-S]. J'aimerais remercier Jack Sonn pour m'avoir montré cet article au cours d'une des discussions intéressantes que j'ai eues avec lui à ce sujet.

Si G et H sont deux groupes avec involution centrale distinguée, soit $H \times G$ leur produit et HG leur produit 'central', c'est-à-dire le quotient du produit de ces groupes modulo l'identification de leurs involutions centrales. Nous écrivons G^n pour le produit de n copies de G et $G^{(n)}$ pour leur produit central (remarquons que ce produit est associatif). Notons D le groupe diédral d'ordre S0, S1, S2, S3, S4, S5, S

Théorème 1: (i) Il existe des éléments d_1, \ldots, d_n de K, indépendants dans $K^*/(K^*)^2$ et tels que les algèbres de quaternions (d_1, d_1) , (d_2, d_2) et (d_i, d_{i+1}) pour $1 \leq i < n$ sont toutes décomposées sur K.

(ii) Soient d_1, \ldots, d_n comme dans le (i) et posons $L = K(\sqrt{d_1}, \ldots, \sqrt{d_n})$. Alors pour tout extension G de C_2^n par C_2 on peut trouver de façon explicite un élément γ_G dans L tel que $L(\sqrt{\gamma_G})$ soit galoisien sur K de groupe de Galois G.

Avant de démontrer le théorème, rappelons la classification de toutes les extensions

de C_2^n par C_2 .

Proposition 2: (i) Chaque extension de C_2^n par C_2 est isomorphe à l'un des groupes suivants, qui sont mutuellement non-isomorphes:

$$D^{(i)} \times C_2^j$$
 ou $QD^{(i-1)} \times C_2^j$ avec $2i+j=n$ ou $CD^{(i)} \times C_2^j$ avec $2i+j+1=n$.

(ii) Si n est pair, il y a (3n+2)/2 extensions possibles de C_2^n par C_2 à isomorphisme près; si n est impair il y en a (3n+1)/2. De plus, il y a exactement deux 2-groupes extra-spéciaux d'ordre 2^{n+1} si n est pair et aucun si n est impair.

Démonstration: On commence par remarquer que les groupes donnés dans le (i) sont tous extensions de C_2^n par C_2 et qu'ils sont bien non-isomorphes, ce qui se démontre en comparant le nombre de leurs éléments d'ordre 2 et l'ordre de leurs centres. Il reste donc à démontrer qu'on a bien toutes les extensions de C_2^n par C_2 possibles. Nous allons utiliser les liens entre les extensions de C_2^n par C_2 et les formes quadratiques en n variables sur $\mathbb{Z}/2\mathbb{Z}$. Les deux lemmes suivants sont bien connus:

Lemme 3: Il y a bijection entre les classes d'isomorphisme des extensions de C_2^n par C_2 et les classes d'équivalence des formes quadratiques en n variables sur $\mathbb{Z}/2\mathbb{Z}$.

Démonstration: A chaque forme quadratique Q(x) en n variables sur $\mathbb{Z}/2\mathbb{Z}$ on associe un groupe G de la façon suivante. Soit Q'(x,y) = Q(x+y) - Q(x) - Q(y) la forme bilinéaire associée à Q(x). Soit e_1, \ldots, e_n une base de C_2^n en tant que C_2 -module et identifions l'élément non-trivial de C_2 avec -1. Alors le groupe G est engendré par des éléments $e_0, \tilde{e}_1, \tilde{e}_2, \ldots, \tilde{e}_n$ vérifiant les relations suivantes: $e_0^2 = 1$ et cet élément est central dans G (on l'identifie aussi avec -1), $\tilde{e}_i^2 = e_0^{Q(e_i)}$ pour $i = 1, \ldots, n$ et $e_i e_j e_i^{-1} e_j^{-1} = e_0^{Q'(e_i, e_j)}$. Il est facile de vérifier à partir de cette définition que si on construit les deux groupes associés à deux formes quadratiques équivalentes, les groupes seront isomorphes. De plus, étant donné une extension de C_2^n par C_2 par les relations vérifées par ses générateurs, on retrouve la forme quadratique associée.

Lemme 4: Toute forme quadratique en n variables $sur \mathbb{Z}/2\mathbb{Z}$ est équivalente à une forme quadratique d'une des formes suivantes, qui sont deux à deux non-équivalentes:

$$Si \ n \ est \ pair \begin{cases} \sum_{k=1}^{n/2} e_k x_{2k-1} x_{2k} \\ ou \\ x_1^2 + \sum_{k=1}^{n/2-1} e_k x_{2k} x_{2k+1} \\ ou \\ x_1^2 + x_1 x_2 + x_2^2 + \sum_{k=2}^{n/2} e_k x_{2k-1} x_{2k}; \end{cases}$$

$$Si \ n \ est \ impair \begin{cases} \sum_{k=1}^{(n-1)/2} e_k x_{2k-1} x_{2k} \\ ou \\ x_1^2 + \sum_{k=1}^{(n-1)/2} e_k x_{2k} x_{2k+1} \\ ou \\ x_1^2 + x_1 x_2 + x_2^2 + \sum_{k=1}^{(n-1)/2} e_k x_{2k-1} x_{2k}, \end{cases}$$

où les nombres e_k valent 1 pour $1 \le k \le i$ et 0 pour $i < k \le n/2$ si n est pair et pour $i < k \le (n-1)/2$ si n est impair, et i varie entre les deux limites de la somme.

Démonstration: La première assertion se démontre par récurrence. Pour voir que les formes quadratiques données sont deux-à-deux non-équivalentes, il suffit d'après le lemme 3 de calculer leurs groupes associés et de constater que ces groupes sont deux-à-deux non-isomorphes. En l'ordre, elles correspondent aux groupes $D^{(i)} \times C_2^j$, $CD^{(i)} \times C_2^j$, $QD^{(i-1)} \times C_2^j$ (pour n pair et impair); on a constaté au début de la démonstration que ces groupes sont non-isomorphes.

On compte selon le lemme 4 exactement (3n+1)/2 ou (3n+2)/2 classes d'isomorphisme de formes quadratiques sur $\mathbb{Z}/2\mathbb{Z}$ selon la parité de n, et exactement le même nombre de groupes décrits dans le (i), ce qui permet de conclure qu'on a bien décrit toutes les extensions de C_2^n par C_2 . Pour terminer la démonstration de la proposition 2, nous déterminons quels sont les groupes extra-spéciaux, c'est-à-dire ayant centre d'ordre 2. Dans chaque cas il faut j=0, ce qui donne les trois possibilités $D^{(n/2)}$ ou $QD^{(\frac{n-2}{2})}$ pour n pair, et $CD^{(\frac{n-1}{2})}$ pour n impair. Ce dernier ayant un centre d'ordre 4, nous obtenons le résultat énoncé. Ce résultat (et bien plus) a été démontré par Lam et Smith dans l'article [L-S].

Passons maintenant à la démonstration du théorème 1. Le lemme suivant suffit pour démontrer le (i).

Lemme 5: Il existe d_1, \ldots, d_n dans K tels que $\operatorname{Gal}(K(\sqrt{d_1}, \ldots, \sqrt{d_n})/K) \simeq C_2^n$ et les conditions suivantes sont vérifiées: les algèbres de quaternions $(d_1, d_1), (d_2, d_2)$ et (d_i, d_{i+1}) pour $i \geq 1$ sont toutes décomposées sur K.

Démonstration: Il suffit de montrer qu'on peut trouver d_1 et d_2 satisfaisant simultanément les conditions (d_1, d_1) , (d_2, d_2) et (d_1, d_2) décomposées car ensuite les autres conditions sont satisfaites en choisissant successivement de nouveaux d_i non-carrés et indépendants des précédents, tels que (d_{i-1}, d_i) soit décomposée. Ceci est toujours possible puisqu'il suffit de prendre d_i de la forme $\frac{1-x^2d_{i-1}}{y^2}$ pour x et y dans K. La condition (d_i, d_i) décomposée équivaut au fait que d_i est somme de deux carrés dans K. Il suffit donc de montrer qu'on peut toujours trouver d_1 et d_2 sommes de deux carrés tels que (d_1, d_2) soit décomposée et que le corps $K(\sqrt{d_1}, \sqrt{d_2})$ soit biquadratique sur K. Mais de tels d_1 et d_2 sont paramétrés

par les équations:

$$d_1 = (-1 + u^2 + v^2 + w^2)^2 + 4u^2$$
$$d_2 = 4v^2 + 4w^2.$$

Comme alors $d_1 + d_2 = (1 + u^2 + v^2 + w^2)^2$, c'est un carré et donc (d_1, d_2) est décomposée.

Passons maintenant au (ii). On pose $L = K(\sqrt{d_1}, \dots, \sqrt{d_n})$ pour d_1, \dots, d_n comme dans le lemme 5. Pour chaque extension G de C_2^n par C_2 , soit \tilde{G} le produit (usuel) de tous les groupes apparaîssant dans le produit définissant G, par exemple si $G = QD^{(i-1)} \times C_2^j$, alors $\tilde{G} = Q \times G^{i-1} \times C_2^j$. Evidemment, G est un quotient de \tilde{G} . Donc si L admet une extension qui est galoisienne sur K de groupe de Galois \tilde{G} , il admet aussi une extension quadratique galoisienne sur K de groupe de Galois G. Nous allons montrer que c'est le cas en construisant explicitement des \tilde{G} -extensions de K contenant L, et ensuite construire les G-extensions en donnant explicitement les éléments γ_G annoncés dans le théorème.

Nous commençons par le cas $\tilde{G}=D^i\times C_2^j$ et nous procédons de la façon suivante: nous allons plonger chacune des i extensions biquadratiques $K(\sqrt{d_{2k-1}},\sqrt{d_{2k}})$ pour $1\leq k\leq i$ dans des corps galoisiens su K ayant groupe de galois D. On sait que ceci peut se faire si et seulement si les i algèbres (d_{2k-1},d_{2k}) sont toutes décomposées car ce sont les obstructions aux problèmes de plongement associés à ces extensions, et on sait que ces algèbres sont bien décomposées par le lemme 5. Ceci implique que pour chaque k, il existe des nombres x_k et y_k dans K tels que $d_{2k-1}x_k^2+d_{2k}y_k^2=1$. Posons $\delta_k=\frac{-1}{2x_k}+\frac{\sqrt{d_{2k-1}}}{2}$. Alors on constate facilement que $K(\sqrt{\delta_k},\sqrt{d_{2k}})$ est galoisien sur K de groupe de Galois D (le polynôme ayant ce corps comme corps de décomposition est $X^4+\frac{1}{x_k}X^2+\frac{d_{2k}y_k^2}{4x_k^2}$). Le corps $L(\sqrt{\delta_1},\ldots,\sqrt{\delta_i})$ est bien de groupe de Galois \tilde{G} sur K.

Le cas où $\tilde{G}=Q\times D^{i-1}\times C_2^j$ est identique sauf pour la construction de $\delta_1\in K(\sqrt{d_1},\sqrt{d_2})$, qui devra donner une extension de groupe de Galois Q sur K. Pour qu'un tel δ_1 existe, il faut que l'obstruction au problème de plongement soit décomposée: or cette obstruction est donnée par $(d_1,d_1)(d_2,d_2)(d_1,d_2)$ ce qui est décomposée par le lemme 5. Pour la construction explicite de δ_1 , voir [W] ou [S].

Passons au cas $\tilde{G} = C \times D^i \times C_2^j$. On commence par construire une extension quadratique de $K(\sqrt{d_1})$ ayant groupe de Galois C sur K; ceci est possible car l'obstruction est donnée par (d_1,d_1) . Puisque cette algèbre est décomposée, il existe x_0 et y_0 dans K tels que $-x_0^2 + d_1y_0^2 = 1$. Posons $\delta_0 = x_0d_1 + y_0\sqrt{d_1}$. Le corps $K(\sqrt{\delta_0})$ est galoisien sur K de groupe de Galois C. Ensuite on construit des D-extensions des corps biquadratiques $K(\sqrt{d_{2k}}, \sqrt{d_{2k+1}})$ pour $1 \le k \le i$ en posant $\delta_k = \frac{-1}{2x_k} + \frac{\sqrt{d_{2k}}}{2}$ pour x_k (et y_k) vérifiant

 $d_{2k}x_k^2 + d_{2k+1}y_k^2 = 1$, et on rajoute $\sqrt{\delta_0}, \ldots, \sqrt{\delta_i}$ au corps L pour obtenir une extension galoisienne de K de groupe de Galois \tilde{G} .

Lemme 6: Posons

$$\gamma_G = \left\{ egin{aligned} \delta_0 \cdots \delta_i & si \ G = CD^{(i)} imes C_2^j \ \delta_1 \cdots \delta_i & si \ G = D^{(i)} imes C_2^j \ ou \ QD^{(i-1)} imes C_2^j . \end{aligned}
ight.$$

Alors $L(\sqrt{\gamma_G})$ est galoisien sur K de groupe de Galois G.

Démonstration: Il est clair qu'on obtient ainsi le bon quotient de \tilde{G} .

Si l'on veut démontrer que les 2-groupes extra-spéciaux se réalisent comme groupes de Galois d'extensions régulières sur $\mathbb{Q}(T)$ sans demander une construction explicite de ces extensions, on peut le faire d'une façon complètement différente: ça découle en effet d'un théorème beaucoup plus général qui est connu mais ne se trouve pas, à notre connaissance, dans la littérature.

Théorème 7: Tout groupe G qui est une extension centrale d'un groupe abélien B par un groupe abélien A se réalise comme groupe de Galois d'une extension régulière de $\mathbb{Q}(T)$.

Démonstration: Nous allons démontrer le résultat par récurrence sur l'ordre du groupe G. L'énoncé est clair quand $G=\{1\}$. Soit M un sous-groupe maximal de G et x un élément de G tel que G est engendré par M et x. Soit C le sous-groupe de G engendré par A et x. Alors C est un sous-groupe abélien de G puisque G0 est central, et en plus, ce sous-groupe est distingué puisqu'il est l'image inverse d'un sous-groupe distingué de G0 (forcément distingué puisque G0 est un quotient du produit semi-direct $G \times M$ 1. Soit G0 est l'image de G1 dans G1. Le noyau de l'application G2 est égal à G3 G4 est donc un groupe abélien et G5 vérifie la suite centrale

$$1 \to A \cap M \to M \to B' \to 1$$
.

Donc par l'hypothèse de récurrence, M est réalisable comme groupe de Galois d'une extension régulière de $\mathbb{Q}(T)$, ce qui implique que G l'est (voir [M], Satz 2, p. 230).

Ce théorème démontre l'existence d'éléments d_1, \ldots, d_n de $\mathbb{Q}(T)$ tels que (d_i, d_j) soit décomposée pour $1 \leq i, j \leq n$: c'est bien plus fort que les conditions décrites dans le théorème 1. Il semble difficile de trouver explicitement de tels d_i . L'algèbre (d_i, d_i) est décomposée si et seulement si d_i est somme de deux carrés, et c'est un problème ouvert de savoir si on peut choisir tous les d_i de la forme $T^2 + a_i^2$ pour $a_i \in \mathbb{Q}$. Ce problème est équivalent au problème de trouver des $a_i \in \mathbb{Q}$ tels que $a_i^2 - a_j^2$ soit toujours un carré

quand $a_i^2 > a_j^2$ (voir [G], p. 99-103). On sait depuis Euler qu'il existe des solutions pour n=3, par exemple on pose $a_1=697$, $a_2=185$ et $a_3=153$ et on trouve $a_1^2-a_2^2=672^2$, $a_1^2-a_3^2=680^2$ et $a_2^2-a_3^2=104^2$ (voir [E], Chap. XIV, nº 236-7, pp. 439-441).

Références

- [E] Euler, L. Elements of Algebra (Rev. J. Hewlett, trans.) Springer-Verlag (1984).
- [G] Guy, R.K. Unsolved Problems in Number Theory, Springer-Verlag 1981.
- [L-S] Lam, T.Y. et Smith, T. On the Clifford-Littlewood-Eckmann Groups: a new look at periodicity mod 8. Rocky Mtn. Jour. Math. 19, N. 3 (1989), p. 749-786.
- [M] Matzat, B. H. Konstruktive Galoistheorie, LNM 1284, Springer-Verlag.
- [S] Schneps, L. \tilde{D}_4 et \hat{D}_4 comme groupes de Galois. C. R. Acad. Sci. Paris, t. 308, Série I (1989), p. 33-36.
- [W] Witt, E. Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung p^f . J. reine angew. math. 174, 1935, p. 237-245.