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§0. Introduction, definitions, notation

The present note is not intended in any way as an introduction to Grothendieck-Teichmüller
theory. It is essentially a concentrated list of questions in and around this theory, most of which
are open, although we have included some questions which are natural to ask but easy to answer,
and a few others which were open but are now settled. In order for the reader to appreciate the
relative depth, difficulty, and interest of these problems, and their position within the theory, some
previous knowledge is required. We do give some important facts and definitions, but they are
intended to remind the reader of relatively well-known elements of the theory, to give something of
the flavor of the objects concerned and to make statements unambiguous. They are not sufficient
to provide a deep understanding of the theory.

To describe the main idea of the theory in a few words (see e.g. [L2] for more and references),
one takes a category C of geometric objects (of finite type) defined over a field k (of characteristic
zero for simplicity); these can be k-varieties, k-schemes, or k-algebraic stacks, and a collection of
k-morphisms between them, for instance all k-morphisms of k-varieties. Let πgeom

1 (X) denote the
geometric fundamental group of X, that is the algebraic fundamental group of X ⊗ k, where k
denotes the algebraic (or separable) closure of k; it is a finitely generated profinite group. One
can view πgeom

1 as a functor from C to the category of finitely generated profinite groups with
continous morphisms up to inner automorphisms. One then considers the (outer) automorphism
group of this functor, say Out(πgeom

1 (C)). Concretely speaking its elements consists of collections
(φX)X with φX ∈ Out(πgeom

1 (X)), indexed by objects X ∈ C, and compatible with morphisms.
One usually has additional requirements, namely that the φX satisfy some Galois-style properties,
like the preservation of conjugacy classes of inertia groups. Since there is a canonical outer action
of the absolute Galois group Gk = Gal(k/k) on πgeom

1 (X) for each X, and it is compatible with
morphisms, one gets a natural homomorphism Gk → Out(πgeom

1 (C)), which is injective in all the
interesting cases. If in fact it is an isomorphism, one thus in principle gets a geometric description of
the arithmetic group Gk. In the case where C is the category of regular quasiprojective Q-varieties
with all Q-morphisms between them, F. Pop has shown that Out(πgeom

1 (C)) is indeed equal to GQ
(2002, unpublished; the result is actually more general and stronger).

The specificity of Grothendieck-Teichmüller theory is that Grothendieck suggested (in [G1]
and [G2]) studying the categoryM of moduli spaces of curves with marked points, all of which are
viewed as algebraic stacks defined over Q. One does not a priori consider all possible Q-morphisms
between them, but only a certain family of morphisms coming from topological operations on the
topological curves themselves, such as erasing points, cutting out subsurfaces by simple closed
loops, or quotienting by finite-order diffeomorphisms. All these operations on topological curves
yield natural morphisms between the associated moduli spaces (which include the classical Knudsen
morphisms); these in turn yield homomorphisms between their geometric fundamental groups,
which are nothing other than the profinite completions of the mapping class groups studied in this
volume.

Perhaps the most insightful remark of Grothendieck on this topic is that the (outer) automor-
phism group Out(πgeom

1 (M)) of this category can actually be described explicitly, essentially as
elements of the free profinite group on two generators satisfying a small finite number of equations,
the reason for this being that in fact only the moduli spaces of dimensions 1 and 2 are important,
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the automorphism group remaining unchanged when the higher dimensional ones are added to the
category. It is not known whether Grothendieck actually wrote down the defining equations of this
group, which in essence is the Grothendieck-Teichmüller group.

However, in the seminal paper [Dr], V.Drinfel’d gave the definition of a profinite group ĜT
which is (essentially) equal to Out(πgeom

1 (M0)) whereM0 is the category of moduli spaces of genus
zero curves with marked points, whose geometric fundamental groups are essentially profinite braid
groups. The argument above shows that there is a homomorphism GQ → ĜT , which is injective by
Belyi’s celebrated theorem, and one of the essential goals of Grothendieck-Teichmüller theory is to
compare these two groups. Another, somewhat alternative goal is to refine the definition of ĜT to
discover the automorphism group of the category of moduli spaces of all genus equipped with “as
many Q-morphisms as possible”. This has been realized when the morphisms are point-erasing and
cutting along simple closed loops, partially realized when quotients by finite-order diffeomorphisms
are added, and in other, somewhat more general situations (see §2). But it is always possible to
display other Q-morphisms respected by GQ and ask if any version of ĜT also respects them.

Considering weaker profinite versions (pro-`, pronilpotent), as well as proalgebraic (pro-
unipotent, Lie algebra) versions of Grothendieck-Teichmüller theory has yielded new results, new
conjectures and most interestingly, new links with aspects of number theory not visible in the full
profinite situation. The later sections of this article are devoted to these.

Let us mention a handful of references which will provide the newcomer with entry points
into the subject. For inspiration, we recommend reading parts 2 and 3 of Grothendieck’s Esquisse
d’un Programme ([G1]). The papers [Dr] and [I1] (as well as [De], although in a different vein)
are certainly foundational for the subject. They still make very interesting, perhaps indispensable
reading. Introductions to most of the main themes of the Esquisse are contained in the articles
of [GGA]. In particular, introductions to the Grothendieck-Teichmüller group can be found in the
article [S2] of [GGA] (see also [LS1], [L2]). The original article [Dr] of Drinfel’d introducing ĜT
is filled with impressive insights, but the point of view of moduli spaces is hardly touched upon,
whereas the geometry of these spaces (in all genera) became central in [HLS] and [NS]. They can
help make the bridge with the subject matter of the present volume.

In the rest of this section we will list some of the main definitions and terms of notation. Some
of the objects are not defined from scratch, so that the exposition is not completely self-contained,
however they are meant to make the subsequent statements understandable and unambiguous.

We start with a short list of the main geometric objects, which are also the main objects of
study in the present volume:

–Mg,n (resp. Mg,[n]) denotes the moduli space of smooth curves of genus g with n ordered (resp.
unordered) marked points. These spaces can be considered as analytic orbifolds or as algebraic
stacks over Z, a fortiori over Q or any field of characteristic 0. We will make it clear what version
we have in mind according to the context.

– Γg,n = πorb
1 (Mg,n) (resp. Γg,[n] = πorb

1 (Mg,[n]) denotes the orbifold fundamental group of the
above space, as a complex orbifold. These are nothing but the mapping class groups of topologists,
also called (Teichmüller) modular groups in the algebro-geometric context.

– Γ̂g,n (resp. Γ̂g,[n]) are the profinite completions of the above groups. They are the geometric
fundamental groups of Mg,n and Mg,[n] respectively, i.e. the fundamental groups of these spaces
as Q- or C-stacks.

We now pass to the Grothendieck-Teichmüller group in some of its most important versions.
Others will appear in the course of the text. We start with the full profinite version ĜT , already
mentioned above. Note that the profinite completion contains the maximum amount of information
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compared to the other completions and versions considered here.
First note thatM0,4 ' P1 \{0, 1,∞}. Then identify the topological fundamental group of the

latter space with the free group F2 on two generators x and y. This (non-canonical) identification
amounts to picking two loops around 0 and 1 which generate the fundamental group of C \ {0, 1}.
With this identification we also identify πgeom

1 (M0,4) with the profinite completion F̂2, and we get
a monomorphism:

Out(πgeom
1 (M)) ↪→ Out(F̂2).

In order to get ĜT , as originally defined in [Dr], replace M with M0, that is, use only genus 0
moduli spaces and pick a (tangential) basepoint in order to replace outer by bona fide actions.
Finally require that the action preserve conjugacy classes of inertia groups, as the Galois action
does. This produces again a monomorphism:

ĜT ↪→ Aut∗(F̂2),

where the upper star refers to this inertia preservation condition. Concretely speaking, an element
of ĜT is given as a pair F = (λ, f) with λ ∈ Ẑ∗ (invertible elements of Ẑ) and f ∈ F̂ ′

2 (topological
derived subgroup of F̂2). The action on F̂2 is defined by:

F (x) = xλ, F (y) = f−1yλf.

One requires that these formulas define an automorphism, that is an invertible morphism, and there
is no effective way to ensure this. Finally and most importantly the pair (λ, f) has to satisfy the
following three relations (for the geometric origin of these relations, we refer to the introductions
quoted above):

(I) f(x, y)f(y, x) = 1;
(II) f(x, y)xmf(z, x)zmf(y, z)ym = 1 where xyz = 1 and m = (λ− 1)/2;
(III) f(x12, x23)f(x34, x45)f(x51, x12)f(x23, x34)f(x45,51 ) = 1,

where in (III) (the pentagonal relation), the xi,i+1 are the standard generators of the group Γ̂0,5.
We should also explain how substitution of variables is intended; for any homomorphism of profinite
groups φ : F̂2 → G mapping x 7→ a and y 7→ b, we write φ(f) = f(a, b) for f ∈ F̂2 (f itself is equal
to f(x, y)).

Thus ĜT is the subgroup of Aut∗(F̂2) whose elements are pairs F = (λ, f) acting as above
and satisfying (I), (II) and (III). Note that these are usually refered to as “relations” although
“equations” would be more correct: indeed, ĜT is a subgroup, not a quotient of Aut∗(F̂2). We
also mention that (I) is actually a consequence of (III), as was noted by H. Furusho, but we keep
(I) in the definition nevertheless because of its geometric meaning.

There is a natural map ĜT → Ẑ∗ defined by F = (λ, f) 7→ λ. It is surjective and the kernel is

denoted ĜT
1
, which is an important subgroup of ĜT , the analog of which shows up in the various

versions of the Grothendieck-Teichmüller group considered below.
The group ĜT is profinite, as it is a closed sugroup of Aut(F̂2) and any automorphism group

of a finitely generated profinite group G has itself a natural structure of profinite group. Indeed,
characteristic open subgroups are cofinal in G and Aut(G) can be written as the inverse limit:

Aut(G) = lim←−
N

Aut(G/N),

where N runs through the open characteristic subgroups of G. Here we did not mention topology,
because by a recent and fundamental result ([NiSe]), any automorphism of G is actually continuous.
Applying this result to F̂2, it makes the definition of ĜT purely algebraic.
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Starting from the profinite group ĜT , one can define interesting quotients in standard ways.
In particular, one can define GT nil, the maximal pronilpotent quotient of ĜT ; it is in fact the
direct product of the pro-` quotients GT (`), when ` runs through the prime integers. However,
we have very little control over these quotients. More accessible are the groups GT(`) which are
defined exactly like ĜT except that we take (λ, f) ∈ (Z∗` , F

(`)
2 ) (where F

(`)
2 is the pro-` completion

of F2). Comparison of GT (`) with GT(`) is an open question which we will record explicitly below.

We now pass to the proalgebraic setting, which will be useful especially in the later sections.
All the algebraic groups G that we encounter, including those which make their appearance in the
last sections only, in connection with motives and multiple zeta values, will be of the following
type. The group G is linear proalgebraic over a field of characteristic 0, usually Q (sometimes G
can actually be regarded as a progroup-scheme over Z). It is an extension of the multiplicative
group Gm by its prounipotent radical G1; the usual equivalence between unipotent algebraic groups
and their Lie algebras extends to the proalgebraic setting, so G1 is isomorphic to its Lie algebra
Lie(G1). Moreover the latter is equipped with an action of Gm coming from the definition of G as
an extension, and this action provides a natural grading, so that we can also consider the graded
version of that Lie algebra, which is more amenable to concrete computations.

In the case of the Grothendieck-Teichmüller group, we encounter the same phenomenon as
with the profinite versions mentioned above. We could consider the pro-` quotient GT (`) and
construct from it a prounipotent completion (over Q`). But again this is not easily accessible. So
following [Dr], one first defines the prounipotent (or Malčev) completion F 2. Then one defines GT
by describing its k-points for k a field of characteristic 0. These are given again by pairs (λ, f)
satisfying the relations as above, but now with (λ, f) ∈ k∗ × F 2(k).

The prounipotent radical GT 1 is then defined as above. The associated Lie algebra is denoted
gt and its graded version grt. The latter is an especially important object, allowing for quite explicit
computations. It was first defined and studied by V. Drinfeld and Y. Ihara. It is naturally defined
over Q, although Ihara showed it can in fact be defined over Z, and this integral structure leads
to very interesting arithmetic problems which we do not address in this note (see [I4], [McCS]).

Let us give here the explicit definition of grt, obtained by linearizing and truncating the
defining relations of the group. Namely, the graded Lie algebra grt is generated as a Q-vector
space by the set of homogeneous Lie polynomials f(x, y) in two variables satisfying:

(i) f(x, y) + f(y, x) = 0;
(ii) f(x, y) + f(z, x) + f(y, z) = 0 with x + y + z = 0;
(iii) f(x12, x23) + f(x23, x34) + f(x34, x45) + f(x45, x51) + f(x51, x12) = 0,

where the xij generate the Lie algebra of the pure sphere 5-strand braid group.
This finishes our survey of the main definitions. Other objects will occur in the text, especially

in the later sections. We remark that we refrained from explicitly using in this note the variant
GRT of GT , although it is conceptually quite significant. We refer to [Dr] and especially to [F1,F2]
for more information on this point. Finally we note that we will sometimes use the bare letters GT
as an abbreviation for “Grothendieck-Teichmüller” or as a “generic” version of the Grothendieck-
Teichmüller group, so that this is not to be considered as a piece of mathematical notation.

Acknowledgments: Many of the questions and problems listed below arise naturally and were raised
recurrently and independently by various people. We warmly (albeit anonymously) thank them all
for sharing their preoccupations with us through the years. It is a pleasure to thank B. Enriquez
and I. Marin for their interest and for suggesting interesting questions. We included some of these
below (see §1 and §7) although in a simplified and incomplete version in order to minimize the
necessary background. We are also delighted to thank D. Harbater, H. Nakamura and the referee
for many useful corrections and remarks.
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§1. Group theoretical questions on ĜT

The fundamental result concerning the group ĜT is that there is an injective homomorphism

GQ ↪→ ĜT .

In some sense this is built into the definitions, via Belyi’s result (cf. [G1] p.4; “[...] à vrai dire elle
[l’action] est fidèle déjà sur le premier ‘étage’ [...]”). Drinfel’d indicated this fact in his original
article [Dr], and Ihara gave the first complete proof. Let us recall a basic minimum. In order to
associate an element Fσ = (λσ, fσ) ∈ ĜT to σ ∈ GQ, recall that there is a canonical outer GQ-action
on the geometric fundamental group of P1 \ {0, 1,∞} which is inertia preserving. Proceedings as
in the introduction, we get an element Fσ ∈ Aut∗(F̂2) acting on the generators as:

Fσ(x) = xλ
σ, Fσ(y) = f−1

σ yλ
σfσ.

Considering the abelianization of F̂2 (i.e. the effect on homology) shows that λσ = χ(σ) where
χ : GQ → Ẑ∗ is the cyclotomic character. As for fσ, it becomes uniquely determined if one requires
it to lie in the derived subgroup of F̂2 (this is also the reason behind this requirement in the
definition of ĜT ). Ihara then went on, using geometric arguments, to prove that every such Fσ

satisfies relations (I), (II) and (III), thus defining a homomorphism GQ → ĜT . Injectivity is an
easy consequence of Belyi’s theorem.

Comparison between ĜT and GQ is a main goal of Grothendieck-Teichmüller theory. This
comparison can be examined from various topological, geometrical and arithmetic points of view,
the most straightforward of which may be direct group theory – at least in terms of questions to
ask, if not to answer. For any group-theoretical property satisfied by GQ, it is natural to ask if
ĜT possesses the same property. Ihara began asking such questions in the early 1990’s; we give a
brief list here:

1.1. Let (λ, f) ∈ Ẑ∗ × F̂ ′
2. Does x 7→ xλ, y 7→ f−1yλf extend to an automorphism, or can it

actually determine a non-invertible endomorphism? One can ask the same question when (λ, f)
satisfies (I), (II), (III).

Note that this question pertains to the full profinite setting only. Invertibility is immediately
detected in the pronilpotent or proalgebraic situation.

1.2. Is ĜT
1

the topological derived subgroup of ĜT? In other words, is the abelianization of ĜT
obtained, like that of GQ (by the Kronecker-Weber theorem), by the map (λ, f) 7→ λ corresponding
to taking the cyclotomic character (λσ = χ(σ) for σ ∈ GQ)?

1.3. Does a version of the Shafarevitch conjecture hold for ĜT : is ĜT
1

a free profinite group on
a countable number of generators?

1.4. ĜT contains an element c = (−1, 1) which acts on F̂2 ' πgeom
1 (P1 \ {0, 1,∞}) as complex

conjugation i.e. via c(x) = x−1, c(y) = y−1. Is the normalizer of c in ĜT generated by c itself, as
it is in GQ?

This question is natural but not open. It was resolved in the affirmative in [LS2], using
methods of Serre and a profinite Kurosh theorem to compute the non- commutative cohomology
group H1(F̂2, 〈c〉). However, a natural analogy with GQ leads to the further question:

Are the conjugates of (−1, 1) the only elements of finite order in ĜT?

1.5. Compare GT(`), as defined in [Dr] and in the introduction with GT (`), the maximal pro-`
quotient of ĜT . Similar questions arise in the proalgebraic setting.
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1.6. Can anything be said about the finite quotients of ĜT? Obviously all abelian groups arise as
quotients, since Ẑ∗ is a quotient of ĜT . But what non-abelian groups arise?

1.7. One of the difficulties of inverse Galois theory is that it is easier to prove that a given finite
group G is a quotient of GQab than of GQ, and that given the first result, it is not at all obvious
how to deduce the second. Part of the problem is due to the difficulty of studying the outer action
of Ẑ∗ on GQab explicitly. This outer action is given explicitly, however, by the expression for the

outer action of Ẑ∗ on ĜT
1
, which contains GQab . Can this fact contribute to descending Galois

groups over Qab(T ) to Galois groups over Q(T )? And in general, what can be said about the finite
quotients of ĜT?

We close this section with a few words on the linear representations of ĜT . The theme would
in principle require a section by itself, but since unfortunately practically nothing is known on this
topic, we can remain brief. In particular, no irreducible non-abelian linear representation of any
version of GT has been constructed to date. In [I2] Ihara constructed the ĜT analog of the Soulé
characters, so in particular of the Kummer characters. Other versions of at least some extensions
of the Kummer and Soulé characters appear in [NS], [M] and a few other places. Hence the first
question:

1.8. Are the various definitions of these characters equivalent (inasmuch as they overlap)? Inves-
tigate multiplicativity properties which come for free in the Galois case and are far from obvious
in the ĜT extensions (see [I2], §1.10).

I. Marin, in the article [M], constructs representations of GT 1(Q`) into PGLN (Q`((h))) (formal
Laurent series). We do not recall the construction here, as it is quite complicated, noting only
that one starts from an `-adic representation of an infinitesimal braid group together with a given
associator and then uses the action of ĜT

1
on the associators in order to produce a representation,

provided a certain rigidity condition is fulfilled. The basic construction actually works in more
general cases than `-adic representations and is quite natural. The most important question in
this context is:

1.9. Can one obtain non-abelian (projective) linear representations of GT 1(Q`) and GT` in this
way?

Recall that there is a natural morphism GQ → GT (Q`) (whose image is conjectured to be
Zariski dense; see §8 below). This method thus also produces Galois representations. As the
author explains, these representations are “often” abelian, hence the question above. Yet, in the
abelian case and restricting to the Galois image, one produces characters of the Galois group. This
leads naturally to the following problem.

1.10. Analyse the characters produced in [M] in terms of the Soulé characters.

Finally, given the map above, one can always pose the following (too) general question:

1.11. To what extent can one extend “classical” `-adic representations (Tate modules, more
generally étale cohomology etc.) into GT (Q`)-representations?

§2. Other versions of ĜT

Several “refined” versions of the Grothendieck-Teichmüller group have been defined, each with
relations added in order to satisfy some geometric property that GQ is already known to satisfy. We
do not give the definitions here (refering instead to the original articles), but simply the properties
satisfied by each of four of the most interesting of these “refined” groups. Each of the groups
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discussed here contains GQ as a subgroup.

– The group Λ ⊂ ĜT is obtained by adding a single new relation (R) to the defining relations
of ĜT coming from M1,2, and has the property that it acts on the mapping class groups Γ̂g,n in
all genera and respects the basic point erasing and subsurface inclusion morphisms of the moduli
spaces, that is basically the classical Knudsen morphisms. We refer to [HLS] for an early version
with extra hypotheses, and to [NS] for the general case.

– The group IΓ ⊂ Λ ⊂ ĜT is obtained by adding two new relations (IV) and (III′) to ĜT , and not
only has the same property as Λ (because (III) together with (IV) implies (R)), but also respects
the exceptional morphismM0,4 →M1,1, as well as the usual degree 6 quotient morphism already
respected by ĜT (cf. [NS]).

– The group ĜS is defined by adding two new relations to the definition of ĜT corresponding to
respecting morphisms mappingM0,4 to special loci ofM0,5 andM0,6 corresponding to points in
those moduli spaces having non-trivial automorphisms. These two relations imply (R), (IV) and
(III′), so that ĜS ⊂ IΓ ⊂ Λ ⊂ ĜT . We refer to [S4] for the initial version with extra hypotheses,
and to [T] for the general case.

– The group ĜTK, defined by Ihara in [I3], gives a definition obtained by adding an infinite series
of relations requiring that the maps P1 \ {0, µn,∞} → P1 \ {0, 1,∞} be respected, both by the
quotient map z 7→ zn and by the inclusion map, be respected by the ĜT -action on the π1’s of
these curves, just as they are respected by the GQ-action (since all these curves and maps are
defined over Q). It is the only version of ĜT which requires maps to be respected which are not
maps between moduli spaces. Another version ĜTA is defined in [I2] and elements of comparison
between these two versions are discussed in [I3].

Faced with this dangerous explosion of versions of the original object, the most natural and
pressing question is surely:

2.1. Are these groups actually different from each other? Or are some of the new relations already
implied by previous ones, in particular by the original relations defining ĜT? And in particular –
are all or any of them actually isomorphic to GQ?

The two-level or locality principle. One of the fundamental geometric properties of the all-genera
Grothendieck-Teichmüller group IΓ (resp. of ĜT ) is that it is defined by relations coming from
requiring the IΓ- (resp. ĜT -) action to respect certain morphisms between the moduli spaces (resp.
the genus zero moduli spaces) of dimensions 1 and 2. These relations imply that the analogous mor-
phisms between higher dimensional (resp. genus zero) moduli spaces are automatically respected.
Indeed, relations (I) and (II) reflect the requirement that there exists a ĜT -action on Γ̂0,4 and Γ̂0,[4],
respecting the homomorphisms coming from the moduli space morphism M0,4 → M0,[4], while
relation (III) comes from the requirement that the ĜT -action on Γ̂0,4 extends to Γ̂0,5 respecting
the inclusion map Γ0,4 ↪→ Γ0,5 corresponding to erasing the fifth point. Finally, relation (R) comes
from requiring IΓ to act on Γ̂1,2 in such a way that the morphism M0,5 →M1,2 is respected.

2.2. Does the group ĜS satisfy a two-level principle? In other words, does the assumption that
it respects the special homomorphisms between moduli spaces in the first two levels imply that it
automatically respects higher dimensional special morphisms (either in genus zero or in general)?

This is a highly mysterious property. Indeed the automorphisms of the curves in the first
two levels involve essentially the platonic primes 2, 3 and 5, and so does the definition of ĜT
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itself, whereas any finite group can be realised as the automorphism group of a suitable smooth
hyperbolic curve. Is this reflected in the first two levels? In the same vein, one might ask:

2.3. Can the groups ĜTK or ĜTA be defined by a finite number of relations? Do they also satisfy
some two-level principle?

§3. Moduli spaces of curves, mapping class groups and GT

We include in this section some questions concerning important algebraic and geometric as-
pects of the moduli spaces of curves which, even though not directly connected with the Grothen-
dieck-Teichmüller group, are nonetheless closely related to the general themes of Grothendieck-
Teichmüller theory. We also remark that the connection between that theory and anabelian geom-
etry is far from clear at the moment.

3.1. A first very ambitious question is: Are the moduli spaces anabelian?
This is intended in the original sense introduced by Grothendieck in his seminal letter to

G.Faltings (reproduced in [GGA]). Namely one is asking whetherMg,n, viewed as a Q-stack is the
only K(π, 1) space (up to isomorphism) with augmented arithmetic fundamental group isomorphic
to π1(Mg,n) → GQ. We refer to the contribution of F.Pop in [GGA] ([Pop]) for a detailed and
categorical formulation for general schemes. If indeed one prefers to work with schemes, the same
question can be asked about any finite Galois étale covering ofMg,n which is a scheme.

3.2. Anabelian varieties (or schemes or stacks) should be rigid (see [N1], [Sx] for detailed discus-
sions). This leads to the following test for anabelianity ([IN]): is it true that

OutGQ(Γ̂g,n) = Aut(Mg,n,Q)(= Sn)?

(Sn is the permutation group on n objects.) This statement has been proved for g = 0 ([N2] and
references therein) and indeed in greater generality, replacing Q with any field finitely generated
over Q (see also [IN], §4). This is actually one of the only known results in higher dimensional
anabelian geometry.

We refer to [IN] for the formulation of other similar tests for abelianity; they are all equivalent
if and when Γ̂g,n is centerfree. Note also that giving the outer action of GQ on Γ̂g,n is equivalent
to giving the augmented arithmetic fundamental group as in 3.1 above, if and only if again Γ̂g,n

is centerfree.

3.3. There also arises the question of comparing the group Out∗(Γ̂g,n) of outer automorphisms
preserving conjugacy classes of Dehn twists and the subgroup OutSn

(Γ̂g,n) of all outer automor-
phisms commuting with the permutation group. Are they by any chance equal? A weaker version
of this question, restricted to the GQ-equivariant exterior automorphisms, is: Do OutGQ(Γ̂g,n) and
Out∗GQ

(Γ̂g,n) coincide?
So another ambitious and perhaps optimistic question is: does any (outer) automorphism of

Γ̂g,n preserve inertia at infinity (conjugacy classes of Dehn twists)? This is important as the first
group is more amenable to study than the second a priori larger group. This leads to asking whether
one can give a group theoretic characterization of Dehn twists inside the profinite completion Γ̂g,n

analogous to the one obtained by N.Ivanov in the discrete case (see [Iv] §7.5 and references therein).
Note that this is strongly reminiscent of the so-called ‘local correspondence’ in birational anabelian
geometry ([Sz]).

3.4. Is Γg,n a good group in the sense of Serre?
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Recall ([Se] §2.6) that a discrete and residually finite group G is good if the injection into
its profinite completion induces an isomorphism in cohomology with finite (equivalently, torsion)
coefficients. The question for Γg,n is classical (see the contribution of T.Oda in [GGA]) and the
answer is affirmative with an easy proof for g ≤ 2. It is also easy to show that Γg,n is good if
Γg = Γg,0 is. So the problem actually arises only for Γg with g ≥ 3. In [B], goodness is announced
for Hk, k ≤ 4, with a very interesting application of the first non-trivial case, namely k = 2 (cf.
[Sx]).

The connection between goodness and anabelianity stems from the fact that good groups have
many open subgroups, in the sense that any cohomology class can be made to vanish by restriction
to a suitable open subgroup. Geometrically speaking, a K(π, 1) scheme (stack) whose geometric
fundamental group is good has many étale covers which should give rise to an interesting Galois
action. So the idea is that a K(π, 1) quasiprojective scheme (stack) whose geometric fundamental
group is universally centerfree and good is a “good” candidate for being anabelian. A prominent
“anti-example” is the moduli stack Ag of principally polarized abelian varieties, whose fundamental
group is not good because of the congruence property for the symplectic group Sp2g(Z) (g > 1)).
This stack has few étale covers in the sense that for example they are all defined over Qab (cf.
[IN,§3]).

3.5. How does the Grothendieck-Teichmüller action (of the group IΓ, for example) on Γ̂g,[n] behave
with respect to the finite-order elements?

Here we mean particularly those elements which come from the discrete group Γg,[n], in other
words are realisable as automorphisms of algebraic curves. It is not known whether all finite-order
elements of the profinite completion come from the discrete group; one can ask:

3.6. Is every finite order element in Γ̂g,[n] conjugate to one in Γg,[n]?
This is essentially the torsion counterpart of the question about Dehn twists raised in 3.3.

Proving that Γg,n is good would be a big step towards answering this question (see [LS2]).

Return to the GQ and ĜT actions on Γ̂g,[n]; in a more detailed fashion, 3.5 actually asks
whether the action is “cyclotomic” on the torsion elements (arising from the discrete group), in
the sense that we can assert that for F = (λ, f) ∈ ĜT and a finite-order element γ ∈ Γ̂g,[n], we
have F (γ) ∼ γλ; here ∼ denotes conjugation in Γ̂g,[n]. The answer to this question is known to be
affirmative only for g = 0 and for a few low dimensional spaces such asM1,1,M1,2,M2 (cf. [S4]).
In the other cases, it is conjectured but not known, even for GQ.

3.7. It is shown in [HS] that for each n ≥ 5, we have:

ĜT ' Out∗Sn
(Γ̂0,n).

The geometric significance of Sn here is as in 3.2 for g = 0. Does the analogous all-genera
isomorphism:

IΓ ' Out∗Aut(Mg,n)(Γ̂g,n)

also hold? If not, is the right-hand group at least defined by a finite number of relations, possibly
coming only from dimensions 1 and 2?

§4. Dessins d’enfants

The theory of dessins d’enfants and their various descriptions, topological, algebraic, combi-
natorial and others has been described in several articles (e.g. [S1]). Here, we use the definition of
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a dessin d’enfant as being equivalent to a Belyi cover, i.e. a finite cover:
β : X → P1

of Riemann surfaces unramified outside 0, 1 and∞. Belyi’s famous theorem states that an algebraic
curve over C is defined over Q if and only if it can be realized as a Belyi cover (the ‘only if’ direction
being the really new one). There is a natural Galois action on the set of dessins, as these are defined
over Q. Since ĜT by definition acts on πgeom

1 (P1 \{0, 1,∞}) ' F̂2, it also acts on the set of dessins,
which are in one-to-one correspondence with conjugacy classes of finite index subgroups of F̂2, and
this ĜT -action extends the GQ-action. The first question is the basic and original one about dessins
d’enfants:

4.1. Can one give a complete list of Galois invariants of dessins, i.e. enough combinatorial
invariants of the Galois action on dessins to determine the Galois orbits?

The standard Galois invariants are such things as valencies (i.e. ramification indices over 0,
1, ∞), order of the Galois group of the Galois closure of the Belyi cover, the Galois group itself,
in fact, various extensions of this group, etc. None of these invariants seems to be enough to
actually distinguish Galois orbits of dessins, although putting them together astutely yields more
than using them singly (cf. [W]). By a combinatorial invariant, we mean one which is computable
combinatorially from the two permutations defining the dessins (see [S1]). Very few have been
found to date (see however [Z]) and one is not even sure whether it is possible to distinguish Galois
orbits via combinatorial invariants only.

A slightly weaker question would be to give a combinatorial method for determining the
number field of moduli of the dessin (or even its degree). On this subject, R. Parker expressed a
remarkable conjecture. To phrase this conjecture, we consider a dessin to be given by the equivalent
data of a finite group G on two generators, say of order n, together with an explicit choice a and
b for the two generators. The dessin can easily be reconstructed from this by injecting the group
into Sn via its action on itself by right multiplication, which gives a and b as permutations whose
cycle lengths describe the valency lists and whose cycles themselves give the cyclic order of edges
around these valencies.

4.2. Parker’s Conjecture: Let G be a finite group generated by two elements a and b, and consider
the element P in the group ring Q[G×G] given by P =

∑
g∈G(gag−1, gbg−1). Choosing the basis

of pairs (g, h) for the vector space Q[G×G], right multiplication by P gives an automorphism of
the vector space which can be written as a matrix MP . The conjecture states that the field of
moduli K of the dessin associated to G, a, b is generated over Q by the eigenvalues of MP .

This conjecture can be proved without too much difficulty for dessins with abelian or dihedral
Galois groups. It would be a good exercise to complete the genus zero case, by dealing with the
remaining cases, namely the automorphism groups of the five Platonic solids. This is easy to do
for the smaller ones, and confirms the conjecture. The larger ones should be easy too, except that
the computations soon become gigantic...

Another natural question is whether the ĜT -action on dessins transmutes into an action on
curves, as follows.

4.3. Let X be an algebraic curve, and suppose we have two dessins on X, i.e. two different Belyi
functions β1 : X → P1 and β2 : X → P1. Then the images of these two dessins under an element
σ ∈ GQ are both dessins on the curve σ(X). As above there is also a ĜT -action on dessins. If
F = (λ, f) ∈ ĜT , do the two new dessins F (β1) and F (β2) also lie on the same Riemann surface?

Let us define an action of ĜT on Q in the following, rather artificial manner. First choose a
fundamental domain D for the natural action of S3 on P1C \ {0, 1,∞} and represent any elliptic
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curve E by its Legendre form: y2 = x(x − 1)(x − λ) with λ ∈ D. Then take the dessin β on E
given by the Belyi polynomial produced by starting from the function x on E and applying Belyi’s
original algorithm. For each F ∈ ĜT and each j ∈ Q, define F (j) to be the j-invariant of the
elliptic curve underlying the dessin F (β).

Several questions arise from this construction. Apart from the obvious “Is this an automor-
phism of Q?” and the questions of whether the value of F (j) depends on the choice of λ, the choice
of dessin on E, and whether there is not some more canonical way of defining this action, here are
some that appear more approachable.

4.4. Does this definition of the action of F ∈ ĜT on Q fix Q?

The answer is certainly yes and probably not hard to show, but needs to be written down.

4.5. What can one compute in the case where λ is of low degree, for instance a square root of a
rational number?

4.6. Can one show that the action is at least additive?

Dessins became very popular as topological, indeed combinatorial objects on which the profi-
nite group GQ acts faithfully. But it is possible to consider more general such objects; in particular,
instead of looking at covers of P1 − {0, 1,∞}, the next natural step would be to consider covers
of P1− 4 points, or of elliptic curves, so that the variation in the complex structure of the base
enriches the arithmetic and geometric structures of the covers.

Using elliptic curves as a base yields the “origamis” (square tiled surfaces) studied in [L1];
they naturally sit inside the moduli spaces of curves, and thus are a priori directly connected with
GT . We refer to [L1], [Mö], [Sc] as well as papers by G. Schmithüsen and F. Herrlich for this
material.

One can ask the same questions about origamis that one asks about dessins: determine invari-
ants, Galois orbits etc. Let us rather mention two specific problems which seem to be within reach.
Since origamis are really higher dimensional versions of dessins, as they are topological surfaces
and degenerate to dessins when approaching the boundary of the appropriate moduli space, the
first question or problem is naturally:

4.7. Study, geometrically and arithmetically, the degeneration of origamis into dessins.

The second problem is related and even more specific. Very few non-trivial combinatorial
Galois invariants have been constructed for dessins; one of these is Zapponi’s invariant constructed
in [Z]. For differentials there is also one and only one invariant, which is indeed a Galois invariant,
namely the parity of the spin structure (see [KZ]). Both invariants are signs (they are Z/2Z-valued).
The question is:

4.8. Express the parity of the spin structure for origamis in a combinatorial way. Using 4.7, can
one relate this invariant with Zapponi’s invariant?

§5. Number theory and ĜT ; a direct approach

The previous section already shows how the study of ĜT can lead naturally to number theoretic
questions, although number theory is not immediately visible in the definition of ĜT , even viewed
as an automorphism group of fundamental groups of moduli spaces. The following Galois-theoretic
problem was formulated by Y. Ihara. It is a basic question about the Galois action in the pro-`
setting, and indeed represents the analog of Belyi’s result in that context.
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5.1. Let M∗ denote the fixed field of the kernel of the homomorphism:

GQ → Out∗(F (`)
2 ).

Does M∗ coincide with M (`), the maximal pro-` extension of Q unramified outside `?
The point is that Grothendieck’s theory of the specialization of the fundamental group implies

that M∗ ⊂M (`) (see [I1]); note that M∗ is just the field of definition of the proscheme defined by
the tower of `-covers of P1 \ {0, 1,∞}.

One of the most frequently asked questions in the early days of ĜT was the following: How
can one see the primes, or the decomposition groups, or the Frobenius elements in ĜT? In other
words, can one define local versions of ĜT , i.e. subgroups which would correspond in a natural
way to the p-adic decomposition subgroups (defined up to conjugacy) GQp

= Gal(Qp/Qp) in GQ?
We will denote such a subgroup GTp (not to be confused with GT(`) in §§0,1). For the moment,
we have two ways of defining such a GTp at our disposal.

The first definition uses the action of ĜT on Q defined before 4.4 and so is rather ad hoc.
Elements σ in a subgroup GQp

are characterized inside GQ by the following property:

σ ∈ GQp if and only if |j|p ≤ 1⇒ |σ(j)|p ≤ 1 for all j ∈ Q.

So by analogy, we take GTp to be the subgroup of ĜT satisfying the same property.

For the second definition, we recall that Y. André defined (in [A1]) the temperate fundamental
group πtemp

1 (X) of a p-adic manifold X, which injects naturally into the algebraic profinite fun-
damental group πalg

1 (X). Considering X = P1 \ {0, 1,∞} over Qp, we can define (as in [A1]) GTp

to be the subgroup of ĜT which preserves the subgroup πtemp
1 (P1 \ {0, 1,∞}). André has shown

that considering GQ as a subgroup of ĜT , one has:

GTp ∩GQ = Gal(Qp/Qp).

5.2. Do the two definitions above coincide?

5.3. Can one describe inertia subgroups of the subgroups GTp corresponding to those of GQp
? Can

one characterize Frobenius elements? Note that it was already observed in [I1] that even in the
Galois setting, it could be hard to recognize the Frobenius elements from their geometric action.

§6. GT and Mixed Tate Motives

If we restrict to the unipotent setting, the objects considered above are motivic, and moreover
of mixed Tate type. In this relatively restricted context, the paradise of motives is a reality; in
particular there exists a Tannakian category MT (Z) of Mixed Tate motives over Z. It is equipped
with a canonical (Beilinson-de Rham) fiber functor and the associated fundamental group Gmot is
an extension of the multiplicative group Gm by its prounipotent radical Umot. The latter is graded
by the Gm action, and its graded Lie algebra Lmot is free on one generator in each odd degree
2k + 1, k ≥ 1. This landscape is described in particular in the work of A.B.Goncharov ([Go1,2] as
well as many other papers by the same author), in [DG] and in [A2]. The motivic point of view
suggests many more or less “standard” conjectures, of which we will state only a few in the last
three sections, without entering into all the necessary technicalities (even in the statements). We
will also give some slightly less standard, more directly GT -oriented problems.
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One can define the motivic fundamental group π = πmot
1 (P1 \ {0, 1,∞}) of P1 \ {0, 1,∞} and

its coordinate ring is an ind-object in MT (Z) (see [DG] for details). Then one can consider the
Tannakian subcategory 〈π〉 ⊂ MT (Z) generated by π, i.e. containing all the motives obtained
from π by taking tensor products of π and its dual, direct sums and subquotients. A very strong
conjecture asks:

6.1. Is the inclusion 〈π〉 ↪→MT (Z) an isomorphism? If Gπ denotes the fundamental group of the
Tannakian category 〈π〉, then there is a natural epimorphism Gmot → Gπ, and this question is
equivalent to asking whether it is an isomorphism.

In order to get closer to GT , it is natural to introduce the genus 0 moduli spacesM0,n into the
motivic landscape, together with their stable compactifications M0,n. The motivic cohomology
of these spaces belongs to MT (Z), whereas that of higher genera moduli spaces does not. The
motivic fundamental groups πmot

1 (M0,n) are constructed in [DG] and also belong to MT (Z). One
can then propose the following task:

6.2. Consider the Tannakian subcategory of MT (Z) generated by the fundamental groups of the
M0,n (n ≥ 4); how does its fundamental group compare with Gπ and GT?

There exists in fact a monomorphism Gπ ↪→ GT (see e.g. [A2]) and the point is:

6.3. Is the natural monomorphism Gπ ↪→ GT an isomorphism?

Putting 6.1 and 6.3 together underlines the fact that one can reasonably ask whether the
three groups Gmot, Gπ and GT coincide. In the next two sections, we present weaker and more
specific versions of this type of expectation. We believe that having the higher dimensional genus 0
moduli spaces come into play should help to approach them, in conformity with the original spirit
of Grothendieck-Teichmüller theory.

§7. The Hodge side: GT and multiple zeta values

Multiple Zeta Values (hereafter simply multizeta values) are real numbers defined using either
infinite series or integrals, the latter representation being much more recent. They satisfy two very
different looking families of relations, namely the quadratic or (regularized) double shuffle relations
and the associator (or modular, or GT ) relations. We write Zw for the Q-vector space spanned by
the multizeta values of weight w ≥ 0 (where we formally set ζ(0) = 1 and ζ(1) = 0), and Z• for the
Q-algebra of the multizeta values, filtered by the weight (see any paper on the subject, including
[Go1,2], [F1,F2], [A2] etc.). Thus, we have Z0 = 〈1〉 and Z1 = 0, Z2 = 〈ζ(2) = π2/6〉, Z3 = 〈ζ(3)〉,
and then the dimensions grow quickly as multizeta values appear (see 7.3 below).

In order to capture some of the main algebraic and combinatorial properties of these real
numbers without confronting intractable transcendence problems, three other filtered Q-algebras
have been introduced: ZDS

• , ZGT
• and Zmot

• . The first (resp. second) of these consists in taking
formal multizeta symbols which satisfy only the double shuffle (resp. associator) relations, which
are known to be satisfied by the genuine multizeta values and conjectured to form a complete set
of algebraic relations between them. These two algebras are graded by the weight. Note that in
papers written in French or by French speaking authors (e.g. [A2], [E], [R]), ‘DS’ reads ‘DM’ or
‘DMR’ (‘Double mélange régularisé’). The algebra of motivic multizeta values Zmot

• constructed
by Goncharov is more complicated to define: Goncharov has proved in [Go2] that it is a quotient of
ZDS
• , but perhaps not strictly, and no further relations are explicitly known. It is known, however,

that this algebra is also graded by the weight. By contrast we have:

7.1. Conjecture: The weight induces a grading on Z•.
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In other words, it is not even known whether there are any linear relations between real
multizeta values of different weights. This conjecture immediately implies the transcendence of all
multizeta values (since a minimal polynomial would yield such a linear relation), in particular of
the values ζ(2n + 1) at odd positive integers of Riemann’s zeta function, so it is expected to be
extremely difficult.

On the subject of Zmot
• , Goncharov has shown that it is naturally realizable as a subalgebra

of the universal enveloping algebra U(Lmot) of the Lie algebra Lmot of the unipotent part Umot of
the motivic Galois group Gmot of MT (Z) (cf. §6 above). Goncharov conjectures that in fact

Zmot
•

∼→ U(Lmot)∨.

This leads to the following well-known conjecture:

7.2. The algebras Z•/π2Z•, ZDS
• , ZGT

• , Zmot
• and U(Lmot)∨ are canonically isomorphic.

Equivalently one conjectures the isomorphism of the five algebras Z•, Q[π2] ⊗Q Zmot
• , etc.

Moreover, it is easily seen ([Go1]) that:

Q[π2]⊗Q U(Lmot)∨ ' U(L[s2, s3])∨,

where L[s2, s3] is the free Lie algebra on two generators in weights 2 and 3; the dimensions of the
graded parts of this algebra are given by the coefficients of the generating series 1/(1 − t2 − t3),
which leads to the following dimension conjecture for all five algebras:

7.3. Dimension conjecture (D. Zagier): Letting dw denote the dimension of Zw (resp. DS, GT ,
mot) as a Q-vector space, one has dw = dw−2 + dw−3 (with d0 = d2 = 1, d1 = 0).

The upper bound for Z•, i.e. the fact that the actual dimension of Zw is less than or equal
to the conjectured one, was proved independently by A. Goncharov and T. Terasoma (see [A2] for
references and a sketch of proof following Goncharov). The statement involves no transcendence,
and the proof is motivic.

Leaving aside Z• itself, one can explore the possible isomorphisms between the other algebras.
For instance:
7.4. Can one find an explicit isomorphism between ZDS

• and ZGT
• , i.e. an explicit way to obtain

double shuffle relations from associator relations and vice versa?
This is in principle an algebraic or even combinatorial problem, which has proved difficult and

enticing.

The original multizeta values Z• can be seen as periods of motives of the category 〈π〉 ⊂MT (Z)
(cf. §6), where Goncharov has shown how to attach a ‘framing’ to a mixed Tate motive, which
yields a complex-valued period (modulo periods of motives of lower weights). A weaker version of
6.1 is thus:
7.5. Do the multizeta values give all the periods of (framed) mixed Tate motives over Z?

Recall that the genus 0 moduli spaces M0,n and their stable completions M0,n provide im-
portant objects of MT (Z). In fact, Goncharov and Manin ([GoM]) have shown that there are
canonical framed mixed Tate motives associated to these spaces, whose periods are the multizeta
values. This also provides an alternative but equivalent definition of Zmot

• .

The above question can be rephrased purely analytically. There is a map:

p :M0,n+3 → (P1)n,
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obtained by successive blowups (so it is a birational isomorphism). Consider the standard real
n-simplex ∆ = {0 < t1 < t2 < . . . < tn < 1} ⊂ (P1)n; the topological closure of the preimage
p−1(∆) is the standard associahedron K ⊂M0,n+3. Relative periods are of the form

∫
K

ω, where
ω is a top dimensional logarithmic form; these can be explicitly determined. The multizeta values
correspond to very particular such ω’s, those having only factors of ti or 1− ti in the denominators.
The analytic form of 7.5 now reads:
7.6. Are all such integrals given by Q-linear combinations of multizeta values?

Of course not all such integrals converge, and one can dream up several different versions of
the above, the simplest of which is to make the statement only for the convergent integrals (there
is a nice geometric criterion for convergence).

The multizeta values satisfy the double shuffle relations and the associator relations. The
associator relations in particular come directly from the geometry of the M0,n. Thus, from the
perspective of Grothendieck-Teichmüller theory, it is very natural to ask:

7.7. Can one give generalized double shuffle and/or associator relations valid for all the relative
periods of the M0,n and coming from the geometry of these spaces?

In other words the task consists in exploring the combinatorics of the relative periods of these
spaces. This could be useful for attacking, but is logically independent of question 7.6.

Similar or equivalent questions to the above are posed by several authors in the proalgebraic
context. The algebras ZDS

• , ZGT
• and Zmot

• are all commutative Hopf algebras which are universal
enveloping algebras of Lie coalgebras; these results are due, in chronological order, to V. Drinfel’d
and Y. Ihara for ZGT

• , A. Goncharov for Zmot
• and G. Racinet [R] for ZDS

• . Their spectra are three
unipotent affine group schemes:

GDS , GT 1 and GMZ .

Thus, the isomorphism questions in 7.2, apart from the original Z•, can be rephrased as:
7.8. Are the affine unipotent group schemes GDS , GT 1, GMZ and Umot all isomorphic?

The two points of view explained here concern duals of universal enveloping algebras of Lie
algebras and their spectra, affine unipotent group schemes. Let us now rephrase some of these ideas
from the point of view of the Lie algebras/coalgebras themselves. This can be quite enlightening
and leads to new results and connections. For instance, Goncharov has computed the coproduct on
Zmot
• explicitly, and deduced the expression of the Lie cobracket on the vector space Zmot

>2 /(Zmot
>0 )2,

making it into a Lie coalgebra. Generalizing this to a question about Z• itself yields an equivalent
but more striking and precise version of 7.5:
7.9. Let nz (for ‘new zeta’) be the Q vector space obtained by quotienting Z• by the ideal
generated by Z0, Z2 and (Z>0)2 (or equivalently, quotienting Z>2 by (Z>0)2). Is there a surjection
(isomorphism?) (Lmot)∨ → nz, thus defining a structure on nz of a Lie coalgebra, whose dual
would thus be (freely?) generated by one element in each odd rank?

The algebra ZGT is related to the Lie algebra grt (cf. §0) by the fact that ZGT is the dual
of the universal enveloping algebra of grt; equivalently, ZGT

>2 /(ZGT
>0 )2 is a Lie coalgebra dual to

grt. Similarly, the double shuffle Lie algebra ds is given as a vector space by
(
ZDS

>2 /(ZDS
>0 )2

)∨; it
is however also quite simple to define directly, cf. [R]. What Racinet actually proved is that this
vector space is closed under the Poisson (alias Ihara) bracket, from which one deduces that the
enveloping algebra and its dual are Hopf algebras, so that the spectrum GDS of the dual is an
affine group scheme.
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In analogy with 7.9, we have the following conjectures, the first of which was made by Ihara
much before the second:

7.10. Conjecture: There are surjections, or better isomorphisms, from the free Lie algebra Lmot

on generators s3, s5, s7, . . . to the Grothendieck-Teichmüller and double shuffle Lie algebras:

Lmot →→ grt and Lmot →→ ds.

In other words, grt and ds would themselves be (freely) generated by one generator in each
odd rank ≥ 3. Note, however, that the obvious depth filtration (by the descending central series)
on Lmot would not map to the natural depth filtration on elements of grt and ds under such an
isomorphism. There should be a more subtle depth filtration on Lmot.

Of course, 7.4 can now be rephrased in the Lie algebra context as:

7.11. Are grt and ds isomorphic?

Computations have confirmed that are they isomorphic in low ranks; the candidate isomor-
phism would simply be given by f(x, y) 7→ f(x,−y) (cf. [R]).

Most of the objects defined above are associated with P1 \ {0, 1,∞}. A natural generalization,
much studied by A. Goncharov, is to consider P1 \ {0, µN ,∞} for any positive integer N . Then
the Lie algebras grt and ds (alias dmr), along with the other attending objects can be generalized,
as was done in [E] and [R] respectively, in which the authors define analogs for any N , denoted
grtmd(N) and dmrd(N) respectively. These generalizations prompt one to ask the following ques-
tions (suggested by B. Enriquez):

7.12. Do the elements exhibited in [E] generate grtmd(N) and are there relations?

About the first question, recall from above that for N = 1 it is not known whether grt is
generated by one generator in each odd degree ≥ 3 (cf. 7.10). About the second question and
contrary to the case N = 1, freeness is not expected. Finally it is natural to try and compare
grtmd(N) and dmrd(N), just as we compare grt and ds, say in the following relatively weak form:

7.13. Does the inclusion grtmd(N) ⊂ dmrd(N) hold true (at least for an odd prime N)?

§8. The Galois side; GT and GQ once again

Recall that there is a canonical injection GQ ↪→ ĜT . It is conceivable that the profinite group
ĜT (or its refinements) may be different from GQ, but some simpler quotient may be equal to the
corresponding quotient of GQ. In particular, let GT nil be the nilpotent quotient of ĜT , i.e. the
inverse limit over the finite nilpotent quotients of ĜT .

8.1. Is GT nil isomorphic to the nilpotent completion of GQ?

Equivalently, one can ask whether the maximal pro-` quotient GT (`) of ĜT is isomorphic to
the maximal pro-` quotient of GQ for each prime `?

For any prime `, Deligne and Ihara constructed (independently) a graded Q`-Lie algebra from
the action of GQ on π(`) ' F

(`)
2 , the pro-` fundamental group of P1 \ {0, 1,∞}. Let π(`)[m] denote

the descending central series of π(`): π
(`)
1 [0] = π(`), π(`)[m + 1] = [π(`), π(`)[m]], i.e. the subgroup

topologically generated by the commutators. There is a filtration of GQ defined by:

Ik
` GQ = Ker

(
GQ → Out(π(`)/(π(`))[k]

)
.
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It is easy to see that I0
` GQ = GQ and I1

` GQ = GQab ; it is not too hard to see that also I2
` GQ = GQab

and in fact I3
` GQ = GQab . Set:

DI(`) =
(
Gr•I`

GQ
)
⊗Q` =

⊕
k≥0

(
Ik
` GQ/Ik+1

` GQ
)
⊗Q`.

This graded vector space is naturally equipped with a Lie bracket coming from the commutator
map (σ, τ) 7→ στσ−1τ−1 on the group GQ.

8.2. Conjecture: (Y. Ihara) The DI(`) have a common Q-structure, i.e. there exists a Q-Lie
algebra DI such that DI(`) = DI ⊗Q Q`.

8.3. Furthermore, DI ' grt, i.e. DI(`) ' grt⊗Q` for each `.

These two Lie algebras can be computed explicitly in low degree. They are equal at least up
to degree 13. Conjecture 8.3 is stronger than 8.2, but we have stated 8.2 separately because it
might be more accessible. However, a third very natural question which crops up here, the analog
of the same question given previously concerning nz in 7.9 and grt and ds in 7.10, is a theorem in
the present case, thanks to a result of R.Hain and M.Matsumoto. Recall that Lmot is the motivic
fundamental Lie algebra of MT (Z), freely generated by one generator in each odd rank ≥ 3.

8.4. Theorem ([HM1,2]): There is a surjection Lmot ⊗Q` → DI(`) for each prime `.

Let us return briefly to the proalgebraic setting. From the `-adic realization we get, for any
prime `, a morphism GQ → Gmot(Q`) whose image is Zariski dense ([Go1], [HM1,2]; see also [A2]).
Composing with the natural surjection we find a morphism GQ → Gπ(Q`), again with dense image.
We may now compose with the monomorphism into GT of 6.3, restrict to the prounipotent part
of the image as this is what is really at stake, and arrive at a question already posed in [Dr].

8.5. Is the image of the map GQab → GT 1(Q`) Zariski dense?
Here one can in fact replace GQab with the Galois group of Q`(µ`∞). In [F2], Furusho also

asks the proalgebraic analog of 8.2, 8.3 (his Conjectures B and C) and proceeds to show that they
are actually equivalent to their pro-` versions (see his Proposition 4.3.3).
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of the group ĜT , preprint, 2004.

17



[F1] H.Furusho, The multiple zeta value algebra and the stable derivation algebra, Publ. Res. Inst.
Math. Sci. 39 (2003), no. 4, 695-720.

[F2] H.Furusho, Multiple Zeta values and Grothendieck-Teichmüller groups, Preprint RIMS 1357,
2002.

[GGA] Geometric Galois Actions, L.Schneps and P.Lochak eds., London Math. Soc. Lect. Note Ser.
242, Cambridge University Press, 1997.

[G1] A.Grothendieck, Esquisse d’un Programme, 1984, in [GGA], 5-47.
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Institut de Mathématiques de Jussieu
175 rue du Chevaleret, F-75013 Paris
lochak@math.jussieu.fr, leila@math.jussieu.fr

20


