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§1. Introduction and main statements.
In this article, we introduce a certain group IΓ as a subgroup of the Grothendieck-

Teichmüller group ĜT , by adding two newtype relations to the definition of ĜT .
We show that the absolute Galois group GQ = Gal(Q/Q) is mapped into IΓ (in fact,
injectively by virtue of Belyi’s result [Be].) Although we still leave it open to settle
(in-)equalities between consecutive terms of GQ ⊂ IΓ ⊂ ĜT , we show that IΓ acts
on all types of the profinite Teichmüller modular groups Γ̂n

g,m in certain consistent
ways respecting natural homomorphisms between them.

First, let us review briefly studies on the Grothendieck-Teichmüller group. Let
Bn denote the Artin braid group on n strands, generated by standard genera-
tors τ1, . . . , τn−1, subject to the relations τiτi+1τi = τi+1τiτi+1 (1 ≤ i < n))
and τiτj = τjτi (|i − j| ≥ 2). There is a canonical surjection of Bn onto Sn,
the symmetric group of degree n, obtained by looking merely at the permuta-
tions of strands. The kernel is the pure braid group Pn generated by the elements
xij = τj−1 · · · τi+1τiτiτ

−1
i+1 · · · τ−1

j−1 for 1 ≤ i < j ≤ n. We set xji = xij and xii = 1.
By convention, we denote the profinite completion of a discrete group Γ by Γ̂.

In [D], V.G.Drinfeld introduced the Grothendieck-Teichmüller group as follows.
First, let F̂2 be the free profinite group of rank 2 with free generators x, y, and let
ĜT be the set of pairs F = (λ, f) ∈ Ẑ× × [F̂2, F̂2] (where the latter bracket means
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the commutator subgroup) satisfying the following three relations:

f(x, y)f(y, x) = 1,(I)

f(x, y)xµf(z, x)zµf(y, z)yµ = 1, where µ = (λ − 1)/2, z = (xy)−1,(II)

f(x12, x23x24)f(x13x23, x34) = f(x23, x34)f(x12x13, x24x34)f(x12, x23).(III)

Here, the relation (III) is understood to hold as a relation in B̂4, under the rule
that, for f ∈ F̂2 and elements a, b of a profinite group G, f(a, b) represents the
image φ(f) by the homomorphism φ : F̂2 → G defined by φ(x) = a, φ(y) = b.
An element F ∈ ĜT induces an endomorphism of F̂2 given by F (x) = xλ and
F (y) = f−1yλf , and the composition of these endomorphisms makes ĜT a monoid.
The Grothendieck-Teichmüller group ĜT is by definition the group of invertible
elements of ĜT , which can naturally be identified with a subgroup of Aut(F̂2).

In [I1], Y.Ihara pointed out that the above third relation (III) is equivalent to
the following 5-cyclic relation in the profinite Teichmüller modular group Γ̂5

0:

(III) f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1.

Before explaining the notation appearing above, let us introduce the Teichm̈uller
modular groups in their most general form, in order to keep the consistency of no-
tation with the following paragraphs. Let Σn

g,m be a compact oriented topological

surface of genus g with m boundary components and n marked points. Let Γ[n]
g,m

denote the mapping class group of Σn
g,m, i.e. the group of isotopy classes of dif-

feomorphisms fixing boundary points and permuting the marked points, and write
Γn

g,m = Γ(Σn
g,m) for its “pure” subgroup consisting of the classes of diffeomorphisms

not permuting the marked points. For shortness, we write Σg,m = Σ0
g,m, Σn

g = Σn
g,0,

Γn
g = Γn

g,0 etc. It is well known that there is a canonical surjection of Bn to Γ[n]
0

through which one can define elements τi, xij of Γ[n]
0 as the images of those of Bn.

The generators of Γ5
0 used by Ihara in the above latter form of (III) are the images

of the corresponding generators of B5.
In this article, we call the profinite completions of surface mapping class groups

the profinite Teichmüller modular groups. The profinite group Γ̂n
g can be naturally

identified with the algebraic fundamental group of the moduli stack Mg,n/Q of
smooth projective curves of genus g with n ordered marked points (cf. Oda [O]).
(Notation: Whenever dealing with a space X defined over Q, we write X/Q for the
same space with scalars extended to Q, and X/Q if it is necessary to recall that
we are considering it over Q.) From this interpretation, we have a canonical outer
GQ-action on Γ̂n

g . In the special case of g = 0, n = 4, the moduli space M0,4 is
isomorphic to P1−{0, 1,∞}, and by comparing the ĜT action on F̂2 with the Belyi
lifting of the canonical outer GQ-action on π1(P1

Q
− {0, 1,∞}) ∼= Γ̂4

0, one obtains

an injection GQ ↪→ ĜT (cf. Belyi [B] for injectivity of GQ → AutF̂2; cf. Ihara [I2],
[N0, Appendix] for first rigorous proofs that the image satisfies (I),(II) and (III).)

The group ĜT acts on B̂n universally with respect to n; if F = (λ, f) ∈ ĜT and
n ≥ 3, the transformation of the standard braid generators

(1.1)
{

F (τ1) = τλ
1 ,

F (τi) = f(τ2
i , yi)τλ

i f(yi, τ
2
i ) (1 < i ≤ n − 1)
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(where yi = τi−1 · · · τ1τ1 · · · τi−1) extends to an automorphism of B̂n. The above
beautiful formula (1.1) was discovered by Drinfeld [Dr] in the context of the pro-
unipotent braid groups acting on tensored modules of quasi-Hopf algebras, and in
the profinite context, the extendability to Aut B̂n was confirmed first by Ihara [IM,
Appendix] and then by [S]-[LS] with independent methods. Passing to the quotient
Γ̂[n]

0 of B̂n, we obtain ĜT -actions on the genus zero tower of profinite Teichmüller
modular groups (see also [HS]). The ĜT -action on B̂n and Γ̂[n]

0 by formula (1.1) is
called the standard ĜT -action.

One of the motivating clues to the present article was a result by the first named
author that GQ acts on the Lickorish twist generators of (higher genus) profinite
Teichmüller modular groups Γ̂g,1 in a similar fashion to the above standard action
([N1], cf. also §3(3.2) below). Moreover, by explicitly comparing Galois represen-
tations in Γ̂5

0 and Γ̂2
1 ([N2], Theorem 4.16), he encountered a mysterious newtype

relation in B̂3:

(IV) f(τ1, τ
4
2 ) = τ

8ρ2(F )
2 f(τ2

1 , τ2
2 )τ4ρ2(F )

1 (τ1τ2)−6ρ2(F )

satisfied by the image of GQ ↪→ ĜT . Here, ρ2 represents a “Kummer 1-cocycle with
respect to the roots of 2”, which can be extended to a 1-cocycle map ĜT → Ẑ (cf.
§5 below). Then, our discussions (partly with Pierre Lochak) aiming to understand
the relation (IV) in view of moves of pants decomposition of Riemann surfaces,
produced a second newtype relation (III′):

Theorem 1.1. For any element F = (λ, f) of ĜT , let g(x, y) ∈ F̂2 denote the
unique element satisfying f(x, y) = g(y, x)−1g(x, y) introduced in [LS2]. Then,

(III′) f(τ1τ3, τ
2
2 ) = g(x45, x51)f(x12, x23)f(x34, x45)

holds in Γ̂[5]
0 for the image of GQ ↪→ ĜT .

Indeed, the relation (III′) implies (III) easily; apply the involution induced
from that of B̂4 interchanging τ1 ↔ τ3 and fixing τ2 to (III′), and eliminate
f(τ1τ3, τ

2
2 ) from the resulting formulae, then (III) follows at once. (Note here

that x45 = (τ1τ2)3, x51 = (τ2τ3)3 in Γ̂[5]
0 .) Observation of these two newtype rela-

tions (IV),(III′) playing certain roles in moves of pants decomposition leads us to
introduce the following

Definition 1.1. We define a subset IΓ of ĜT to be the collection of all (λ, f) ∈ ĜT
satisfying (III′) and (IV).

Our first task is now to establish

Theorem 1.2. IΓ forms a subgroup of ĜT , which contains the absolute Galois
group GQ.

Notice that, from the above mentioned results, we already know the second state-
ment, that IΓ is nontrivially big enough to contain the absolute Galois group GQ.

Next step of our program is to investigate close-compatibilities of IΓ-actions on
the profinite Teichmüller modular groups under moving pants decompositions of

The character IΓ may be typeset, say in Latex, by $\mathrm{I}\!\Gamma$.
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Riemann surfaces. In [LNS], we stated results of Theorems 1.1 and 1.2 together
with certain evidence for the above compatibilities in the special case of Γ̂1

g. After
writing the note [LNS], the undergrounding philosophy of moves on complexes of
curves was realized in [HLS]. In this article we generalize that philosophy and use
this to extend the results of [LNS] to the general case, and to obtain the further
theorems 1.3 and 1.4 below. One of the essential generalizations is the following.
In [HLS], it is shown that imposing the following additional relation (R) to the
elements of ĜT with λ = 1 is crucial to define certain automorphisms of the tower
of Γ̂n

g,m:

(R) f(e3, a1)f(a2
2, a

2
3)f(e2, e3)f(e1, e2)f(a2

1, a
2
2)f(a3, e1) = 1.

Here ai, ei (i = 1, 2, 3) are certain elements of Γ̂1,2 (given as Dehn twists along
certain circles on Σ1,2). Moreover, the last named author found that the elements
of IΓ with λ = 1, ρ2 = 0 satisfy the above relation (R). In this article, we continue
this investigation more to extend our program to the total IΓ. In particular, we
generalize (R) to the following refined form (see §8 for details):

(R′)
f(e3, a1)a

−8ρ2
3 f(a2

2, a
2
3)(a3a2a3)2µf(e2, e3)e

2µ
2 f(e1, e2)a

−2µ
2

f(a2
1, a

2
2)a

8ρ2
1 (a1a2a1)2µf(a3, e1)ε

−µ
1 ε−µ

2 = 1.

One of our outstanding features here is to introduce a notion of “quilt-decomposition”
(or just called “quilt” for shortness) of a surface Σ which refines the notion of pants
decomposition of Σ (see §7 for the precise definition). Roughly speaking, a quilt Q
over a given pants decomposition P of Σ (written Q/P ) is an isotopy class of the
ways of dividing each pair of pants of P into two hexagonal patches. Starting from
a quilt Q/P , we define an action of IΓ on all (infinitely many) Dehn twists in Γ̂(Σ)
in well-defined manners (§8) by using the description of the simplicial complex of
pants decompositions given in [HLS]. And then we show in §§9-10,

Theorem 1.3. For any surface Σ = Σn
g,m with a quilt-decomposition Q/P given,

one can define a representation in the profinite Teichmüller modular group Γ̂(Σ):

ρΣ
Q/P : IΓ −→ Aut Γ̂(Σ)

in a certain systematic way.

The content of Theorem 1.3 as proved in §§9-10 includes our explicit description
of IΓ-action (§8) on the Dehn twist generators of the Teichmüller modular group in
terms of the main parameter (λ, f) ∈ IΓ and the auxiliary parameter ρ2 introduced
in §5. Moreover, it will be shown that, if another quilt Q′/P ′ on the surface Σ is
chosen, then the difference of the two lifted representations ρΣ

Q/P and ρΣ
Q′/P ′ can

be computed to be an explicitly given inner automorphism of Γ̂(Σ). In particular,
we obtain a canonical exterior representation

ρΣ : IΓ → Out Γ̂(Σ)

which is independent of choices of quilt-decompositions of Σ. Moreover, by con-
struction, we have the following compatibility theorem for this type of representa-
tions:
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Theorem 1.4. Let Q/P be a quilt-decomposition of a surface Σ and let Σ′ ⊂ Σ
be a connected subsurface of Σ consisting of (closures of) pairs of pants from P .
Then ρΣ

Q/P (IΓ) preserves the image of the natural homomorphism Γ̂(Σ′) → Γ̂(Σ),
and if Q′/P ′ denotes the quilt on Σ′ induced from Q/P by restriction, then the two
actions ρΣ

Q/P , ρΣ′
Q′/P ′ fit in the commutative diagram:

Γ̂(Σ′) −−−−→ Γ̂(Σ)

ρΣ′
Q′/P ′ (F )

� �ρΣ
Q/P (F )

Γ̂(Σ′) −−−−→ Γ̂(Σ)

for all F ∈ IΓ.

The definition of ρΣ
Q/P encodes our Galois-theoretic knowledge concerning the

effects of change of tangential basepoints on Galois representations in π1(Mg,n).
In [IN], we defined tangential basepoints on Mg,n by deformation of maximally
degenerate stable marked curves endowed with combinatorial data — so called
“tangential structures” on dual graphs. Our notion of quilts has been abstracted
from certain detailed study of behaviors of such tangential basepoints on specific
types of moduli spaces Mg,n (cf. [IM] for M0,n, [Ma], [N1] for Mg,1, [N2] for M1,2).
Roughly speaking, moves of quilted pants decompositions correspond to moves of
tangential basepoints along 1-dimensional strata of the stable compactifications of
Mg,n in the sense of Deligne-Mumford-Knudsen. The essence of this philosophy
was indicated in “Esquisse d’un Programme” [Gr] by A.Grothendieck. Our use of
terminology on quilts has been inspired from an interesting paper by Conway-Hsu
[CH] on Moonshine, although the objects they define as quilts are not the same as
those defined here. After our completing the main part of this work, we learned
of appearences of related topological work by Bakalov-Kirillov [BK], Funar-Gelca
[FG] concerning Teichmüller groupoids and Moore-Seiberg’s questions [MS]. We
expect future investigations which will clarify and develop relations between their
formulations and ours.

In §11, we finally compute, for a standard quilt on Σn
g,m, the IΓ-action on a finite

number of twist generators of Γ̂n
g,m of Lickorish-Humphries type, and give explicit

formulae of transformations of those generators in terms of (λ, f) ∈ IΓ. Indeed, this
action properly extends the Gal(Q/Q)-action on π1(Mg,n/Q) given by a standard
(Q-rational) tangential base point on Mg,n (cf. [N1] §6). Still, in this paper, we do
not entirely present the whole dictionary between our topological manipulations of
quilts here and its algebro-geometric correspondents. We hope to discuss some of
them in a future publication.

Besides our group IΓ ⊂ ĜT discussed in this paper, there is another subgroup
“GTA”⊂ ĜT introduced by Y.Ihara [I3] from an independent arithmetic motivation
of (hyper-)adelic beta and gamma functions. Both IΓ and GTA contain the Galois
group GQ, but at the time of writing this paper, neither IΓ nor GTA is known to be
equal to GQ or strictly smaller than ĜT . Moreover, relations between IΓ and GTA
are not fully understood yet. But some techniques of our treating IΓ in the present
paper are influenced from the “profinite free differential calculus” which has been
introduced in Ihara’s work to play a crucial role there. Still, we would expect more
intrinsic relationships between GTA and IΓ to be inspected in future studies.
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More recently, H.Tsunogai [T] investigated geometry of M0,5 from a motivation
to understand our relation (III′) in a more direct way. T.Ichikawa’s study [Ich]
seems to indicate some positive evidence for understanding our moving process
(§§8,9) in view of Mumford’s uniformization of degenerate curves. We hope that
their interesting related studies will appear in the near future.

Before proceeding to the main text of this article, we give one technical lemma
on ĜT which we will use several times below.

Lemma 1.5. Suppose that three elements x, y, z in a profinite group G satisfy
the conditions that the product ω := xyz commutes with each of x, y, z; Then, for
F = (λ, f) ∈ ĜT , we have

f(x, y)xµf(z, x)zµf(y, z)yµ = ωµ(1.5.1)

f(x, y)x−1−µf(z, x)z−1−µf(y, z)y−1−µ = ω−1−µ,(1.5.2)

where µ = (λ − 1)/2.

Proof. In the case where G = F̂2 with free generators x, y and z = (xy)−1, (1.5.1) is
the same as the relation (II) satisfied by (λ, f). For (1.5.2) in this case, we note that
the element (λ, f)(−1, 1) = (−λ, f) also belongs to ĜT , so that the relation (II) for
this element is given by f(x, y)xµ′

f(z, x)zµ′
f(y, z)yµ′

= 1 where µ′ = (−λ − 1)/2,
i.e. µ′ = −µ − 1.

For the general case, let x, y, z ∈ G be as in the assumption, and let X , Y and
Z = (XY )−1 now denote the generators of F̂2. Then, we have a homomorphism
F̂2 → G given by X 	→ x, Y 	→ y and Z 	→ z′ = zω−1, which brings the relation
(II) for F̂2 to

f(x, y)xµf(z′, x)(z′)µf(y, z′)yµ = f(x, y)xµf(zω−1, x)zµf(y, zω−1)yµω−µ = 1.

To conclude, we note that for any elements γ, a, b in G such that γ commutes with a
and b, we have f(γa, b) = f(a, γb) = f(a, b) since f ∈ F̂ ′

2. Thus f(zω−1, x) = f(z, x)
and f(y, zω−1) = f(y, z), which proves (1.5.1) for G. The proof of (1.5.2) for G

follows identically from the validity of (1.5.1) for F̂2. �

§2. The 1-cocycle ρ2 : GQ → Ẑ(1).

Let Ẑ(1) denote the Tate twist of Ẑ, i.e. Ẑ(1) is equal to Ẑ as a set, but it is
equipped with the GQ action given by σ(x) = χ(σ) · x, where χ is the cyclotomic
character. Define the Kummer 1-cocycle ρ2 : GQ → Ẑ(1) of (positive) roots of 2 by

σ( n
√

2) = ζρ2(σ)
n

n
√

2 (n ≥ 1)

for σ ∈ GQ, where ζn = exp(2πi/n). If τ, σ ∈ GQ, we have

τσ( n
√

2) = τ
(
ζρ2(σ)
n

n
√

2) = ζχ(τ)ρ2(σ)+ρ2(τ)
n

n
√

2,

so that ρ2 : GQ → Ẑ(1) is a crossed homomorphism, i.e. one which satisfies

ρ2(στ) = τ
(
ρ2(σ)

)
+ ρ2(τ) = χ(τ)ρ2(σ) + ρ(τ).
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As shown in [N1-2], this 1-cocycle ρ2 plays certain crucial roles in descriptions of
Galois representations in profinite Teichmüller modular groups. In this section, we
summarize several aspects of the behavior of ρ2 on the image of GQ ↪→ ĜT , which
will be compared later again in §5 when we extend ρ2 to the whole of ĜT .

Let us first review geometric interpretation of the image (λσ, fσ) ∈ ĜT of a
Galois element σ ∈ GQ given by Ihara ([I1,2]). Let P1

t be the projective t-line
with standard coordinate t, and consider the fundamental groupoid of X = P1

t −
{0, 1,∞} with tangential basepoints

−→
01,

−→
10. Here,

−→
01 is defined by the geometric

point Spec Q{{t}} → X valued in the Puiseux field Q{{t}} =
⋃∞

n=1 Q((t1/n)), and−→
10 is defined by Spec Q{{1− t}} → X . These tangential basepoints are illustrated
as in Figure 2.1, and we introduce standard loops x, y based at

−→
01 and a path γ

from
−→
01 to

−→
10 as in Figure 2.1.

10
y

01
x

0 1

Figure 2.1

We have a canonical Galois action on the chains of this groupoid, and (λσ, fσ) ∈
ĜT is defined by

(2.1) σ(x) = xλ, σ(γ) = fσ(x, y)−1γ.

This gives σ(y) = fσ(x, y)−1yλfσ(x, y) since y = γθ(x)γ−1, where θ denotes the
automorphism of P1

t given by θ(t) = 1 − t. Here we employ a systematically fixed
convention of path composition introduced in [N2] §2, where we compose paths
from left to right under the rule that each path draws fibre-objects backward.
(Our fσ(x, y) here is fσ(x, y) of loc.cit. and is fσ(x−1, y−1) of Ihara [I1,2], but
the difference is not theoretically essential except for small alterations of indices in
formulae). It is known that σ 	→ λσ is the cyclotomic character on GQ and that fσ

is contained in the commutator subgroup of π1(XQ,
−→
01) ∼= F̂2. We often regard x, y

as free non-commutative generators of F̂2 and fσ(x, y) as a “pro-word” in variables
x, y.

The appearance of the Kummer 1-cocycle ρ2 is typically observed in the following

Theorem 2.1. ([N2] Theorem 4.16) Let B3 = 〈τ1, τ2 | τ1τ2τ1 = τ2τ1τ2〉 be the
Artin braid group of 3 strands. Then, for each σ ∈ GQ, the relation

(IV) fσ(τ1, τ
4
2 ) = τ

8ρ2(σ)
2 fσ(τ2

1 , τ2
2 )τ4ρ2(σ)

1 (τ1τ2)−6ρ2(σ) (σ ∈ GQ)

holds in B̂3.

The above relation was found (and proved) by comparing Galois representations
in Γ̂5

0 and Γ̂2
1 at certain explicitly constructed tangential base points ([N2] §4). Here

we shall give an alternative proof using only double covers of the projective line
minus three points. Indeed, Theorem 2.1 is now a corollary of the following more
general
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Theorem 2.2. Notations being as in Theorem 2.1, we have the following relation
in B̂3.

fσ(τ1, τ
2
2 ) = τ

4ρ2(σ)
2 fσ(τ2

1 , τ2
2 )τ2ρ2(σ)

1 (τ1τ
2
2 )−2ρ2(σ)(IV′)

= τ
−4ρ2(σ)
2 fσ(τ1, τ

4
2 )τ−2ρ2(σ)

1 (τ1τ
2
2 )2ρ2(σ) (σ ∈ GQ).

Proof. Let X = Xt be the projective t-line P1
t (over Q) minus the three points

t = 0, 1,∞, and let Yi (i = 1, 2) be the projective ui-line minus the four points
ui = 0,±1,∞ respectively realized as a double cover over X by

t = 1 − (1 − u1)2

(1 + u1)2
=

(1 − u2)2

(1 + u2)2
.

If pi : P1
ui

→ P1
t denotes the natural projections for i = 1, 2, then p1 maps

0,∞, 1,−1 to 0, 0, 1,∞ respectively, and p2 maps 0,∞, 1,−1 to 1, 1, 0,∞ respec-
tively. (Ramifications occur at t = 1,∞ for Y1 and at t = 0,∞ for Y2.) For each of
i = 1, 2, let Y ∗

i be the Yi plus one point ui = −1, which is P1
ui
−{0, 1,∞}, and take

chains xi, yi, γi (analogous to the x, y, γ on X cf. Figure 2.1) from
−→
01/Yi

to
−→
10/Yi

which have
σ(γi) = fσ(xi, yi)−1γi (σ ∈ GQ, i = 1, 2).

(Here,
−→
01/Yi

,
−→
10/Yi

denote the tangential base points valued in Q{{ui}}, Q{{1 −
ui}} respectively.) Essentially we have x1 = x, y1 = y2, x2 = y, y2 = x2, but
these equalities are not precise because, say, p1(

−→
01/Y1) has a different scale than

−→
01

due to the principal coefficient of t expanded in u1 being not 1. Taylor expansions
show the primary approximations t ∼ 4u1 ∼ 1

4 (1 − u2) near t = 0 and 1 − t ∼
1
4 (1 − u1) ∼ 4u2 near t = 1, and these measurements should be symbolically
expressed as

−→
01 = 4p1(

−→
01/Y1) = 1

4
p2(

−→
10/Y2),

−→
10 = 4p2(

−→
01/Y2) = 1

4
p1(

−→
10/Y1). More

precisely, one can interpret these estimates in terms of Galois actions on standard
chains between the adjacent tangential base points; for example, if ε :

−→
01 → 1

4

−→
01

be the path defined by the field isomorphism of Puiseux fields Q{{t}} ∼←Q{{t/4}}
(t1/n/ n

√
4 ← (t/4)1/n), then σ ∈ GQ acts on ε by σ(ε) = x2ρ2(σ)ε. Summing up the

piece-by-piece actions of σ ∈ GQ on the decompositions γ = (
−→
01 ε→ 1

4

−→
01 → 4

−→
10 →−→

10) = (
−→
01 → 4

−→
01 → 1

4

−→
10 → −→

10), we obtain

σ(γ) = x2ρ2(σ)fσ(x, y2)−1y2ρ2(σ)γ = x−2ρ2(σ)fσ(x2, y)−1y−2ρ2(σ)γ

in π1(X, e∞|2,
−→
01,

−→
10), where ‘e∞|2’ means that this π1 classifies only covers with

ramification indices over t = ∞ dividing 2. Comparing this with the equality
σ(γ) = fσ(x, y)−1γ from (2.1), we obtain

(2.2) fσ(x, y) = y−2ρ2(σ)fσ(x, y2)x−2ρ2(σ) = y2ρ2(σ)fσ(x2, y)x2ρ2(σ)

in π1(X, e∞|2,
−→
01). Let A3 be the subgroup of B3 generated by {τ1, τ

2
2 }; these

generators have only a single relation [τ2
2 , τ1τ

2
2 τ1] = 1. (We write [a, b] to desig-

nate the commutator aba−1b−1.) Then, there exists a homomorphism φ of Â3

to π1(X, e∞|2,
−→
01) (which is the quotient of F̂2 modulo the normal closure of
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z2 = (xy)−2) by sending τ1 	→ y, τ2
2 	→ x. Since the kernel of φ is a cyclic group

generated by the central element (τ1τ
2
2 )2, the relations (2.2) in π1(X, e∞|2,

−→
01) lift

to relations in Â3 ⊂ B̂3 of the form
(2.3)

fσ(τ2
2 , τ1) = τ

−2ρ2(σ)
1 fσ(τ2

2 , τ2
1 )τ−4ρ2(σ)

2 (τ1τ
2
2 )a = τ

2ρ2(σ)
1 fσ(τ4

2 , τ1)τ
4ρ2(σ)
2 (τ1τ

2
2 )b

for some a and b. To determine a and b, we reduce these equalities the normal
closure of 〈τ2

2 〉 in Â3 (i.e., by pulling out the third strand of braids). Because fσ

lies in the derived subgroup of the free group and τ2
2 maps to 1 when the third strand

is pulled out, the images of the fσ terms above are trivial, and in the quotient we
obtain

1 = τ
−2ρ2(σ)
1 τ

−4ρ2(σ)
2 (τ1τ

2
2 )a = τ

2ρ2(σ)
1 τ

4ρ2(σ)
2 (τ1τ

2
2 )b,

so that a = 2ρ2(σ) and b = −2ρ2(σ). Thus, we obtain the theorem. �
Remark. Based on the idea used in the above proof, one can investigate similarly
what happens in the cover given by the S3-quotient of P1 − {0, 1,∞}. From this
context, a few more equations satisfied by the image of GQ ↪→ ĜT can be found, in
some of which ρ3, the Kummer 1-cocycle of roots of 3 also appears to play roles.
See [NT].

Let us now give another interpretation of the Kummer 1-cocycle ρ2 in terms of the
profinite Blanchfield-Lyndon calculus developed by Ihara ([I3]). Let G′ (resp. G′′)
denote the commutator (resp. double-commutator) subgroup of a profinite group
G, and let Gab denote the abelianization G/G′ of G. Then, a special case of Ihara’s
profinite Blanchfield-Lyndon theorem asserts that for G = F̂2 (the free profinite
group on two generators x, y) the quotient module F̂ ′

2/F̂ ′′
2 under the conjugate

action by the profinite group algebra Ẑ[[F̂ ab
2 ]] is a free module of rank one generated

by the class of [x, y] = xyx−1y−1 ([I3] Proposition 1.4.1). Applying this to our
fσ(x, y) ∈ F̂ ′

2, we obtain a unique element Aσ(x̄, ȳ) ∈ Ẑ[[F̂ ab
2 ]] such that

(2.4) fσ(x, y) ≡ Aσ(x̄, ȳ) ∗ [x, y] mod F̂ ′′
2 .

Here, ∗ means the conjugate (left) action of Ẑ[[F̂ ab
2 ]] on F̂ ′

2/F̂ ′′
2 , and x̄, ȳ represent

the images of x, y (topologically) generating F̂ ab
2

∼= Ẑ⊕2. The profinite group ho-
momorphism F̂ ab

2 → Ẑ defined by x̄ 	→ −1, ȳ 	→ 1 can be continuously extended
to a unique ring homomorphism Ẑ[[F̂ ab

2 ]] → Ẑ. Denote by Aσ(−1, 1) the image of
Aσ(x̄, ȳ) in Ẑ by this map. Then, we have the following result characterizing ρ2.

Lemma 2.3. ρ2(σ) = −Aσ(−1, 1) (σ ∈ GQ). �
Proof. As before, let τ1, τ2 be the standard generators of B3 as in Theorem 2.1, and
write ω3 = (τ1τ

2
2 )2 which (topologically) generates the center of B̂3. Then, the pure

subgroup P̂3 can be decomposed as a direct product 〈τ2
1 , τ2

2 〉 × 〈ω3〉. Considering
(the inverse of) equation (2.3) in P̂3 (with a = 2ρ2(σ), b = −2ρ2(σ)) and reducing
it modulo [P̂3, P̂3]〈ω3〉, we obtain

(2.5) fσ(τ1, τ
2
2 ) ≡ τ

2ρ2(σ)
1 τ

4ρ2(σ)
2 ≡ τ

−2ρ2(σ)
1 τ

−4ρ2(σ)
2 fσ(τ1, τ

4
2 ).

As above, we note that since fσ lies in the commutator subgroup of F̂2, both
fσ(τ1, τ

2
2 ) and fσ(τ1, τ

4
2 ) lie in P̂3.
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Now let us make use of (2.4). By an easy computation, we see that [τ1, τ
2
2 ] ≡

(τ2
1 τ4

2 )−1, [τ1, τ
4
2 ] ≡ (τ4

1 τ8
2 )−1 modulo P̂ ′

3〈ω3〉 = [P̂3, P̂3]〈ω3〉. Since τ2
2 , τ4

2 lie in
P̂3, their actions by conjugation on P̂3/P̂ ′

3〈ω3〉 are trivial, while computation shows
that the actions by conjugation of τ1 on [τ1, τ

2
2 ], [τ1, τ

4
2 ] turn out to be ‘inversion’

modulo P̂ ′
3〈ω3〉. Noticing then that the double commutator subgroups 〈τ1, τ

2
2 〉′′ and

〈τ1, τ
4
2 〉′′ are contained in P̂ ′

3〈ω3〉, we obtain:

(2.6)

{
fσ(τ1, τ

2
2 ) ≡ (τ2

1 τ4
2 )−Aσ(−1,1), mod P̂ ′

3〈ω3〉
fσ(τ1, τ

4
2 ) ≡ (τ4

1 τ8
2 )−Aσ(−1,1) mod P̂ ′

3〈ω3〉.

Comparing this with (2.5) proves the result. �
The Kummer 1-cocycle ρ2 also appears in a rather different manner through a

certain proword gσ(x, y) ∈ F̂2 studied in [LS2]. We shall first recall the geometric
definition of gσ(x, y) associated to σ ∈ GQ. The point is to introduce the basepoint
1/2 in addition to tangential ones, i.e., let r be the simple path from 0 to 1/2 along
the real line, and regard it as an element of π1(P1

Q
− {0, 1,∞},−→01, 1/2) on which

GQ acts canonically. Then we introduce and define gσ(x, y) by:

(2.7) σ(r) = gσ(x, y)−1r.

The element gσ(x, y), lying in π1(P1
Q
−{0, 1,∞},−→01), was first introduced in [LS2].

Let θ denote the automorphism of P1 − {0, 1,∞} interchanging 0 ↔ 1 and fixing
∞, i.e. θ(t) = 1 − t. Then obviously γ = rθ(r)−1, θ(x) = γ−1yγ etc. Since θ is
defined over Q, we easily obtain

(2.8) fσ(x, y) = gσ(y, x)−1gσ(x, y).

While fσ(x, y) is known to lie in the commutator subgroup [F̂2, F̂2], gσ is in general
not. In fact,

Proposition 2.4. For any σ ∈ GQ, gσ(x, y) ≡ (xy)ρ2(σ) mod [F̂2, F̂2].

Proof. Let β (resp. β′) denote the map

GQ → π1(P1
Q − {0, 1,∞}, p)

where p =
−→
01 (resp. p = 1/2) obtained by splitting the short exact sequence

1 → π1(P1
Q
− {0, 1,∞}, p) → π1(P1

Q − {0, 1,∞}, p) → GQ → 1.

The action of σ on a loop in π1(P1
Q
−{0, 1,∞}, p) is given in π1(P1

Q − {0, 1,∞}, p)

by conjugation by β(σ) if p =
−→
01, by β′(σ) if p = 1/2. The Galois action on the

path r from
−→
01 to 1/2 is given by

σ(r) = β(σ)rβ′(σ)−1 = gσ(x, y)−1r,

which is equivalent to
β′(σ)r−1 = r−1gσ(x, y)β(σ).
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Each side represents a path from 1/2 to
−→
01 which corresponds to a mapping of

the value fields of tangential base points: Ω−→
01

= Q{{t}} → Ω1/2 = Q (where t

denotes the canonical coordinate of P1). Applying the rule that the path r−1 maps
both t1/N and (1 − t)1/N =

∑
k(1/N

k )(−1)ktk in Ω−→
01

to 1/ N
√

2 ∈ Q respectively,
we see that the above LHS carries both of them to ( N

√
2ζ

ρ2(σ)
N )−1. On the other

hand, if gσ(x, y) ≡ xayb mod [F̂2, F̂2], then, since t1/N , (1 − t)1/N generates only
abelian extensions over Q(t), it turns out that the RHS of the above carries t1/N

(resp. (1 − t)1/N) to ( N
√

2ζa
N )−1 (resp. to ( N

√
2ζb

N )−1). Thus we conclude a = b =
ρ2(σ). �

Before closing this section, we quote the following result from [N2] as another
type of example where ρ2(σ) appears curiously.

Theorem 2.5. ([N2] Corollary 4.13) In GL2(Ẑ), we have

fσ((10
2
1), (

1
−2

0
1)) = ± ( 0

−1
1
0)(

λσ
0

8ρ2(σ)
1 )( 0

−1
1
0)

−1(λσ
0

8ρ2(σ)
1 )−1

= ±
(

λ−1
σ −8ρ2(σ)λ−1

σ

−8ρ2(σ)λ−1
σ λσ + 64ρ2(σ)2λ−1

σ

)
for σ ∈ GQ, where ± is according to λσ ≡ ±1 mod 4. �

Combining Theorems 2.2 and 2.5, we also obtain

Corollary 2.6. In GL2(Ẑ), we have

fσ((10
1
1), (

1
−2

0
1)) = ±

(
λ−1

σ −6ρ2(σ)λ−1
σ

−12ρ2(σ)λ−1
σ λσ + 72ρ2(σ)2λ−1

σ

)
for σ ∈ GQ, where ± is according to λσ ≡ ±1 mod 4. �
Proof. The formula is a consequence of applying the composition of homomor-
phisms

B̂3 → GL2(Z)∧ → GL2(Ẑ),

τ1, τ2 	→ (10
1
1), (

1
−1

1
0)

to the equation (IV′) of Theorem 2.2. �
Remark 2.7. The expressions of Theorem 2.5 and Corollary 2.6 have the following
intriguingly simple forms: fσ

(
(10

2
1), (

1
−2

0
1)

)
= ±(

1
−8ρ2(σ)

0
1

)(λ−1
σ
0

0
λσ

)(
1
0

−8ρ2(σ)
1

)
,

fσ

(
(10

1
1), (

1
−2

0
1)

)
= ±(

1
−12ρ2(σ)

0
1

)(λ−1
σ
0

0
λσ

)(
1
0

−6ρ2(σ)
1

)
.

§3. GQ satisfies (III′).

In this section, we shall prove Theorem 1.1 of Section 1, i.e., that the image
Fσ = (λσ, fσ) ∈ ĜT of each Galois element σ ∈ GQ satisfies:

(III′) fσ(τ1τ3, τ
2
2 ) = gσ(x45, x51)fσ(x12, x23)fσ(x34, x45)

in Γ̂[5]
0 (see §1 for notation used here). A sketch of the proof was given in [LNS];

here we will fill details of the (original) proof. (An alternative new proof was later
found by H.Tsunogai. cf. [T].) We begin by

11



Lemma 3.1. fσ(τ1τ3, τ
2
2 ) ≡ (x45x51)ρ2(σ) mod [Γ̂5

0, Γ̂
5
0].

Proof. We first show the following congruence:

(3.1) fσ(τ1τ3, τ
2
2 ) ≡ (x14x

−1
23 )Aσ(−1,1) mod [Γ̂5

0, Γ̂
5
0].

The argument for verifying (3.1) goes exactly in a similar way to (2.6): since τ1τ3

generates an abelian subgroup (∼= Z/2Z) in the image of Γ̂[5]
0 → S5, the double

commutator group 〈τ1τ3, τ
2
2 〉′′ is contained in [Γ̂5

0, Γ̂
5
0]. By direct computation using

only the (Artin) braid relations, one proves the congruence [τ1τ3, τ
2
2 ] ≡ x14x

−1
23 mod

[Γ̂5
0, Γ̂

5
0]. Moreover, it is not difficult to see that the conjugate action of τ1τ3 (resp.

τ2
2 ) on x14x

−1
23 mod [Γ̂5

0, Γ̂5
0] is (−1)-multiplication (resp. trivial). Putting these

observations into (2.4), we obtain (3.1). Using the extra sphere braid relations∏4
i=1 xj,j+i = 1 (j = 1, . . . , 5), we obtain x23 ≡ x14x15x45 in the abelianization of

Γ5
0. Lemma 3.1 follows from this and Lemma 2.3. �
In [N2], we constructed a tangential base point �v on Mg,1 by linearly patching

g copies of the Tate elliptic curve Tate(q2) of level 2. This tangential base point �v
defined a section s�v : GQ → π1(Mg,1) such that the conjugate actions of s�v(σ) on
the Dehn twists along circles a1, . . . , a2g, d±j , ej ∈ Γ̂1

g (see Figure 3.1) are given by:

(3.2)

{
Dai

	→ w−4ρ2(σ)fσ(D2
ai

, wi)Dλσ
ai

fσ(wi, D
2
ai

)w4ρ2(σ) (1 ≤ i ≤ 2g),

Ddi
	→ Dλσ

di
, Dd−i

	→ Dλσ

d−i
, Dej

	→ Dλσ
ej

(1 ≤ i ≤ g, 1 ≤ j ≤ g − 1),

for σ ∈ GQ, where w1 = 1, wi = (Da1 · · ·Dai−1)
i and w =

∏
i w2i. (We write Dc for

the Dehn twist along a circle c.)

3g

-g -3

g-1 3 2 1

-2dd

d d2 eee

a

ed

d

aa a 12a45a62ga 3

Figure 3.1

Now, let us write Mg,n to designate the compactification of Mg,n obtained by
adding the points of (marked) stable curves (Deligne-Mumford, Knudsen). We
will consider the special case (g, n) = (2, 1) here, denoting by D the union of all
singular divisors on M2,1. There is a special irreducible component D1 of D iso-
morphic to the product M1,1×M1,2. Consider the formal completion (M2,1/D1)∧

of M2,1 along D1. Then, by construction, the above �v can be viewed as giv-
ing a base point for πD

1 ((M2,1/D1)∧), the fundamental group of the formal com-
pletion of M2,1 along D1 admitting (tame) ramification along D in the sense of
Grothendieck-Murre (cf. [GM]). Pushing down the basepoint by the canonical pro-
jection πD

1 ((M2,1/D1)∧) → π1(M1,2), we obtain a tangential base point �v′ on M1,2

representing Tate(q2)/Q((q)) with two marked points “1, q mod×q2”. To see that
the induced Galois action on Γ̂2

1 precisely inherits that on Γ̂1
2 by �v, we prove the

following lemma:

Lemma 3.2. Let φ̂ : Γ̂1
1,1 → Γ̂1

2 be the homomorphism induced from the surface
embedding Σ1

1,1 ↪→ Σ1
2 of Figure 3.2. Then φ̂ is injective.

12



Figure 3.2

Proof. Introduce the forgetful homomorphisms Γ̂1
1,1 → Γ̂1,1 and Γ̂1

2 → Γ̂2 whose
kernels are the profinite completions of π1(Σ1,1), π1(Σ2) respectively, and consider
the commutative diagram

1 −−−−→ π̂1(Σ1,1) −−−−→ Γ̂1
1,1 −−−−→ Γ̂1,1 −−−−→ 1�φ̂1

�φ̂

�φ̂2

1 −−−−→ π̂1(Σ2,0) −−−−→ Γ̂1
2 −−−−→ Γ̂2 −−−−→ 1.

We reduce the injectivity of φ̂ to those of φ̂1 and φ̂2. The injectivity of φ̂1 follows
from a result of L.Ribes ([R] Theorem 2.1) insuring that the Π̂2,0 is the amalgamated
product (of profinite groups) of two copies of Π̂1,1 over Ẑ. Let us consider that of
φ̂2. First we have a natural identification of ι : B̂3

∼= Γ̂1,1. But Birman-Hilden [BH]
tells us that there is a natural surjection pBH : Γ̂2 → Γ̂[6]

0 . Since the composition
pBH ◦ φ̂2 ◦ ι gives a familiar embedding of B̂3 into Γ̂[6]

0 , the proof is completed. �

Using Lemma 3.2, we shall extract the GQ-action (3.2) on the part generated by
d2, a4, d−2 of Figure 3.1 in a more economical surface supporting them. Thus,
renaming d2 =: a1, a4 =: a2, d−2 =: a3 respectively in formula (3.2) with g = 2,
we see that �v′ induces a section s�v′ : GQ → π1(M1,2) such that the conjugation by
s�v′(σ) (σ ∈ GQ) acts on Γ̂2

1 as follows:
(3.3){

Dai
	→ Dλσ

ai
(i = 1, 3),

Da2 	→ (Da1Da3)
−4ρ2(σ)fσ(D2

a2
, Da1Da3)D

λσ
a2

fσ(Da1Da3 , D
2
a2

)(Da1Da3)
4ρ2(σ).

Note that the injectivity of Lemma 3.2 guarantees that the induced GQ-action on
π1(M1,2) has to coincide with that given inside π1(M2,1) in (3.2).

On the other hand, in [N2] §4, we constructed another tangential base point �e

on M1,2 lying in the fibre Tate(q2) over ‘ 1
16

−→
01’ on M level 2

1,1 ≈ P1 − {0, 1,∞} which
gave a section s�e : GQ → π1(M1,2) such that the conjugation by s�e(σ) (σ ∈ GQ)
acts on π1(M1,2) in the following way:
(3.4){

Dai
	→ Dλσ

ai
(i = 1, 3),

Da2 	→ fσ(x2
45, Da3)D

−8ρ2(σ)
a1 fσ(D2

a2
, D2

a1
)Dλσ

a2
fσ(D2

a1
, D2

a2
)D8ρ2(σ)

a1 fσ(Da3 , x
2
45).

From the fact that �v′ and �e concentrate on the same cusp of M1,2 and have
the same image under the canonical projection M1,2 → M1,1, the difference be-
tween s�v′(σ) and s�e(σ) is of the form (Da1D

−1
a3

)cσ for some constant cσ ∈ Ẑ.
This connects two Galois actions (3.3) and (3.4). Now we shall carry our sit-
uation to the profinite Artin braid group B̂4 with standard generators τ1, τ2, τ3

(see §1), where ω4 = (τ1τ2τ3)4 generates the center of B̂4. Let us identify
Γ̂2

1
∼= B̂4/〈ω4〉 ↪→ Γ̂[5]

0 by mapping Dai
	→ τi (i = 1, 2, 3) and compare the image
13



of Da2 under the actions of σ ∈ GQ of (3.3) and (3.4), after replacing fσ(τ3, x
2
45)

by τ
8ρ2(σ)
4 fσ(τ2

3 , τ2
4 )τ4ρ2(σ)

3 τ
−4ρ2(σ)
1 by relation (IV). (Note here that (τ3τ4)3 = τ2

1 ).
Then, noticing also that the centralizer of τ2 in B̂4/〈ω4〉 is 〈τ2〉 × 〈x45, x51〉 (cf.
[N0]), we obtain

(3.5) fσ(τ1τ3, τ
2
2 )(τ1τ

−1
3 )cσfσ(x45, x34)fσ(x23, x12) = τν

2 hσ(x45, x51)

for some ν ∈ Ẑ, hσ ∈ F̂2. Applying Lemma 3.1 to the left-hand term, it becomes

(x45x51)ρ2(σ)τ cσ
1 τ−cσ

3 ≡ τν
2 xa

45x
b
51,

for certain elements a, b ∈ Ẑ. The abelianization of Γ̂5
0 is free abelian on the

generators xi,i+1, so we must have a = b = ρ2(σ) and cσ = ν = 0. Then, applying
the involution on B̂4 given by τ1 ↔ τ3, τ2 	→ τ2 and comparing the resulting
equations with relation (III), we obtain

hσ(x51, x45)−1hσ(x45, x51) = fσ(x45, x51).

Since gσ is the unique pro-word satisfying this property ([LS2]), it follows that
hσ = gσ. This completes the proof of Theorem 1.1.

§4. A subgroup IΓ′ ⊂ ĜT defined by (III′).

Definition 4.1. We define IΓ′ to be the subset of ĜT consisting of all pairs (λ, f)
with f satisfying

(III′) f(τ1τ3, τ
2
2 ) = g(x45, x51)f(x12, x23)f(x34, x45)

in Γ̂[5]
0 , where g is the unique proword in F̂2 such that g(y, x)−1g(x, y) = f(x, y).

The existence and uniqueness of g(x, y) with g(y, x)−1g(x, y) = f(x, y) was shown
in [LS2]. Note that we already know that IΓ′ contains GQ according to Theorem
1.1 settled in the previous section.

Proposition 4.1. IΓ′ forms a subgroup of ĜT .

In order to prove this proposition, we have to check that the condition (III′) is
closed under multiplication and inversion of ĜT

Throughout this section, we let each element F = (λ, f) ∈ ĜT act on Γ̂[5]
0 in the

following ‘standard’ way:

(4.1)


F (τ1) = τλ

1

F (τ2) = f(x23, x12)τλ
2 f(x12, x23)

F (τ3) = f(x34, x45)τλ
3 f(x45, x34)

F (τ4) = τλ
4 .

and put HF := Inn(f(x45, x34)) ◦ F ∈ AutΓ̂[5]
0 (Inn(f) means the inner automor-

phism ∗ 	→ f(∗)f−1). The following lemma is useful for our purpose.
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Lemma 4.2. Let F ∈ ĜT . Then, F satisfies (III′) if and only if HF (τ2) =
f(τ2

2 , τ1τ3)τλ
2 f(τ1τ3, τ

2
2 ) holds.

Proof. The “only if” part is immediate: if F satisfies (III′), then

HF (τ2) = f(x45, x34)f(x23, x12)τλ
2 f(x12, x23)f(x34, x45)

= f(τ2
2 , τ1τ3)g(x51, x45)τλ

2 g(x45, x51)−1f(τ1τ3, τ
2
2 )

= f(τ2
2 , τ1τ3)τλ

2 f(τ1τ3, τ
2
2 )

since x45 and x51 commute with τ2.
For the “if” part, suppose that HF (τ2) = f(τ2

1 , τ1τ3)τλ
2 f(τ1τ3, τ

2
2 ), i.e. that

f(x45, x34)f(x23, x12)τλ
2 f(x12, x23)f(x34, x45) = f(τ2

2 , τ1τ3)τλ
2 f(τ1τ3, τ

2
2 ).

Let α : B̂4 → Γ[5]
0 be the natural map sending standard generators τ1, τ2, τ3 to

those denoted by the same symbols, and observe that both sides of this equality
lie in Im(α) (since x34 = τ2

3 , x45 = (τ1τ2)3). Since the centralizer of τ2 in Im(α) is
〈τ2〉 × 〈x45, x51〉 (as before, cf. [N0]), there exists ν ∈ Ẑ and h ∈ F̂2 such that

f(τ1τ3, τ
2
2 )f(x45, x34)f(x23, x12) = τν

2 h(x45, x51).

Then, by the same argument as given just after §3 (3.5) (passing to the abelian-
ization), we show that ν = 0 and then that h(x, y) = g(x, y), obtaining relation
(III′). �

Proof of Proposition 4.1. Let F = (λ, f) and F ′ = (λ′, f ′) be two elements of ĜT

such that f and f ′ satisfy (III′), and let F̃ = (λ̃, f̃) be the product (λ, f) · (λ′, f ′) in
ĜT , so that λ̃ = λλ′ and f̃(x, y) = f(x, y)f ′(xλ, f(y, x)yλf(x, y)) = fF (f ′). Define
HF , HF ′ and HF̃ as just after (4.1), and for simplicity of the notation, set H = HF ,
H ′ = HF ′ and H̃ = HF̃ . Then, we have

f̃(τ1τ3, τ
2
2 ) = f(τ1τ3, τ

2
2 )f ′((τ1τ3)λ, f(τ2

2 , τ1τ3)τ2λ
2 f(τ1τ3, τ

2
2 )

)
(4.2)

= f(τ1τ3, τ
2
2 )H

(
f ′(τ1τ3, τ

2
2 )

)
.

To apply Lemma 4.2 to F̃ , let us compute

(4.3) H̃(τ2) = f̃(x45, x34)f̃(x23, x12)τ λ̃
2 f̃(x12, x23)f̃(x34, x45).

Since {
f̃(x12, x23) = f(x12, x23)f ′(xλ

12, f(x23, x12)xλ
23f(x12, x23)

)
f̃(x34, x45) = f(x34, x45)f ′(xλ

34, f(x45, x34)xλ
45f(x34, x45)

)
we find that

f̃(x12, x23)f̃(x34, x45)

= f(x12, x23)f(x34, x45)f ′(xλ
12, f(x45, x34)f(x23, x12)xλ

23f(x12, x23)f(x34, x45)
)

· f ′(xλ
34, f(x34, x45)xλ

45f(x34, x45)
)

= f(x12, x23)f(x34, x45)H
(
f ′(x12, x23)f ′(x34, x45)

)
= g(x45, x51)−1f(τ1τ3, τ

2
2 )H

(
g′(x45, x51)

)−1
H

(
f ′(τ1τ3, τ

2
2 )

)
,
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where we used (III′) twice satisfied by f and f ′. Substituting this into (4.3) and
noticing that x45, x51 commute with τ2, we see that H̃(τ2) is equal to

H
(
f ′(τ2

2 , τ1τ3)g′(x45, x51)
)
H(τλ′

2 )H
(
g′(x45, x51)−1f ′(τ1τ3, τ

2
2 )

)
= H

(
f ′(τ2

2 , τ1τ3)g′(x45, x51)τλ′
2 g′(x45, x51)−1f ′(τ1τ3, τ

2
2 )

)
= H

(
f ′(τ2

2 , τ1τ3)
)
f(τ2

2 , τ1τ3) τ λ̃
2 f(τ1τ3, τ

2
2 )H

(
f ′(τ1τ3, τ

2
2 )

)
.

Applying (4.2) to the above, we conclude

H̃(τ2) = f̃(τ2
2 , τ1τ3)τ λ̃

2 f̃(τ1τ3, τ
2
2 ).

This settles our claim by Lemma 4.2.
Next, we shall prove that (III′) is also preserved under taking inverses in ĜT .

Let F = (λ, f) ∈ ĜT be such that f satisfies (III′) and let F ′ = (λ−1, f ′) denote
the inverse of F in ĜT . Then,

fF (f ′) = f(x, y)f ′(xλ, f(y, x)yλf(x, y)
)

= 1.

Now, we compute:

F
(
f ′(x34, x45)f ′(τ2

2 , τ1τ3) τλ−1

2 f ′(τ1τ3, τ
2
2 )f ′(x45, x34)

)
= f ′(f(x34, x45)xλ

34f(x45, x34), xλ
45

)
f ′(f(x23, x12)τ2λ

2 f(x12, x23), τλ
1 f(x34, x45)τλ

3 f(x45, x34)
)

f(x23, x12) τ2f(x12, x23)

f ′(τλ
1 f(x34, x45)τλ

3 f(x45, x34), f(x23, x12)τ2λ
2 f(x12, x23)

)
f ′(xλ

45, f(x34, x45)xλ
34f(x45, x34)

)
= f ′(f(x34, x45)xλ

34f(x45, x34), xλ
45

)
f(x34, x45)

f ′(f(x45, x34)f(x23, x12)τ2λ
2 f(x12, x23)f(x34, x45), τλ

1 τλ
3

)
f(x45, x34)f(x23, x12) τ2f(x12, x23)f(x34, x45)

f ′(τλ
1 τλ

3 , f(x45, x34)f(x23, x12)τ2λ
2 f(x12, x23)f(x34, x45)

)
f(x45, x34)f ′(xλ

45, f(x34, x45)xλ
34f(x45, x34)

)
= f ′(f(τ2

2 , τ1τ3)τ2λ
2 f(τ1τ3, τ

2
2 ), (τ1τ3)λ

)
f(τ2

2 , τ1τ3)τ2f(τ1τ3, τ
2
2 )

f ′((τ1τ3)λ, f(τ2
2 , τ1τ3)τ2λ

2 f(τ1τ3, τ
2
2 )

)
= τ2.

Since F ′ ◦ F = id in Aut Γ̂[5]
0 , the above computation implies that H ′(σ) =

Inn(f ′(x45, x34))F ′(τ2) is equal to f ′(τ2
2 , τ1τ3) τλ−1

2 f ′(τ1τ3, τ
2
2 ). Thus, Lemma 4.2

concludes our claim. �
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§5. Extension of ρ2 to ĜT .

In §2, we introduced several aspects of the Kummer 1-cocycle ρ2 : GQ → Ẑ(1)
appearing from the image of GQ ↪→ ĜT . We may then extend ρ2 in several ways
to a 1-cocycle on ĜT . To fix ideas, in this paper, we shall employ a way based
on Proposition 2.4. For each F = (λ, f) ∈ ĜT , let gF (x, y) ∈ F̂2 be the unique
pro-word determined by

gF (y, x)−1gF (x, y) = f(x, y);

the existence and uniqueness of gF was proved in [LS2]; we recalled existence and
uniqueness in the Galois case in (2.7). Writing gF (x, y) ≡ xayb mod F̂ ′

2 for some
a, b ∈ Ẑ, the above formula implies xa−byb−a ≡ 0 mod F̂ ′

2, hence that a = b. Thus,
we are allowed to make the following

Definition 5.1. We define the mapping ρ2 : ĜT → Ẑ by

(5.1) gF (x, y) ≡ (xy)ρ2(F ) mod F̂ ′
2.

Note that, by Proposition 2.4, whenever F = (λσ, fσ) for some σ ∈ GQ, we have
ρ2(F ) = ρ2(σ).

First we shall see that this is a 1-cocycle with respect to the action of ĜT on Ẑ

by multiplication by λ. We begin by

Lemma 5.1. For F = (λ, f), F ′ = (λ′, f ′) ∈ ĜT , we have

gFF ′(x, y) = gF (x, y)gF ′(xλ, f(x, y)−1yλf(x, y)).

Proof. This follows easily from the definitions: Compute

gF ′(yλ, f(y, x)−1xλf(y, x))−1gF (y, x)−1gF (x, y)gF ′(xλ, f(x, y)−1yλf(x, y))

and see that this is equal to f ′(f(x, y)xλf(x, y)−1, yλ)f(x, y). �
From this we immediately see the following

Corollary 5.2. The above ρ2 enjoys the 1-cocycle property:

ρ2(FF ′) = ρ2(F ) + λρ2(F ′),

where F = (λ, f), F ′ = (λ′, f ′) ∈ ĜT . �
On the other hand, in the similar way to §2 (2.4), applying the argument of the

profinite Blanchfield-Lyndon theorem, we may define AF (x̄, ȳ) ∈ Ẑ[[F̂ ab
2 ]] for any

F = (λ, f) ∈ ĜT by

(5.2) f(x, y) ≡ AF (x̄, ȳ) ∗ [x, y] mod F̂ ′′
2 .

Then, just tracing our previous arguments given for Aσ (σ ∈ GQ), we obtain similar
congruences to (2.6), (3.1) for AF (F ∈ ĜT ):

f(τ1, τ
2
2 ) ≡ (τ2

1 τ4
2 )−AF (−1,1) mod P̂ ′

3〈ω3〉(5.3)

f(τ1, τ
4
2 ) ≡ (τ4

1 τ8
2 )−AF (−1,1) mod P̂ ′

3〈ω3〉(5.4)

f(τ1τ3, τ
2
2 ) ≡ (x14x

−1
23 )AF (−1,1) mod [Γ̂5

0, Γ̂
5
0],(5.5)

where the notation for B̂3, Γ̂[5]
0 are as in §§2,3.
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Proposition 5.3. ρ2(F ) = −AF (−1, 1) for F ∈ IΓ′. �
Proof. The result follows by comparing (5.1), (5.2) and using the relation x23 =
x45x14x51 and relation (III′). �

This will be used in the next section. Sometimes, it is useful to rewrite the
relation (III′) in Γ̂[5]

0 in an equivalent form in B̂4:

Proposition 5.4. Let B4 be the 4-strand braid group with standard generators
τ1, τ2, τ3, and put xij (1 ≤ i, j ≤ 4) be as in §1. We also define x45 = (τ1τ2τ1)2,
x51 = (τ3τ2τ3)2. Then the relation (III′) in Γ̂[5]

0 is equivalent to

(III′bis) f(τ1τ3, τ
2
2 )ωρ2(F ) = g(x45,x51)f(x12, x23)f(x34,x45)

in B̂4, where ω = (τ1τ2τ3)4 = x12x13x23x14x24x34.

Proof. We have a natural homomorphism j : B̂4 → Γ̂[5]
0 mapping τi 	→ τi for

i = 1, 2, 3. Note in particular that j(x45) = x45 and j(x51) = x51, by the identities
x45 = (τ1τ2)3, x51 = (τ2τ3)3; accordingly, j(ω) = 1 since ω = (τ1τ2τ3)4 is killed in
Γ̂[5]

0 . So (III′bis)⇒(III′) is obvious. Suppose (III′) holds in Γ[5]
0 and let us consider

the pull-back of the relation in B̂4 by j. Then since the kernel of j is the pro-cyclic
group generated by ω, we have a relation of type (III′bis) modulo some power of
ω. To determine the exact exponent of ω, we shall reduce the equation modulo
[P̂4, P̂4]. First, by a similar computation to (3.1)(or (5.5)), we get

f(τ1τ3, τ
2
2 ) ≡ (x14x

−1
23 )−ρ2(F ) mod [P̂4, P̂4].

On the other hand, by Definition 5.1,

g(x45,x51) ≡ (x45x51)ρ2(F ) ≡ {(x12x13x23)(x23x24x34)}ρ2(F ) mod [P̂4, P̂4].

Thus, combining the above two formulae in the abelianization of P̂4 (which is free
abelian on the images of xij (1 ≤ i < j ≤ 4)), we obtain the congruence:

f(τ2
2 , τ1τ3)g(x45,x51) ≡ (x12x13x23x14x24x34)ρ2(F )(= ωρ2(F )) mod [P̂4, P̂4].

Meanwhile, since x12, x23, x34,x45 belong to P̂4 themselves, the other two f terms
f(x12, x23), f(x34,x45) are killed in the abelianizaion of P̂4. Combining all these
together leads us then to the congruence:

f(τ2
2 , τ1τ3)g(x45,x51)f(x12, x23)f(x34,x45) = ωρ2(F ) mod [P̂4, P̂4]

which determines the desired exponent of ω in our formula. �

We could define an extension of the Galois cocycle ρ2(F ) to ĜT by using
−AF (−1, 1) instead of gF (x, y). In that case, the machinery of profinite free differ-
ential calculus (cf. [I3]) tells a more general 1-cocycle property for AF (x̄, ȳ) which
reduces to that for AF (−1, 1). Using this machinery, Ihara [I3] defined many 1-
cocycles on ĜT including Ψ(0)

n (n ∈ N) which extends the Kummer 1-cocycle on the
roots of n. H.Tsunogai communicated to one of the authors that our −AF (−1, 1)
coincides with Ihara’s Ψ(0)

2 (cf. [I3] §2.6 (6) and Proposition 2.2.3).
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§6. IΓ forms a subgroup of IΓ′.

In §1, we defined IΓ to be the subset of ĜT consisting of all pairs (λ, f) satisfying
(III′) and (IV). In §4, we introduced IΓ′ ⊂ ĜT only by using (III′), and showed that
IΓ′ forms a subgroup of ĜT . Thus, to prove Theorem 1.2, it suffices to show that
the elements of IΓ′ satisfying (IV) are closed under multiplication and inversion of
IΓ′.

Our proof of Theorem 1.2 here goes in a parallel way to §4. In this section, we
let each F = (λ, f) ∈ ĜT act on B̂3 = 〈τ1, τ2 | τ1τ2τ1 = τ2τ1τ2〉 in the standard
way: F (τ1) = τλ

1 , F (τ2) = f(τ2
2 , τ2

1 )τλ
2 f(τ2

1 , τ2
2 ), and define the automorphism HF

of B̂3 by HF := Inn(τ−4ρ2(F )
1 ) ◦ F .

Lemma 6.1. Let F ∈ IΓ′. Then, F ∈ IΓ′ satisfies (IV) if and only if HF (τ2) =
f(τ4

2 , τ1)τλ
2 f(τ1, τ

4
2 ) holds.

Proof. For the “only if” part, assume that F ∈ IΓ′ satisfies (IV). Then since x12 =
τ2
1 , x23 = τ2

2 , we have

HF (τ2) = τ
−4ρ2(F )
1 f(x23, x12)τλ

2 f(x12, x23)τ
4ρ2(F )
1

= (τ1τ2)−6ρ2(F )f(τ4
2 , τ1)τ

8ρ2(F )
2 τλ

2 τ
−8ρ2(F )
2 f(τ1, τ

4
2 )(τ1τ2)6ρ2(F )

= f(τ4
2 , τ1)τλ

2 f(τ1, τ
4
2 ),

since (τ1τ2)3 commutes with τ1 and τ2.
Let us now discuss the “if” part. Recalling that the centralizer of τ2 in B̂3 is

generated by τ2 and ω3 = (τ1τ
2
2 )2, we see that the latter condition of the proposition

implies that there exists a, b ∈ Ẑ such that

(6.1) f(τ2
1 , τ2

2 ) = ωa
3τ b

2f(τ1, τ
4
2 )τ−4ρ2(F )

1 .

Then, looking at this equation modulo P̂ ′
3〈ω3〉, we obtain from (5.4) and Proposition

5.3

τ b
2(τ4

1 τ8
2 )ρ2(F )τ

−4ρ2(F )
1 ≡ 0 mod P̂ ′

3〈ω3〉.

Hence b = −8ρ2(F ). Then the projection 〈τ1, τ
2
2 〉 → Ẑ via τ1 	→ 1, τ2

2 	→ 0 reduces
the equation (6.1) to 0 = 2a − 4ρ2(F ); hence a = 2ρ2(F ). Returning these values
of a, b to (5.1), we obtain the relation (IV). �

Proof of Theorem 1.2. Let us first show that, for any elements F = (λ, f) and
F ′ = (λ′, f ′) ∈ IΓ, their product F̃ = FF ′ = (λ̃, f̃) also satisfies (IV). Note that
λ̃ = λλ′ and

f̃(x, y) = f(x, y)f ′(xλ, f(y, x)yλf(x, y)
)
.

To use Lemma 6.1, put H = HF , H ′ = HF ′ and H̃ = HF̃ . Then, by taking
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Corollary 5.2 into accounts, we compute:

F̃ (τ2) = (F ◦ F ′)(τ2)

=
(
Inn(τ4ρ2(F )

1 )H ◦ Inn(τ4ρ2(F
′)

1 )H ′
)
(τ2)

=
(
Inn(τ4ρ2(F )

1 ) ◦ Inn(τ4λρ2(F
′)

1 )HH ′
)
(τ2)

= τ
4ρ2(F )
1 τ

4λρ2(F
′)

1 H
(
f ′(τ4

2 , τ1)τλ′
2 f ′(τ1, τ

4
2 )

)
τ
−4λρ2(F

′)
1 τ

−4ρ2(F )
1

= Inn
(
τ

4ρ2(F̃ )
1 f ′(f(τ4

2 , τ1)τ4λ
2 f(τ1, τ

4
2 ), τλ

1

)
f(τ4

2 , τ1)
)

(τ λ̃
2 )

= τ
4ρ2(F̃ )
1 f̃(τ4

2 , τ1)τ λ̃
2 f(τ1, τ

4
2 )τ̃

4ρ2(F̃ )
1 .

From this we obtain HF̃ (τ2) = f(τ4
2 , τ1)τ λ̃

2 f(τ1, τ
4
2 ) as desired.

Next, let F = (λ, f) ∈ IΓ and consider its inverse F ′ = (λ−1, f ′) in IΓ′ so that

f ′(f(y, x)yλf(x, y), xλ) = f(x, y).

Using this and ρ2(F ) + λρ2(F ′) = ρ2(FF ′) = 0 together with the relation (IV) for
f , we compute:

F
(
τ

4ρ2(F )
1 f ′(τ4

2 , τ1)τλ−1

2 f ′(τ1, τ
4
2 )τ−4ρ2(F )

1

)
= Inn

(
τ

4λρ2(F
′)

1 f ′(f(τ2
2 , τ2

1 )τ4λ
2 f(τ2

1 , τ2
2 ), τλ

1

)) (
F (τλ−1

2 )
)

= Inn
(
τ

4λρ2(F
′)+4ρ2(F )

1 f ′(f(τ4
2 , τ1)τ4λ

2 f(τ1, τ
4
2 ), τλ

1

)
τ
−4ρ2(F )
1 · f(τ2

1 , τ2
2 )

)
(τ2)

= Inn
(
τ

4λρ2(F
′)+4ρ2(F )

1 f(τ1, τ
4
2 )τ−4ρ2(F )

1 f(τ2
1 , τ2

2 )
)

(τ2)

= τ
4λρ2(F

′)+4ρ2(F )
1 τ2τ

−4λρ2(F ′)−4ρ2(F )
1 = τ2.

This implies HF ′(τ2) = f ′(τ4
2 , τ1)τλ−1

2 f ′(τ1, τ
4
2 ). By Lemma 6.1, we conclude that

F ′ ∈ IΓ, which proves Theorem 1.2. �

Remark 6.2. In Theorem 2.5, we observed that ρ2(σ) for σ ∈ GQ appears also
in the ratio of the upper components of fσ((10

2
1), (

1
−2

0
1)). One can show that this

holds true for F = (λ, f) ∈ ĜT satisfying (IV) (especially for all elements of IΓ).
Indeed, considering (IV) by specializing τ1 = (10

1
1), τ2 = ( 1

−1
0
1) in the finite adele

group GL2(A
fin
Q ), we obtain

(10
0
2) f((10

2
1), (

1
−2

0
1)) (10

0
2)

−1 = f((10
1
1), (

1
−4

0
1))

= ( 1
−1

0
1)

8ρ2f((10
2
1), (

1
−2

0
1))(

1
0
1
1)

4ρ2(−1
0

0
−1)

−4ρ2 ,

where ρ2 = ρ2(F ). Evaluating this after setting f((10
2
1), (

1
−2

0
1)) = (α

γ
β
δ ), we obtain

β = −8ρ2α as desired.
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§7. Basic moves and associated pro-words.

In the following few sections, we will mainly be concerned with a topological
study of the subject. We fix a compact topological surface Σ(∼= Σg,r) of genus g
with r boundary components, and assume 2 − 2g − r < 0. A pants decomposition
P of Σ is by definition given by a finite collection of disjoint (non-oriented) simple
closed curves (circles) on Σ such that each connected component of the complement
of these curves is homeomorphic to the interior of Σ0,3. We denote by C(P ) (resp.
Π(P )) the collection of those curves (resp. connected components) forming the
pants decomposition P . We also set C∗(P ) to be the union of C(P ) and the circles
parallel to boundary components. The circles of C∗(P )\C(P ) will be called boundary
circles for simplicity.

As easily seen, the cardinalities of C(P ) and Π(P ) are 3g − 3 + r, 2g − 2 + r
respectively. We call each element of C(P ) (resp. Π(P )) a circle (resp. a pair of
pants) of the pants decomposition P .

We denote by S∗(Σ) the collection of isotopy classes of simple closed curves on
Σ which are not homotopically trivial, and by S(Σ) the subset of S∗(Σ) consisting
of those classes of curves not parallel to any boundary component. Any class [c] ∈
S∗(Σ) defines a Dehn twist D[c] of the mapping class group Γ(Σ). For simplicity,
we often identify a simple closed curve c on Σ with its isotopy class [c] ∈ S∗(Σ),
and write for brevity Dc = D[c]. Note then that for any pants decomposition P ,
the set C(P ) will be regarded as a subset of S(Σ). Also, we will not distinguish two
pants decomposition given by isotopic family of disjoint circles.

The geometric intersection form i : S(Σ)×S(Σ) → Z≥0 is defined by associating,
to any two isotopy classes in S(Σ), the minimum number of intersection points of
two curves representing them respectively. On the other hand, we have an algebraic
intersection form I : H1(Σ, ∂Σ, Z)×H1(Σ, Z) → H0(Σ, Z) ∼= Z in standard topology
theory. Since elements of S(Σ) give homology classes up to signs, for any pair
(c, c′) ∈ S(Σ) × S(Σ), the absolute value |I(c, c′)| makes sense.

Simple and associativity moves on pants decompositions

Now, we will introduce a graph structure on the set of all the (isotopy classes
of) pants decompositions on a surface. The vertices are pants decompositions; to
connect them by “edges”, we specify certain types of pants decomposition pairs (S-
moves and A-moves below), using the above terminology of geometric and algebraic
intersection forms.

Definition 7.1.
(a) For any pants decomposition P on Σ and each circle c ∈ C(P ), the neighbor-

hood of c is defined to be the piece supporting the circle c when Σ is cut along all
circles of C(P ) \ {c}. This neighborhood is either of type (0, 4) or of type (1, 1).

(b) Let P, P ′ be two pants decompositions of Σ, and suppose that they differ
from each other only by one circle, i.e., C(P ) \ {c} = C(P ′) \ {c′} and c �= c′ (as
elements of S(Σ)). Then, the pair (P, P ′) will be called a simple move (or S-move)
if i(c, c′) = 1. An S-move can be performed if and only if the neighborhood of the
circle c ∈ C(P ) is of type (1, 1).

(c) The pair (P, P ′) is called an associativity move (or A-move) if i(c, c′) = 2
and |I(c, c′)| = 0; an A-move can be performed if and only if the neighborhood of
c is of type (0, 4).
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S - move A-move Figure 7.1

Quilt decompositions of Σ
Next, let us introduce a notion of “quilt-decompositions”, also called “quilts” for

shortness, which refines pants decompositions. Suppose that we are given a pants
decomposition P of a surface Σ. We begin by defining a quilt-decomposition for
each pair of pants p ∈ Π(P ).

Let us first consider the case when p is bounded by three distinct circles ci ∈
C∗(P ) (i ∈ Z/3Z). Then, it is easy to see that, any triple of disjoint lines li
(i ∈ Z/3Z) such that li connects ci and ci+1 cuts p into two hexagonal patches.
We call this type of decomposition of p a quilt on p, and call l1, l2, l3 seams. The
endpoints of seams will be called vertices. Next, consider the case when the closure
p̄ of p in Σ is homeomorphic to Σ1,1. This corresponds to the situation where
two of the boundary components c1, c2, c3 of p coincide in Σ. Suppose, say, that
c1 �= c2 = c3. On such a p, we define a quilt by seams l1, l2, l3 very much as above,
but we additionally impose that the endpoints on c2 (= c3) are exactly two points
and that l2 is not homotopic to part of c2. See Figure 7.2 for typical examples of
quilts on pairs of pants.

l

l
l l

l3
2

3

1 3
l1

l2l l
1

c c

cc c1 11

32
2c  =c 3 c  =c2 3 Figure 7.2

Finally, we define a quilt-decomposition of Σ over P to be a collection of quilt-
decompositions of all pairs of pants of P such that each circle has exactly two
vertices as meeting points of seams. In other words, if two pants p1 and p2 meet
at a circle, and two seams of p1 meet that circle at vertices v1 and v2, then the two
seams of p2 which meet the circle do so at the same vertices v1 and v2 (see Figure
7.3). We use the notation s, p, v to denote seams, patches, vertices respectively, and,
for any quilt Q over P , write s(Q), p(Q), v(Q) to denote the sets of corresponding
objects arising in Q.

Half-twist actions on quilts
If Q(P ) denotes the set of (isotopy classes of) quilt-decompositions over a given

pants decomposition P of Σ, then the Dehn twists Dc for c ∈ C(P ) act naturally
on Q(P ). Now, let us also define a half-twist action “D

1/2
c ” on Q(P ); this action

leaves the underlying pants decomposition invariant, but alters the seams in the
neighborhood of the circle c as in Figure 7.3.
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Figure 7.3

To define the orientation of our half twist operation rigorously, we shall give a
topological characterization of the process as follows. Given a quilt Q/P on Σ
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and a circle c ∈ C(P ), cut off a small cylinder neighborhood Bc of c with two
boundary circles parallel to c (as shown in the leftmost picture of Figure 7.4). Pick
a boundary circle b of Bc. Deforming seams homotopically, we may assume that two
seams meet b transversally. Let a1, a2 be those meeting points on b, and identify b
with the unit circle S1 = {exp(2πit) | 0 ≤ t ≤ 1} so that a1, a2 correspond to the
points t = 1/8, 5/8 respectively. Divid b into four (oriented) segments b1, b2, b3, b4

corresponding to t ∈ [0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1] respectively and identify
b1 with b−1

3 and b2 with b−1
4 to form a surface B′

c of type (1,1) (see the second
picture of Figure 7.4) where the points a1 and a2 are also patched together. Let
c1, c2 be circles formed by b1 = b3, b2 = b4 respectively in B′

c. We now perform
the diffeomorphism (D1D2)3 on B′

c, where Di = Dci
(i = 1, 2). Since (D1D2)3

commutes with Di (i = 1, 2), it preserves each circle ci (i = 1, 2), but it changes
the orientations of these circles. The diffeomorphism thus twists the seams on B′

c

as in the third picture of Figure 7.4. Then, returning to Bc by cutting the surface
B′

c along c1, c2, we obtain another quilt on Bc (as in the last picure of Figure 7.4)
having the same endpoints a1, a2 and others of seams on the boundary components
as the original quilt on Bc. We then recast the original quilt Q/P on Σ by replacing
the cylinder neighborhood Bc by this newly quilted cylinder. The resulting quilt
is independent of the choice of b from the two boundary components of Bc up to
isotopy, and is defined to be the half-twist “D

1/2
c (Q)/P” of the original quilt Q/P

along the circle c ∈ C(P ).

(D  D )
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c 2c
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,
Figure 7.4

For any positive integer N , we shall write D
N/2
c (Q) for the quilt obtained from

Q by applying N times the half-twist D
1/2
c . Define also D

−N/2
c (Q) so that

D
N/2
c (D−N/2

c (Q)) = Q holds.

Quilts adjusted to circles.
Now we come to the stage of introducing a crucial procedure which plays an

important role in the following arguments. This procedure deforms quilts along
moves of underlying pants decompositions in unique ways. More precisely, given
an A-move or S-move of pants decompositions (P, P ′) and a quilt Q over P , we
shall define a quilt QP→P ′ over P ′ in a unique way, as the effect of that A-move
or S-move on the quilt Q/P . Before introducing these A-moves and S-moves on
quilts, we need to introduce the concept of adjustment.

Let P be a pants decomposition on Σ, let Q/P be a quilt, and let c ∈ C(P ) be
a circle of the pants decomposition.

Case 1. Suppose the neighborhood of c is of type (0, 4), and let c′ be a circle on Σ
such that changing c to c′ is an A-move on P . Let H denote the neighborhood of
c; the circle c cuts H into two pants p1 and p2, and the seams of Q cut each pair
of pants into two patches. The quilt Q is said to be adjusted to c′ (or to the pants
decomposition obtained from P by replacing c by c′) if there is a simple closed curve
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in the homotopy class of c′ such that c′ intersects each of the four patches of H in
exactly one segment.

Lemma 7.1. Let Σ, Q, P and c be as above. Then there is a unique circle c1 such
that c → c1 is an A-move and Q is adjusted to c1. If c′ is any circle such that
c → c′ is an A-move, there exists a unique integer N such that the quilt D

N/2
c (Q)

over P is adjusted to c′.

Proof. The typical situation is the quilt shown in the picture of Figure 7.5, which
shows a quilt on the neighborhood of the horizontal circle c, which is adjusted to
a vertical circle c1. The key remark is that every other circle c′ such that c → c′ is
an A-move (i.e. such that c′ intersects c in two points with algebraic intersection
0 and lies on the neighborhood H), is obtained from c1 by half-twists along c. But
every such half-twist augments the number of segments in the intersection of the
new circle with the patches of Q. This shows that that if c′ is any circle such
that c → c′ is an A-move, then there is a unique N such that Q/P is adjusted to
D

−N/2
c (c′). The second statement of the lemma follows immediately. �

1c

c

Figure 7.5

Case 2. Again we let Σ be a surface of type (g, r), P a pants decomposition and
c ∈ C(P ), but now we suppose that the neighborhood of c is of type (1, 1). Let H
denote this neighborhood; the circle c cuts H into a single pair of pants (of which
c joins two legs). Consider the closure of seams of the quilt Q on the neighborhood
H of c. There are two distinct situations, as this closure can form either one or two
connected components of curves. Set the associated quilt Q� to be D

1/2
c (Q) if there

is only one component, and otherwise set Q� = Q, so that the closure of seams of
Q� has two connected components, one of which forms a circle r. We call this r the
reference circle of the quilt Q in H.

Now, let c′ be a circle such that c → c′ is an S-move on P , i.e. c′ lies on H and
i(c, c′) = 1. We say that Q is adjusted to c′ (or to the pants decomposition obtained
from P by replacing c by c′), if Q = Q� and the reference circle r is homotopic to
c′.

Lemma 7.2. Let Σ, Q/P , c be as above, and let Q�, r be the associated quilt, the
reference curve for them respectively. Then there is a unique circle c1 such that
c → c1 is an S-move and Q� is adjusted to c1. If c′ is any circle such that c → c′ is
an S-move, then there exists a unique integer M such that the quilt DM

c (Q�) over
P is adjusted to c′.

Proof. The first statement is obvious; c1 must be homotopic to the reference circle
r of Q�. For the second statement, we use the fact that every other circle c′ on H
such that c → c′ is an S-move is obtained from c1 by twists along c, i.e. there exists
a unique integer M such that c′ = DM

c (r). Thus the quilt DM
c (Q�) is adjusted to

c′. �

A-moves and S-moves on quilts; associated pro-words.
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Now we can proceed to the definition of A-moves and S-moves on quilts. More-
over, if we are given an element F = (λ, f) ∈ IΓ in addition to P, P ′, Q as above,
we shall define an element fF (Q/P → P ′) of Γ̂(Σ), the profinite completion of the
mapping class group Γ(Σ) � Γg,r.

Definition 7.2. Assume we are given a quilt Q/P and an A- or S-move (P, P ′) of
pants decompositions replacing c ∈ C(P ) by c′ ∈ C(P ′).
(a) Case 1: Suppose (P, P ′) is an A-move. We define a quilt over P ′, denoted
QP→P ′ , to be the quilt whose patches consist of those obtained by cutting Σ along
the circles of P ′ together with the seams of D

N/2
c (Q), where N is as in the second

statement of Lemma 7.1. For F = (λ, f) ∈ IΓ, we define

(7.1) fF (Q/P → P ′) := DNµ
c f(Dc′ , Dc) (= DNµ

c f(Dc, Dc′)−1)

where µ = (λ − 1)/2.
(b) Case 2: Suppose (P, P ′) is an S-move. We define a new quilt QP→P ′ over P ′

to be the image of Q� by the mapping class (DcDc′Dc)DM
c , where M is as in the

statement of Lemma 7.2. We also define, for F = (λ, f) ∈ IΓ,

(7.2) fF (Q/P → P ′) := DNµ−8ρ2
c f(D2

c′ , D
2
c )D8ρ2

c′ (DcDc′Dc)2µ,

where µ = (λ − 1)/2, ρ2 = ρ2(F ), and N = 2M + ε with ε = 0, 1 according as
Q� = Q or D

1/2
c (Q). Note that N is chosen such that D

N/2
c (Q) is adjusted to c′.

Remark. There is a certain Galois-theoretical reason for the necessity of putting
8ρ2 in exponents in the above definition of Case 2 (cf. [N2] §4 (4.11).)

Notation and Convention. Let (P0, P1, . . . , Pn) be a chain of pants decomposi-
tions of Σ such that (Pi, Pi+1) are A- or S-moves (i = 0, . . . , n − 1). For brevity,
we call such (P0, P1, . . . , Pn) a chain of A/S-moves on Σ. For a given quilt Q0 over
P0, we shall write (Q0)P0→···→Pn

to designate (...(((Q0)P0→P1)P1→P2) · · · )Pn−1→Pn
,

and define

(7.3) fF (Q0/P0 → · · · → Pn) := fF (Q0/P0 → P1) · · ·fF (Qn−1/Pn−1 → Pn),

for F ∈ IΓ, where Qi = (Q0)P0→···→Pi
(1 ≤ i ≤ n − 1). We also introduce, for an

A/S-move (P, P ′) replacing a circle c ∈ C(P ) by c′ ∈ C(P ′), a proword fF [P → P ′]
for F = (λ, f) ∈ IΓ by

fF [P → P ′] :=

{
f(Dc′ , Dc), (P, P ′) : A-move,

D
−8ρ2(F )
c f(D2

c′ , D
2
c )D8ρ2(F )

c′ (DcDc′Dc)λ−1, (P, P ′) : S-move.

Note that fF [P → P ′] belongs to a subgroup 〈Dc, Dc′〉 of Γ̂(Σ) generated by Dc,
Dc′ . We also observe that, for any quilt Q/P ,

fF (Q/P → P ′) = DN
c fF [P → P ′]

holds in both cases (a) and (b) of Definition 7.2, where N is the integer such that
D

N/2
c (Q) is adjusted to c′.
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Lemma 7.3. (Back-tracking Lemma) Let (P, P ′) be an A- or S-move of pants
decompositions which replaces a circle c ∈ C(P ) by another circle c′ ∈ C(P ′). If
(P, P ′) is an S-move, then denote by δ the circle bounding the neighborhood of c

(and of c′). Let Q/P be a quilt, and N the unique integer such that D
N/2
c (Q) is

adjusted to c′. Suppose we are given a chain of A- or S-moves γ = (P, P1, . . . , Pn)
starting from P . Then,

(i) If (P, P ′) is an A-move, then QP→P ′→P = D
N/2
c (Q) and

fF (Q/P → P ′ → P ) = DNµ
c for all F ∈ IΓ.

(ii) If (P, P ′) is an S-move, then QP→P ′→P = D
N/2
c D

1/2
δ (Q) and

fF (Q/P → P ′ → P ) = DNµ
c Dµ

δ for all F ∈ IΓ.
(iii) In either case, we have fF (Q/P → P ′ → P

γ���Pn) ≡ fF (Q/P
γ���Pn)

for all F ∈ IΓ in the right coset space Γ̂(Σ)/〈Dc | c ∈ C(Pn)〉.
Proof. (i) Let (P, P ′) be an A-move. Note that by construction, the quilt QP→P ′

over P ′ is already adjusted to c. Thus the quilt QP→P ′→P is the quilt whose patches
are obtained directly by cutting Σ along the circles of P and the seams of QP→P ′ .
This quilt over P is adjusted to c′, and equal to Q outside the two pairs of pants
of P whose closures contain c, so it is obtained in a unique way as D

N/2
c (Q). The

fact that no twist is necessary to adjust QP→P ′ back to c means that

fF (QP→P ′/P ′ → P ) = f(Dc, Dc′),

by (7.1), hence that

fF (Q/P → P ′ → P ) = fF (Q/P → P ′)fF (QP→P ′/P ′ → P )

= DNµ
c f(Dc′ , Dc)f(Dc, Dc′) = DNµ

c

by (7.3) and relation (I). This proves (i).
(ii) Let (P, P ′) be an S-move changing c to c′. As in Definition 7.2 (b), let N =
2M + ε where M is as in Lemma 7.2, and ε = 0, 1 according to whether Q = Q�,
Q �= Q�. Thus, as we saw, D

N/2
c (Q) is adjusted to c′. Therefore, by Definition

7.2 (b), we have QP→P ′ = (DcDc′Dc)D
N/2
c (Q). Again, the quilt QP→P ′ over P ′

is already adjusted to c, because DcDc′Dc maps the reference curve r = c′ of
the quilt D

N/2
c (Q) to c. Noting that DcDc′Dc = Dc′DcDc′ , we get QP→P ′→P =

(DcDc′Dc)2D
N/2
c (Q). Since, for any quilt Q′, (DcDc′Dc)2(Q′) = D

1/2
δ (Q′) holds,

and since D
1/2
δ commutes with D

1/2
c , this implies that QP→P ′→P = D

N/2
c D

1/2
δ (Q).

Using Definition 7.2 (b) and (7.3), we compute

fF (Q/P → P ′ → P ) = fF (Q/P → P ′)fF (QP→P ′/P ′ → P )

= DNµ−8ρ2
c f(D2

c′ , D
2
c)D

8ρ2
c′ (DcDc′Dc)2µD−8ρ2

c′ f(D2
c , D

2
c′)D

8ρ2
c (Dc′DcDc′)2µ

= DNµ
c (DcDc′Dc)4µ = DNµ

c Dµ
δ .

(iii) Suppose first that (P, P ′) is an A-move. By (i), QP→P ′→P is the quilt
D

N/2
c (Q) over P (which is adjusted to c′). If c remains unchanged through the

chain γ, then, since each move adds the same factors to fF (Q/P
γ���Pn) and

fF (DN/2
c (Q)/P

γ���Pn), they are equal (and commute with Dc). Thus,

fF (Q/P → P ′ → P
γ���Pn) = fF (Q/P

γ���Pn)DNµ
c .
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Suppose next that c is changed in γ : P = P0 → . . . → Pn, and let m be the smallest
index (≥ 1) such that c is changed under the move Pm−1 → Pm (say, to c′′). Then,
Q� := Q

P
γ���Pm−1

and Q∗ := Q
P→P ′→P

γ���Pm−1
are related by Q∗ = D

N/2
c (Q�),

where N is the same as above. Proceeding to Pm−1, we then find a unique integer
N ′ such that the quilt over Pm−1 adjusted to c′′ is given by

DN ′/2
c (Q�) = D(N ′−N)/2

c

(
DN/2

c (Q�)
)

= D(N ′−N)/2
c (Q∗).

Thus, both of the quilts (Q∗)Pm−1→Pm
and (Q�)Pm−1→Pm

are equal (we will denote
them by Qm). Then,

fF (Q/P → P ′ → P
γ���Pn)

= fF (Q/P → P ′ → P ��� Pm−1)fF (Q∗/Pm−1 → Pm)fF (Qm/Pm ��� Pn)

= fF (Q/P ��� Pm−1)DNµ
c · D(N ′−N)µ

c fF [Pm−1 → Pm]fF (Qm/Pm ��� Pn)

= fF (Q/P ��� Pm−1)DN ′µ
c fF [Pm−1 → Pm]fF (Qm/Pm ��� Pn)

= fF (Q/P ��� Pm−1)fF (Q�/Pm−1 → Pm)fF (Qm/Pm ��� Pn)

= fF (Q/P
γ���Pn).

This concludes the proof when the move (P, P ′) is an A-move. When the move
(P, P ′) is an S-move, the proof goes almost exactly as above, except for the need
to pay attention to the two circles c and δ. If these circles are unchanged under γ,
then, fF (Q/P → P ′ → P

γ���Pn) differs from fF (Q/P
γ���Pn) by the (right) factor

DNµ
c Dµ

δ . If either of c or δ are changed under γ, then the corresponding factor
disappears from the difference, and if both c and δ are changed under γ, then
fF (Q/P → P ′ → P

γ���Pn) coincides with fF (Q/P
γ���Pn). �

§8. Defining IΓ-actions on Dehn twists.

Using the procedure prepared in the previous section, we shall prove the following
proposition, which allows us to specify images of individual Dehn twists under the
eventual action of IΓ to be defined later. As in §7, we fix a surface Σ ∼= Σg,r with
2 − 2g − r < 0, and keep the notation on pants decompositions etc.

Proposition 8.1. Let Q be a quilt on a pants decomposition P0 of Σ, and let e
be an arbitrary element of S(Σ). Pick a chain γ = (P0, . . . , Pn) of A/S-moves of
pants decompositions of Σ such that e ∈ C(Pn). Then, for each F = (λ, f) ∈ IΓ, the
element

FQ/P0(De) = fF (Q/P0 → · · · → Pn) Dλ
e fF (Q/P0 → · · · → Pn)−1

is independent of the choice of γ.

The proof of Proposition 8.1 is based on two fundamental results. The first
one, recalled from [HLS], claims the simple-connectedness of the simplicial complex
whose vertices are the pants decompositions of Σ, whose edges are given by A/S-
moves and whose faces are given by certain cycles given precisely in the theorem
below.
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Theorem 8.2. ([HLS]) Any two chains of A/S-moves from a pants decomposition
P to another P ′ can be deformed to each other via (a finite number of) successive
replacements of subchains locally included in the diagrams (3A),(5A),(3S),(6AS)
and commutativity squares (C) by their complementary chains in the same dia-
grams. Here, a commutativity square (C) means a rectangular cycle formed by two
A/S-type replacements of circles supported on mutually disjoint subsurfaces. �

A A

(3A)

A

SS

S

(3S)

(5A)

A

A A

A

A A A

A A

S

(6AS)

S

The second necessary result is given in the following claim. Recall that C∗(P )
denotes the union of the circles of a pants decomposition P and the circles parallel
to boundary components (the latter circles are called boundary circles.)

Claim 8.3. For cycles (P0, · · · , Pn = P0) of type (3A), (5A), (3S), (6AS) and (C)
with a given quilt Q over P0, there exist unique integers Nc (c ∈ C∗(P0)), such that

(8.3.1) Q =
( ∏

c∈C∗(P0)

DNc/2
c

)
(QP0→···→Pn

),

Furthermore, for every F = (λ, f) ∈ IΓ and for these Nc, we have

(8.3.2) fF (Q/P0 → · · · → Pn) ·
∏

c∈C∗(P0)

DNcµ
c = 1.

Proof. For commutativity squares (C), the statement simply holds essentially by
virtue of Lemma 7.3. It is enough to consider each of the four cycles (3A), (5A),
(3S), (6AS) as taking place on surfaces of the associated type (namely (0, 4) for (3A),
(1, 1) for (3S), (0, 5) for (5A) and (1, 2) for (6AS), as in Theorem 8.2), because
the cycles, performed on pants decompositions on larger topological surfaces Σ,
leave everything outside of those subsurfaces fixed. So we only need to check the
statements of the claim separately in each of the four cases, on surfaces of the
corresponding type. Note furthermore the following simplification. If Q/P0 is any
quilt over P0, then all other quilts over P0 are obtained by (powers of) half-twists
along the circles in C(P0). If we apply such a set of half-twists to Q, obtaining a
quilt Q′, and then show (8.3.1) for Q′, then applying the inverse of the product of
half-twists to both sides of (8.3.1) gives (8.3.1) for Q with the same values of Nc.
So it is enough to work with one chosen quilt over P0.

(5A): We treat this case first, as it is particularly easy because no adjust-
ment is needed. Name the five pants decompositions in (5A) consecutively as
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P = P0, P1, P2, P3, P4 and identify them with the figures in the (5A) part of the
figure of Theorem 8.2, with P0 in the upper left and the subsequent ones mov-
ing around the diagram clockwise. Let c0 and c2 denote the circles on P0. The
first A-move P0 → P1 takes c0 to c1 so that C(P1) = {c1, c2}. The second move
P1 → P2 takes c2 to c3, so that C(P2) = {c1, c3}. The third move P2 → P3 takes
c1 to c4 so that C(P3) = {c4, c3}, and the fourth move P3 → P4 takes c3 to c0, so
C(P4) = {c4, c0}. Finally, P4 → P0 takes c4 to c2.

The key point is that if we start with the quilt Q/P0 = Q0/P0 whose seams
are given by the “ridges”, i.e. the edges of the figure, then this quilt is obviously
adjusted to all five A-moves. Thus the successive quilts Qi/Pi are all given by the
seams of Q0. In particular, we have

Q = Q5 = QP0→···→P0 .

This proves (8.3.1) with Nc0 = Nc2 = 0. Now, for (8.3.2) we have

fF (Q/P0

(5A)
��� P0) = f(Dc0 , Dc1)f(Dc2 , Dc3)f(Dc1 , Dc4)f(Dc3 , Dc0)f(Dc4 , Dc2).

The right-hand side belongs to the mapping class group Γ0,5 of the sphere with five
boundary components. This group maps surjectively to the mapping class group
Γ5

0 of the sphere with five punctures (by mapping the twists along boundary circles
to 1), and the image of the right-hand side is 1 in Γ5

0 by relation (III). Therefore,
in Γ0,5, we have

fF (Q/P0 → · · · → P0) =
5∏

i=1

Dai
εi

for some integers ai. But as usual, fF is in the derived subgroup, and the Dεi

form a free abelian subgroup of the abelianization of Γ0,5, so we find ai = 0 for
i = 1, 2, 3, 4, 5 and

fF (Q/P0 → · · · → P0) = 1.

This proves (8.3.2) with Nc0 = Nc2 = 0.

(3A): We identify the 4-holed sphere with a square minus 3 holes as in Figure
8.1 below, and start from the choice of quilt Q = Q0/P0 drawn in the upper left
part of Figure 8.1. Let us draw the quilts coming from the successive moves in
the direction suggested by the arrows; seams of quilts are drawn by dotted lines.
Then, one observes that: Q is adjusted to b, Q1 = QP0→P1 , Q2 = D

−1/2
b (Q1)

which is adjusted to c, Q3 = QP0→P1→P2 , Q4 = D
−1/2
c (Q3) which is adjusted to

a and Q5 = QP0→P1→P2→P0 . By construction, the quilt Q5 is exactly the quilt
QP0→P1→P2→P0 . Directly from Figure 8.1 showing (on the top left) the original
quilt Q = Q0/P0 and (on the top right) Q5/P0, we see that

Q = D−1/2
a (Dε1Dε2Dε3Dε4)

1/2(Q5)

where ε1, . . . , ε4 denote the boundary circles, so this proves (8.3.1) with Na = −1,
Nεi

= 1 for i = 1, 2, 3, 4. By the definition of fF , we find that

(8.3.3) fF (Q/P0 → P1 → P2 → P0) = f(Db, Da)D−µ
b f(Dc, Db)D−µ

c f(Da, Dc).
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Now, equation (1.5.1) from Lemma 1.5 says that

(8.3.4) f(x, y)xµf(z, x)zµf(y, z)yµ = ωµ

whenever x, y, z are elements of a group such that ω = xyz commutes with x, y
and z. By the lantern equation in Γ0,4, we know that

DcDaDb =
4∏

i=1

Dεi
,

and the right-hand side is central in Γ0,4. Thus we can apply (8.3.4) with x = Dc,
y = Da, z = Db, to obtain

f(Dc, Da)Dµ
c f(Db, Dc)D

µ
b f(Da, Db)Dµ

a =
4∏

i=1

Dµ
εi

.

Inverting this and substituting it into (8.3.3) give

fF (Q/P0 → P1 → P2 → P0) = Dµ
a

4∏
i=1

D−µ
εi

,

which is exactly (8.3.2) for Na = −1, Nεi
= 1, i = 1, 2, 3, 4.

2

0 0

1

2 1 3

4

5
Q /P

Q /P

Q /P Q /P

Q /P

Q /P

1

0

a

b

b c

c

a

2

Figure 8.1

(3S): In this case, we consider the three-cycle of pants decompositions shown in
Figure 8.2, starting with the quilt Q/P0 indicated in the left most picture of Figure
8.3 (in which only the seams of the quilts are indicated).

P P P0 21

b c

a
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Figure 8.2

P P0 1Q/ Q /1 Q2 / P1

Q
3/ P

2Q4/P2

Figure 8.3

Let us trace what happens along P0 → P1 → P2 → P0, following Figure 8.3.
First Q/P0 is adjusted to the circle b, hence Q1 = QP0→P1 is defined by Q1 =
(DbDaDb)(Q) whose reference curve is a. Then, we take Q2 = Db(Q1)/P1 whose
reference curve is then c = Db(a), i.e., Q2 is adjusted to c. So Q3 = QP0→P1→P2

is defined by Q3 = (DbDcDb)(Q2) whose reference curve is b. Next, we take
Q4 = Dc(Q3) over P2 whose reference curve is Dc(b) = DbDaD−1

b (b) = a. This
means Q4/P2 is adjusted to P0, hence Q5 = QP0→P1→P2→P0 is defined by Q5 =
DaDcDa(Q4). Noticing that, if ε denotes the boundary curve of the one-holed
torus, then Dε = (DaDbDa)4 holds, we compute Q = D−1

ε Da(Q5). Thus, (8.3.1)
holds for integers Nε = −2, Na = 2. Moreover, by using relation (II) via (1.5.1)
(exactly as in the case of (3A) above), we compute:

fF (Q/P0
3S��� P0) =D−8ρ2

a f(D2
b , D

2
a)(DaDbDa)2µD2µ

b f(D2
c , D

2
b )

· (DbDcDb)2µD2µ
c f(D2

a, D2
c)D

8ρ2
a (DcDaDc)2µ

=(DaDbDa)6µD−2µ
a (DaDbDa)2µ.

Note here that (DaDbDa)2, (DbDcDb)2 and (DcDaDc)2 are all equal and generate
the center of Γ̂1,1. Thus, we obtain fF (Q/P0 → . . . → P0)D−2µ

ε D2µ
a = 1 as desired

in (8.3.2).
(6AS): The A/S-moves on pants decompositions are given in Figure 8.4. We

start from the quilt shown over P0, and move around the diagram clockwise.

1a

a

P P5 0 P1

P3

a2

P4 P2

e
1

a2

e2 e3

3

e3

a2

a3

a1e1

Figure 8.4

We start with the quilt decomposition Q/P0 of Figure 8.5, in which only the seams
of the quilts are shown (for simpler visualization). The corresponding pants de-
compositions are shown in the labels of the figures; they correspond to the pants
decompositions shown in Figure 8.4.
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Q/P0
Q /P1 1

Q /P2 2 Q /P
3 3and and Q /P34 Q5 /P4and

Q6 /P4and 7 58 0Q /P Q /P Figure 8.5

Let us take a close look at the effect of the successive moves of (6AS) on quilts and
prowords in a step-by-step manner. The reader should move around Figures 8.4 and
8.5 while following the steps, also consulting Figures 8.6-8.8 which are alternative
figures illustrating the identical step-by-step procedure.

First, the quilt Q is adjusted to the circle e3, so fF (Q/P0 → P1) = f(De3 , Da1).
One finds then that the quilt Q1 = QP0→P1 is adjusted to a2. Therefore,

fF (Q/P0 → P1 → P2) = f(De3 , Da1)D
−8ρ2
a3

f(D2
a2

, D2
a3

)D8ρ2
a2

(Da3Da2Da3)
2µ.

The resultant quilt Q2 = (Q1)P1→P2 is adjusted to e2; hence we obtain

fF (Q/P0 ��� P3) = fF (Q/P0 ��� P2)f(De2 , De3).

Q
1

/P
10 Q  /P2 2

a1

a3

Q/P

a3 e3

e3

a2

Figure 8.6

The quilt Q3 = (Q2)P2→P3 is not easy to draw precisely, and in Figure 8.7, each of
the RHS’s shows two pairs of pants of P3 where seams are suggested. Deformation
of the quilt on each pairs of pants by D

1/2
e2 yields in total Q4 = De2(Q3) over P3

as described in the lower line of Figure 8.7. Then, Q4 is adjusted to the curve
e1 ∈ C(P4) (cf. also Figure 8.8).

+

+

e

a

2

2

e2

a2

Q  /P3 3

Q  /P4 3 Figure 8.7

Thus,
fF (Q/P0 ��� P4) = fF (Q/P0 ��� P3)D2µ

e2
f(De1 , De2).
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In order to move to P5, we have to deform Q5 = QP0���P4 to Q6 = D−1
a2

(Q5) to be
adjusted to a1. Then,

fF (Q/P0 ��� P5) = fF (Q/P0 ��� P4)D−2µ−8ρ2
a2

f(D2
a1

, D2
a2

)D8ρ2
a1

(Da1Da2Da1)
2µ.

It turns out that Q7 = QP0���P5 is adjusted to a3 as it is, so that it follows that

fF (Q/P0 ��� P0) = fF (Q/P0 ��� P5)f(Da3 , De1).

Let Q8 = QP0���P0 . From the last picture of Figure 8.8, we find Q = D
−1/2
ε1 D

−1/2
ε2 (Q8)

where εi (i = 1, 2) denote the boundary circle of the Σ1,2. In particular, the claim
(8.3.1) holds.
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Figure 8.8

To show (8.3.2), we shall prove that

fF (Q/P0 → P1 → P2 → P3 → P4 → P5 → P0) = Dµ
ε1D

µ
ε2 .

We use the above detail of the moves of (6AS) on quilts to compute

fF (Q/P0 → · · · → P0) = fF (Q/P0 → P1)fF (Q1/P1 → P2)fF (Q2/P2 → P3)·
· fF (Q3/P3 → P4)fF (Q5/P4 → P5)fF (Q7/P5 → P0)

= f(De3 , Da1)D
−8ρ2
a3

f(D2
a2

, D2
a3

)D8ρ2
a2

(Da3Da2Da3)
2µ·

· f(De2 , De3)D
2µ
e2

f(De1 , De2)D
−2µ−8ρ2
a2

f(D2
a1

, D2
a2

)·
· D8ρ2

a1
(Da1Da2Da1)

2µ · f(Da3 , De1).

After cancellation of the terms D8ρ2
a2

and D−8ρ2
a2

, which commute with the terms
lying between them, the relation to be proved becomes

(R′)

f(De3 , Da1)D
−8ρ2
a3

f(D2
a2

, D2
a3

)(Da3Da2Da3)
2µ

f(De2 , De3)D
2µ
e2

f(De1 , De2)D
−2µ
a2

f(D2
a1

, D2
a2

)D8ρ2
a1

(Da1Da2Da1)
2µf(Da3 , De1)D

−µ
ε1

D−µ
ε2

= 1.

This is indeed a consequence of our defining relations for IΓ. First we prepare some
notation. Recalling that Da1 , Da2 , Da3 satisfy braid relations, introduce: x12 =
D2

a1
, x23 = D2

a2
, x34 = D2

a3
, xij = Daj−1 · · ·Dai+1D

2
ai

D−1
ai+1

· · ·D−1
aj−1

(1 ≤ i < j ≤
4) and x45 = (Da1Da2Da1)

2, x51 = (Da3Da2Da3)
2. Then, the doughnut relation

(given explicitly in Theorem 9.2 below) shows De1 = x2
45, De3 = x2

51. On the
other hand, a simple chase of twisting shows De2 = Da3Da2Da1D

−1
a2

D−1
a3

so that
D2

e2
= x14.

Now, we shall rewrite f(De3 , Da1), f(De2 , De3), f(De1 , De2), f(Da3 , De1) by us-
ing the relation (IV). Let A3 be the subgroup of B3 = 〈τ1, τ2〉 generated by {τ1, τ

2
2 }
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with a single relation [τ2
2 , τ1τ

2
2 τ1] = 1 (cf. §2). One can construct homomorphisms of

A3 into Γ1,2 by letting the images of {τ1, τ
2
2} be {Da1 ,x51}, {De2 ,x51}, {De2 ,x45}

{Da3 ,x45} respectively. Then, the relation (IV) reads in Γ̂1,2:

f(De3 , Da1) = x2ρ2
34 x−2ρ2

12 f(x51, x12)x
−4ρ2
51 ,

f(De2 , De3) = x4ρ2
51 f(x14,x51)x

2ρ2
14 x−2ρ2

23 ,

f(De1 , De2) = x2ρ2
23 x−2ρ2

14 f(x45, x14)x
−4ρ2
45 ,

f(Da3 , De1) = x4ρ2
45 f(x34,x45)x

2ρ2
34 x−2ρ2

12 .

After the above formulae input into LHS of (R′), in middle part of the result we
find the following consecutive terms appearing:

xµ
51f(x14,x51)x

µ
14f(x45, x14)x

µ
45.

This part turns out to be f(x45,x51)x
µ
23(Dε1Dε2)

µ by relation (II), because of
(1.5.1) and x14x51x45 = (Da3Da2Da1)

4D2
a2

= Dε1Dε2D
2
a2

. Taking this together
with x23x24 = x51x

−1
34 , x13x23 = x45x

−1
12 , x12x13 = x45x

−1
23 , x24x34 = x51x

−1
23 into

account, we finally see that the LHS of (R′) equals to

f(x23x24, x12)f(x23, x34)f(x12x13, x24x34)f(x12, x23)f(x34, x13x23),

which is trivial by Drinfeld’s form of (III) in B̂4 (cf. §1). This completes the proof
of Claim 8.3. �

8.4. Proof of Proposition 8.1. The proof of Proposition 8.1 is based on repeated
applications of Claim 8.3 and the Back-Tracking Lemma 7.3. Recall that in the
notation of the statement of the proposition, we are given a quilt decomposition
Q/P0 and an arbitrary circle e on a surface Σ, and we choose a pants decomposition
Pn containing e and a chain of A/S-moves γ = (P0, . . . , Pn) taking P0 to Pn. To
prove Proposition 8.1, we must show that up to multiplication on the right by an
element of Γ̂m

g,n commuting with De, the quantity

(8.4.1) fF (Q/P0 → · · · → Pn)

is independent of the choices of Pn and of γ.
In steps 1 to 3 below, we suppose the choice of Pn fixed and show that the

quantity (8.4.1) is (essentially) independent of the choice of the sequence of A/S-
moves γ; in step 4 we show that it is (essentially) independent also of the choice
of Pn. The goal of the first three steps is to compute the effect on (8.4.1) when a
cycle of type (3A), (3S), (5A), (6AS) or (C)

Pi → R1 → · · · → Rm → Pi

is inserted at a pants decomposition Pi of a fixed chain γ : P0 → . . . → Pn. We
assume, for j = 0, . . . , n − 1, the move Pj → Pj+1 replace the circle aj ∈ C(Pj) by
a′

j ∈ C(Pj+1).
Note that, since we know that any chain of moves from P0 to Pn can be obtained

from γ by successive replacements of parts through such 4 types of cycles, by the
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Back-Tracking Lemma 7.3, we are reduced to the above situation. By the same
Lemma 7.3, after supplementing the chain Pn → Pn−1 → Pn to γ if necessary, we
may assume i < n without loss of generality.

Let us set up the notation used in these first three steps. Let C0(Pi) be the set
of circles in Pi concerned by the above cycle Pi → R1 ��� Rm → Pi including the
circles bounding the subsurface on which the cycle lives, and let C′

0(Pi) be equal to
C0(Pi) if ai /∈ C0(Pi) and to C0(Pi) \ {ai} otherwise.

Step 1. Under the assumption that Pi → Pi+1 is a move in the sequence γ such that
the quilt Qi := QP0→···→Pi

is adjusted to Pi+1, there exist integers Nc (c ∈ C′
0(Pi))

such that

(8.4.2)
fF (Q/P0 → · · · → Pi → Pi+1)

∏
c∈C′

0(Pi)

DNcµ
c

= fF (Q/P0 → · · · → Pi → R1 → · · · → Rm → Pi → Pi+1)

for all F = (λ, f) ∈ IΓ with µ = (λ − 1)/2.

Proof of Step 1. Let Qj = QP0→···→Pj
for j = 1, . . . , n. By assumption, Qi is

already adjusted to Pi+1, so we have

fF (Q/P0 → · · · → Pi → Pi+1)(8.4.3)

= fF (Q/P0 → · · · → Pi)fF

(
Qi/Pi → Pi+1

)
= fF (Q/P0 → · · · → Pi)fF [Pi → Pi+1].

Now let us compute the right-hand side of (8.4.2). If we set Q′ to be the quilt
QP0���Pi→R1���Rm→Pi

, then by Claim 8.3, we have

Q′ = (Qi)Pi→R1→···→Rm→Pi
=

∏
c∈C0(Pi)

DNc/2
c (Qi)

for some integers Nc (c ∈ C0(Pi)). Therefore, we get

(8.4.4)

fF (Q/P0 → · · · → Pi → R1 → · · · → Rm → Pi → Pi+1)

= fF

(
Q/P0 ��� Pi

)
fF

(
Qi/Pi → R1 ��� Rm → Pi

)
fF

(
Q′/Pi → Pi+1

)
= fF

(
Q/P0 → · · · → Pi

) ∏
c∈C0(Pi)

DNcµ
c fF (Q′/Pi → Pi+1)

= fF

(
Q/P0 → · · · → Pi

) ∏
c∈C0(Pi)

DNcµ
c · DMiµ

ai
fF [Pi → Pi+1],

where D
Mi/2
ai is the twist necessary on Q′ to adjust it to Pi+1.

Now, if the circle ai does not lie in C0(Pi), then the quilt Q′ is adjusted to
Pi+1, so Mi = 0. Furthermore DNcµ

c commutes with both Da′
i

and Dai
for each

c ∈ C0(Pi). Therefore (8.4.4) can be written as

fF

(
Q/P0 → · · · → Pi

)
fF [Pi → Pi+1]

∏
c∈C0(Pi)

DNcµ
c ,
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which is equal to the left hand side of (8.4.2) by virtue of (8.4.3). If ai ∈ C0(Pi),
then since Qi was adjusted to Pi+1, we must have Mi = −Nai

in order to readjust
Q′ back to Pi+1. Thus (8.4.4) can be written as

fF

(
Q/P0 → · · · → Pi

) ∏
c∈C0(Pi)

c�=ai

DNcµ
c fF [Pi → Pi+1]

= fF

(
Q/P0 → · · · → Pi

)
fF [Pi → Pi+1]

∏
c∈C′

0(Pi)

DNcµ
c

since the Dc along c in C′
0(Pi) commute with Da. By (8.4.3) we again see that this

is equal to the left hand side of (8.4.2). This completes the proof of step 1.
Step 2. As in step 1, suppose that the quilt Qi is adjusted to Pi+1. Then there
exists an element B ∈ Γ̂(Σ) commuting with De such that

fF (Q/P0 → · · · → Pi → Pi+1 → · · · → Pn)B(8.4.5)

= fF (Q/P0 ��� Pi → R1 ��� Rm → Pi → Pi+1 ��� Pn).

Proof of Step 2. Let Q′ be as in the proof of step 1, and let Q̃ = (Q′)Pi→Pi+1 ,
Q̃k = Q̃Pi+1���Pk

(i + 1 < k ≤ n). By definition, fF (Q/P0 ��� Pi → Pi+1 ��� Pn)
is equal to

fF (Q/P0 → · · · → Pi+1)fF (Qi+1/Pi+1 → · · · → Pn),

while, by step 1, the right hand side of (8.4.5) is equal to

(8.4.6) fF (Q/P0 → · · · → Pi+1)
∏

c∈C′
0(Pi)

DNcµ
c · fF (Q̃/Pi+1 → · · · → Pn)

for some integers Nc (c ∈ C′
0(Pi)). Now, we observe:

(8.4.7)

fF (Qi+1/Pi+1 → · · · → Pn)

= fF (Qi+1/Pi+1 → Pi+2) · · · fF (Qn−1/Pn−1 → Pn)

= DMi+1µ
ai+1

fF [Pi+1 → Pi+2] · · ·DMn−1µ
an−1

fF [Pn−1 → Pn]

and

(8.4.8)

fF (Q̃/Pi+1 → · · · → Pn)

= fF (Q̃/Pi+1 → Pi+2) · · ·fF (Q̃n−1/Pn−1 → Pn)

= D
M ′

i+1µ
ai+1 fF [Pi+1 → Pi+2] · · ·DM ′

n−1µ
an−1 fF [Pn−1 → Pn],

where Mj (resp. M ′
j) is an integer so that D

Mj
aj (Qj) (resp. D

M ′
j

aj (Q̃j)) is adjusted to

Pj+1 (i+1 ≤ j ≤ n−1). Since Q̃ = (Q′)Pi→Pi+1 and Q′ =
∏

c∈C0(Pi)
D

Nc/2
c (Qi+1),

we have

(8.4.9)
{

M ′
j = Mj, if aj �∈ C′

0(Pi), j ∈ {i + 1, . . . , n − 1},
M ′

j = Naj
+ Mj , if aj ∈ C′

0(Pi), j ∈ {i + 1, . . . , n − 1}.
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Then, letting C′′
0 denote the subset of circles of C′

0(Pi) which are not equal to any
aj for i + 1 ≤ j ≤ n− 1 and using (8.4.7-9), we may rewrite the right-hand portion
of (8.4.6) as

(8.4.10)

∏
c∈C′

0(Pi)

DNcµ
c f(Q̃/Pi+1 → · · · → Pn)

= DMi+1µ
ai+1

fF [Pi+1 → Pi+2] · · ·DMn−1µ
an−1

fF [Pn−1 → Pn]
∏

c∈C′′
0

DNcµ
c

= f(Qi+1/Pi+1 → · · · → Pn)
∏

c∈C′′
0

DNcµ
c .

Thus, if B is set to be
∏

c∈C′′
0

DNcµ
c , then the proword (8.4.6), i.e., the right-hand

side of (8.4.5), can be written as

fF (Q/P0 ��� Pi+1)fF (Qi+1/Pi+1 ��� Pn)B = fF (Q/P0 ��� Pn)B.

This shows the equality (8.4.5). It remains only to show that B commutes with
De. Let j0 be the largest index such that e = a′

j0
. If j0 ≥ i + 1 then we saw that

the twists along circles C′′
0 commute with De. If j0 ≤ i, then e lies in Pi and so do

the circles of C′′
0 , so again the corresponding twists commute. This concludes the

proof of step 2.

Step 3. In this step we show that the statement of step 2 remains true even when
Qi/Pi is not necessarily adjusted to Pi+1.

Proof of Step 3. By the Back-Tracking Lemma 7.3, we have

fF (Q/P0 ��� Pi → R1 ��� Rm → Pi → Pi+1 ��� Pn)

= fF (Q/P0 ��� Pi → Pi+1 → Pi → R1 → · · · → Rm → Pi → Pi+1 ��� Pn),

where the quilt QP0���Pi→Pi+1→Pi
is adjusted to Pi+1. Then by (8.4.5) in step 2,

this is equal to

fF (Q/P0 → · · · → Pi → Pi+1 → Pi → Pi+1 → · · · → Pn)B

for some element B commuting with De. Finally by Lemma 7.3 again, this is equal
to fF (Q/P0 → · · · → Pn)B as desired.

The three preceding steps show that if we fix a choice of pants decomposition
Pn containing e and a chain of A/S-moves γ = (P0, . . . , Pn), then the quantity
f(Q/P0 → · · · → Pn) is independent of the choice of γ up to multiplication on the
right by a factor B commuting with De. In the following step, we show that it is
also independent of the choice of Pn containing e.
Step 4. Suppose that Pn and P ′

m are two pants decompositions containing e, and
that γ = (P0, . . . , Pn) and γ′ = (P0 = P ′

0, P
′
1, . . . , P ′

m) are chains of A/S-moves.
Then there is a chain δ of A/S-moves taking P ′

m to Pn such that none of the moves
is on the circle e. So the chain δ′ given by composing γ′ with δ is a chain from P0

to Pn. Thus by step 3, for some B commuting with De, we have

fF (Q/P0 → · · · → Pn)B = fF (Q/P0 → · · · → P ′
m → · · · → Pn)

= fF (Q/P0 → · · · → P ′
m)fF (QP0→···→P ′

m
/P ′

m → · · · → Pn).
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But the factor fF (QP0→···→P ′
m

/P ′
m → · · · → Pn) also commutes with De, since

each A/S-move in the sequence δ : P ′
m → Pn takes a circle disjoint from e to

another circle disjoint from e, so that all the corresponding twists commute. Thus,
fF (P0 → · · ·Pn) differs fF (P0 = P ′

0 → · · · → P ′
m) only by multiplication on the

right by an element commuting with De. This concludes the proof of step 4 and
thus of Proposition 8.1. �

§9. IΓ-actions on Γ̂g,r.

We keep the notation of §§7,8. Recall that given a quilt decomposition Q/P0

over Σ, we introduced in Proposition 8.1 a well-defined action of IΓ on the Dehn
twists Dc (c ∈ S(Σ)). Using the fact that Dehn twists Dc (c ∈ S∗) form a set of
generators of the mapping class group Γg,r, we shall now prove that this action
extends to a group automorphism of Γ̂g,r.

Proposition 9.1. For F = (λ, f) ∈ IΓ and for a quilt Q over a pants decompo-
sition P0 on Σ, define the action FQ/P0 on the Dehn twists Dc by the formula of
Proposition 8.1 for c ∈ S(Σ) and by FQ/P0(Dc) = Dλ

c for c ∈ S∗(Σ) \ S(Σ). Then,
FQ/P0 extends to an automorphism of Γ̂g,r.

Since we know (by §8) the action of (λ, f) on all Dehn twists, it suffices to give a
set of relations between those twists forming a presentation of Γg,r, and show that
the action of FQ/P0 associated to the element (λ, f) and the quilt Q/P0 respects
these relations. The presentation is given in the theorem below, due to S. Gervais,
with an improvement by Feng Luo.

Theorem 9.2. (Gervais [Ge], Feng Luo [FL]) The mapping class group Γg,r has
a presentation by the (infinitely many) generators Dc (c ∈ S∗(Σ)) subject to the
relations of the following four types:

(C) DaDb = DaDb if i(a, b) = 1.
(B) Dc = DaDbD

−1
a if i(a, b) = 1 and c = Da(b).

(L) Db1Db2Db3 = Da1Da2Da3Da4 for circles bi, aj (i = 1, 2, 3, j = 1, 2, 3, 4)
located as in Figure 9.1.

(D) (DaDbDa)4 = Dd for circles a, b, d located as in Figure 9.2. �

The relations (C), (B), (L), (D) above are called the commutativity relations,
braid relations, lantern relations and doughnut relations respectively.

b

b

a a

aa 1

2
3b

2

4 1

3 d

b

a

Figure 9.1 Figure 9.2

Proof of Proposition 9.1. Let P = P0. We shall prove first that FQ/P preserves the
relations (C),(B),(L),(D) respectively, and then at the end show that this suffices
to ensure that FQ/P extends to an automorphism of the profinite completion Γ̂g,r

of Γg,r even though (C), (B), (L), (D) give a presentation of the discrete group.
The argument is a variation of [HLS] §4 Step 2 refined for quilts.
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(C): This is almost clear. One can take a pants decomposition P ′ with
C(P ′) � a, b together with a chain (P0, . . . , Pn = P ′) of A/S-moves. Then, af-
ter simple observation of our definition of FQ/P0 , the commutativity of FQ/P0(Da)
and FQ/P0(Db) follows from that of Da and Db.

(B): Pick a chain (P0, . . . , Pn = P ′) of A/S-moves such that a ∈ C(P ′) and no
circle of C(P ′) except for a intersects b. Then, FQ/P0(Da) = Inn

(
fF (Q/P0 ���

P ′)
)
(Dλ

a ). Let p ∈ Π(P ′) be the pair of pants such that a, b ⊂ p̄ ∼= Σ1,1 and let r
be the reference curve on p̄ of the quilt Q′ = QP0���P ′ . Then, there exists a unique
integer N such that b = DN

a (r), and we have

FQ/P0(Db) = Inn
(
fF (Q/P0 ��� P ′)D(2N+ε)µ−8ρ2

a f(D2
b , D

2
a)

)
(Dλ

b ),

where ε = 0, 1 according to whether the number of connected components of (clo-
sure of) seams of Q′ in p̄ is two or one. On the other hand, since c = Da(b), it
follows that c = DN+1

a (r). Therefore, in a similar way, we have

FQ/P0(c) = Inn
(
fF (Q/P0 ��� P ′)D(2N+ε+2)µ−8ρ2

a f(D2
c , D

2
a)

)
(Dλ

c ).

Then we see that

FQ/P0(Da)FQ/P0(Db)FQ/P0(D
−1
a )

= Inn
(
fF (Q/P0 ��� P ′)Dλ

aD(2N+ε)µ−8ρ2
a f(D2

b , D
2
a)

)
(Dλ

b )

= fF (Q/P0 ��� P ′)D(2N+ε+2)µ−8ρ2
a Daf(D2

b , D
2
a)D−1

a DaDλ
b D−1

a Daf(D2
a, D2

b )D−1
a ·

D−(2N+ε+2)µ+8ρ2
a f(Q/P0 ��� P ′)−1

= fF (Q/P0 ��� P ′)D(2N+ε+2)µ−8ρ2
a f(D2

c , D
2
a)Dλ

c f(D2
a, D2

c)D
−(2N+ε+2)µ+8ρ2
a

= Inn
(
fF (Q/P0 ��� P ′)D(2N+ε+2)µ−8ρ2

a f(D2
c , D

2
a)

)
(Dλ

c )

= FQ/P0(Dc).

(L): Let (P0, . . . , Pn = P ′) be a chain of A/S-moves such that C(P ′) contains
a1, . . . , a4 and b1 as in Figure 9.1. Then,

FQ/P0(Db1) = fF (Q/P0 ��� P ′)Dλ
b1

fF (Q/P0 ��� P ′)−1.

Let Q′ = QP0���P ′ and let N be the integer such that D
N/2
b1

(Q′) is adjusted to b2.
Then, from the definition, we find that

FQ/P0(Db2) = Inn
(
fF (Q/P0 ��� P ′)DNµ

b1
f(Db2 , Db1)

)
(Dλ

b2).

The seams of Q′′ = D
N/2
b1

(Q′) must be given by the “ridges” of Figure 9.1, since
only these seams correspond to a quilt adjusted to both b1 and b2. Then the quilt
D

−1/2
b2

(Q′′) is adjusted to b3. So we have

FQ/P0(Db3) = Inn
(
fF (Q/P0 ��� P ′)DNµ

b1
f(Db2 , Db1)D

−µ
b2

f(Db3 , Db2)
)
(Dλ

b3
).

39



Using this, one can check that

FQ/P0(Db1)FQ/P0(Db2)FQ/P0(Db3)

= fnDλ
b1

f(Db2 , Db1)D
1+µ
b2

f(Db3 , Db2)D
λ
b3

f(Db2 , Db3)D
µ
b2

f(Db1 , Db2)f
−1
n

= fnDλ
b1 · f(Db2 , Db1)D

1+µ
b2

f(Db3 , Db2)D
1+µ
b3

f(Db1 , Db3)

· D−µ
b1

(Da1Da2Da3Da4)
µf−1

n

= fnDλ
b1

D−1−µ
b1

(Da1Da2Da3Da4)
1+µD−µ

b1
(Da1Da2Da3Da4)

µf−1
n

= (Da1Da2Da3Da4)
λ = FQ/P0(Da1)FQ/P0(Da2)FQ/P0(Da3)FQ/P0(Da4),

where fn = fF (Q/P0 ��� P ′)DNµ
b1

.

In the above calculations, we made use of formula (1.5.2).

(D): Let (P0, . . . , Pn = P ′) be a chain of A/S-moves such that C(P ′) � a, d of
Figure 9.2, and let r be the reference curve of Q′ = QP0���Pn

in the closure of the
pair of pants p bounded by a, d. If N is the integer such that b = DN

a (r), then{
FQ/P0(Da) = Inn

(
fF (Q/P0 ��� Pn)

)
(Dλ

a ),

FQ/P0(Db) = Inn
(
fF (Q/P0 ��� Pn)D(2N+ε)µ−8ρ2

a f(D2
b , D

2
a)

)
(Dλ

b ).

Here again ε = 0, 1 according as the number of connected components of (closure
of) seams of Q′ in p̄ is two or one. Using this, we compute:

FQ/P0(Da)FQ/P0(Db)FQ/P0(Da)

= fnD2µ
a f(DaD2

bD−1
a , D2

a)DaDλ
b f(D2

a, D2
b )D

λ
af−1

n

= fnD2µ
a · f(DaD2

bD−1
a , D2

a)DaD2µ
b D−1

a f(D2
b , DaD2

bD−1
a )DaDbD

λ
af−1

n

= fnf(D2
b , D2

a)D−2µ
b ρ2µ+1D2µ

a f−1
n

= fnf(D2
b , D2

a)ρ2µ+1f−1
n ,

where fn = fF (Q/P0 ��� Pn)D(2N+ε)µ−8ρ2
a and ρ = DaDbDa. Here in the last

equality, we also used ρDa = Dbρ. Then, since ρ2 is a central element of 〈Da, Db〉,
we obtain (

FQ/P0(Da)FQ/P0(Db)FQ/P0(Da)
)2 = ρ4µ+2,

and hence
(
FQ/P0(Da)FQ/P0(Db)FQ/P0(Da)

)4 = ρ8µ+4 = Dλ
d as desired. Thus,

the proof that the action FQ/P0 preserves the relations of type (C),(B),(L),(D) is
completed.

To conclude the proof by showing that FQ/P extends to an automorphism of the
profinite group Γ̂g,r, let FS∗ denote the free discrete group generated by the infinite
set S∗(Σ) and let R denote the normal subgroup generated by the discrete words
corresponding to (C), (B), (L), (D). Then Theorem 9.2 states that Γ(Σ) = FS∗/R.
The profinite completion functor is right exact, so we may regard Γ̂(Σ) as the
quotient of F̂S∗ modulo the closure of the image of R. Thus, the above argument
shows that FQ/P0 gives an endomorphism of Γ̂(Σ). Since we already know that IΓ
forms a group, to conclude that FQ/P gives an automorphism, it suffices to show
the following
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Lemma 9.3. Let Q/P0 be a quilt on a surface Σ. Then, for any F, F ′ ∈ IΓ, we
have

(FF ′)Q/P0(x) = FQ/P0(F
′
Q/P0

(x)) (x ∈ Γ̂(Σ)).

Proof. If we put F = (λ, f), F ′ = (λ′, f ′), then FF ′ = (λλ′, f(x, y)f ′(xλ, f−1yλf)).
From this and the definition of fF given in (7.1) and (7.2) of Definition 7.2, it follows
immediately that for any A- or S- move (P, P ′) and quilt Q/P , we have

(9.1) fFF ′(Q/P → P ′) = FQ/P (fF ′(Q/P → P ′))fF (Q/P → P ′)

holds. To prove the lemma, we need only consider the case x = Dc for c ∈ S(Σ).
Now, let (P0, . . . , Pn) be a chain of A/S-moves on Σ such that c ∈ C(Pn). It suffices
then to show that

(9.2) fFF ′(Q/P0 ��� Pn) = FQ/P0(fF ′(Q/P0 ��� Pn))fF (Q/P0 ��� Pn)

Let us argue by induction on n. When n = 0, this is nothing but (9.1). Assume
n ≥ 1 and let Q1 = QP0→P1 . Then, by the induction hypothesis (and (9.1)), we
obtain

LHS of (9.2) = FQ/P0(fF ′(Q/P0 → P1))fF (Q/P0 → P1)

· FQ1/P2(fF ′(Q1/P2 ��� Pn))fF (Q1/P2 ��� Pn).

Now, putting together the formula in the statement of Proposition 8.1 and formula
(7.3) from §7, we find that for any Dehn twist De with (e ∈ S∗(Σ)), and any chain
(P0, P1, . . . , Pn) of A- and S- moves such that e ∈ C(Pn), we have

FQ/P0(De) = fF (Q/P0 → · · · → Pn)Dλ
e fF (Q/P0 → · · · → Pn)−1

= fF (Q/P0 → P1)fF (Q1/P1 → P2) · · ·fF (Qn−1/Pn−1 → Pn)Dλ
e ·

· fF (Qn−1/Pn−1 → Pn)−1 · · ·fF (Q1/P1 → P2)−1fF (Q/P0 → P1)−1

= fF (Q/P0 → P1)FQ1/P1(De)fF (Q/P0 → P1)−1.

The expression

FQ/P0(x) = fF (Q/P0 → P1)FQ1/P1(x)fF (Q/P0 → P1)−1

deduced from the first and last terms of the previous group of equalities then holds
for all x in Γ̂g,r, which concludes the proof of Lemma 9.4. �

Thus the proof of Proposition 9.1 is completed.

§10. Proofs of Theorems 1.3 and 1.4.

In this section, we will settle the last two theorems stated in §1. By virtue of
Proposition 9.1 and Lemma 9.3, given Σ = Σg,r and a quilt Q/P0 on it, we can
define a representation in the profinite Teichmüller modular group:

ρΣ
Q/P0

: IΓ −→ Aut Γ̂(Σ) (F 	→ FQ/P0).
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Moreover, filling n boundary components of Σ ∼= Σg,r (where n ≤ r) by marked
disks, we get a surjection of Γ̂(Σg,r) onto Γ̂(Σn

g,m) (m + n = r) whose kernel is
generated by the Dehn twists along those n boundary circles. Since each Dc (c ∈
S∗ \ S) is acted on by (λ, f) ∈ IΓ in the form of Dc 	→ Dλ

c , we see that the above
representation in Γ̂(Σg,r) also induces naturally a representation in Γ̂(Σn

g,m). This
settles Theorem 1.3 for all types of surfaces Σn

g,m.
When a given surface has marked points, as above, we may regard those marked

points as reduction of the same number of boundary components of another surface
without marked points. In this respect, the notion of quilts also can make sense
for a surface with marked points in the obvious manner. Through the above IΓ-
compatible surjection Γ̂(Σg,r) � Γ̂(Σn

g,m) (m + n = r), we may often reduce our
issues on IΓ-actions on Γ̂(Σn

g,m) to those on Γ̂(Σg,r). (Note that Γ(Σ) designates
pure mapping class groups, not permuting marked points.) In particular, in the
following discussions, we may assume Σ = Σg,r without loss of generality.

Before going on to discuss Theorem 1.4, we shall make a remark on how ρΣ
Q/P

varies with respect to the change of quilts. Suppose we are given two quilt-
decompositions Q/P , Q′/P ′ of the surface Σ. Take a chain (P = P0, P1, . . . , Pn =
P ′) of A/S-moves and let Qn = QP0���Pn

over Pn = P ′. The formulas given in
(7.3) and the statement of Proposition 8.1 imply the equality

(10.1) ρΣ
Qn/Pn

(F ) = Inn
(

fF (Q/P0 ��� Pn)−1

)
◦ ρΣ

Q/P (F )

for F ∈ IΓ. (Note in particular that FQn/Pn
(De) = Dλ

e follows for e ∈ C(Pn).) Now,
since Q′ and Qn are both quilts over P ′ = Pn, there exist integers Nc (c ∈ C∗(P ′))
such that Q′ =

∏
c∈C∗(P ′) D

Nc/2
c (Qn), giving

(10.2) ρΣ
Q′/P ′(F ) = Inn

 ∏
c∈C∗(P ′)

D−Ncµ
c

 ◦ ρΣ
Qn/P ′(F )

Putting (10.1) and (10.2) together, we find

(10.3) ρΣ
Q′/P ′(F ) = Inn

 ∏
c∈C∗(P ′)

D−Ncµ
c · fF (Q0/P0 → · · ·Pn)−1

 ◦ ρΣ
Q/P (F )

for F ∈ IΓ. From this, we especially see that, given any (compact oriented) surface
Σ (with boundary components and marked points allowed), the representations
ρΣ

Q/P ’s for quilts Q/P on Σ give a single exterior representation:

(10.4) ρΣ : IΓ −→ Out Γ̂(Σ).

We call this ρΣ the canonical exterior representation of IΓ in the profinite Te-
ichmüller modular group Γ̂(Σ).

Now, let Q/P be a quilt on Σ and suppose Σ′ ⊂ Σ is a connected subsurface
consisting of the closure of some pairs of pants in P . Then, on Σ′, we have a
quilt Q′/P ′ naturally induced from Q/P by restriction. Pick any F ∈ IΓ. For any

42



simple closed curve c ∈ S∗(Σ′), the process for defining ρΣ′
Q′/P ′(F )(Dc) inside Σ′

is identical to the one defining ρΣ
Q/P (F )(Dc), and concerns uniquely circles lying

inside Σ′. From this observation, we deduce that ρΣ
Q/P (F ) preserves the image of

Γ̂(Σ′) → Γ̂(Σ), and makes the diagram

Γ̂(Σ′) −−−−→ Γ̂(Σ)

ρΣ′
Q′/P ′(F )

� �ρΣ
Q/P (F )

Γ̂(Σ′) −−−−→ Γ̂(Σ)

commute. Thus Theorem 1.4 is settled.

§11. Standard IΓ-action.

Let Σ = Σg,r be a compact oriented surface of genus g with r boundary com-
ponents ε1, . . . , εr. We shall consider a standard pants decomposition P of Σ such
that C(P ) consists of the circles a1, d±i (2 ≤ i ≤ g), ej (1 ≤ j ≤ g), k2, . . . , kr−1

indicated in Figure 11.1.

a

e

e
e

dd

1

2
3

-3 -2

eg dg
eg-1

d3

2d
1

r d-g

2

i

i+1

1

kr-1

k2

ki

Figure 11.1

Also, let Q be a quilt over P defined by “ridges” of the figure dividing each pair of
pants into front and back patches.

By a result of Dehn-Lickorish (cf. [Mu]), the pure mapping class group Γ̂(Σ)
is generated by the Dehn twists along the simple closed curves a1, . . . , a2g, d±i

(2 ≤ i ≤ g), ej (1 ≤ j ≤ g), ε1, . . . , εr h1, . . . , hr and uij (1 ≤ i �= j ≤ n)
indicated in Figure 11.2. The purpose of this section is to give the representation
ρΣ

Q/P : IΓ → Aut Γ̂(Σ) in a more compact form, namely to explicitly compute the
images of this finite number of generators under ρΣ

Q/P in terms of (λ, f) ∈ IΓ. As
mentioned in the previous section, by filling some of the boundary components by
marked disks, one can reduce the IΓ-action on Γ̂g,r to that on Γ̂n

g,m (m + n = r)
easily. So, knowing the action for Γ̂g,r essentially gives the standard IΓ-actions for
all types of the profinite Teichmüller modular groups Γ̂n

g,m.
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u

1
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Figure 11.2

Before stating the main result, we introduce another system of circles on Σ and
express their Dehn twists by our previous generators.

Lemma 11.1. Let Σ′ be the genus zero subsurface of Σ cut out by the circles
ε0 := d−g and ε∞ := dg, and express it as in Figure 11.3 (so that ε∞ is enlarged to
the rectangular rim). Define the circles vij (0 ≤ i < j ≤ r) as illustrated in Figure
11.3, and put hi = u0i (i = 1, . . . , r). Then, the Dehn twist Dvij

is given by

Dvij
= (Dεi

· · ·Dεj
)1+i−j(Dui,i+1)(Dui,i+2Dui+1,i+2) · · · (Duij

· · ·Duj−1,j
)

for 0 ≤ i < j ≤ r.

ij i+1 i-1

uij

0 8r

vij
Figure 11.3

Proof. The proof is given by a simple induction by iterative use of the lantern
relation (Theorem 9.2 (L)). Note that we may deform Figure 9.1 as:

aaa 2

a4

b3

2bb1

1 3

Figure 11.4

where the lantern relation claims Db1Db2Db3 = Da1Da2Da3Da4 . �

Now we shall state the theorem giving an explicit formulation of the standard
action of IΓ on Γ̂g,r. Recall that w1 = 1, wi = (Da1 · · ·Dai−1)

i for i > 1.

Theorem 11.2. Notations being as above, the action of ρΣ
Q/P (F ) (F = (λ, f) ∈ IΓ)

on the Dehn twist generators of Γ̂(Σ) can be written explicitly as follows:

(1) Ddi
	→ Dλ

di
, Dd−i

	→ Dλ
d−i

, Dej
	→ Dλ

ej
, Dki

	→ Dλ
ki

, Dεi
	→ Dλ

εi
.

(2) Da2i−1 	→ w4ρ2
2i−1f(D2

a2i−1
, w2i−1)Dλ

a2i−1
f(w2i−1, D

2
a2i−1

)w−4ρ2
2i−1 ,

Da2i
	→ w−4ρ2

2i f(D2
a2i

, w2i)Dλ
a2i

f(w2i, D
2
a2i

)w4ρ2
2i .

(3) Dhi
	→ Inn(Fi)(Dλ

hi
), where Fi is given by

Fi = f(Dv0,r−1 , Dv1,r
) · · ·f(Dv0,i

, Dv1,i+1) · Dµ
v1,i

f(Dhi
, Dv1,i

).
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(4) Duij
	→ Inn(Fij)(Dλ

uij
), where Fij is given by

Fij =
j−i−2∏
s=0

f(Dvj−2−s,j−1 , Dv1,j−2−s
) · f(Dvij

, Dv1,j−1)D
−µ
vi,j−1

f(Duij
, Dvi,j−1).

Here, µ = (λ− 1)/2, ρ2 = ρ2(F ), and we understand symbols in these formulae for
all possible indices which make sense. In the case j = i + 1, the product in s of (4)
is understood to be trivial, and vi,j−1 = εi, vij = uij.

Proof. (1) is clear from the definition of ρΣ
Q/P , because these curves are elements

of C(P ). For (2), we first consider the action on a2. The obvious S-move P → P ′

replacing a1 by a2 yields

fF (Q/P → P ′) = D−8ρ2
a1

f(D2
a2

, D2
a1

)D8ρ2
a2

(Da1Da2Da1)
2µ.

This settles the formula for ρΣ
Q/P (F )(a2). Next we consider the action on a2i (i ≥ 2).

Note that, by Theorem 1.4, it suffices only to investigate the action of ρΣ
Q/P locally

on involved circles. We shall consider the local chain
di c dii ci

a2i

d-i

ei ei-1

P1 P2P0 Figure 11.5

Then, it follows that

fF (Q/P0 ��� P2) = f(Dci
, Dd−i

)D−8ρ2
di

f(D2
a2i

, D2
di

)D8ρ2
a2i

(Ddi
Da2i

Ddi
)2µ.

Noticing that Dci
= (Ddi

Da2i
Ddi

)4, we apply the relation (IV) to the first factor
of the above (by putting τ1 := D−di

, τ2
2 := (Ddi

Da2i
Ddi

)2), and then substitute
notation (as in the paragraph following §8 (R′)) by D2

d−i
= x12, D2

a2i
= x23,

D2
di

= x34, (Dd−i
Da2i

Dd−i
)2 = x45 and (Ddi

Da2i
Ddi

)2 = x51. Then, we obtain:

fF (Q/P0 → P1 → P2) = x−2ρ2
12 x−2ρ2

34 f(x51, x12)f(x23, x34)x
−4ρ2
51 x4ρ2

23 xµ
51.

To simplify this expression, recall the pentagon relation (III), given by

f(x51, x12)f(x23, x34)f(x45,x51)f(x12, x23)f(x34,x45) = 1.

Writing f(x45,x51) = g(x51,x45)−1g(x45,x51), the pentagon breaks into two pieces
as

f(x51, x12)f(x23, x34)g(x51,x45)−1 = f(x45, x34)f(x23, x12)g(x45,x51)−1

(11.1)

= ω−ρ2(F )f(τ2
2 , τ1τ3),

the last equality being a consequence of relation (III′bis) (Proposition 5.4). We
rewrite (11.1) as

(11.2) f(x51, x12)f(x23, x34) = f(τ2
2 , τ1τ3)g(x51,x45)ω−ρ2(F )
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Now, the subpiece of Σ shown in the left-hand part of Figure 11.5 has topological
type (1, 2), so its mapping class group is isomorphic to Γ1,2. We can identify the
group B̂4 with a subgroup of Γ̂1,2 via τ1 	→ Dd−i

, τ2 	→ Da2i
, τ3 	→ Ddi

and
ω 	→ Dei

Dei−1 , so that (11.2) can be written

f(x51, x12)f(x23, x34) = f(D2
a2i

, Ddi
Dd−i

)g(x51,x45)(Dei
Dei−1)

−ρ2 .

From this and the fact that Ddi
Dd−i

= w2i, we can compute ρQ/P0(F )(Da2i
) =

fF (Q/P0 ��� P2)Dλ
a2i

fF (Q/P0 ��� P2)−1 in desired form. Next, we shall consider
the following local chain around the circle a2i−1.

d

d
e

-i+1

i-1
i-1

a2i-1

d-i

di d

d-i+1

i-1di

-id
P0 P1 Figure 11.6

Then, using the relation (IV) (by putting τ1 := Da2i−1 , τ2
2 := w2i−1) and the fact

that Dei−1 = w2
2i−1, we obtain

fF (Q/P0 → P1) = f(Da2i−1 , Dei−1) = f(Da2i−1 , w
2
2i−1)

= w4ρ2
2i−1f(D2

a2i−1
, w2i−1)(Da2i−1w2i−1)−4ρ2D4ρ2

a2i−1
.

From this the desired formula for ρQ/P0(F )(a2i−1) follows.
For (3),(4): We shall consider the subsurface Σ′ introduced in Lemma 11.1, and

let Q/P0 denote the initial quilt on Σ′ which can be illustrated as in Figure 11.5
with seams being dotted lines.

123r-1r 08

Figure 11.7

(3): Starting from Q/P0 on Σ′, we define successive A-moves Ps → Ps+1 replacing
v1,r−s by v0,r−1−s for s = 0, . . . , r − i − 1. Then, on the chain P0 → . . . → Pr−i,
quilts are always adjusted to given pants decompositions so that

f(Q/P0 ��� Pr−i) = f(Dv0,r−1 , Dv1,r
) · · ·f(Dv0,i

, Dv1,i+1).

In order to make QP0���Pr−i
adjusted to hi, we have to apply a half-twist along v1,i

to it (cf. Figure 11.8). The formula (3) follows immediately from this observation.

r 08 1i i-1i+1

Pr-i

Figure 11.8

(4): In this case, we first trace succesive A-moves Ps → Ps+1 which replace v1,j−2−s

by vj−2−s,j−1 (s = 0, . . . j − i − 2), and then move along Pj−i−1 → Pj−i replacing
46



v1,j−1 by vij . In the above process, quilts are always adjusted to given pants
decompositions so that

f(Q/P0 ��� Pj−i) =
j−i−2∏
s=0

f(Dvj−2−s,j−1 , Dv1,j−2−s
) · f(Dvij

, Dv1,j
).

Then, to make the quilt QP0���Pj−i
adjusted to uij , we apply a negative half twist

along vi,j−1 (cf. Figure 11.9).

i+1 i i-1j-1 01j8

Pj-i

r

Figure 11.9

This concludes the formula of (4), and thus settles the proof of Theorem 11.2. �
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