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Abstract

The goal of this article is to define a linearized or depth-graded version lkv,
and a closely related elliptic version krvell, of the Kashiwara-Vergne Lie algebra
krv originally constructed by Alekseev and Torossian as the space of solutions to
the linearized Kashiwara-Vergne problem. We show how the elliptic Lie algebra
krvell is related to earlier constructions of elliptic versions grtell and dsell of the
Grothendieck-Teichmüller Lie algebra grt and the double shuffle Lie algebra ds
respectively. Based on the known relationships between the three Lie algebra grt, ds
and krv, we discuss the corresponding relationships between the linearized versions,
and also between the elliptic versions.

1. Introduction

This article studies two Lie algebras closely related to the Kashiwara-Vergne Lie
algebra krv defined in [AT]: firstly, a depth-graded (or “linearized”) version lkv, and
secondly, an elliptic version krvell. The results are motivated by the comparison of
krv with two other Lie algebras familiar from the theory of multiple zeta values:
the Grothendieck-Teichmüller Lie algebra grt and the double shuffle Lie algebra
ds. Our definition of lkv is an analog of the definition of the depth-graded (or
linearized) double shuffle Lie algebra ls, whose structure has given rise to many
results and conjectures, in particular the famous Broadhurst-Kreimer conjecture.
Our definition of krvell is an analog of the definition of the elliptic double shuffle
Lie algebra dsell (cf. [S3]), which itself is related on the one hand to ls and on
the other to the elliptic Grothendieck-Teichmüller Lie algebra grtell. We explore
all the relations between these different objects. The main observation is that the
spaces lkv and krvell are defined by identical sets of properties, only applied to a
different class of objects. This situation, which exactly parallels the case of ds and
dsell, reveals a close and surprising relationship between the depth-graded and the
elliptic versions of the Lie algebras ds and krv, which remains invisible without the
use of mould theory as a basic tool.

Like grt and ds, the Lie algebra krv is equipped with a depth filtration; we write
gr for the associated graded. We show that in analogy with the known injective
map gr ds → ls, there is an injective map gr krv ↪→ lkv (Proposition 1.7). We also
show that there is an injective Lie morphism ls ↪→ lkv, and that the parts of these
spaces of depths d = 1, 2, 3 are isomorphic for all weights n (Theorem 1.8), which
yields the dimensions of the bigraded parts of lkv (and also gr krv) of depths 1, 2, 3
in all weights, since these dimensions are well-known for ls.

Passing to the elliptic situation, we define the elliptic version krvell as a subspace
of derivations of the free Lie algebra on two generators, and prove that it is closed
under the Lie bracket of derivations (Theorem 1.12). We also define an injective

Lie morphism krv
� � // krvell (in Theorem 1.14; see footnote 1 below for an

explanation of the dotted arrow) in analogy with the section map grt ↪→ grtell ([E1])
and the mould-theoretic double shuffle map ds→ dsell ([S3]). Finally, although we
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were not able to prove the existence of an injection grtell ↪→ krvell, we define a Lie

subalgebra g̃rtell ⊂ grtell such that the following diagram commutes1

grt
� � //

��

ds

""

� � //

��

krv� _

��
g̃rt
� � // dsell

� � // krvell

(see §1.3 below for more details and references for all these maps). The main
technique used for the constructions in this article is the mould theory developed
by J. Écalle, to which we provide a brief introduction in §3, with complements in
§4.

Acknowledgements. This article combines a fount of knowledge gathered mainly
from work of J. Écalle, B. Enriquez and A. Alekseev. We are grateful to all three for
numerous helpful and interesting conversations. We also extend our warmest thanks
to the referees for their extremely detailed reading and many helpful remarks.

1.1. Special types of derivations of lie2. Let lie2 denote the degree completion
of the free Lie algebra over Q on non-commutative variables x and y. The Lie
algebra lie2 has a weight grading by the degree (=weight) of the polynomials, and
a depth grading by the y-degree (=depth) of the polynomials. We write (lie2)n for
the graded part of weight n, (lie2)r for the graded part of depth r, and (lie2)rn for
the intersection, which is finite-dimensional.

All the Lie algebras we will study in this article (the well-known ones krv, grt
and ds as well as the linearized ls, and the spaces lkv and krvell that we introduce)
can be viewed either as Lie subalgebras of particular subalgebras of the derivations
of lie2, equipped with the bracket of derivations, or as subspaces of lie2 equipped
with particular Lie brackets coming from the Lie bracket of derivations. Both ways
of considering our spaces are natural and useful, and we go back and forth between
them as convenient for our proofs.

Let der2 denote the algebra of derivations on lie2. It is a Lie algebra under the
Lie bracket given by the commutator of derivations. For a, b ∈ lie2, we write Db,a

for the derivation defined by x 7→ b and y 7→ a. The bracket is explicitly given by

(1) [Db,a, Db′,a′ ] = Db̃,ã

with

(2) b̃ = Db,a(b′)−Db′,a′(b), ã = Db,a(a′)−Db′,a′(a).

• Let oder2 denote the Lie subalgebra of der2 of derivations D = Db,a that annihilate
the bracket [x, y] and such that neither D(x) nor D(y) have a linear term in x. The
map oder2 → lie2 given by D 7→ D(x) is injective (see Corollary 4.3).

1The existence of the dotted morphisms in this diagram are shown in [S1] (for the horizontal
arrow) and §4.2 (for the vertical arrow). However, both of these definitions rely on a certain mould

theoretic property of the map, given explicitly in (86), which was stated by Écalle in his basic

mould theory text [Ec] (see the precise reference in the footnote to (86)), but whose proof has

never been fully written down. Throughout this article, we use dotted maps to indicate that their
definition relies on this property, whereas solid arrows indicate that the definition of the map does

not rely on it.
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• Let tder2 denote the Lie subalgebra of der2 of tangential derivations, which are
the derivations Ea,b for elements a, b ∈ lie2 such that a has no linear term in x and
b has no linear term in y, such that

Ea,b(x) = [x, a], Ea,b(y) = [y, b].

The Lie bracket is explicitly given by

(3) [Ea,b, Ea′,b′ ] = Eã,b̃

where

(4) ã = [a, a′] + Ea,b(a
′)− Ea′,b′(a), b̃ = [b, b′] + Ea,b(b

′)− Ea′,b′(b).

• Let sder2 denote the Lie subalgebra of tder2 of special tangential derivations,
i.e. derivations such that Ea,b(x+ y) = [x, a] + [y, b] = 0.

• Let ider2 be the Lie subalgebra of tder2 of Ihara derivations, which are those that
annihilate x, i.e. those of the form db = E0,b. The derivation db is defined by its
values on x and y

(5) db(x) = 0, db(y) = [y, b].

The Lie bracket on ider2 is given by [db, db′ ] = d{b,b′}, where {b, b′} is the Poisson
(or Ihara) bracket given by

(6) {b, b′} = [b, b′] + db(b
′)− db′(b),

i.e. the second term of (4).

We have the following diagram showing the connections between these subspaces:

(7) oder2 �
�

der2

tder2
?�

sder2
- 

ider2
?�

The isomorphism between sder2 and ider2 is given in Lemma 4.12.

1.2. Definition of the Kashiwara-Vergne Lie algebra krv. The free associative
algebra Ass2 = Q〈〈x, y〉〉 on non-commutative generators x, y (i.e. the ring of formal
power series in x and y) is the completion with respect to the degree of the universal
enveloping algebra of the free Lie algebra lie2 on x and y.

Definition 1.1. The trace vector space tr2 (cf. [AT]) is defined to be the quotient
of Ass2 by the equivalence relation given between words in x and y by w ∼ w′ if w′

can be obtained from w by a cyclic permutation of the letters of the word w, and
extended linearly to polynomials. The natural projection is denoted

tr : Ass2 → tr2.

For any polynomial f ∈ Ass2 with constant term c, we can decompose f in two
ways as

(8) f = c+ fxx+ fyy = c+ xfx + yfy

for uniquely determined polynomials fx, fy, f
x, fy in Ass2.
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Definition 1.2. The divergence map is given by

div :
tder2 −→ tr2

u = Ea,b 7−→ tr(axx+ byy).

Definition 1.3. The Kashiwara-Vergne Lie algebra krv2 is defined to be the sub-
space of sder2 of derivations Ea,b such that there exists a one-variable power series
h(x) ∈ Q[x] of degree ≥ 2 such that

(9) div(Ea,b) = tr
(
h(x+ y)− h(x)− h(y)

)
.

This definition comes from [AT], where it was shown that krv2 is actually a Lie
subalgebra of sder2. This Lie algebra inherits a weight-grading from that of lie2, for
which Ea,b is of weight n if b (and thus also a) is a Lie polynomial of homogeneous
degree n. In particular, the weight 1 part of krv2 is spanned by the single element
u = Ey,x, and the weight 2 part is zero. In this article, we do not consider the
weight 1 part of krv2. For convenience, we set krv = ⊕n≥3(krv2)n, where (krv2)n
denotes the weight graded part of krv2 of weight n. We have

krv2 = (krv2)1 ⊕ krv = Q[Ey,x]⊕ krv.

Because the other Lie algebras in the literature that are most often compared with
the Kashiwara-Vergne Lie algebra have no weight 1 or weight 2 parts, it makes most
sense to compare them with krv. Thus it is krv that we study for the remainder of
this article.

The Lie algebra krv also inherits a depth filtration from the depth grading on
lie2, for which Ea,b is of depth r if r is the smallest number of y’s occurring in any
monomial of b. We write gr krv for the associated graded for this depth filtration,
so that gr krv is a Lie algebra that is bigraded for the weight and the depth; we
write grrn krv for the part of weight n and depth r. Essentially, an element of gr krv
is a derivation Eā,b̄ ∈ sder2 where ā, b̄ are the lowest-depth parts (i.e. the parts of

lowest y-degree) of elements a, b ∈ lie2 such that Ea,b ∈ krv. If b̄ is of homogeneous
y-degree r, then ā is of homogeneous y-degree r + 1.

Example. The smallest element of krv is in weight 3 and is given by Ea,b with

a = [[x, y], y], b = [x, [x, y]].

Since ā = a and b̄ = b, this is also equal to Eā,b̄ ∈ gr krv. The next smallest element
of krv is in weight 5, and the depth-graded part Eā,b̄ is given by

ā = [x, [x, [[x, y], y]]]− 2[[x, [x, y]], [x, y]], b̄ = [x, [x, [x, [x, y]]]].

1.3. The Grothendieck-Teichmüller and double shuffle Lie algebras. Re-
call that the Grothendieck-Teichmüller Lie algebra grt is the space of polynomials
b ∈ lie2 satisfying the famous pentagon relation, equipped with the Poisson bracket
(6). This algebra was first introduced by Y. Ihara in [I], with three defining rela-
tions, as a particular derivation algebra of lie2 (via the association b 7→ db as in (5));
H. Furusho subsequently showed that the pentagonal relation implies the other two
(cf. [F1]).

Recall also that the double shuffle Lie algebra ds is the space of polynomials
b ∈ lie2 satisfying a particular set of conditions on the coefficients called the stuffle
relations, studied in the first place by Racinet (cf. [R]), who gave a quite difficult
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proof that ds is also a Lie algebra under the Poisson bracket (6). This proof was later
somewhat streamlined by Furusho (cf. [F2], Appendix), and a recent preprint [EF]
gives another proof with a different approach, identifying the space as a stabilizer.
Putting together basic elements from Écalle’s mould theory also yields a completely
different and very simple proof of this result ([SS]).

There is a commutative triangle of injective Lie morphisms2:

(10) grt
� � //
� p

!!

dsnN

~~
krv .

The existence of the injection grt→ ds was proven in [F1]; it is given by b(x, y) 7→
b(x,−y). The existence of the injection grt → krv was proven in [AT]; it is given
by b(x, y) 7→ b(z, y) where z = −x− y. Finally, the existence of the injection from

ds to krv was proven in [S1] (using results from Écalle’s mould theory including the
statement (86), cf. footnote 1), and is given, of course, by b(x, y) 7→ b(z,−y). In
particular, these morphisms respect the weight gradings and depth filtrations on
all three spaces.

1.4. The linearized Kashiwara-Vergne Lie algebra: main results. For i ≥ 1,
set Ci = ad(x)i−1(y) for i ≥ 1, and let lieC denote the degree completion of the Lie
algebra freely generated over Q by C1, C2, . . .. By Lazard elimination, lieC is free
on the Ci and

(11) lie2 ' Q · x⊕ lieC .

Thus, Lazard elimination shows that every polynomial b ∈ lie2 having no linear
term in x can be written uniquely as a Lie polynomial in the Ci.

Definition 1.4. Let the push-operator be defined on monomials in x, y by

(12) push(xa0yxa1y · · · yxar ) = xaryxa0y · · · yxar−1 .

The push is considered to act trivially on constants and powers of xn, so we can
extend it to all of Ass2 by linearity. A polynomial b in x, y is said to be

• push-invariant if push(b) = b, and

• push-neutral if br + push(br) + · · ·+ pushr(br) = 0 for all r ≥ 1, where br denotes
the depth r part of b. Finally, we say that b is

• circ-neutral if by is push-neutral in depths r > 1.

Definition 1.5. The linearized Kashiwara-Vergne Lie algebra lkv is the space of
elements b ∈ lieC of degree ≥ 3 such that

(i) b is push-invariant, and

(ii) b is circ-neutral.

Our first result on lkv is that is a bigraded Lie algebra3.

2The dotted morphism is as in footnote 1.
3A similar result is shown in [FK], Theorem 3.23. With [FK] Remark 2.18 one can see directly

that the depth > 1 part of lkv forms a Lie algebra.
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Proposition 1.6. The space lkv is bigraded by weight and depth, and forms a Lie
algebra under the Poisson bracket defined in (6).

In §1.5 below, we define a larger space, the elliptic Kashiwara-Vergne Lie algebra
krvell, and show in Theorem 1.12 that it is a Lie algebra. Although it might be
possible (albeit laborious) to prove Proposition 1.6 directly, it turns out to follow
immediately from Theorem 1.12, due to the fact that there is a simple injection
of lkv into the larger space krvell (see Proposition 1.13 following Theorem 1.12)
whose image is easily identifiable as the intersection of two Lie subalgebras. For
this reason, the proof of Proposition 1.6 can be found in Corollary 4.7 at the end
of §4.1, following the proof of Theorem 1.12.

In §2, we show how we derive the definition of lkv via a reformulation of the
defining properties of krv, in the sense that the defining properties of lkv are merely
truncations of the two reformulated defining properties of krv to their lowest-depth
parts. The complete proof of the statement of Proposition 1.6 namely that lkv is
a Lie algebra, is deferred for convenience to §4.1 (Corollary 4.7), which contains
all the necessary mould theory to spell out the proof. However, given the result of
Proposition 1.6, the reformulation of the defining properties of lkv in §2 suffices to
prove the following result on lkv. The proof is given (modulo Proposition 1.6) in
§2.3.

Proposition 1.7. There is an injective Lie algebra morphism

gr krv ↪→ lkv.

We conjecture that these two spaces are in fact isomorphic.

In using this type of definition for lkv, we are following the analogous situation
of the well-known double shuffle Lie algebra ds and the associated linearized dou-
ble shuffle space ls studied in many articles (cf. for example [Br]). The bigraded
linearized space ls is defined as the set of Lie polynomials f ∈ lie2 of weight n ≥ 3
such that the polynomial fyy, rewritten in the variables yi = xn−1y for n ≥ 1, is an
element of the free Lie algebra on the yi. One also adds the extra assumption that
if f is of depth 1, then it is of odd weight, an assumption which is not needed for
lkv as it follows from the push-invariance condition in the definition. By its very
construction, there is an injective Lie algebra homomorphism

(13) gr ds ↪→ ls,

and it is conjectured that these two spaces are isomorphic, but like for lkv, this is
still an open question.

The injective Lie algebra morphism (10) from ds to krv yields a corresponding
bigraded injective map:

(14) gr ds �
� // gr krv

(for the meaning of the dotted arrow, see footnote 1). Our next result shows that
there is a Lie algebra map on the generalized spaces spaces ls and lkv (without any

recourse to Écalle’s theorem).

Theorem 1.8. There is a bigraded Lie algebra injection on linearized spaces

(15) ls ↪→ lkv.
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For all n ≥ 3 and r = 1, 2, 3, the map is an isomorphism of the bigraded parts

lsrn ' lkvrn.

Remark. If the conjectures ls ' gr ds and lkv ' gr krv hold, then the map in
Theorem 1.8 is the same as the map (14), which would thus no longer need to be
a dotted arrow. Without those conjectures, we can only say that the Lie injection
(15) should extend the dotted arrow (14), fitting into a commutative diagram

(16) gr ds �
� //

� _

��

gr krv� _

��
ls
� � // lkv.

We observe also that the existence of the injective Lie morphism (15) was extended
to the cyclotomic situation in [FK].

Theorem 1.8 will be proved in §3, using mould theory, to which we give a brief
and elementary introduction in that section, with more advanced elements of the
theory given in §4. Mould theory is also essential for all the proofs concerning the
elliptic Kashiwara-Vergne Lie algebra defined in the next subsection.

Adding a variety of known results in the depth 2 and depth 3 situations to this
result, we obtain the following corollary.

Corollary 1.9. The following spaces are isomorphic for n ≥ 3 and r = 1, 2, 3:

grrngrt ' grrnds ' grrnkrv ' lsrn ' lkvrn.

In particular, all of these spaces are zero when r = 1 or 3 and n is even, or when
r = 2 and n is odd.

Proof. The dimensions of the spaces grrngrt, gr
r
nds and lsrn in depths are known

to be equal to each other in depths r ≤ 3 ([R], [G]). Indeed more is known than
merely the dimensions:

• the spaces gr1
ngrt, gr

1
nds and ls1

n are all 0 when n is even and 1-dimensional
generated by ad(x)n−1(y) when n is odd;

the spaces gr2
ngrt, gr

2
nds and ls2

n are all 0 when n is odd and spanned by the double
Poisson brackets {ad(x)p−1(y), ad(x)q−1(y)} for odd p, q ≤ 3 with p+ q = n when
n is even;

• the spaces gr3
ngrt, gr

3
nds and ls3

n are all 0 when n even and spanned by the
triple brackets {ad(x)p−1(y), {ad(x)q−1(y), ad(x)s−1(y)}} with odd p, q, s ≥ 3 and
p+ q + s = n when n is odd.

(Note that the proof for r = 3 and odd n is much more difficult than the proof for
r = 2, and was discovered by Goncharov [G]; as for the case r ≥ 4, the analogous
result is known to be false.) By Theorem 1.8, we see that lkvrn ' lsrn for r = 1, 2, 3
Finally, since it is known that grt injects into krv (cf. [AT]), we have a corresponding
injection grrngrt ↪→ grrnkrv, so by Proposition 1.7, shows that grrnkrv is sandwiched
between grrngrt and lkvrn, which are equal for r = 1, 2, 3. This concludes the proof.

�
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We conjecture that lkvrn ' lsrn for all n, r, and calculations up to about n = 15
bear this conjecture out, but we were not able to prove the isomorphism for any
other cases, not even the special case n 6≡ r mod 2, where it is well-known that
grrngrt = grrnds = lsrn = 0 (cf. [IKZ], [Br] for classical proofs, or [S2] for the

exposition of Écalle’s mould-theoretic proof).

Let us end this subsection by giving the mould-language reformulation of the
definition of lkv, which will allow us to connect it directly to the definition of the
elliptic Kashiwara-Vergne Lie algebra defined in the next subsection, which cannot
be defined directly in terms of elements of lie2. The mould definition of lkv clearly
echoes the definition in terms of Lie elements given above; the equivalence is shown
in detail in §3.

Definition 1.10. Mould-reformulated lkv.
To express the elements of lkv as moulds, we use the following notation. Let b ∈ lieC
and for each r ≥ 0, write the depth r part of b as

(17) br =
∑
a

ka Ca1 · · ·Car ,

where the sum runs over tuples a = (a1, . . . , ar), ai ≥ 1,. Let B0 = 0 and for each
r ≥ 1, let Br(u1, . . . , ur) be defined by

(18) Br(u1, . . . , ur) =
∑
a

ka u
a1−1
1 · · ·uar−1

r .

for commutative variables u1, . . . , ur. The family B = (Br)r≥0 is known as the
mould associated to b; we write B = ma(b) (the “mould map” ma will be introduced
in more detail in Lemma 3.3).

We use this definition to reformulate the definition of lkv in terms of moulds.
Let b ∈ lkv and let B = ma(b). Set

(19) B̄r(v1, . . . , vr) := Br(vr, vr−1 − vr, . . . , v1 − v2)

for commutative variables v1, . . . , vr. We define the following properties on B
resp. B̄:

(i) Br is push-invariant for r ≥ 1, i.e.

(20) B(u0, u1, . . . , ur−1) = B(u1, . . . , ur)

where u0 = −u1 − · · · − ur, and

(ii) B̄r is circ-neutral for r > 1, i.e.

(21) B̄r(v1, . . . , vr) + B̄r(v2, . . . , vr, v1) + · · ·+ B̄r(vr, v1, . . . , vr−1) = 0.

We prove in §2 that these two conditions on B = ma(b) are equivalent to the
defining conditions of specialness and the divergence condition on b.

1.5. The elliptic Kashiwara-Vergne Lie algebra. The last section of this ar-
ticle is devoted to the study of the elliptic Kashiwara-Vergne Lie algebra. The
definition of this algebra is based on that of the linearized Lie algebra lkv, differ-
ing only from Definition 5′ by the denominator appearing in (22), which makes it
impossible to express it directly in terms of Lie elements like Definition 1.5.
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Definition 1.11. The elliptic Kashiwara-Vergne vector space krvell is spanned by
the elements b ∈ lieC such that writing the depth r part br as in (17) and the
associated polynomial Br as in (18), and setting

(22) Br∗(u1, . . . , ur) =
1

u1 · · ·ur(u1 + · · ·+ ur)
Br(u1, . . . , ur)

and

B̄r∗ = Br∗(vr, vr−1 − vr, . . . , v1 − v2),

we have

(i) Br∗ is push-invariant as in (20) for r ≥ 1;

(ii) B̄r∗ is circ-neutral as in (21) for r > 1.

The first main result on krvell is of course that it is a bigraded Lie algebra, but
this comes from an injective map from krvell into oder2 rather than into sder2 as
for lkv.

Theorem 1.12. (i) The space krvell is bigraded for the weight and the depth.

(ii) For each b ∈ krvell, there exists a unique polynomial a ∈ lieC , called the partner
of b, such that Db,a ∈ oder2.

(iii) The image of the injective linear map b 7→ Db,a is a Lie subalgebra of oder2;
in other words krvell is a Lie algebra under the Lie bracket

(23) 〈b, b′〉 = Db,a(b′)−Db′,a′(b)

coming from the bracket of derivations as in (1) and (2).

This theorem is proven in §4.1 (Theorem 4.4); it necessitates the introduction of
some more complicated definitions and results from mould theory than those used
in §3.

The following result is key to the comparison of lkv and krvell, and to the proof
that lkv is a Lie algebra.

Proposition 1.13. There is an injective linear map

lkv ↪→ krvell

b(x, y) 7→ [x, b(x, [x, y])].(24)

Equivalently, the map can be defined on the family Br of polynomials in commuta-
tive variables such that B = (Br)r≥0 = ma(b) (cf. (18)) by

Br(u1, . . . , ur) 7→ u1 · · ·ur(u1 + · · ·+ ur)B
r(u1, . . . , ur).

In fact, this linear map is actually a Lie morphism.

Sketch of Proof. The first statement, concerning the existence of the linear map,
follows from the definitions. Indeed, by Definition 1.11, krvell is isomorphic to the
space spanned by the polynomials in the commutative variables ui that become
push-invariant and circ-neutral (possibly after adding a constant) after division by
u1 · · ·ur(u1 +· · ·+ur). On the other hand, lkv is isomorphic to space of polynomials
that are themselves push-invariant and circ-neutral. Thus, multiplying by the factor
u1 · · ·ur(u1 + · · · + ur) maps lkv precisely to the subspace of krvell consisting of
polynomials that are divisible by u1 · · ·ur(u1 + · · · + ur), and so we have a linear
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map from lkv to krvell. The fact that the map is a Lie morphism is proven in
Corollary 4.8. �

In two independent articles, H. Tsunogai [Ts] and B. Enriquez [E1] defined a Lie
algebra that Enriquez calls the elliptic Grothendieck-Teichmüller Lie algebra grtell,
based on the idea that just as Ihara had defined grt as the algebra of derivations
on lie2 (identified with the braid Lie algebra on four strands) that extend to a
particular type of derivation on the braid Lie algebra on five strands, grtell is the
Lie algebra of derivations on lie2 (now identified with the genus one braid Lie algebra
on two strands) that extend to a very particular type of derivation of the genus one
braid Lie algebra on three strands. The construction of grtell shows that it is a Lie
subalgebra of oder2, and that there is a canonical surjection

(25) s : grtell → grt.

Let rell denote the kernel. Enriquez [E1] showed that there also exists a Lie algebra
morphism

(26) γ : grt→ grtell

that is a section of (25), i.e. such that γ ◦ s = id on grt. Thus, there is a semi-direct
product isomorphism

(27) grtell ' relloγ(grt).

An elliptic version dsell of the double shuffle Lie algebra ds was constructed
in [S3] using mould theory, and it is shown there that like grtell, dsell is a Lie
subalgebra of oder2, and that there is an injective Lie morphism γ̃ : ds→ dsell that
makes the diagram

(28) grt
� � //

γ

��

ds

γ̃

��
grtell

##

dsell

{{
oder2 .

commute.

Our second main result on krvell is an analog of the existence of γ and γ̃.

Theorem 1.14. There is an injective Lie algebra morphism

γ̂ : krv �
� // krvell.

Based on the known injective Lie morphisms grt
� � // ds �

� // krv evoked in

§1.3 above, we believe that there are corresponding injective Lie morphisms between
the elliptic versions of these Lie algebras. However, we were not able to prove that
grtell as defined in [E1] injects into dsell or krvell. To circumvent this difficulty, we

define a Lie subalgebra g̃rtell ⊂ grtell, conjecturally isomorphic to grtell, as follows.

Definition 1.15. For n ≥ 0, let δ2n ∈ oder2 denote the derivation of lie2 defined
by

δ2n(x) = ad(x)2n(y), δ2n([x, y]) = 0.
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Let b be the Lie subalgebra of oder2 generated by the δ2n.

Enriquez showed in [E1] that δ2n ∈ rell for n ≥ 0, so b is a Lie subalgebra of rell.
Let B denote the normalization of b ⊂ rell under the semi-direct action of γ(grt)
on rell of (27). We set

(29) g̃rtell = Boγ(grt).

Our third main result on krvell relates all these maps via a commutative diagram.

Theorem 1.16. We have the following commutative diagram of injective Lie mor-
phisms4:

(30) grt
� � //
� _

��

ds
� � //� _

��

krv� _

��
g̃rtell

� � //
� q

##

dsell
� � //
� _

��

krvellmM

{{
oder2.

1.6. Outline of the article. In §2, we reformulate the defining conditions of krv,
which lead to the first definition of lkv and the proof of Proposition 1.7. The
next section, §3, gives a brief introduction to mould theory and a translation of
the defining conditions of lkv into that language, and uses mould theory to prove
Theorem 1.8. Finally, the proofs of Theorems 1.12, Theorem 1.14 and Theorem
1.16 are given in the three subsections of §4.

2. Reformulation of the definition of krv and definition of the
linearized Lie algebra lkv

In this section, we give a convenient reformulation of the defining conditions of
krv, which leads to a simple definition of the linearized version lkv that passes easily
into the language of moulds which will be essential for our subsequent proofs in
§§3,4.

2.1. The first defining condition of krv: specialness. The first of the two
defining conditions of krv is that krv lies in sder2, i.e. elements of krv are special
tangential derivations having the form Ea,b with Ea,b(x) = [x, a], Ea,b(y) = [y, b]
and [x, a] + [y, b] = 0.

The following equivalent formulations of the property of specialness as properties
of the polynomial b were given in [S1].

Proposition 2.1. [Schneps, [S1]] Let n ≥ 3 and let b ∈ lieC ; write b = bxx+ byy =
xbx + yby. Then the following are equivalent:

(i) There exists a unique element a ∈ lieC such that [x, a] + [y, b] = 0;

(ii) b is push-invariant;

(iii) by = by.

4The dotted morphisms are as in footnote 1.
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Thanks to this proposition, we can now reformulate the first defining condition
of krv as follows: the pair of polynomials a, b ∈ lieC satisfies [x, a] + [y, b] = 0 if and
only if b is push-invariant and a is its partner.

2.2. The second defining condition of krv: divergence. We now consider the
second defining condition of krv, the divergence condition. Because krv is weight-
graded, we may restrict attention to derivations Ea,b of homogeneous weight n, i.e.
such that a and b are Lie polynomials of homogeneous degree n ≥ 3. The second
defining condition (9) then simplifies to the existence of a constant c such that

tr(xax + yby) = c tr
(
(x+ y)n − xn − yn

)
in tr2.

Let us reformulate this as a condition only on b, just as we did for the first
defining condition. Since a ∈ lie2, its trace is zero and thus tr(xax) = tr(axx) =
−tr(ayy) = −tr(yay), so

tr(xax + yby) = tr(yby − yay).

Since Ea,b ∈ sder, we have [x, a] = [b, y]. Expanding this in terms of the decompo-
sitions of a and b, we obtain

xaxx+ xayy − xaxx− yayx = xbxy + ybyy − ybxx− ybyy,

from which we deduce that ay = bx and ay = bx. Thus

tr(yby − yay) = tr(yby − ybx) = tr
(
y(by − bx)

)
.

From Proposition 2.1, we have by = by, so now, using the circularity of the trace,
the divergence condition can be reformulated as

tr
(
(by − bx)y

)
= c tr

(
(x+ y)n − xn + yn

)
.

We use this to express it as a condition directly on by − bx as follows, using the
push-operator defined in (12).

Definition 2.2. A polynomial b ∈ Ass2 of homogeneous weight n > 1 is said to
be push-constant for the value c if b does not contain the monomial yn and for each
1 < r < n, writing br for the depth r part of b, we have

r∑
i=0

pushi(br) = c
∑
w

w

where the sum in the right-hand factor is over all monomials of weight n and depth
r. Equivalently, b is push-constant if it does not contain yn and for all monomials
w 6= xn, we have ∑

v∈Push(w)

(b|v) = c

where (b|v) denotes the coefficient of the monomial v in b, and Push(w) is the list
(with possible repetitions) [w, push(w), . . . , pushr(w)]. If c = 0, then b is said to
be push-neutral. If b is a scalar multiple of xn, then b is push-neutral by default.

Example. The simplest example of a push-constant polynomial is the sum of all
monomials of a given depth, for example

b = xayxbyxc + xcyxayxb + xbyxcyxa + xayxcyxb + xbyxayxc + xcyxbyxa.
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More interesting push-constant polynomials can be obtained from elements ψ ∈ grt
by taking the projection of ψ onto the words ending in y and writing this as by. In
this way we obtain for example:

b = 2x2y2 − 11

2
xyxy +

9

2
xy2x− 1

2
yx2y + 2yxyx− 1

2
y2x2.

The following proposition shows that the divergence condition comes down to
requiring that by − bx be push-constant.

Proposition 2.3. ([S1]) Let b be a push-invariant Lie polynomial of homogeneous
degree n. Then b satisfies the divergence condition

tr((by − bx)y) = c tr
(
(x+ y)n − xn − yn

)
if and only if by − bx is push-constant for the value nc. Furthermore, if this is the
case then

(31) c =
1

n
(b |xn−1y).

Proof. Let w be a monomial of degree n and depth r ≥ 1, and let Cw denote
the list of words obtained from w by cyclically permuting the letters, so that Cw
contains exactly n words (with possible repetitions). Let Cyw denote the list obtained
from Cw by removing all words ending in x, so that Cyw contains exactly r words.
Write Cyw = [u1y, . . . , ury]. Then we have the equality of lists

[u1, ..., ur] = Push(u1).

Let cw = tr(w), i.e. cw is the equivalence class of w, which is the set of the words
in the list Cw, without repetitions: thus Cw is nothing other than n/|cw| copies of
cw. The divergence condition

tr
(
(by − bx)y

)
= c tr

(
(x+ y)n − xn − yn

)
translates as the following family of conditions for one word in each equivalence
class cw:

(32)
∑
v∈cw

(
(by − bx)y | v

)
= c|cw|,

where each side is the coefficient of the class cw in the trace, i.e. the sum of the
coefficients of the words in cw in the original polynomial.

If r > 1, we can choose a word uy ∈ Cw that starts in y. Then from (32), the
divergence condition on b implies that

c =
1

|cw|
∑
v∈cw

(
(by − bx)y | v

)
=

1

n

∑
v∈Cw

(
(by − bx)y | v

)
=

1

n

∑
v∈Cy

w

(
(by − bx)y | v

)
=

1

n

∑
u′∈Push(u)

((by − bx) |u′).

This is exactly the definition of by − bx being push-constant for the value nc.
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If r = 1, then w is of depth 1, |cw| = n and xn−1y is the only word in cw ending
in y. Thus (32) comes down to(

(by − bx)y |xn−1y
)

= nc.

But since b is a Lie polynomial, we have (b|xn) = (bx|xn−1) = 0, so using by = by
(by Proposition 2.1), we also have(

(by − bx)y |xn−1y
)

= (by − bx |xn−1) = (by|xn−1)

= (by|xn−1) = (byy|xn−1y) = (b|xn−1y),

which proves that nc = (b|xn−1y) as desired. Note that this condition means that
if b has no depth 1 part, then by − bx is push-neutral. �

We now have a new way of expressing krv, which is much easier to translate into
the mould language.

Definition 2.4. Let Vkrv be the completion of the vector space spanned by poly-
nomials b ∈ lieC of homogeneous degree n ≥ 3 such that

(i) b is push-invariant, and

(ii) by − bx is push-constant for the value (b |xn−1y),

equipped with the Lie bracket

{b, b′} = [b, b′] + Ea,b(b
′)− Ea′,b′(b)

where a and a′ are the (unique) partners of b and b′ respectively.

Indeed, since Propositions 2.1 and 2.3 show that

krv
∼→ Vkrv

Ea,b 7→ b(33)

is an isomorphism of vector spaces and krv is known to be a Lie subalgebra of sder2,
the bracket on Vkrv is inherited directly from this and makes Vkrv into a Lie algebra.

2.3. The linearized Kashiwara-Vergne Lie algebra lkv. Using the above iso-
morphism of krv with the vector space Vkrv given by Ea,b 7→ b, let us now consider
the depth-graded versions of the defining conditions of Vkrv, i.e. determine what
these conditions say about the lowest-depth parts of elements b ∈ Vkrv. The push-
invariance is a depth-graded condition, so it restricts to the statement that the
lowest depth part of b is still push-invariant; in particular, by Proposition 2.1 it
admits of a unique partner a ∈ lieC such that [x, a] + [y, b] = 0, i.e. such that the
associated derivation Ea,b lies in sder2.

In the second condition, if b is of degree n and depth r = 1 and b1 denotes the
lowest-depth part of b, then (b1)y = xn−1, so the push-constance condition on b1 is
empty since (b1)y = (b|xn−1y)xn−1. If r > 1, however, then (b|xn−1y) = 0 and so
the push-constance condition on by − bx is actually push-neutrality, which implies
the push-neutrality of (br)y alone, since (br)y is the only part of the expression
by− bx of minimal depth r−1. These observations lead directly to the definition of
the linearized version lkv of the Kashiwara-Vergne Lie algebra given in Definition 1.5
above, and that by definition it is bigraded by weight and depth. The statement of
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Proposition 1.6, that lkv is a Lie algebra under the bracket coming from the bracket
of derivations in sder2, namely

{b, b′} = [b, b′] + Ea,b(b
′)− Ea′,b′(b),

will be proved at the end of §4.1. Up to this fact, the proof of Proposition 1.7 now
follows trivially from the equivalences above.

Proof of Proposition 1.7 assuming Proposition 1.6. The defining properties of
the associated graded gr krv are properties satisfied by the the lowest-depth parts
of elements of krv. We identify krv with Vkrv and use the version of its defining
properties expressed in Definition 2.4. Since both the properties of being a Lie ele-
ment and being push-invariant respect the depth, the same properties are satisfied
by elements of gr krv. For the divergence, the argument in the paragraph preceding
this proof shows that it implies no condition on the lowest-depth part if the depth
is 1, and it implies the push-neutrality of the lowest-depth part if the depth is > 1.
We do not know if this property along with being Lie and push-invariant, which
together define lkv, are all that is implied on the lowest-depth part of an element
of krv by its defining properties, but we certainly know that they all hold for the
lowest-depth part, and therefore we obtain the desired inclusion of vector spaces

gr krv ↪→ lkv.

Furthermore, this inclusion is a Lie morphism as both spaces are equipped with the
same Lie bracket, coming from sder2. �

Remark. No examples of elements of lkv that are not truncations to lowest depth
of elements of krv are known. It would be interesting to try to prove the equality
of lkv with gr krv by starting with a polynomial lkv of depth r > 1 and finding a
way to construct a depth by depth lifting to an element of krv.

3. Rational and polynomial moulds

In this section, we introduce the language of moulds and reformulate the defining
conditions of lkv in this language. We end the section with the proof of Theorem 1.8
and its corollary in terms of moulds. We hope that this section and the next one,
which explores the elliptic version of krv, will illustrate the way in which moulds
are powerful tools in this context.

3.1. Moulds and alternality. For the purposes of this article, we are concerned
only with rational function-valued moulds defined over the rationals. Écalle defines
moulds with more general arguments and more general values, but in this article
we will use the term mould merely to denote a collection A =

(
Ar(u1, . . . , ur)

)
r≥0

where each Ar(u1, u2, ..., ur) ∈ Q(u1, . . . , ur), i.e. each Ar is a rational function in
r commutative variables u1, . . . , ur with coefficients in Q. The rational function Ar

is the depth r part of the mould. When the context is clear we sometimes drop the
index and write A(u1, . . . , ur) instead of Ar(u1, . . . , ur) for the depth r part. In
particular we have A0 = A(∅) ∈ Q.

Moulds are equipped with addition and multiplication by scalars componentwise;
thus they form a vector space. We write ARI for the subspace of (rational) moulds
A with A(∅) = 0 (keeping in mind that this ARI is only a very small subspace of the

full space of moulds studied by Écalle). For convenience, we also define the vector
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space ARI of moulds defined exactly like ARI except on a set of commutative
variables v1, v2, . . ., i.e. B ∈ ARI means B =

(
Br
)
r≥0

with Br ∈ Q(v1, . . . , vr).

We say that a mould A is concentrated in depth r if As = 0 for all s 6= r, and
we let ARIr ⊂ ARI be the subspace of moulds concentrated in depth r. Thus
ARI = ⊕r≥1ARI

r.

We now introduce Écalle’s important swap operator on moulds5.

Definition 3.1. The swap operator maps ARI to ARI, and is defined by

swap(B)(v1, . . . , vr) = B(vr, vr−1 − vr, . . . , v1 − v2)

for B ∈ ARI. The inverse operator mapping ARI to ARI (which we also denote
by swap, as the context is clear according to whether swap is acting on a mould in
ARI or one in ARI) is given by

swap(C)(u1, . . . , ur) = C(u1 + · · ·+ ur, u1 + · · ·+ ur−1, . . . , u1)

for C ∈ ARI. Thus it makes sense to write swap ◦ swap = id.

We also need to consider an important symmetry on moulds, based on the shuffle
operator on tuples of commutative variables, which is defined by

Sh
(
(u1, . . . , ui)(ui+1, . . . , ur)

)
=
{

(uσ−1(1), . . . , uσ−1(r)) |σ ∈ Sir
}
,

where Sir is the subset of permutations σ ∈ Sr such that σ(1) < · · · < σ(i) and
σ(i+ 1) < · · ·σ(r).

Definition 3.2. A mould A ∈ ARI is alternal if in each depth r ≥ 2 we have∑
w∈Sh((u1,...,ui)(ui+1,...,ur))

Ar(w) = 0 for 1 ≤ i ≤
[r

2

]
.

By convention, the alternality condition is void in depth 1, i.e. all depth 1 moulds
are considered to be alternal.

Example. In depth 4, there are two alternality conditions, given by

A(u1, u2, u3, u4) +A(u2, u1, u3, u4) +A(u2, u3, u1, u4) +A(u2, u3, u4, u1) = 0

A(u1, u2, u3, u4) +A(u3, u1, u2, u4) +A(u3, u4, u1, u2) +A(u1, u3, u2, u4)

+A(u1, u3, u4, u2) +A(u3, u1, u4, u2) = 0

We write ARIal for the subspace of ARI consisting of alternal moulds.

3.2. Lie elements and alternal moulds. Alternality is important because al-
ternal polynomial moulds correspond to Lie polynomials in the sense given in the
following lemma, whose statements are well-known: the first one is a direct conse-
quence of Lazard elimination (cf. Bourbaki), and for complete elementary proofs of
all the statements, see [SST] or [S2].

We write ARIpol for the vector subspace of polynomial-valued moulds in ARI.

5For Écalle’s original definitions of the mould operators swap, push and all the others used in
this article, see [Ec] (2.4)-(2.11) and (2.55). Another basic reference for these operators is [S2],

§2.4.
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Lemma 3.3. (i) The degree-completed free associative algebra Ass2 on x, y (for the
degree given by deg x = deg y = 1) can be decomposed as a direct sum

Q〈〈x, y〉〉 = Qx⊕Q〈〈C〉〉,
where AssC = Q〈〈C〉〉 = Q〈〈C1, C2, . . .〉〉 is the degree-completion of the free non-

commutative polynomial algebra on variables Ci = adi−1
x (y) for i ≥ 1, for the degree

given by degCi = i.

(ii) For r, n ≥ 1, let Ass
(r,n)
C denote the (finite-dimensional) subspace of AssC

spanned by monomials Ca1 · · ·Car with a1 +· · ·+ar = n, and let ARI(r,n),pol denote
the subspace of ARI consisting of polynomial moulds of degree n − r concentrated
in depth r. The map

ma :
Ass

(r,n)
C → ARI(r,n),pol

Ca1 · · ·Car 7−→ ua1−1
1 · · ·uar−1

r

is a vector space isomorphism.
(iii) For each r ≥ 1, the map ma restricts to a (finite-dimensional) vector space

isomorphism

ma : lie
(r,n)
C → ARI

(r,n),pol
al ,

where lie
(r,n)
C = lieC ∩Ass(r,n)

C .

Examples. The mould ma(C3) = ma([x, [x, y]]) is the mould concentrated in
depth 1 given by u2

1. Similarly, ma(C2C1 − C1C2) = ma([[x, y], y]) is the mould
concentrated in depth 2 given by u1

1u
0
2 − u0

1u
1
2 = u1 − u2.

Definition 3.4. Let β denote the backwards writing operator on words in x, y,
meaning that β(m) is obtained from a word m by writing it from right to left. The
operator β extends to polynomials by linearity.

Let us give the translation of the restriction of the swap operator to polynomial-
valued moulds directly in terms of elements of Ass2 (cf. [R] or [S2]). Let f ∈ AssrC ,
and write f = xfx + yfy. Set g = β(yfy), where β is the backwards operator of
Definition 3.4. Thus all the monomials of g end in y. If we write g explicitly as

(34) g =
∑

a=(a1,...,ar)

ka x
a1y · · · yxary,

then (as shown in [S2], (3.2.6)), swap
(
ma(f)

)
is the mould concentrated in depth

r given by

(35) swap
(
ma(f)

)
(v1, . . . , vr) =

∑
a

ka v
a1
1 ...varr .

3.3. Push-invariance and the first defining relation of lkv. Let us define the
push-operator on moulds in ARI by

(pushB)(u1, . . . , ur) = B(u0, u1, ..., ur−1)

where u0 = −u1−u2−· · ·−ur. A mould B ∈ ARI is push-invariant if push (B) = B
(in all depths).

The following proposition shows that this definition is precisely the translation
into mould terms of the property of push-invariance for a Lie polynomial given in
Definition 5 above.
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Proposition 3.5. Let b ∈ lieC . Then b is a push-invariant polynomial if and only
if ma(b) is a push-invariant mould.

Proof. If b = y, then ma(b) is concentrated in depth 1 with value ma(b)(u1) = 1,
so these are both clearly push-invariant.

Now let b ∈ (lieC)r−1
n with n ≥ r ≥ 2. We write

b =
∑

a=(a1,...,ar)

ka x
a1y · · · yxar .

Let f = yb, so that b = fy. Recalling that y = C1, the associated moulds are
related by the formula

(36) ma(f)(u1, ..., ur) = ma(C1b) = u0
1ma(b)(u2, ..., ur) = ma(b)(u2, ..., ur).

Since b ∈ (lieC)n, we have β(b) = (−1)n−1b. Set

g = β(yfy) = β(yb) = (−1)n−1by = (−1)n−1
∑
a

ka x
a1y...yxary.

By (35), we have

swap
(
ma(f)

)
(v1, . . . , vr) = (−1)n−1

∑
a

ka v
a1
1 ...varr .

Looking at

push(b)y =
∑
a

ka x
aryxa1y · · ·xar−1y,

we see that push(b)y is obtained from by by cyclically permuting the groups xaiy.
Since b = push(b) if and only if k(a1,...,ar) = k(ar,a1,...,ar−1) for each a, this is
equivalent to

(37) swap
(
ma(f)

)
(v1, ..., vr) = swap

(
ma(f)

)
(vr, v1, . . . , vr−1).

Using the definition of the swap, we rewrite (37) in terms of ma(f) as

(38) ma(f)(vr, vr−1 − vr, . . . , v1 − v2) = ma(f)(vr−1, vr−2 − vr−1, . . . , vr − v1)

We now make the change of variables vr = u1 + ... + ur, vr − v1 = ur, v1 − v2 =
ur−1, . . . , vr−2 − vr−1 = u2, vr−1 = u1 in this equation, obtaining

(39) ma(f)(u1 + · · ·+ ur,−u2 − · · · − ur, u2, . . . , ur−1) = ma(f)(u1, u2, . . . , ur).

Finally, using relation (36), we write this in terms of ma(b) as

(40) ma(b)(−u2 − · · · − ur, u2, . . . , ur−1) = ma(b)(u2, . . . , ur).

Making the variable change ui 7→ ui−1 changes this to

(41) ma(b)(−u1 − · · · − ur−1, u1, . . . , ur−2) = ma(b)(u1, . . . , ur−1),

which is just the condition of mould push-invariance ma(b) in depth r − 1. �
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3.4. Circ-neutrality and the second defining relation of lkv. Let us now
show how to reformulate the second defining property of elements of lkv in terms
of moulds.

Definition 3.6. Let circ be the mould operator6 defined on moulds in ARI by

circ(B)(v1, . . . , vr) = B(v2, . . . , vr, v1).

A mould B ∈ ARI is said to be circ-neutral if for r > 1 we have
r−1∑
i=0

circi(B)(v1, . . . , vr) = 0.

If B is a polynomial-valued mould of homogeneous degree n (i.e. the polynomial
B(v1, . . . , vr) is of homogeneous degree n − r for 1 ≤ r ≤ n), we say that B is
circ-constant if

r−1∑
i=0

circi(B)(v1, . . . , vr) = c
( ∑

a1+···+ar=n−r
ai≥0

va11 · · · varr
)

for all 1 < r ≤ n, where B(v1) = cvn−1
1 . (If c = 0, then a circ-constant mould is circ-

neutral.) Correspondingly, we also say that a polynomial b ∈ AssC of homogeneous
degree n is circ-constant if, setting c = (b|xn−1y), we have b = b0 + c

ny
n where by0

is push-constant for the value c (cf. Definition 2.2). A polynomial-valued mould
(resp. a polynomial in AssC) is said to be circ-constant if it is a sum of circ-constant
homogeneous moulds (resp. polynomials).

Example. Let ψ ∈ grt be homogeneous of degree n. Then as we saw in the example
following Definition 8, the polynomial ψy is push-constant, so ψyy is circ-constant.
For example if n = 5, then ψyy is given by

ψyy = x4y − 2x3y2 +
11

2
x2yxy − 9

2
xyx2y + 3yx3y + 2x2y3 − 11

2
xyxy2 +

9

2
xy2xy

−1

2
yx2y2 + 2yxyxy − 1

2
y2x2y − xy4 + 4yxy3 − 6y2xy2 + 4y3xy

which is easily seen to be circ-constant.
For an example of a circ-constant mould, we take B = swap

(
ma(ψ)

)
, which has

the same coefficients as ψyy: it is given by

B(v1) = v4
1

B(v1, v2) = −2v3
1 +

11

2
v2

1v2 −
9

2
v1v

2
2 + 3v3

2

B(v1, v2, v3) = 2v2
1 −

11

2
v1v2 −

1

2
v2

2 +
9

2
v1v3 + 2v2v3 −

1

2
v2

3

B(v1, v2, v3, v4) = −v1 + 4v2 − 6v3 + 4v4.

The following result proves that the circ-constance of a polynomial b and that
of the associated mould ma(b) are always connected as in the example above. By
additivity, it suffices to prove the result for b a homogeneous polynomial of degree
n, so that the circ-constance of b is relative to just one constant cn = c = (b|xn−1y).

6This operator is denoted pus in [Ec]
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Proposition 3.7. Let b ∈ AssC be of homogeneous weight n ≥ 3. Then b is a
circ-constant polynomial if and only if swap

(
ma(b)

)
is a circ-constant mould, and

b is circ-neutral if and only if swap
(
ma(b)

)
is circ-neutral.

Proof. Let β be the backwards-writing operator on AssC (cf. Definition 3.4).
Write b = xbx + yby, and let g = β(yby) = β(by)y. For r ≥ 1, let gr denote the
depth r part of g. If we write the polynomial gr as

(42) gr = β
(
(by)r−1

)
y =

∑
a=(a1,...,ar)

ka x
a1y · · · yxary,

then we saw in (34) and (35) that

(43) swap
(
ma(b)

)
(v1, . . . , vr) =

∑
a=(a1,...,ar)

ka v
a1
1 · · · varr .

Observe that a polynomial is push-constant if and only it is also push-constant
written backwards, so in particular, by is push-constant if and only if β(by) is.
Suppose that b is circ-constant, i.e. that by and thus β(by) are push-constant for
the value c = (b|xn−1y). In view of (42), this means that

∑
a′ ka′ = c when a′

runs through the cyclic permutations of a = (a1, . . . , ar) for every tuple a, and this
in turns means precisely that the mould swap

(
ma(b)

)
is circ-constant. As for the

circ-neutrality equivalence, it follows from the circ-constance, since circ-neutrality
is nothing but circ-constance for the constant 0. �

The notion of circ-constance will play a role later in §4.2. In this section we only
need circ-neutrality. Indeed, we showed that a polynomial b lies in lkv, i.e. b is a
Lie polynomial that is push-invariant and circ-neutral, if and only if the associated
mould ma(b) is alternal (by Lemma 3.3 (iii)), push-invariant (by Proposition 3.5)
and its swap is circ-neutral (by Proposition 3.7). In other words, we have shown
that ma gives a vector space isomorphism

(44) ma : lkv
∼→ ARIpolal+push/circneut,

where the right-hand space is the subspace of ARI of polynomial-valued moulds in
ARI that are alternal and push-neutral with circ-neutral swap. In fact this map is
an isomorphism

(45) lkvrn ' ARIrn−r ∩ARI
pol
al+push/circneut,

of each bigraded piece, where in general we writeARIrd for the subspace of polynomial-
valued moulds of homogeneous degree d concentrated in depth r.

We will show at the end of §4.1 below (see Corollary 4.7) that ARIpolal+push/circneut

is a Lie algebra under the ari-bracket, and thus by the compatibility (121) of the
ari-bracket with the Poisson bracket given below, we will then be able to conclude
that lkv is also a Lie algebra, proving Proposition 1.6 of this paper.

3.5. Proof of Theorem 1.8. Recall the statement of Theorem 1.8.

Theorem 1.8. There is a bigraded Lie algebra injection on linearized spaces

(46) ls ↪→ lkv.

For all n ≥ 3 and r = 1, 2, 3, the map is an isomorphism of the bigraded parts

lsrn ' lkvrn.
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In order to prove this theorem, we first reformulate the statement in terms
of moulds and give its proof. Let ARIal/al denote the space of moulds that are

alternal and have alternal swap, and following Écalle’s notation, let ARIal/al denote
the subspace of ARIal/al of moulds that are even in depth 1. Directly from the
definition of ls, we see that the map ma gives an isomorphism

ma : ls
∼→ ARIpolal/al

onto the space of polynomial-valued moulds in ARIal/al. Therefore, Theorem 1.8
can be stated very simply in terms of moulds as

ARIpolal/al ⊂ ARI
pol
al+push/circneut.

We will actually prove the more general result without the polynomial hypothesis.

Theorem 3.8. There is an inclusion of mould subspaces

ARIal/al ⊂ ARIal+push/circneut,
Moreover in depths r ≤ 3, we have

ARIr ∩ARIal/al = ARIr ∩ARIal+push/circneut.

Proof. It is well-known that every alternal mould satisfies

A(u1, . . . , ur) = (−1)r−1A(ur, . . . , u1)

(cf. [S2], Lemma 2.5.3) and that a mould that is al/al and even in depth 1 is also
push-invariant (cf. [S2], Lemma 2.5.5). Thus in particular ARIal/al ⊂ ARIal+push.
It remains only to show that a mould in ARIal/al is necessarily circ-neutral. In
fact, since the circ-neutrality condition is void in depth 1, we will show that even a
mould in ARIal/al is circ-neutral; the condition of evenness in depth 1 is there to
ensure the push-invariance, but not needed for the circ-neutrality.

The first alternality relation on swap(A) is given by

swap(A)(u1, . . . , ur) + swap(A)(u2, u1, . . . , ur) + · · ·+ swap(A)(u2, . . . , ur, u1) = 0.

Since swap(A) is push-invariant, this is equal to

pushrswap(A)(u1, . . . , ur) + pushr−1swap(A)(u2, u1, . . . , ur) + · · ·
+push swap(A)(u2, . . . , ur, u1) = 0.

But explicitly considering the action of the push operator on each term shows that

pushiswap(A)(u2, . . . , ur−i+1, u1, ur−i+2, . . . , ur)

= swap(A)(ur−i+2, . . . , ur, u0, u2, . . . , ur−i+1)

= circr−i+1swap(A)(u0, u2, . . . , ur)

where u0 = −u1 − · · · − ur, so this sum is equal to

r−1∑
i=0

circiswap(A)(u0, u2, . . . , ur) = 0,

which proves that swap(A) is circ-neutral. This gives the inclusion.

Let us now prove the isomorphism in the cases r = 1, 2, 3. The case r = 1 is
trivial since the alternality conditions are void in depth 1. A polynomial-valued
mould concentrated in depth 1 is a scalar multiple of ud1, which is automatically in
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ARIal/al, and lies in ARIal/al if and only if d is even. Such a mould is automatically
alternal and the circ-neutral condition is void; it is push-invariant thanks to the
evenness of d. This shows that in depth 1, both spaces are generated by moulds ud1
for even d, and are thus isomorphic.

Now consider the case r = 2. Let A ∈ ARIpolal+push/circneut be concentrated in

depth 2. The circ-neutral property of the swap is explicitly given in depth 2 by
swap(A)(v1, v2) + swap(A)(v2, v1) = 0. But this is also the alternality condition on
swap(A), so A ∈ ARIal/al. The isomorphism in depth 2 is thus trivial.

Finally, we consider the case r = 3. Let A ∈ ARIpolal+push/circneut be concentrated

in depth 3, and let B = swap(A). Again, we only need to show that B is alternal,
which in depth 3 means that B must satisfy the single equation

(47) B(v1, v2, v3) +B(v2, v1, v3) +B(v2, v3, v1) = 0.

The circ-neutrality condition on B is given by

(48) B(v1, v2, v3) +B(v3, v1, v2) +B(v2, v3, v1) = 0.

It is enough to show that B satisfies the equality

(49) B(v1, v2, v3) = B(v3, v2, v1),

since applying this to the middle term of (48) immediately yields the alternality
property (47) in depth 3. So let us show how to prove (49).

We rewrite the push-invariance condition in the vi, which gives

B(v1, v2, v3) = B(v2 − v1, v3 − v1,−v1)(50)

= B(v3 − v2,−v2, v1 − v2)(51)

= B(−v3, v1 − v3, v2 − v3).(52)

Making the variable change exchanging v1 and v3, this gives

B(v3, v2, v1) = B(v2 − v3, v1 − v3,−v3)(53)

= B(v1 − v2,−v2, v3 − v2)(54)

= B(−v1, v3 − v1, v2 − v1).(55)

By (50), the term B(v2 − v1, v3 − v1,−v1) is circ-neutral with respect to the
cyclic permutation of v1, v2, v3, so we have

(56) B(v2−v1, v3−v1,−v1) = −B(v3−v2, v1−v2,−v2)−B(v1−v3, v2−v3,−v3).

But the circ-neutrality of B also lets us cyclically permute the three arguments of
B, so we also have

−B(v3 − v2, v1 − v2,−v2) = B(−v2, v3 − v2, v1 − v2) +B(v1 − v2,−v2, v3 − v2).

Using (50) and substituting this into the right-hand side of (56) yields

B(v1, v2, v3) = B(−v2, v3 − v2, v1 − v2)

+B(v1 − v2,−v2, v3 − v2)−B(v1 − v3, v2 − v3,−v3).(57)

Now, exchanging v1 and v2 in (55) gives

B(v3, v1, v2) = B(−v2, v3 − v2, v1 − v2),

and doing the same with (53) gives

B(v3, v1, v2) = B(v1 − v3, v2 − v3,−v3).
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Substituting these two expressions as well as (54) into the right-hand side of (57),
we obtain the desired equality (49). This concludes the proof of Theorem 1.8. �

Remark. We conjecture that the inclusion of Theorem 3.8 is an isomorphism. But
even the proof of the simple equality (49) is surprisingly complicated in depth 3, let
alone in higher depth. Computer calculation does lead to the general conjecture:

Conjecture. If A ∈ ARIal+push/circneut and B = swap(A), then for all r > 1, we
have

(58) B(v1, . . . , vr) = (−1)r−1B(vr, . . . , v1).

The identity (58) would also yield the following useful partial result, which is the
mould analog for lkv of a result that is well-known for ls, namely that the bigraded
part lsrn = 0 when n 6≡ r mod 2.

Lemma 3.9. Fix 1 ≤ r ≤ n. Let A ∈ ARIrn−r ∩ ARI
pol
al+push/circneut and let

B = swap(A). Assume that B satisfies (58). Then if n− r is odd, A = 0.

Proof. Let mantar denote the operator on moulds in ARI (resp. ARI) defined
by

(59) mantar(A)(u1, . . . , ur) = (−1)r−1A(ur, . . . , u1)

(resp. the same expression with vi instead of ui). It is easy to check the following

identity of operators noted by Écalle:

neg ◦ push = mantar ◦ swap ◦mantar ◦ swap,
where

(60) neg(A)(u1, . . . , ur) = A(−u1, . . . ,−ur).
Let A ∈ ARIal+push/circneut; then A is push-invariant, so applying the left-hand
operator to A gives neg(A). Assuming (58) for B = swap(A), i.e. assuming that
B = mantar(B), we see that applying the right-hand operator to A fixes A since
on the one hand swap◦swap = id and on the other, mantar(A) = A for all alternal
moulds (cf. [S2], Lemma 2.5.3). Thus A must satisfy neg(A) = A, i.e. if A 6= 0 then
the degree d = n− r of A must be even. �

This implies the following result, which is the analogy for lkv of the similar
well-known result on ls.

Corollary 3.10. If the swaps of all elements of ARIpolal+push/circneut are mantar-

invariant, then ARIrd ∩ARI
pol
al+push/circneut = 0 whenever d is odd, i.e. by (45),

lkvrn = 0 when n 6≡ r mod 2

4. The elliptic Kashiwara-Vergne Lie algebra

In this section we follow the procedure of [S3] for the double shuffle Lie alge-
bra to define a natural candidate for the elliptic Kashiwara-Vergne Lie algebra,
closely related to the linearized Kashiwara-Vergne Lie algebra, and give some of its
properties.

4.1. Definition of the elliptic Kashiwara-Vergne Lie algebra.
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4.1.1. The Kashiwara-Vergne Lie algebra. Let ∆ be the mould operator given by

(61) ∆(A)(u1, . . . , ur) = u1 · · ·ur(u1 + · · ·+ ur)A(u1, . . . , ur)

for r ≥ 1, and let ARI∆ denote the space of rational-function moulds A such that
∆(A) is a polynomial mould (i.e. the denominator of the rational function A is
“at worst” u1 · · ·ur(u1 + · · · + ur)). We write ARI∆

p for the space of moulds in

ARI∆ ∩ ARIp, where p may represent any (or no) properties on moulds in ARI;
we will consider properties p such as for example al, push, combinations of these
etc.

Recall that earlier we used the notation ARIa/b for the space of moulds having
property a and whose swaps have property b; for example, ARIal/al denotes the

space of alternal moulds with alternal swap. In this section, following Écalle, we
introduce a slightly more general notation ARIa∗b to denote the space of moulds
having property a and whose swap has property b up to adding on a constant-valued
mould; thus, we write ARIal∗al for the space of alternal moulds whose swaps are
alternal up to adding on a constant-valued mould. An example of a mould in
ARIal∗al is the mould ∆−1(A), where A is the polynomial mould concentrated in
depth 3 given by

A(u1, u2, u3) = −1

4
u3

1u2 +
1

4
u3

1u3 −
1

4
u2

1u
2
2 +

1

2
u2

1u
2
3 +

1

4
u1u

3
3 −

1

4
u2

2u
2
3 −

1

4
u2u

3
3

− 1

12
u2

1u2u3 +
1

6
u1u

2
2u3 −

1

12
u1u2u

2
3.

It is easy to check that ∆−1(A) is alternal, but its swap is not alternal unless one
adds on the constant 1/3.

Definition 4.1. The mould-version elliptic Kashiwara-Vergne vector space is the
subspace of polynomial-valued moulds

∆
(
ARI∆

al+push∗circneut
)
.

The elliptic Kashiwara-Vergne vector space is the subspace krvell ⊂ lieC such that

(62) ma
(
krvell

)
= ∆

(
ARI∆

al+push∗circneut
)
.

The operator ∆ trivially respects push-invariance of moulds, so the space krvell
lies in the space liepushC of push-invariant elements of lieC . We will now show that

the subspace krvell is actually a Lie subalgebra of liepushC , which is itself a Lie algebra
thanks to the following lemma, of which a more explicit version (with a formula for
the partner) is proved in [S3] (Lemma 2.1.1).

Lemma 4.2. Let b ∈ lieC . Then b ∈ liepushC if and only if there exists a unique
element a ∈ lieC (the partner of b), such that if Db,a is the derivation of lie2 defined
by x 7→ b, y 7→ a, then Db,a annihilates [x, y].

By identifying liepushC with the space of derivations that annihilate [x, y], this

lemma shows that liepushC is a Lie algebra under the bracket of derivations. We
state this as a corollary.

Corollary 4.3. The map b 7→ Db,a gives an isomorphism

(63) ∂ : liepushC → oder2
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whose inverse is Db,a 7→ Db,a(x) = b, and this becomes a Lie isomorphism when

liepushC is equipped with the Lie bracket

(64) 〈b, b′〉 = [Db,a, Db′,a′ ](x) = Db,a(b′)−Db′,a′(b).

Thus we know that liepushC is a Lie algebra and it contains the elliptic Kashiwara-
Vergne space krvell as a subspace. This leads to our first main result on krvell.

Theorem 4.4. The subspace krvell ⊂ liepushC is a Lie subalgebra.

In order to prove this theorem, we will make essential use of mould theory, and in
particular, of the ari-bracket7 defined by Écalle that makes ARI into a Lie algebra
ARIari. The hairiest definitions and proofs have been relegated to Appendix 1,
in order to streamline the exposition of the next paragraph, which contains some
basic elements of mould theory that will lead to the proof of the theorem in 4.1.3.

4.1.2. A few facts about moulds. In this paragraph we give a few brief reminders
about some of the basic operators of mould theory and their connections with
the familiar situation of lie2; a very concise but self-contained exposition with full
definitions is given in Appendix 1, and a complete exposition with proofs can be
found in Chapters 2 and 3 of [S2]. In this section, we content ourselves with
giving a list of mould operators that generalize the some of the most frequently
considered operators on lie2 such as the usual and the Poisson bracket, Ihara and

special derivations, and the bracket 〈 , 〉 on liepushC . It is important to make the
following two observations: (i) all these operators given in mould-theoretic terms
can be applied to a much wider class of moulds than merely polynomial-valued
moulds, which permits a number of proofs of results on polynomial-valued moulds
(and thus polynomials in x, y) that are not accessible otherwise; (ii) there are some
very important mould operators that are not translations of anything that can be
phrased in the polynomial situation; this is where the real richness of mould theory
comes into play. We do not use any of these in this section, but some of them will
play a key role in the next subsection (see 4.2.4).

Recall from Lemma 3.3 (iii) that in fixed depth r and weight n, we have a linear
isomorphism of finite-dimensional vector spaces

ma : lie
(r,n)
C → ARI

(r,n),pol
al .

The precise definitions of all the Lie brackets and derivations below are given in
Appendix 1.

• There is a Lie bracket lu on ARI satisfying

ma
(
[f, g]

)
= lu

(
ma(f),ma(g)

)
7The fact that ari really is a Lie bracket was stated by Écalle and has been used constantly

in the mould literature. However, it appears that no complete proof of this fact was ever written

down (as is the case with many of Écalle’s statements). The full detailed proof has finally been

given by Furusho and Komiyama, cf. [FK], Prop. 1.12. For the purposes of this article, in which
ari is applied only to the space ARI∆ of rational moulds with denominator at worst ∆, complete

proofs that ari restricted to ARI∆ is a Lie bracket were given in [E2], Prop. 4.2, and in [S3] (where

the result follows from the definition of the Dari-bracket given there as a bracket of derivations
on polynomial moulds, and then of the ari-bracket as the transport of the Dari-bracket by the

vector space isomorphism ∆).
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for f, g ∈ lieC . We write ARIlu for the Lie algebra ARI with this bracket.

• For each mould A ∈ ARI, there is a derivation arit(A) of ARIlu that corresponds
to the Poisson or Ihara derivation on lieC in the sense that

arit
(
ma(f)

)
·ma(g) = −ma

(
df (g)

)
.

• There is a Lie bracket ari on ARI given by

ari(A,B) = lu(A,B)− arit(A) ·B + arit(B) ·A

that corresponds to the Poisson or Ihara bracket on lieC in the sense that

(65) ari
(
ma(f),ma(g)

)
= ma

(
{f, g}

)
.

We write ARIari for the Lie algebra with this Lie bracket.

• There is a Lie bracket ari on ARI which satisfies the following relation with the
ari-bracket in the special case where A and B are both push-invariant moulds:

(66) ari
(
swap(A), swap(B)

)
= swap

(
ari(A,B)

)
.

• There is a third Lie bracket on ARI, the Dari-bracket, which is obtained by
transfer by the ∆-operator given in (61), i.e. it is given by

(67) Dari(A,B) = ∆
(
ari
(
∆−1(A),∆−1(B)

))
.

This means that ∆ gives an isomorphism of Lie algebras

(68) ∆ : ARIari
∼→ ARIDari,

where ARIDari denotes the Lie algebra given by the vector space ARI equipped
with the Dari Lie bracket.

• For each mould A ∈ ARI, there is an associated derivation Darit(A) of ARIlu
that preserves ARIpol if A is polynomial-valued and satisfies the following property:
the Dari-bracket of (67) can also be defined by

(69) Dari(A,B) = Darit(A) ·B −Darit(B) ·A.

The definition of the derivation Darit is given explicitly in Appendix 1, equation
(117).

We end this section by comparing the Dari-bracket to the bracket 〈 , 〉 on liepushC

given in Corollary 4.3.

Proposition 4.5. The map

ma : liepushC → ARIDari,

is a Lie algebra morphism, i.e. the Lie brackets 〈 , 〉 and Dari are compatible in
the sense that

ma
(
〈b, b′〉

)
= Dari

(
ma(b),ma(b′)

)
.

Proof. The key point is the following non-trivial result, which is one of the main
results of [BS]: if D1 and D2 lie in oder2, then the map

Ψ : oder2 → ARIari(70)

D 7→ ∆−1
(
ma
(
D(x)

))
,
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is an injective Lie morphism, i.e.

∆−1
(
ma
(
[D1, D2](x)

))
= ari

(
∆−1

(
ma(D1(x))

)
,∆−1

(
ma(D2(x))

))
(see Theorem 3.5 of [BS]). Applying ∆ to both sides of this and using (67), this is
equivalent to

(71) ma
(
[D1, D2](x)

)
= Dari

(
ma
(
D1(x)

)
,ma

(
D2(x)

))
,

which in turn means that

(72) ma : oder2 → ARIDari

is a Lie algebra morphism. We saw in Corollary 4.3 that we have a Lie isomor-

phism liepushC
∼→ oder2 when liepushC is equipped with the Lie bracket (64), so by

composition, we have an injective Lie morphism

b
∂7→ Db,a

Ψ7→ ∆−1
(
ma(Db,a(x))

) ∆7→ ma(b)

(where ∂ is as in Corollary 4.3 and Ψ is as in (70)) is an injective Lie morphism

liepushC → ARIDari, which proves the result. �

4.1.3. Proof that krvell is a Lie algebra. This subsection is devoted to the proof of

Theorem 4.4, i.e. that the subspace krvell ⊂ liepushC is closed under the bracket 〈 , 〉.
From Proposition 4.5, ma gives an injective Lie algebra morphism

liepushC → ARIDari.

Thus it is equivalent to prove that the image of the subspace krvell ⊂ liepushC is
closed under the Dari-bracket. Since we saw above that

∆−1 : ARIDari → ARIari,

it is equivalent to show that ARI∆
al+push∗circneut is a Lie subalgebra of ARIari.

Let b ∈ lieC be push-invariant and let Db,a = ∂(b) where ∂ : liepushC → oder2 is
as in (63). It is shown8 in [BS], Prop. B.1 that for all b′ ∈ lieC , we have

(73) ma
(
Db,a(b′)

)
= Darit

(
ma(b)

)(
ma(b′)

)
.

Thus when b ∈ liepushC and B = ma(b), Darit
(
ma(b)

)
= Darit(B) is simply the

mould form of Db,a. The derivation Db,a extends to all of Q〈x, y〉 and restricts to
Q〈C〉 since by Lemma 4.2, both b(x, y) and a(x, y) lie in lieC ⊂ Q〈C〉. Since any
polynomial mould B′ is of the form B′ = ma(b′) with b′ ∈ Q〈C〉, (73) shows that
Darit(B)·B′ = ma

(
Db,a(b′)

)
∈ Q〈C〉, so Darit(B) preserves ARIpol. Furthermore,

since it is the mould form of Db,a, we have Darit(B) ·ma([x, y]) = 0 and Darit(B) ·
ma(y) = ma(a). If b, b′ ∈ lieC and B = ma(b), B′ = ma(b′), then by (69) and (73),

8Note that the notation is slightly different there; we recover this statement by setting F = b′,
U = b, DU = Db,a and taking care to note that the definition of DaritU in that article is the

conjugation of the definition (124) used here by dar, i.e. it is (124) without the dar terms.
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we have

Dari(B,B′) = Darit(B) ·B′ −Darit(B′) ·B
= ma

(
Db,a(b′)−Db′,a′(b)

)
= ma

(
[Db,a, Db′,a′ ](x)

)
= ma

(
〈b, b′〉

)
.(74)

We use Darit and Dari to prove the desired result in three steps as follows.

Step 1. Since liepushC is the space of push-invariant Lie polynomials, we have

ma(liepushC ) = ARIpolal+push.

But we saw in Proposition 4.5 that liepushC is a Lie algebra under 〈 , 〉, so ARIpolal+push

is a Lie algebra under Dari.

Step 2. The space ARI∆
al+push is a Lie algebra under ari. Indeed, the definition

of ∆ shows that this operator does not change the properties of push-invariance or
alternality, i.e. ∆−1(ARIal+push) = ARIal+push. Restricted to polynomial-valued

moulds, we have ∆−1(ARIpolal+push) = ARI∆
al+push. Since ∆ is an isomorphism from

ARIari to ARIDari by virtue of (68) and ARIpolal+push is a Lie subalgebra of ARIDari
by Step 1, its image ARI∆

al+push under ∆−1 is thus a Lie subalgebra of ARIari.

Step 3. We can now complete the proof of Theorem 4.4 by showing that the space
ARI∆

al+push∗circneut is a Lie algebra under ari. For this, we need the following
lemma, whose proof is deferred to the end of Appendix 1.

Lemma 4.6. The space ARIcircneut of circ-neutral moulds A ∈ ARI forms a Lie
algebra under the ari-bracket.

Given this, it is an easy matter to conclude. Let A,B lie in ARI∆
al+push∗circneut,

and let us show that ari(A,B) lies in the same space. By Step 2, we know that
ari(A,B) ∈ ARI∆

al+push, so we only need to show that swap
(
ari(A,B)

)
is *circ-

neutral. But we will show that in fact this mould is actually circ-neutral. To see
this, let A0 and B0 be the constant-valued moulds such that swap(A) + A0 and
swap(B) +B0 are circ-neutral. By Lemma 4.6, we have

ari
(
swap(A) +A0, swap(B) +B0

)
∈ ARIcircneut.

Using the identity swap
(
ari(M,N)

)
= ari

(
swap(M), swap(N)

)
, valid whenever M

and N are push-invariant moulds (cf. [S], (2.5.6)), as well as the fact that constant-
valued moulds are both push and swap invariant, we have

ari
(
swap(A) +A0, swap(B) +B0

)
= ari

(
swap(A+A0), swap(B +B0)

)
= swap · ari(A+A0, B +B0)

= swap · ari(A,B) + swap · ari(A,B0) + swap · ari(A0, B) + swap · ari(A0, B0)

= swap · ari(A,B)

since the definition of the ari-bracket shows that ari(C,M) = 0 whenever C is a
constant-valued mould. Thus swap · ari(A,B) is circ-neutral, which completes the
proof of Theorem 4.4. �
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The following easy corollary, which uses the result just shown (in Step 3 of the
proof of Theorem 4.4) that

ARI∆
al+push∗circneut

is a Lie algebra under the ari-bracket, provides the promised proof of Proposition
1.6 stating that lkv is a Lie algebra.

Corollary 4.7. The subspace ARIpolal+push/circneut is a Lie algebra under the ari-

bracket, and the space lkv is a Lie algebra under the Poisson bracket.

Proof. Clearly

(75) ARI∆
al+push/circneut ⊂ ARI

∆
al+push∗circneut

is a Lie subalgebra, since the ari-bracket of moulds without constant correction
also has no constant correction. Since ARIpol is a Lie subalgebra of ARI, the
intersection

(76) ARIpolal+push/circneut = ARIpol ∩ARI∆
al+push/circneut ⊂ ARI

∆
al+push∗circneut

is also a Lie algebra, proving the first statement of the corollary. Thus, by (65),
the space

lkv = ma−1
(
ARIpolal+push/circneut

)
a Lie algebra under the Poisson bracket, which completes the proof. �

Corollary 4.8. The linear map ∆ gives a Lie algebra morphism

(77) ∆ : ARIpolal+push/circneut → ∆(ARI∆
al+push∗circneut),

which induces a Lie algebra morphism

lkv→ krvell.

Proof. For the first statement, composing the inclusion map in (76) with the
operator ∆, considered as an injective linear map on moulds gives an injective
linear map

ARIpolal+push/circneut ↪→ ∆(ARI∆
al+push∗circneut).

It is shown in Step 3 of the proof of Theorem 4.4 (in §4.1.3) that ARI∆
al+push∗circneut

is a Lie algebra under the ari-bracket, and in Corollary 4.7 that ARIpolal+push/circneut

is a Lie subalgebra of it. A basic property of the linear map ∆ is that it transforms
the ari-bracket into the Dari-bracket (cf. (67), or for more detail (122) in Appendix
1), so the space ∆(ARI∆

al+push∗circneut) is a Lie algebra under the Dari-bracket.

Thus the map in (77) is a Lie algebra morphism from a Lie subalgebra of ARIari
to a Lie subalgebra of ARIDari.

Finally, by (44) we have

ma(lkv) = ARIpolal+push/circneut ⊂ ARIari

and by (62) we have

ma(krvell) = ∆(ARI∆
al+push∗circneut) ⊂ ARIDari,

so (77) translates directly under ma−1 to a Lie morphism lkv→ krvell. �
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4.2. The map from krv→ krvell. In this subsection we prove our next main result
on the elliptic Kashiwara-Vergne Lie algebra, which is analogous to known results
on the elliptic Grothendieck-Teichmüller Lie algebra of [E1] and the elliptic double
shuffle Lie algebra of [S3]. The subsection 4.3 below is devoted to connections
between these three situations.

Theorem 4.9. There is an injective Lie algebra morphism9

(78) krv
� � // krvell

The proof constructs the morphism from krv to krvell in four main steps as
follows.

Step 1. We first consider a twisted version of the Kashiwara-Vergne Lie algebra,
or rather of the associated polynomial space Vkrv of Definition 2.4, via the map

ν : Vkrv
∼→Wkrv(79)

f 7→ ν(f),(80)

where ν is the automorphism of Ass2 defined by

(81) ν(x) = z = −x− y, ν(y) = y.

In paragraph 4.2.1, we prove that Wkrv is a Lie algebra under the Poisson or Ihara
bracket, and give a description of Wkrv via two properties, the “twisted” versions
of the two defining properties of Vkrv given in Definition 2.4.

Step 2. To describe this step we first need a definition.

Definition 4.10. (i) Let teru be the operator defined on moulds in ARI as follows:
teru(A) is equal to A in depths 0 and 1, and for depths r > 1, we have

(82) teru(A)(u1, . . . , ur) =

A(u1, . . . , ur) +
1

ur

(
A(u1, . . . , ur−2, ur−1 + ur)−A(u1, . . . , ur−2, ur−1)

)
.

(ii) A mould A ∈ ARI is said to satisfy the senary relation (cf. (3.64) in §3.5
of [Ec]) if

(83) teru(A) = push ◦mantar ◦ teru ◦mantar(A),

and the twisted senary relation if pari(A) satisfies the senary relation, where

(84) pari(A)(u1, . . . , ur) = (−1)rA(u1, . . . , ur).

(iii) We define the mould subspace ARIpolal+tsen/circconst (resp. ARIpolal+tsen∗circconst)

to be the subspace of alternal polynomial-valued moulds A ∈ ARI such that swap(A)
is circ-constant (resp. up to adding a constant mould) and A satisfies the twisted
senary relation. Observe that if swap(A) ∈ ARI is a polynomial-valued mould of
homogeneous degree n which is circ-constant up to addition of a constant-valued
mould, then the constant-valued mould is uniquely determined as being the mould
whose only non-zero value is the constant value c/n in depth n, where c is given by

swap(A)(v1) = cvn−1
1 .

9The dotted map again refers back to footnote 1.
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In paragraph 4.2.2, we study the mould space ma
(
Wkrv

)
. Thanks to the com-

patibility of the ari-bracket with the Poisson bracket (see (65), or for more detail
see Appendix 1 especially (121)), this space is a Lie subalgebra of ARIari. Just as
we reformulated the defining properties of lkv in mould terms in §3, proving that

ma(lkv) = ARIpolal+push/circneut, in Step 2 we will reformulate the defining properties

of Wkrv in mould terms and show that

(85) ma
(
Wkrv

)
= ARIpolal+tsen∗circconst.

Step 3. For this part we need to introduce Écalle’s mould pal and its inverse
invpal, which lie in the Lie group GARI associated to the Lie algebra ARIari, and
study the inverse adjoint operators Adari(pal) and Adari(invpal) on ARIari. The

statement of the result by Écalle discussed in footnote 110 is that adjoint action of
the mould pal ∈ GARI gives a Lie algebra morphism of ARIari which restricts to
an isomorphism of Lie subalgebras

(86) Adari(pal) : ARIpush
∼ // ARIsen,

where ARIpush denotes the push-invariant moulds, and ARIsen denotes the moulds
satisfying the senary relation (92).

Letting Ξ denote the map

Adari(invpal) ◦ pari : ARIari → ARIari,

we show in Step 3, relying on the statement (86), that Ξ gives an injective Lie
morphism
(87)

ARIpolal+tsen∗circconst
pari // ARIpolal+sen∗circconst

� � Adari(invpal) // ARI∆
al+push∗circneut

of subalgebras of ARIari, where the dotted arrow indicates as usual that Écalle’s
statement (86) has not been proved in the literature.

Step 4. The final step is to compose (87) with the Lie morphism ∆ : ARIari →
ARIDari, obtaining an injective Lie morphism

ARIpolal+tsen∗circconst → ∆
(
ARI∆

al+push∗circneut
)
,

where the left-hand space is a subalgebra of ARIari and the right-hand one of
ARIDari. Since the right-hand space is equal to ma(krvell), the desired injective
Lie morphism from krv to krvell is obtained by composing all the maps described

10This statement and the senary relation itself can be found in [Ec], (3.51)-(3.58), in the

situation of a general flexion unit. To give the dictionary between the notation for the general

case and the special case studied in this article: E denotes a general flexion unit and adari(es)
the corresponding adjoint action, while in our situation we take the flexion unit E(u1) = 1/u1

and the adjoint action is then adari(pal) (or adari(pal)). If a mould M is push-invariant, Écalle
uses the term E-push-invariant to indicate the property of the mould adari(es) ·M coming from

transporting the push-invariance of M ; in other words, adari(es) ·M is E-push-invariant if and

only if M is push-invariant. In (3.53)-(3.54), Écalle gives the key statement that a mould is E-

push-invariant if and only if it satisfies the senary relation (3.58) for the flexion unit E. In our
situation this means that adari(pal) ·M satisfies the senary relation (92) (corresponding to the
flexion unit E(u1) = 1/u1, and the notation teru := E-ter) if and only if M is push-invariant.
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above, as shown in the following diagram:
(88)

krv

by (33)

��
Vkrv

by (79) ν

��
Wkrv

by (85) ma

��

krvell

ARIpolal+tsen∗circconst
Ξ

by (87)
// ARI∆

al+push∗circneut
∆ // ∆

(
ARI∆

al+push∗circneut
)ma−1 by (62)

OO

4.2.1. Step 1: The twisted space Wkrv.

Proposition 4.11. Let Wkrv = ν(Vkrv). Then Wkrv is a Lie algebra under the
Poisson bracket.

Proof. The key point is the following lemma on derivations.

Lemma 4.12. Conjugation by ν induces an isomorphism of Lie algebras

sder2
∼→ ider2(89)

Ea,b 7→ dν(b).

Proof. Recall that Ea,b ∈ sder2 maps x 7→ [x, a] and y 7→ [y, b], and dν(b) ∈ ider2
is the Ihara derivation defined by x 7→ 0, y 7→ [y, ν(b)] (cf. §1.1).

Let us first show that dν(b) is the conjugate of Ea,b by ν, i.e. dν(b) = ν ◦Ea,b ◦ ν
(since ν is an involution). It is enough to show they agree on x and y, so we compute

ν ◦ Ea,b ◦ ν(x) = ν ◦ Ea,b(z) = 0 = dν(b)(x)

and
ν ◦ Ea,b ◦ ν(y) = ν ◦ Ea,b(y) = ν

(
[y, b]

)
= [y, ν(b)] = dν(b)(y).

This shows that ν ◦Ea,b ◦ν is indeed equal to dν(b). To show that dν(b) lies in ider2,
we check that dν(b)(z) is a bracket of z with another element of lie2:

dν(b)(z) = ν ◦ Ea,b ◦ ν(z) = ν ◦ Ea,b(x) = ν([x, a]) = [z, ν(a)].

The same argument goes the other way to show that conjugation by ν maps an
element of ider2 to an element of sder2, which yields the isomorphism (89) as vector
spaces. To see that it is also an isomorphism of Lie algebras, it suffices to note that
conjugation by ν preserves the Lie bracket of derivations in der2, i.e.

ν ◦ [D1, D2] ◦ ν = [ν ◦D1 ◦ ν, ν ◦D2 ◦ ν],

since ν is an involution. Since the Lie brackets on sder2 and ider2 are just restrictions
to those subspaces of the Lie bracket on the space of all derivations, conjugation
by ν carries one to the other. �

We use the lemma to complete the proof of Proposition 4.11. Write

krvν = {ν ◦ E ◦ ν |E ∈ krv} ⊂ ider2.
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By restricting the isomorphism (89) to the subspace krv ⊂ sder2, we obtain a
commutative diagram of isomorphisms of vector spaces

krv //

��

krvν

��
Vkrv

ν // Wkrv

where the left-hand vertical arrow is the isomorphism (33) mapping Ea,b 7→ b, and
the right-hand vertical map sends an Ihara derivation df to f . Equipping Wkrv

with the Lie bracket inherited from krvν makes this into a commutative diagram of
Lie isomorphisms. But this bracket is nothing other than the Poisson bracket since
krvν ⊂ ider2. �

We now give a characterization of Wkrv by two defining properties which are the
twists by ν of those defining Vkrv. Recall that β is the the backwards operator given
in Definition 3.4.

Proposition 4.13. The space Wkrv is the space spanned by polynomials b ∈ lieC ,
of homogeneous degree n ≥ 3, such that

(i) by − bx is anti-palindromic, i.e. β(by − bx) = (−1)n−1(by − bx), and

(ii) b+ c
ny

n is circ-constant, where c = (b|xn−1y).

Proof. Let f = ν(b), so that f ∈ Vkrv. Then the property that by − bx is anti-
palindromic is precisely equivalent to the push-invariance of f (this is proved as the
equivalence of properties (iv) and (v) of Theorem 2.1 of [S1]). This proves (i).

For (ii), we note that since f ∈ Vkrv, fy − fx is push-constant for the value
c = (f |xn−1y) = (−1)n−1(b|xn−1y). We have

b(x, y) = xbx(x, y) + yby(x, y),

so

f(x, y) = b(z, y) = zbx(z, y) + yby(z, y) = −xbx(z, y)− ybx(z, y) + yby(z, y).

Thus since f(x, y) = xfx(x, y) + yfy(x, y), this gives

fx = −bx(z, y) and fy = −bx(z, y) + by(z, y),

so

fy − fx = by(z, y) = ν(by).

Thus to prove the result, it suffices to prove that the following statement: if g ∈
AssC is a polynomial of homogeneous degree n that is push-constant for (−1)n−1c,
then ν(g) is circ-constant for c, since taking g = fy − fx then shows that ν(g) = by

is circ-constant for c. The proof of this statement is straightforward using the
substitution z = −x − y (but see the proof of Lemma 3.5 in [S1] for details). To
complete the proof of (ii), we note that when f ∈ Vkrv is of even degree n we have
c = 0. In fact this follows from Corollary 1.9, which states that lkv1

n = 0 when n
is even; this means that there are no elements in krv of even weight n and depth 1,
so there are no such elements in Vkrv. Since c is the coefficient of the depth 1 term
xn−1y, we have c = 0 when n is even. This completes the proof of (ii). �
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4.2.2. Step 2: The mould version ma(Wkrv). The space ma(Wkrv) is closed under
the ari-bracket by (65), since Wkrv is closed under the Poisson bracket.

Let b ∈ Wkrv and let B = ma(b). Then since b is a Lie polynomial, B is an
alternal polynomial mould. Let us give the mould reformulations of properties (i)
and (ii) of Proposition 4.13. The second property is easy since we already showed,
in Proposition 3.7, that a polynomial b is circ-constant if and only if swap(B) is
circ-constant.

Expressing the first property in terms of moulds is more complicated and calls
for an identity discovered by Écalle. We need to use the mould operator mantar
defined in (59), as well as the mould operator pari defined by

The operator pari extends the operator y 7→ −y on polynomials to all moulds,
and mantar extends the operator f 7→ (−1)n−1β(f).

Lemma 4.14. Let b ∈ lieC . Then the following are equivalent:

(1) by − bx is anti-palindromic;

(2) if B = ma(b), then pari(B) satisfies the senary relation

(90) teru ◦ pari(B) = push ◦mantar ◦ teru ◦ pari(B).

(Note that since b is a Lie element, B and pari(B) are alternal and thus mantar-
invariant, so we can drop the right-hand mantar from the senary relation (83).)

Proof. It suffices to prove the statement for an element b of homogeneous degree
n. The statement is a consequence of the following result, proved in Proposition
A.3 of the Appendix of [S1]. Let b̃ ∈ lieC and let B̃ = ma(b̃). Write b̃ = b̃xx+ b̃yy as

usual. Then for each depth r part (b̃x+b̃y)r of the polynomial b̃x+b̃y (1 ≤ r ≤ n−1),
the anti-palindromic property

(91) (b̃x + b̃y)r = (−1)n−1β(b̃x + b̃y)r

translates directly to the following relation on B̃:

(92) teru(B̃)(u1, . . . , ur) = push ◦mantar ◦ teru(B̃)(u1, . . . , ur).

Let us deduce the equivalence of (1) and (2) from that of (91) and (92). Let b̃

be defined by b̃(x, y) = b(x,−y). This implies that (bx)r = (−1)r(b̃x)r, (by)r =

(−1)r−1(b̃y)r, and B̃ = pari(B). Thus by − bx is anti-palindromic if and only if

b̃y+ b̃x is, i.e. if and only if (91) holds for b̃, which is the case if and only if (92) holds

for B̃, which is equivalent to (90) with B̃ = pari(B). This proves the lemma. �

Corollary 4.15. We have the isomorphism of Lie algebras

ma : Wkrv
∼ // ARIpolal+tsen∗circconst ⊂ ARIari .

Proof. By Proposition 4.13, the space Wkrv is the space of Lie polynomials
b satisfying (i) by − bx is antipalindromic and (ii) b + (c/n)yn is circ-constant,
where c = (b|xn−1y). By Lemma 4.14, property (i) is equivalent to the fact that
pari(B) satisfies the senary relation (83). By Proposition 3.7 the fact that b is circ-
constant is equivalent to swap(B) being circ-constant (and the remark at the end
of Definition 4.10 shows that the constant is necessarily unique and the same). But

by definition 4.10, ARIpolal+tsen∗circconst is precisely the space of alternal polynomial
moulds satisfying precisely these two mould properties. �
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4.2.3. Mould background: Exponential maps from ARI to GARI. The next stage
of our proof, the construction of a Lie algebra morphism

(93) ARIpolal+tsen∗circconst
// ARI∆

al+push∗circneut,

is the most difficult, and requires some further definitions from mould theory. In
order to keep it simple, we will make use of the following general scheme.

Let g denote a vector space equipped with a grading in weights n ≥ 1, equipped
with a pre-Lie law p(f, g) that respects the grading in the sense that if f is of weight
n and g of weight m then p(f, g) is of weight n+m. Then g is also automatically
equipped with

• a Lie bracket [f, g] := p(f, g)− p(g, f);

• an exponential map expp mapping g into the set of group-like elements of the
completed universal enveloping algebra of the Lie algebra g, and its inverse map
logp;

• the group law ∗ making G := expp(g) into a group, given by

expp(f) ∗ expp(g) = expp
(
ch[,](f, g)

)
.

• an adjoint action of G on the graded completion ĝ of g defined for each element
H ∈ G by letting h = logp(H) and setting

Ad[,](H) · f = exp
(
ad(h)

)
· f =

∑
n≥0

1

n!
ad(h)n · f ∈ ĝ,

where ad(h) · f = [h, f ].

When g = ARI equipped with the grading by the depth, we have g = ĝ. We have
seen that ARI can be equipped with various pre-Lie laws and Lie brackets. The
underlying set of the associated group will always be the set GARI of all moulds
with constant term 1, just as ARI is the space of all moulds with constant term 0.
(The same holds for ARI and GARI.)

Écalle has studied a large family of different pre-Lie laws on ARI and ARI,
together with all their attendant structures as in the list above. The only ones we
need here are the pre-Lie laws

preari(A,B) = arit(B) ·A+mu(A,B) on ARI

preari(A,B) = arit(B) ·A+mu(A,B) on ARI,

where arit (resp. arit) are the derivations of ARIlu (resp. ARI lu) defined in Ap-
pendix 1. We will not use these pre-Lie laws in and of themselves, but in the next
paragraph we will be using their associated adjoint actions Adari and Adari.

We end this paragraph by defining, for any mould Q ∈ GARI, an automorphism
ganit(Q) of the Lie algebra ARI lu

11. Set v = (v1, . . . , vr), and let Wv denote the

11The explicit expression given below does not show immediately why ganit(Q) is an automor-

phism. However, this can be seen by using Écalle’s explicit definition of the operator anit given
in Appendix 1: for every A ∈ ARI, the operator anit(A) is a derivation of ARIlu (see Appendix

A.1 of [S2]). Then preani(A,B) = anit(B) · A −mu(A,B) is a pre-Lie law on ARI. Let expani

be the associated exponential map. The explicit formula for ganit shows that we have

ganit
(
expani(A)

)
= exp

(
anit(A)

)
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set of decompositions dv of v into chunks

(94) dv = a1b1 · · ·asbs
for s ≥ 1, where with the possible exception of bs, the ai and bi are non-empty.
Thus for instance, when r = 2 there are two decompositions in Wv, namely a1 =
(v1, v2) and a1b1 = (v1)(v2), and when r = 3 there are four decompositions, three
for s = 1: a1 = (v1, v2, v3), a1b1 = (v1, v2)(v3), a1b1 = (v1)(v2, v3), and one for
s = 2: a1b1a2 = (v1)(v2)(v3).

Écalle’s explicit expression for ganit(Q) is given by

(95)
(
ganit(Q) · P

)
(v) =

∑
a1b1···asbs∈Wv

Q(bb1) · · ·Q(bbs) P (a1 · · ·as),

where if bi is the chunk (vk, vk+1, . . . , vk+l), then we use the notation

(96) bbi = (vk − vk−1, vk+1 − vk−1, . . . , vk+l − vk−1).

4.2.4. Mould background: The special mould pal and Écalle’s fundamental identity.
We are now ready to introduce the fundamental identity of Écalle, which is the key
to the construction of the desired map (93).

Definition 4.16. Let constants cr ∈ Q, r ≥ 1, be defined by setting f(x) = 1−e−x
and expanding f∗(x) =

∑
r≥1 crx

r+1, where f∗(x) is the infinitesimal generator of

f(x), defined by

f(x) =
(
exp
(
f∗(x)

d

dx

))
· x.

Let lopil be the mould in ARIari defined by lopil(v1) = − 1
2v1

and for r ≥ 2 by the
simple expression

(97) lopil(v1, . . . , vr) = cr
v1 + · · ·+ vr

v1(v1 − v2) · · · (vr−1 − vr)vr
Set pil = expari(lopil) where expari denotes the exponential map associated to
preari, and set pal = swap(pil).

The mould lopil is easily seen to be both alternal and circ-neutral. It is also
known (although surprisingly difficult to show) that the mould lopal = logari(pal)
is alternal (cf. [Ec2], or [S2], Chap. 4.). Thus the moulds pil and pal are both
exponentials of alternal moulds; this is called being symmetral. The inverses of pal
(in GARI) and pil (in GARI) are given by

invpal = expari(−lopal), invpil = expari(−lopil).
The key maps we will be using in our proof are the adjoint operators associated

to pal and pil, given by

(98) Adari(pal) = exp
(
adari(lopal)

)
, Adari(pil) = exp

(
adari(lopil)

)
,

where adari(P ) ·Q = ari(P,Q). The inverses of these adjoint actions are given by

(99) Adari(invpal) = exp
(
adari(−lopal)

)
, Adari(invpil) = exp

(
adari(−lopil)

)
.

for all A ∈ ARI, so as the exponential of a derivation, it is an automorphism. A direct proof from

the definition can be found in [K], Thm. 3.7. Observe also that if ani denotes the Lie bracket on

ARI given by preani(A,B)− preani(B,A) and gani denotes the corresponding multiplication on

expani(ARI) given by the Campbell-Hausdorff formula, then ganit(A) ◦ ganit(B) = 1 if and only
if gani(A,B) = 1.
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These adjoint actions produce remarkable transformations of certain mould prop-
erties into others, and form the heart of much of Écalle’s theory of multizeta values.
Écalle’s fundamental identity12 relates the two adjoint actions of (98). Valid for all
push-invariant moulds R, it is given by

(100) swap ·Adari(pal) ·R = ganit(pic) ·Adari(pil) · swap(R),

where pic ∈ GARI is defined by pic(v1, . . . , vr) = 1/v1 · · · vr.

For our purposes, it is useful to give a slightly modified version of this identity.
Let poc ∈ GARI be the mould defined by

(101) poc(v1, . . . , vr) =
1

v1(v1 − v2) · · · (vr−1 − vr)
.

Then it is shown in [B] that ganit(pic) and ganit(poc) are inverse automorphisms
of ARI lu (see [B], Lemmas 4.36 (esp. (4.15) and 4.37; see also the end of footnote
11). Thus, we can rewrite the above identity (100) as

(102) ganit(poc) · swap ·Adari(pal) ·R = Adari(pil) · swap(R),

and letting N = Adari(pal) · R, i.e. R = Adari(invpal) ·N , we rewrite it in terms
of N as

(103) Adari(invpil) · ganit(poc) · swap(N) = swap ·Adari(invpal) ·N,

this identity being valid whenever R = Adari(invpal) ·N is push-invariant.

4.2.5. Step 3: Construction of the map Ξ. In this section we finally arrive at the
main step of the construction of our map krv → krvell, namely the construction of
the map Ξ given in the following proposition.

Proposition 4.17. The operator Ξ = Adari(invpal) ◦ pari gives an injective Lie
morphism of Lie subalgebras of ARIari:

(104) Ξ : ARIpolal+tsen∗circconst
// ARI∆

al+push∗circneut.

Proof. We have already shown that both spaces are Lie subalgebras of ARIari,
the first in Corollary 4.15 and the second in 4.1.3. Furthermore, since pari and
Adari(invpal) are both invertible and respect the ari-bracket, the proposed map is
indeed an injective map of Lie subalgebras. Thus it remains only to show that the

image of ARIpolal+tsen∗circconst under Ξ really lies in ARI∆
al+push∗circneut. We will

show separately that if B ∈ ARIpolal+tsen∗circconst and A = Ξ(B), then

(i) A is push-invariant,

(ii) A is alternal,

(iii) swap(A) is circ-neutral up to addition of a constant-valued mould,

(iv) A ∈ ARI∆.

12This identity, given in [Ec], is proved in [S2], Theorem 4.5.2; the proof relies among other

things on a basic fact of mould theory stated by Écalle and used constantly in the mould literature,

namely that the operator ganit(pic) transforms alternal moulds in ARI to alternil moulds. A full
proof of this fact was not written down until the recent article [K] by N. Komiyama, see Corollary
3.25.
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Proof of (i). This statement follows directly on Écalle’s senary property (86) men-

tioned in footnote 1. Using this, since B satisfies (90), B̃ = pari(B) satisfies (92),

so Adari(invpal)(B̃) = Ξ(B) = A is push-invariant.

Proof of (ii). The subspace of alternal moulds ARIal is closed under ari (cf. [SS]),
so expari(ARIal) forms a subgroup of GARIgari, which we denote by GARIasgari
(the superscript as stands for symmetral). The pal is known to be symmetral
(cf. [Ec2], or in more detail [S2], Theorem 4.3.4). Thus, since GARIasgari is a group,
the gari-inverse mould invpal is also symmetral. Therefore the adjoint action
Adari(invpal) on ARI restricts to an adjoint action on the Lie subalgebra ARIal
of alternal moulds. If B is alternal, then pari(B) is alternal, and so A = Ξ(B) is
alternal. This completes the proof of (ii).

For the assertions (iii) and (iv), we will make use of Écalle’s fundamental identity
in the version (103) given in 4.2.4, with N = pari(B) (recall that (103) is valid
whenever Adari(invpal) ·N is push-invariant, which is the case for pari(B) thanks
to (i) above). The key point is that the operators ganit(poc) and Adari(pil) on the
left-hand side of (103) are better adapted to tracking the circ-neutrality and the
denominators than the right-hand operator Adari(invpal) considered directly.

Proof of (iii). Let b ∈ Wkrv, and assume that b is of homogeneous degree n. Let
B = ma(b). Then by Corollary 4.15, swap(B) is circ-constant, and even circ-neutral
if n is even.

We need to show that swap ·Adari(invpal) · pari(B) is *circ-neutral. To do this,
we use (103) with N = pari(B), and in fact show the result on the left-hand side,
which is equal to

Adari(invpil) · ganit(poc) · pari · swap(B)

(noting that pari commutes with swap). We prove that this mould is *circ-neutral
in three steps. First we show that the operator ganit(poc) · pari changes a circ-
constant mould into one that is circ-neutral (Proposition 4.18). Secondly, we show
that the operator Adari(invpil) preserves the property of circ-neutrality (Proposi-
tion 4.20). Finally, we show that if M is a mould that is not circ-constant but only
*circ-constant, and if M0 is the (unique) constant-valued mould such that M +M0

is circ-constant, then

Adari(invpil) · ganit(poc) · pari(M) +M0

is circ-neutral. Using (103), this will show that swap · Adari(invpal) ·M is *circ-
neutral when Adari(invpil) ·M is push-invariant.

Proposition 4.18. Fix n ≥ 3, and let M ∈ ARI be a circ-constant polynomial-
valued mould of homogeneous degree n. Then ganit(poc) · pari(M) is circ-neutral.

Notation for the proof of Proposition 4.18.
Let v = (v1, . . . , vr), and let Wv be the set of decompositions dv of v into chunks

dv = a1b1 · · ·asbs as in (94). For any decomposition dv, we let its b-part be the
unordered set {b1, . . . ,bs}, its a-part the unordered set {a1, . . . ,as}, and we write
|a| for the number of letters in the a-part, i.e. |a| = |a1|+ · · ·+ |as|.

Let
W =

∐
i

Wσi
r(v),
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where the σir(v) are the cyclic permutations of v = (v1, . . . , vr), and let Wb denote
the subset of decompositions in W having identical b-part, so that we have

(105) W =
∐

b=(b1,...,bs)

Wb.

Let w = (vi+1, . . . , vr, v1, . . . , vi) be any cyclic permutation of v = (v1, . . . , vr);
let dw = a1b1 · · ·asbs be a decomposition of w, and let b = {b1, . . . ,bs} be its
b-part. We will list all the elements of Wb, i.e. all decompositions of all cyclic
permutations of v having b-part equal to b. Let a = {a1, . . . ,as} be the a-part of
dw. Then there exists a decomposition of a cyclic permutation of v having b-part
equal to b if and only if the cyclic permutation begins with a letter vk ∈ a; for such
a cyclic permutation, there is exactly one decomposition with b-part b, obtained
by cyclically shifting the pieces of the decomposition dw.

Example. Let w = (v3, v4, v5, v6, v7, v1, v2) and consider the decomposition

w = a1b1a2b2a3 = (v3, v4)(v5)(v6)(v7, v1)(v2).

Then b = {v1, v5, v7} and a = {v2, v3, v4, v6}. The only cyclic permutations of
v = (v1, . . . , v7) admitting the b-part {v1, v5, v7} are the ones starting with vk ∈ a,
and for each one, there is a unique decomposition determined by b:

(v2, v3, v4)(v5)(v6)(v7, v1)

(v3, v4)(v5)(v6)(v7, v1)(v2)

(v4)(v5)(v6)(v7, v1)(v2, v3)

(v6)(v7, v1)(v2, v3, v4)(v5).

Let the ordered a-part of a decomposition dw of a cyclic permutation w of v =
(v1, . . . , vr) be the word a1 · · ·as of the decomposition dw. Then by the above,
there are exactly |a| decompositions in Wb, and their ordered a-parts are given by

(106) {σj|a|(a1 · · ·as) | j = 0, . . . , |a| − 1}

i.e. the cyclic permutations of the letters of a1 · · ·as.

Proof of Proposition 4.18. Let c =
(
M(v1) | vn−1

1

)
, and let N = pari(M), so that

N is a polynomial mould of fixed homogeneous degree n, with N(v1) = −cvn−1
1 .

Since M is circ-constant for c (cf. Definition 3.6 for the definition), we have

(107) N(v1, . . . , vr) + · · ·+N(vr, v1, ..., vr−1) = (−1)rc
∑

e1+···+er=n−r
ei≥0

ve11 · · · verr .

By the explicit formula (95), we have

(108)
(
ganit(poc) ·N

)
(v1, . . . , vr) =

∑
Wv

poc(bb1) · · · poc(bbs)N(a1 · · ·as),
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so adding up over the cyclic permutations of v, we have

r−1∑
i=0

(
ganit(poc) ·N

)(
σir(v)

)
=
∑
W

poc(bb1) · · · poc(bbs)N(a1 · · ·as)

=
∑

b={b1,...,bs}

∑
Wb

poc(bb1) · · · poc(bbs)N(a1 · · ·as)

=
∑

b={b1,...,bs}

poc(bb1) · · · poc(bbs)
|a|−1∑
j=0

N
(
σj|a|(a1 · · ·as)

)
= c

∑
b={b1,...,bs}

(−1)|a|poc(bb1) · · · poc(bbs)
∑

e1+···+e|a|=n−|a|
ej≥0

ve1i1 · · · v
e|a|
i|a|

,(109)

where the first equality is the definition of ganit(poc), the second equality follows
directly from (105), the third follows directly from (106), and the last equality
from (107) using the notation {a1, . . . ,as} = {vi1 , . . . , vi|a|} for the subset a of

{v1, . . . , vr}.

If c = 0, i.e. if M is a circ-neutral mould, the expression (109) is trivially equal
to zero in all depths r > 1, proving Proposition 4.18 in the case where M is circ-
neutral. In order to deal with the case where M is circ-constant for a value c 6= 0,
we use a trick and subtract off a known mould that is also circ-constant for c. For
A ⊂ {1, . . . , n}, let SAd denote the sum of all monomials of degree d in the letters
vi, i ∈ A.

Lemma 4.19. For n > 1 and any constant c, let Tnc be the homogeneous polynomial
mould of degree n defined by

Tnc (v1, . . . , vr) =
c

r
S
{1,...,r}
n−r

for 1 ≤ r ≤ n. Then Tnc is circ-constant and ganit(poc) · pari(Tnc ) is circ-neutral.

The proof of this lemma is surprisingly long and technical, so we have relegated
it to Appendix 2. Using the result, we can now finish the proof of Proposition 4.18.
Indeed we have M(v1) = Tnc (v1) = cvn−1

1 , so the mould M −Tnc is circ-neutral and
thus ganit(poc) · pari(M − Tnc ) is also circ-neutral. But Lemma 4.19 shows that
ganit(poc) · pari(Tnc ) is itself circ-neutral, so we have

r∑
i=1

circi
(
ganit(poc) · pari(M)

)
=

r∑
i=1

circi
(
ganit(poc) · pari(Tnc )

)
= 0

and thus ganit(poc) · pari(M) is also circ-neutral, completing the proof of Proposi-
tion 4.18. �

We now proceed to the second step, showing that the operator Adari(invpil)
preserves circ-neutrality.

Proposition 4.20. If M ∈ ARI is circ-neutral then Adari(invpil) · M is also
circ-neutral.

Proof. By (99), we have

(110) Adari(invpil) = exp
(
adari(−lopil)

)
=
∑
n≥0

(−1)n

n
adari(lopil)

n.
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The definition of lopil in (97) shows that lopil is trivially circ-neutral. Thus, since
M is circ-neutral, adari(lopil) ·M = ari(lopil,M) is also circ-neutral by Lemma
4.6, and successively so are all the terms adari(lopil)

n(M). Thus Adari(invpil) ·M
is circ-neutral. �

Finally, we now assume that swap(B) is a *circ-constant polynomial-valued
mould in ARI of homogeneous degree n. Let B0 be the (unique) constant-valued
mould such that swap(B) + B0 is circ-constant. Then by Propositions 4.18 and
4.20, the mould

Adari(invpil) · ganit(poc) · pari
(
swap(B) +B0

)
is circ-neutral. This mould breaks up as the sum

Adari(invpil) · ganit(poc) · pari(swap(B)) +Adari(invpil) · ganit(poc) · pari(B0),

but the operatorAdari(invpil)·ganit(poc) preserves constant-valued moulds (cf. [S2],
Lemma 4.6.2 for the proof). Thus

Adari(invpil) · ganit(poc) · pari
(
swap(B) +B0

)
=

Adari(invpil) · ganit(poc) · pari(swap(B)) +B0

is circ-neutral, or equivalently,

Adari(invpil) · ganit(poc) · pari(swap(B))

is *circ-neutral. However, using the fact that pari trivially commutes with swap
and also the fact that by Proposition 4.17 (i) (relying on Écalle’s assertion (??))
Adari(invpal) · pari(B) is push-invariant, we can apply (103) to find that

Adari(invpil) · ganit(poc) · swap
(
pari(B)

)
= swap ·Adari(invpal) · pari(B)

= swap · Ξ(B).

Thus swap · Ξ(B) is *circ-neutral, which concludes the proof of (iii).

Proof of (iv). We will again use Écalle’s assertion (86) and the equality (103);
this time we will study the left-hand side of (103) to to track the denominators
that appear in the right-hand side. By (103), if B is a polynomial-valued mould
satisfying the senary relation, and if A = Ξ(B) = Adari(invpal) · pari(B), then A
lies in ARI∆ if and only if

(111) swap ·Adari(invpil) · ganit(poc) · swap
(
pari(B)

)
∈ ARI∆.

We will prove that this is the case, by studying the denominators that are pro-
duced, first by applying ganit(poc) to a polynomial-valued mould, and then by
applying Adari(invpil). The first result is that the denominators introduced by
applying ganit(poc) are at worst of the form (v1 − v2) · · · (vr−1 − vr).

Lemma 4.21. [ [B], Prop. 4.38] Let M ∈ ARIpol. Then

swap · ganit(poc) ·M ∈ ARI∆.

Proof. The explicit expression for ganit(Q) given in (95) shows that the only
denominators that can occur in ganit(poc) ·M come from the factors

(112) poc(bb1) · · · poc(bbs)
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for all decompositions dv = a1b1 · · ·asb2 of v = (v1, . . . , vr) into chunks as in (94),
and

bbi = (vk − vk−1, vk+1 − vk−1, . . . , vk+l − vk−1)

(for k > 1) as in (96). Since poc is defined as in (101), the only factors that can
appear in (112) are (vl − vl−1) where vl is a letter in one of bi, and these factors
appear in each term with multiplicity one. Since the sum ranges over all possible
decompositions, the only letter of v that never belongs to any bi is v1; all the other
factors (vi − vi−1) appear. Thus (v1 − v2)(v2 − v3) · · · (vr−1 − vr) is a common
denominator for all the terms in the sum defining ganit(poc) ·M . The swap of this
common denominator is equal to u2 · · ·ur, so this term is a common denominator
for swap · ganit(poc) ·M , which proves the lemma. �

Lemma 4.22. Let M,N ∈ ARI∗circneut be two moulds such that swap(M) and
swap(N) lie in ARI∆. Then swap

(
ari(M,N)

)
also lies in ARI∆.

Proof. In Proposition A.1 of the Appendix of [BS], it is shown that if M and N
are alternal moulds in ARI such that swap(M) and swap(N) lie in ARI∆, then
swap

(
ari(M,N)

)
also lies in ARI∆. In fact, it is shown in Proposition A.2 of that

appendix that alternal moulds M whose swap lies in ARI∆ satisfy the following
property: setting

M̌(v1, . . . , vr) = v1(v1 − v2) · · · (vr−1 − vr)vrM(v1, . . . , vr),

we have

(113) M̌(0, v2, . . . , vr) = M̌(v2, . . . , vr, 0).

In fact, the proof that swap
(
ari(M,N)

)
lies in ARI∆ does not use the full alter-

nality of M and N , but only (113). Therefore, the same proof goes through when
M and N are *circ-neutral moulds such that swap(M) and swap(N) lie in ARI∆,
as long as we check that every *circ-neutral mould M such that swap(M) ∈ ARI∆

satisfies (113).
To check this, let M be such a mould; by additivity, we may assume that M is

concentrated in a single depth r > 1. This means that there is a constant CM such
that

M(v1, . . . , vr) +M(v2, . . . , vr, v1) + · · ·+M(vr, v1, . . . , vr−1) = CM ,

which we can also write as

M̌(v1, . . . , vr)

v1(v1 − v2) · · · (vr−1 − vr)vr
+

M̌(v2, . . . , vr, v1)

v2(v2 − v3) · · · (vr−1 − vr)(vr − v1)v1
+

· · ·+ M̌(vr, v1, . . . , vr−1)

vr(vr − v1) · · · (vr−2 − vr−1)vr−1
= CM

where the numerators are polynomials. If we multiply the entire equality by v1

and set v1 = 0, only the first two terms do not vanish, and they yield precisely the
desired relation (113). �

Corollary 4.23. If P ∈ ARI is a *circ-neutral mould such that swap(P ) ∈ ARI∆,
then also

(114) swap ·Adari(invpil) · P ∈ ARI
∆.
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Proof. The mould lopil is circ-neutral and swap·lopil ∈ ARI∆ by (97). Therefore
by Lemma 4.22, we have swap · ari(lopil, P ) ∈ ARI∆. In fact, applying Lemma
4.22 successively shows that swap · adari(lopil)n(P ) ∈ ARI∆ for all n ≥ 1. Since
Adari(invpil) ·P is obtained by summing these terms by (110), we obtain (114). �

We can now complete the proof of (iv) of Proposition 4.17. Recall that B ∈
ARIpolal+sen∗circconst and A = Ξ(B). By Lemma 4.21 we have

(115) swap · ganit(poc) · swap · pari(B) ∈ ARI∆.

Since swap and pari commute, the mould in (115) is equal to

(116) swap · ganit(poc) · pari · swap(B) ∈ ARI∆.

By Proposition 4.18, the mould P := ganit(poc) ·pari ·swap(B) is *circ-neutral. By
(116), swap(P ) lies in ARI∆. Therefore we can apply Corollary 4.23 to conclude
that

swap ·Adari(invpil) ·P = swap ·Adari(invpil) ·ganit(poc) ·swap ·pari(B) ∈ ARI∆.

Applying (103) with N = pari(B), we finally find that

Adari(invpal) · pari(B) = Ξ(B) ∈ ARI∆,

which completes the proof of (iv).

We have thus finished proving Proposition 4.17. Backtracking, this means we
have completed the details of Step 3 of the proof of Theorem 4.9. Step 4, the final
step in the proof, is very easy and was explained completely just before paragraph
4.2.1. Thus we have now completed the proof of Theorem 4.9, i.e. we have completed
the construction of the injective Lie algebra morphism krv ↪→ krvell. �

4.3. Relations with elliptic Grothendieck-Teichmüller and double shuffle.
The final result in this paper is the proof of Theorem 1.16. In fact, this result is
simply a consequence of putting together the results of the previous sections with
known results. Indeed, the commutativity of the diagram

(117) grt
� � //
� _

��

ds� _

��
g̃rtell

� � //
� q

##

dsellmM

||
oder2

where Adari(invpal) : ds→ dsell is the right-hand vertical map is shown in [S3].

Let b = b(x, y) ∈ ds. By (10), the injective map ds
� � // krv sends b to the

derivation of Lie[x, y] given by y 7→ b̂(x, y) := b(−x− y,−y) and [x, y] 7→ 0 (which
determines the value of the derivation on x uniquely). If b(x, y) ∈ ds, then b(x,−y)
lies in Wkrv and b(z,−y) lies in Vkrv, so this map unpacks to

ds
y 7→−y// Wkrv

x 7→z // Vkrv // krv,
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where the last map comes from (33). We can thus construct a commutative square

(118) ds

��

// krv

��
dsell �

�
krvell

given in detail by

(119) ds
� � y 7→−y //

ma

��

Wkrv ' krv

ma

��
ARIpolal∗il

� � pari //

Adari(invpal)

��

ARIpolal+tsen∗circconst

Adari(invpal)◦pari
��

ARI∆
al∗al
� �

∆

��

ARI∆
al+push∗circneut

∆

��
∆(ARI∆

al∗al)

ma−1

��

� � ∆(ARI∆
al+push∗circneut)

ma−1

��
dsell �

�
krvell.

The second line of this diagram is the direct mould translation of the top line, as
the left-hand space is exactly ma(ds), the right-hand space is ma(Wkrv) by (85),
and the map pari restricted to polynomials is nothing other than y 7→ −y. The
proof of the vertical morphism

Adari(invpal) : ARIpolal∗il → ARI∆
al∗al

has two parts. The fact that Adari(invpal) maps ARIal∗il to ARIal∗al is one of

the fundamental results of Écalle’s mould theory, and follows directly from Écalle’s
fundamental identity (100) (see [S2], Theorem 4.6.1). The fact that restricted to

ARIpolal∗il, the operator Adari(invpal) produces denominators at worst ∆ was proved
in [B], Thm. 4.35.

The vertical morphism

Adari(invpal) ◦ pari : ARIpolal+tsen∗circconst
// ARI∆

al+push∗circneut

follows directly from Écalle’s statement (86). (see footnote 1). Since pari is an
involution, this proves that the horizontal injection in the third line of the diagram
is simply an inclusion.

Finally, the last line of the diagram, which not rely on Écalle’s senary statement,
comes from the definitions dsell = ∆(ARI∆

al∗al) ([S3]) and krvell = ∆(ARI∆
al+push∗circneut)

by Definition 4.1.
This diagram shows that the diagram (117) above can be completed by the

diagram (118) to the commutative diagram of Theorem 1.16.
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5. Appendix 1: Some facts on moulds

In this appendix, we introduce some mould definitions used in some of our proofs,
and give the proof of Lemma 4.6.

Let ARI be the vector space of moulds with constant term 0. There are three
different Lie brackets that one can put on the space ARI. We begin by introducing
the standard mould multiplication that Écalle denotes mu(A,B):

mu(A,B)(u1, . . . , ur) =

r∑
i=0

A(u1, . . . , ui)B(ui+1, . . . , ur).

The associated Lie bracket lu is defined by lu(A,B) = mu(A,B)−mu(B,A). We
write ARIlu for ARI viewed as a Lie algebra for the lu-bracket. The identical
formulas yield a multiplication and Lie algebra (also called mu and lu) on ARI.
If f and g are power series in AssC and A = ma(f), B = ma(g), then mu is a
mould translation of the usual non-commutative multiplication, and lu the usual
Lie bracket:

mu(A,B) = ma(fg), lu(A,B) = ma
(
[f, g]

)
.

In order to define Écalle’s ari-bracket, we first introduce three derivations of
ARIlu associated to a given mould A ∈ ARI. It is non-trivial to prove that these
operators are actually derivations (cf. [S2], Prop. 2.2.1).

Definition 5.1. [Ec] Let B ∈ ARI. Then the derivation amit(B) of ARIlu is given
by(
amit(B)·A

)
(u1, . . . , ur) =

∑
0≤i<j<r

A(u1, . . . , ui, ui+1+· · ·+uj+1, uj+2, . . . , ur)B(ui+1, . . . , uj),

and the derivation anit(B) is given by(
anit(B)·A

)
(u1, . . . , ur) =

∑
0<i<j≤r

A(u1, . . . , ui−1, ui+· · ·+uj , uj+1, . . . , ur)B(ui+1, . . . , uj).

We also have corresponding derivations amit(B) and anit(B) of ARI lu for B ∈
ARI, given by the formulas(
amit(B)·A

)
(v1, . . . , vr) =

∑
0≤i<j<r

A(v1, . . . , ui, vj+1, . . . , vr)B(vi+1−vj+1, . . . , vj−vj+1),

(
anit(B)·A

)
(v1, . . . , vr) =

∑
0<i<j≤r

A(v1, . . . , vi, vj+1, . . . , vr)B(vi+1−vi, . . . , vj−vi).

Finally, Écalle defines the derivation arit(B) on ARIlu by

arit(B) = amit(B)− anit(B),

and the ari-bracket on ARI by

(120) ari(A,B) = arit(B) ·A− arit(A) ·B + lu(A,B),

as well as the derivation arit on ARI lu and the bracket ari on ARI by the same
formulas with overlines.

Remark. The definitions of amit, anit, arit and ari are generalizations to all
moulds of familiar derivations of AssC . Indeed, if f, g ∈ AssC and A = ma(f),
B = ma(g), then

amit(B) ·A = ma
(
Dl
g(f)

)



46

where Dl
g is defined by x 7→ 0, y 7→ gy,

anit(B) ·A = ma
(
Dr
g(f)

)
where Dr

g is defined by x 7→ 0, y 7→ yg, and thus

arit(B) ·A = ma
(
−dg(f)

)
where dg is the Ihara derivation x 7→ 0, y 7→ [y, g] (see (5)), and

(121) ari(A,B) = ma
(
[f, g] + df (g)− dg(f)

)
= ma

(
{f, g}

)
.

corresponds to the Ihara or Poisson Lie bracket (6) on lieC . (See [S2], Corollary
3.3.4).

We now pass to the Dari-bracket, which is the Lie bracket on ARI obtained by
transfer by the ∆-operator given in (61): it is given by

(122) Dari(A,B) = ∆
(
ari
(
∆−1(A),∆−1(B)

))
.

This means that ∆ gives an isomorphism of Lie algebras

(123) ∆ : ARIari
∼→ ARIDari.

It is shown in [S3], Prop. 3.2.1 that we have a second definition for the Dari-
bracket, which is more complicated but sometimes very useful in certain proofs. Let
dar denote the mould operator defined by dar(A)(u1, . . . , ur) = u1 · · ·ur A(u1, . . . , ur).
We begin by introducing, for each A ∈ ARI, an associated derivation Darit(A) of
ARIlu by the following formula:

(124) Darit(A) = dar ◦
(
−arit

(
∆−1(A)

)
+ ad

(
∆−1(A)

))
◦ dar−1,

where ad(A) ·B = lu(A,B). Then Dari corresponds to the bracket of derivations,
in the sense that

(125) Dari(A,B) = Darit(A) ·B −Darit(B) ·A.

We are now armed to attack Lemma 4.6, whose statement we recall.

Lemma 4.6. The space ARIcircneut of circ-neutral moulds A ∈ ARI forms a Lie
algebra under the ari-bracket.

Proof. Let A,B ∈ ARIcircneut. We need to show that

r∑
i=1

ari(A,B)(vi, . . . , vr, v1, . . . , vi−1) = 0,

where the formula for the ari-bracket on ARI is given as in (120) by the expression

ari(A,B) = lu(A,B) + arit(B) ·A− arit(A) ·B
= lu(A,B) + amit(B) ·A− anit(B) ·A− amit(A) ·B + anit(A) ·B.

We will show that this expression is circ-neutral because in fact, each of the five
terms in the sum is individually circ-neutral. Let us start by showing this for the
first term, lu(A,B).

Let σ denote the cyclic permutation of {1, . . . , r} defined by

σ(i) = i+ 1 for 1 ≤ i ≤ r − 1, σ(r) = 1.
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By additivity, since the circ-neutrality property is depth-by-depth, we may assume
that A is concentrated in depth s and B in depth t, with s ≤ t, s + t = r. In this
simplifed situation, we have

lu(A,B)(v1, . . . , vr) = A(v1, . . . , vs)B(vs+1, . . . , vr)−B(v1, . . . , vt)A(vt+1, . . . , vr).

If s, t > 1, we have

r−1∑
i=0

lu(A,B)(vσi(1), . . . , vσi(r))

=

r−1∑
i=0

(
A(vσi(1), . . . , vσi(s))B(vσi(s+1), . . . , vσi(r))−B(vσi(1), . . . , vσi(t))A(vσi(t+1), . . . , vσi(r))

)
=

r−1∑
i=0

(
A(vσi(1), . . . , vσi(s))B(vσi(s+1), . . . , vσi(r))−A(vσi+t(1), . . . , vσi+t(s))B(vσi+t(s+1), . . . , vσi+t(r))

)
= 0

as the terms cancel out pairwise.
We now prove that the second term(

amit(B)·A
)
(v1, . . . , vr) =

s∑
i=1

A(v1, . . . , vi−1, vi+t, . . . , vr)B(vi−vi+t, . . . , vi+t−1−vi+t)

is circ-neutral. Fix j ∈ {1, . . . , s} and consider the term

A(v1, . . . , vj−1, vj+t, . . . , vr)B(vj − vj+t, . . . , vj+t−1 − vj+t).
Thus for each of the other terms

A(v1, . . . , vi−1, vi+t, . . . , vr)B(vi − vi+t, . . . , vi+t−1 − vi+t)
in the sum, with i ∈ {1, . . . , s}, there is exactly one cyclic permutation, namely
σj−i, that maps this term to

A(vσj−i(1), . . . , vσj−i(i−1), vσj−i(i+t), . . . , vσj−i(r))B(vj − vj+t, . . . , vj+t−1 − vj+t).
For fixed j ∈ {1, . . . , s}, the values of k = j−i mod s as i runs through {1, . . . , s} are
exactly {0, . . . , s−1}. Therefore, the coefficient of the term B(vj−vj+t, . . . , vj+t−1−
vj+t) in the sum of the cyclic permutations of amit(B) ·A is equal to

s−1∑
k=0

A(vσk(1), . . . , vσk(i−1), vσk(i+t), . . . , vσk(r)),

which is zero due to the circ-neutrality of A. Thus the coefficient of the term
B(vj−vj+t, . . . , vj+t−1−vj+t) in the sum of the cyclic permutations of amit(B) ·A
is zero, and this holds for 1 ≤ j ≤ s, so the entire sum is 0, i.e. amit(B) · A is
circ-neutral.

Example. s = 3, t = 2, r = 5. We have(
amit(B) ·A

)
(v1, v2, v3, v4, v5) = A(v4, v5, v6)B(v1 − v4, v2 − v4, v3 − v4)

+A(v1, v5, v6)B(v2 − v5, v3 − v5, v4 − v5)

+A(v1, v2, v6)B(v3 − v6, v4 − v6, v5 − v6).(126)

For (amit(B) ·A) to be circ-neutral, the sum of the images of this expression under
the five non-trivial powers of the six-cycle permutation σ = (123456) must be zero.
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In particular, the coefficient of every factor of B that occurs in that sum must sum
to zero. Let us show this for the B-factor B(v2 − v5, v3 − v5, v4 − v5) that arises
in the second term of (126). The terms in the complete sum containing this factor
can only come from σ acting on the first term of (126), giving

A(v5, v6, v1)B(v2 − v5, v3 − v5, v4 − v5)

and from σ5 acting on the third term of (126), giving

A(v6, v1, v5)B(v2 − v5, v3 − v5, v4 − v5).

Therefore the coefficient of B(v2− v5, v3− v5, v4− v5) in the complete sum is equal
to

A(v1, v5, v6) +A(v5, v6, v1) +A(v6, v1, v5)

which is equal to zero by the circ-neutrality of A. The same holds for every B-factor
that occurs in the sum; there will always be exactly three possible ways to obtain
it by a unique permutation acting on each of the three terms of (126), and the
coefficients will be a circ-sum of A’s that add up to zero.

To conclude the proof of the lemma, we need to prove that the term anit(B) ·A
is also circ-neutral, but the proof is analogous to the case of amit. Finally, by
exchanging A and B, this also shows that amit(A) · B and anit(A) · B are circ-
neutral. This concludes the proof of the lemma. �

6. Appendix 2: Proof of Lemma 4.19

Let us recall the statement of the technical lemma 4.19. Recall that for A ⊂
{v1, . . . , vr}, we let MA

d denote the set of all monomials of degree d in the letters
of A, and SAd the sum of all monomials in MA

d . We will use the notation W, Wb

etc. given between the statement of Proposition 4.18 and its proof.

Lemma 4.19. For n > 1 and any constant c 6= 0, let Tnc be the homogeneous
polynomial mould of degree n defined by

Tnc (v1, . . . , vr) =
c

r
S
{v1,...,vr}
n−r .

Then Tnc is circ-constant and ganit(poc) · pari(Tnc ) is circ-neutral.

Proof. The mould Tnc is trivially circ-constant for the value c. For the rest of
this proof we set c = 1 and Tn = Tn1 ; it suffices to multiply all identities in the
proof below by the constant c to prove the general case.

Let N = pari(Tn). In order to show that ganit(poc) ·N is circ-neutral, we start
by recalling from the beginning of the proof of Proposition 4.18 that for each r > 1,
the cyclic sum

ganit(poc) ·N(v1, . . . , vr) + · · ·+ ganit(poc) ·N(vr, v1, . . . , vr−1)

is equal to the expression (109)

(127)
∑

b={b1,...,bs}

(−1)|a|poc(bb1) · · · poc(bbs)Sa
n−|a|,

where the sum runs over the distinct b-parts that can occur when decomposing the
cyclic permutations σir(v) = (vi+1, . . . , vr, v1, . . . , vi) into chunks a1b1 · · ·asbs (in
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which only bs can be empty). For each term of the sum, a denotes the subset of
{v1, . . . , vr} which is the complement of the b-part {b1, . . . ,bs}.

To prove the Lemma, we will show that (127) is equal to zero for all r > 1, by
breaking up the sum into simpler parts that can be expressed explicitly.

For each 0 ≤ i ≤ r, let Bi denote the set of all b-parts (occurring in the sum
in (127)) that contain vi but not vi+1, . . . , vr; in other words a given b-part b =
{b1, . . . ,bs} lies in Bi if and only if i is the largest index such that vi occurs in b.

Examples for i = 0, 1, 2. We have B0 = ∅, corresponding to all the decompositions
with empty b-parts, namely the trivial decompositions

σjr(v) = (vj+1, . . . , vr, v1, . . . , vj) = a1

for 0 ≤ j ≤ r − 1. The set B1 contains only the single element b = (v1), and
corresponds to the decompositions

σjr(v) = (vj+1, . . . , vr, v1, . . . , vj) = (vj+1, . . . , vr)(v1)(v2, . . . , vi) = a1b1a2

for 1 ≤ j ≤ r − 1 (in fact just a1b1 for j = 1). The set B2 contains two different
b-parts, namely (v2) and (v1, v2). The b-part (v2) occurs in the decompositions

(v1, . . . , vr) = (v1)(v2)(v3, . . . , vr) = a1b1a2

(v3, . . . , vr, v1, v2) = (v3, . . . , vr, v1)(v2) = a1b1

(vj , . . . , vr, v1, . . . , vj−1) = (vj+1, . . . , vr, v1)(v2)(v3, . . . , vj) = a1b1a2 for 4 ≤ j ≤ r.

The b-part (v1, v2) occurs in the decompositions{
(v3, . . . , vr)(v1, v2) = a1b1

(vj , . . . , vr)(v1, v2)(v3, . . . , vj−1) = a1b1a2 for 4 ≤ j ≤ r

Indeed, for 1 ≤ i ≤ r− 1, the set Bi is simply in bijection with the set of all subsets
B ⊂ {1, . . . , i− 1}, by associating B to the b-part {vj |j ∈ B} ∪ {vi}); when i = r,
Br is in bijection with the set of all strict subsets of {1, . . . , r − 1}.

The b-part of each decomposition of each cyclic permutation σjr(v) lies in a
unique Bi. Therefore setting

(128) Rri :=
∑
b∈Bi

(−1)|a|poc(bb1) · · · poc(bbs)Sa
n−|a|

for 0 ≤ i ≤ r, we can write the sum (127) as

(129)

r−1∑
i=0

(
ganit(poc) ·N

)(
σir(v)

)
= Rr0 + · · ·+Rrr.

We have

(130) Rr0 =

r−1∑
j=0

N
(
σjr(v)

)
= (−1)rSv1,...,vrn−r

since N = pari(Tn) and Tn is circ-constant. For Rr1, the only possible b-part is
(v1) and we have

(131) Rr1 =
(−1)r−1

v1 − vr
Sv2,...,vrn−r+1 .
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For i > 1, note that if bj = (vk+1, vk+2, . . . , vl) (with indices k and l considered
mod r from 1 to r, for example bj = (vr−1, vr, v1) with k = r − 2 and l = 1) is a
chunk of any decomposition

(132) σjr(v) = a1b1 · · ·asbs,

of any cyclic permutation of v, then by the definition of poc, we have

poc(bbj) = poc(vk+1 − vk, vk+2 − vk, . . . , vl − vk)

=
1

(vk+1 − vk)(vk+1 − vk+2) · · · (vl−1 − vl)

= −
∏

vm∈bj

1

(vm−1 − vm)
,

again with indices m mod r with values from 1 to r. Thus, writing as usual a for
the a-part of a decomposition as in (132), (128) can be written

(133) Rri =
∑

b′⊆{v1,...,vi−1}

(−1)|a|Sa
n−|a|∏

vj∈b(vj−1 − vj)

for 1 ≤ i ≤ r − 1, where b′ runs over all subsets of {v1, . . . , vi−1} so b = b′ ∪ {vi}
runs over the elements of Bi, and for i = r we have

(134) Rrr =
∑

b′({v1,...,vr−1}

(−1)|a|Sa
n−|a|∏

vj∈b(vj−1 − vj)
.

We will use these explicit expressions to show that the sum

Rr0 + · · ·+Rrr = 0

for all r ≥ 2. In order to prove this, we will give simple rational function expressions
for Rr1, . . . , R

r
r in Claim 1 below, generalizing the simple expression

(135) Rr0 = (−1)rSv1,...,vrn−r

for Rr0 from (130). These will allow us to show in Claim 2 that Rr0 + · · ·+Rrr = 0,
thus completing the proof of Lemma 4.19.

Claim 1. (i) For i = 1, we have

(136) Rr1 =
(−1)r−1Sv2,...,vrn−r+1

(vr − v1)
.

(ii) For 2 ≤ i ≤ r − 1, we have

(137) Rri =
(−1)r−iS

{vi−1,vi+1,...,vr−1}
n−r+i

(vr − v1)(v1 − v2) · · · (vi−1 − vi)
.

(iii) For i = r, we have

(138) Rrr =
vn−1
r−1

(vr − v1)(v1 − v2) · · · (vr−2 − vr−1)
.

The proof of this claim is long and we have moved it to the end of the Appendix.
Our next claim uses Claim 1 to give a simple rational expression for the sum
Rr0 + · · · + Rri . We first note the following trivial but useful identity. Recall the
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notation Vm = {v1, . . . , vm} for 1 ≤ m ≤ r. Let A′ ( Vr, let vj 6∈ A, and let
A = A′ ∪ {vj}: then we have the useful identity

(139) SA
′

d+1 + vjS
A
d = SAd+1.

Indeed, the first term is the sum of all monomials of degree d in the elements of
A′, and the second is the sum of all monomials in the letters of A containing vj , so
their sum forms the sum of all monomials of degree d in the letters of A.

Claim 2. For 0 ≤ i ≤ r − 1 we have

(140) Rr0 + · · ·+Rri =
(−1)r−iS

vi,...,vr−1

n−r+i
(vr − v1)(v1 − v2) · · · (vi−1 − vi)

.

Proof. We prove the result by induction on i. The base case i = 0 is given by
(130). Now let 1 ≤ i ≤ r − 1 and assume (140) up to i− 1. Then by the induction
hypothesis and Claim 1, we have

Rr0+ · · ·+Rri = (Rr0 + · · ·+Rri−1) +Rri

=
(−1)r−i+1S

vi−1,...,vr−1

n−r+i−1

(vr − v1)(v1 − v2) · · · (vi−2 − vi−1)
+

(−1)r−iS
vi−1,vi+1,...,vr−1

n−r+i
(vr − v1)(v1 − v2) · · · (vi−1 − vi)

=
(−1)r−i+1

(
vi−1S

vi−1,...,vr−1

n−r+i−1 − viSvi−1,...,vr−1

n−r+i−1 − Svi−1,vi+1,...,vr−1

n−r+i

)
(vr − v1)(v1 − v2) · · · (vi−1 − vi)

.

By (139), the second term and third terms in the numerator sum to −Svi−1,...,vr−1

n−r+i ,

so the numerator becomes (−1)r−i+1
(
vi−1S

vi−1,...,vr−1

n−r+i−1 −Svi−1,...,vr−1

n−r+i

)
which again

by (139) sums to (−1)r−i
(
S
vi,...,vr−1

n−r+i

)
. Thus we have

Rr0 + · · ·+Rri =
(−1)r−iS

vi,...,vr−1

n−r+i
(vr − v1)(v1 − v2) · · · (vi−1 − vi)

,

which proves Claim 2. �

End of the proof of Lemma 4.19. It suffices to note that by (140) when i = r−1
we have

(141) Rr0 + · · ·+Rrr−1 =
−vn−1

r−1

(vr − v1)(v1 − v2) · · · (vr−2 − vr−1)
.

But this is precisely the negative of the expression for Rrr given in Claim 1 (iii).
Thus we have Rr0 + · · ·+Rrr = 0. By (129) this means that

(142)

r−1∑
i=0

(
ganit(poc) ·N

)(
σir(v)

)
= 0,

i.e. ganit(poc) ·N is circ-neutral, completing the proof of Lemma 4.19. �

It remains only to give the proof of Claim 1.
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Proof of Claim 1. (i) When i = 1 we have B1 = {v1}, so here there is only
one term in the sum (133) corresponding to b′ = ∅, b = {v1}, a = {v2, . . . , vr},
|a| = r − 1, so that (133) for i = 1 comes down to (136).

(ii) Let Vm = {v1, . . . , vm} for 1 ≤ m ≤ r. Fix a value of i with 2 ≤ i ≤ r − 1.
Recall that Rri was defined in (133) as the sum

(143) Rri =
∑

b′⊆Vi−1

(−1)|a|Sa
n−|a|∏

vj∈b(vj−1 − vj)
.

where b = b′ ∪ {vi} and a is the complement of b in Vr.
Multiplying Rri by the common denominator (vr − v1) · · · (vi−1− vi) and setting

v0 = vr as usual, we rewrite (143) as

(144)

i∏
j=1

(vj−1 − vj)Rri =
∑

b′⊆Vi−1

(−1)|a|
∏

vj∈Vi−1\b′
(vj−1 − vj)Sa

n−|a|.

To conclude the proof, we need one more claim.

Claim 3. For each pair i, k with 1 < i < r and 1 ≤ k ≤ i−1, define the polynomial
Qik by∑
v1,...,vk 6∈B′⊂Vi−1

(−1)r−|B
′|+k−1

( ∏
vj∈Vi−1\(B′∪{v1,...,vk})

(vj−1−vj)
)
S
Vr\(B′∪{v1,...,vk−1}∪{vi,vr})
n−r+|B′|+k+1

Then Qi1 = Qi2 = · · · = Qii−1 and they are all equal to the right-hand side of (144).

Claim 3 allows us to compute the right-hand side of (144) by taking the sum
Qii−1, which is reduced to the single term corresponding to B′ = ∅ and B = {vi},
so is just (−1)r−iS

vi−1,vi+1,...,vr−1

n−r+i . Thus by (144) we find that

i∏
j=1

(vj−1 − vj)Rri = (−1)r−iS
vi−1,vi+1,...,vr−1

n−r+i ,

which proves part (ii) of Claim 1 as stated in (137).

Proof of Claim 3. We first show that the right-hand side of (144) is equal to Qi1,
and subsequently that Qi1 = Qi2 = · · · = Qik.

For the first statement, we begin by breaking the right-hand side of (144) into
v1 ∈ b′ and v1 6∈ b′, which gives

i∏
j=1

(vj−1 − vj)Rri =
∑

v1∈b′⊆Vi−1

(−1)|a|
∏

vj∈Vi−1\b′
(vj−1 − vj)Sa

n−|a|

+
∑

v1 6∈b′⊆Vi−1

(−1)|a|
∏

vj∈Vi−1\b′
(vj−1 − vj)Sa

n−|a|,

where b = b′ ∪ {vi} and a = Vr \ b as usual. Next we write b′ = b′′ ∪ {v1} in the
upper sum, simply rename b′ to b′′ in the lower sum, and use the fact that

a = Vr \ b =

{
Vr \ (b′′ ∪ {v1, vi}) in the upper sum

Vr \ (b′′ ∪ {vi}) in the lower sum
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to rewrite this as

=
∑

v1 /∈b′′⊆Vi−1

(−1)r−|b
′′|−2

∏
vj∈Vi−1\(b′′∪{v1})

(vj−1 − vj)SVr\(b′′∪{v1,vi})
n−r+|b′′|+2

+
∑

v1 6∈b′′⊆Vi−1

(−1)r−|b
′′|−1(vr − v1)

∏
vj∈Vi−1\(b′′∪{v1})

(vj−1 − vj)SVr\(b′′∪{vi})
n−r+|b′′|+1 .

This allows us to gather the terms in a single sum:

=
∑

v1 /∈b′′⊆Vi−1

(−1)r−|b
′′|

∏
vj∈Vi−1\(b′′∪{v1})

(vj−1 − vj) ×

(
S
Vr\(b′′∪{v1,vi})
n−r+|b′′|+2 − (vr − v1)S

Vr\(b′′∪{vi})
n−r+|b′′|+1

)
.

Setting A′ = Vr \(b′′∪{v1, vi}) and A = A′∪{v1}, the right-hand factor expands
as the sum of three terms

SA
′

n−r+|b′′|+2 − vrS
A
n−r+|b′′|+1 + v1S

A
n−r+|b′′|+1.

By applying (139) with vj = v1, this then simplifies as

SAn−r+|b′′|+2 − vrS
A
n−r+|b′′|+1.

Then applying (139) a second time with vj = vr, this simplifies to

SA
′

n−r+|b′′|+2 = S
Vr\(b′′∪{vi,vr})
n−r+|b′′|+2 .

Thus we finally obtain the following expression for the right-hand side of (144):

=
∑

v1 /∈b′′⊆Vi−1

(−1)r−|b
′′|

∏
vj∈Vi−1\(b′′∪{v1})

(vj−1 − vj) SVr\(b′′∪{vi,vr})
n−r+|b′′|+2 .

From the definition of Qik given in the statement of Claim 3, this is precisely equal
to Qi1, so as claimed, we have

i∏
j=1

(vj−1 − vj)Rri = Qi1.

We can now proceed to the proof that Qi1 = Qi2 = · · · = Qii−1 by induction. Fix

1 ≤ k < i− 1 and assume that Qi1 = · · · = Qik. We will show by the same method
that Qik = Qik+1. We break the expression for Qik into the terms with vk+1 ∈ B′
and those with vk+1 6∈ B′, writing Qik as∑
v1,...,vk 6∈B′⊆Vi−1

vk+1∈B′

(−1)r−|B
′|+k−1

( ∏
vj∈Vi−1\(B′∪{v1,...,vk})

(vj−1−vj)
)
S
Vr\(B′∪{v1,...,vk−1}∪{vi,vr}))
n−r+|B′|+k+1

+
∑

v1,...,vk+1 6∈B′⊆Vi−1

(−1)r−|B
′|+k−1

( ∏
vj∈Vi−1\(B′∪{v1,...,vk})

(vj−1−vj)
)
S
Vr\(B′∪{v1,...,vk−1}∪{vi,vr})
n−r+|B′|+k+1 .

Next we write B′′ := B′ \ {vk+1} in the first line, and simply replace the notation
B′ by B′′ in the second line, obtaining∑
v1,...,vk+1 6∈B′′⊆Vi−1

(−1)r−|B
′′|+k−2

( ∏
vj∈Vi−1\(B′′∪{v1,...,vk+1})

(vj−1−vj)
)
S
Vr\(B′′∪{v1,...,vk−1}∪{vk+1,vi,vr}))
n−r+|B′′|+k+2
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+
∑

v1,...,vk+1 6∈B′′⊆Vi−1

(−1)r−|B
′′|+k−1(vk−vk+1)

( ∏
vj∈Vi−1\(B′′∪{v1,...,vk+1})

(vj−1−vj)
)
S
Vr\(B′′∪{v1,...,vk−1}∪{vi,vr})
n−r+|B′′|+k+1 .

Now we gather the terms as before, writing this as∑
v1,...,vk+1 6∈B′′⊆Vi−1

(−1)r−|B
′′|+k

( ∏
vj∈Vi−1\(B′′∪{v1,...,vk+1})

(vj−1−vj)
)
×

(
S
Vr\(B′′∪{v1,...,vk−1}∪{vk+1,vi,vr}))
n−r+|B′′|+k+2 − (vk − vk+1)S

Vr\(B′′∪{v1,...,vk−1}∪{vi,vr})
n−r+|B′′|+k+1

)
.

We will now use (139) twice as above to simplify the right-hand factor. First we
take A′ = Vr \ (B′′∪{v1, . . . , vk−1}∪{vk+1, vi, vr}) and A = A′∪{vk+1}, and write
the factor as

SA
′

n−r+|B′′|+k+2 − vkS
A
n−r+|B′′|+k+1 + vk+1S

A
n−r+|B′′|+k+1.

Applying (139), this simplifies to

SAn−r+|B′′|+k+2 − vkS
A
n−r+|B′′|+k+1.

Next, since vk 6∈ B′′ we see that vk ∈ A, so by applying (139) again we see that
this simplifies to

S
A\{vk}
n−r+|B′′|+k+2 = S

Vr\(B′′∪{v1,...,vk}∪{vi,vr})
n−r+|B′′|+k+2 .

Thus we rewrite Qik as∑
v1,...,vk+1 6∈B′′⊆Vi−1

(−1)r−|B
′′|+k

( ∏
vj∈Vi−1\(B′′∪{v1,...,vk+1})

(vj−1−vj)
)
S
Vr\(B′′∪{v1,...,vk}∪{vi,vr})
n−r+|B′′|+k+2 .

But according to the definition of the polynomials Qik, this is exactly equal to Qik+1.

This shows that Qi1 = Qi2 = · · · = Qii−1, and completes the proof of Claim 3. �

It remains only to prove part (iii) of Claim 1.

(iii) In this final part we have to prove that

(145)

r−1∏
j=1

(vj−1 − vj)Rrr = vn−1
r−1 .

Recall from (134) that Rrr is given by the formula

Rrr =
∑

b′(Vr−1

(−1)|a|Sa
n−|a|∏

vj∈b(vj−1 − vj)
,

where b = b′ ∪ {vr}. Thus the common denominator of all the terms in the sum is
(vr − v1)(v1 − v2) · · · (vr−1 − vr), and we have

(146)

r∏
j=1

(vj−1 − vj)Rrr =
∑

b′(Vr−1

(−1)r−|b
′|−1

∏
vj∈Vr−1\b′

(vj−1 − vj) SVr−1\b′
n−r+|b′|+1.

Let us write c = Vr−1 \ b′, so this equality can be expressed as

(147)

r∏
j=1

(vj−1 − vj)Rrr =
∑

∅6=c⊆Vr−1

(−1)|c|
∏
vj∈c

(vj−1 − vj)Sc
n−|c|.
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For 1 ≤ i ≤ r − 1 and n ≥ 1, define the sum Tni by

Tni :=
∑
∅6=c⊆Vi

(−1)|c|
∏
vj∈c

(vj−1 − vj)Sc
n−|c|,

where we set Sc
0 = 1 and Sc

m = 0 if m < 0. By this definition, the term Tnr−1 is
equal to the right-hand side of (147). We will prove that

(148) Tni = (vi − vr)vn−1
i .

The equality (148) suffices to prove the desired result (145). Indeed, since Tnr−1 is
equal to the right-hand side of (147), the left-hand side of (147) is equal to the
right-hand side of (148) with i = r − 1, i.e.

r∏
j=1

(vj−1 − vj)Rrr = Tnr−1 = (vr−1 − vr)vn−1
r−1 .

Canceling out the factor (vr − vr−1) from both sides yields the desired identity
(145).

It remains only to prove (148). We proceed by induction on i. When i = 1, we
have c = {v1} and for all n ≥ 1, we have

Tn1 = −(vr − v1)Sv1n−1 = (v1 − vr)vn−1
1 ,

proving the base case.
Fix n ≥ 1 and assume (148) holds for i − 1. We break Tni into the sum over c

containing vi and c not containing vi, as follows:

Tni =
∑

∅6=c⊆Vi−1

(−1)|c|
∏
vj∈c

(vj−1 − vj)Sc
n−|c|

+
∑

c⊆Vi−1
c′=c∪{vi}

(−1)|c
′|(vi−1 − vi)

∏
vj∈c

(vj−1 − vj)Sc′

n−|c′|

= Tni−1 + (vi−1 − vi)
∑

c⊆Vi−1

(−1)|c|+1
∏
vj∈c

(vj−1 − vj)Sc,vi
n−|c|−1

= Tni−1 − (vi−1 − vi)vn−1
i − (vi−1 − vi)

∑
∅6=c⊆Vi−1

(−1)|c|
∏
vj∈c

(vj−1 − vj)Sc,vi
n−|c|−1,

where the last line comes from separating the sum over c ⊆ Vi−1 into c = ∅ (giving
the extra term (vi−1 − vi)vn−1

i ) and the sum over c 6= ∅. Since c does not contain
vi, we can write

Sc,vi
n−|c|−1 = Sc

n−|c|−1 + viS
c
n−|c|−2 + v2

i S
c
n−|c|−3 + · · ·+ v

n−|c|−2
i Sc

1 + v
n−|c|−1
i .
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Using this, the above equality becomes

= Tni−1 − (vi−1 − vi)vn−1
i − (vi−1 − vi)

∑
∅6=c⊆Vi−1

(−1)|c|
∏
vj∈c

(vj−1 − vj)×(
Sc
n−|c|−1 + viS

c
n−|c|−2 + v2

i S
c
n−|c|−3 + · · ·+ v

n−|c|−2
i Sc

1 + v
n−|c|−1
i

)
= Tni−1 − (vi−1 − vi)vn−1

i − (vi−1 − vi)
∑

∅6=c⊆Vi−1

(−1)|c|
n−|c|−1∑
k=0

∏
vj∈c

(vj−1 − vj)Sc
n−|c|−1−kv

k
i

= Tni−1 − (vi−1 − vi)vn−1
i − (vi−1 − vi)

n−2∑
k=0

vki
∑

∅6=c⊆Vi−1

(−1)|c|
∏
vj∈c

(vj−1 − vj)Sc
n−|c|−1−k

= Tni−1 − (vi−1 − vi)vn−1
i − (vi−1 − vi)

n−2∑
k=0

vki T
n−k−1
i−1

= (vi−1 − vr)vn−1
i−1 − (vi−1 − vi)vn−1

i − (vi−1 − vi)
n−2∑
k=0

vki (vi−1 − vr)vn−k−2
i−1 by induction

= (vi−1 − vr)vn−1
i−1 − (vi−1 − vi)vn−1

i − (vi−1 − vi)(vi−1 − vr)
n−2∑
k=0

vki v
n−k−2
i−1

= (vi−1 − vr)vn−1
i−1 − (vi−1 − vi)vn−1

i − (vi−1 − vr)(vn−1
i−1 − v

n−1
i )

= (vi − vr)vn−1
i .

This proves (148) and thus completes the proof of Claim 1 (iii). �
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