Some notes on Parker's conjecture

Definition. For any group G with two generators a, b, let Parker's element $P \in G \times G$ be defined by

$$
P=\sum_{g \in G}\left(g^{-1} a g, g^{-1} b g\right) .
$$

Let M_{P} denote the matrix giving the action of P on the vector space $\mathbb{Q}[G \times G]$ by left multiplication, and let K_{G} denote the number field generated by the eigenvalues of M_{P}.

Parker's Conjecture: K_{G} is the moduli field, as a G-cover, of the dessin d'enfant determined by the data of G and its two generators a and b.

Let us prove this conjecture for all abelian groups $C_{n} \times C_{m}$ and dihedral groups D_{n}.
Abelian groups on at most two generators. Let a be a generator of C_{n} and b a generator of C_{m}, and consider the abelian group $G=C_{n} \times C_{m}$ equipped with these two generators. It corresponds to a dessin on a surface of genus $(n m-n-m-\operatorname{gcd}(n, m)+2) / 2$ with $m n$-petaled flowers over $0, n m$-petaled flowers over 1 , and $\operatorname{gcd}(n, m)$ faces. In the case where $m=1$, the dessin is the n-petaled hedgehog with moduli field $\mathbb{Q}\left(\zeta_{n}\right)$.

Proposition 1. $K_{C_{n} \times C_{m}}=\mathbb{Q}\left(\zeta_{r}\right)$ where $r=\operatorname{lcm}(n, m)$.
Proof. Parker's element is given by $P=n m((a, 1),(1, b))$. Set $P^{\prime}=((a, 1),(1, b))$. Let us number the basis e_{i} of $\mathbb{Q}[G \times G]$, i.e. the elements of $G \times G$, as

$$
e_{r}=\left(\left(a^{i}, b^{j}\right),\left(a^{k}, b^{l}\right)\right), \quad 1 \leq i, j \leq n, \quad 1 \leq k, l \leq m, \quad 1 \leq r \leq n^{2} m^{2}
$$

with $r=m^{2} n(i-1)+m^{2}(j-1)+m(k-1)+l$. The matrix $M_{P^{\prime}}$ corresponding to the action of P^{\prime} by left multiplication is given as an $n m \times n m$ matrix of $n m \times n m$ blocks

$$
M_{P^{\prime}}=\left(\begin{array}{cccccccc}
0 & 0 & \cdots & 0 & T & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & T & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & T \\
T & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & T & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & T & 0 & 0 & \cdots & 0
\end{array}\right)
$$

where T is the $n m \times n m$ matrix given by

$$
T=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

and the T in the first column above is in the position of the $(m+1)$-st block in the column of $n m$ blocks. The matrix M_{P} is just $n m M_{P^{\prime}}$. The element P^{\prime} is of order $r=l c m(n, m)$ in $G \times G$, and the matrix $M_{P^{\prime}}$ is also of order r as P^{\prime} does not act trivially on any element of $G \times G$. The action of $M_{P^{\prime}}$ on the vector $\left(v_{1}, \ldots, v_{n^{2} m^{2}}\right)$ is given explicitly, writing $k=j n m+k m+i$ with $0 \leq j \leq n m-1,0 \leq k \leq n-1$ and $1 \leq i \leq m$, by

$$
\begin{equation*}
M_{P^{\prime}}\left(v_{k}\right)=M_{P^{\prime}}\left(v_{j n m+k m+i}\right)=v_{(j+m) n m+k m+i+1} \tag{1}
\end{equation*}
$$

where $\widetilde{i+1}$ is the representative of $i+1$ between 0 and m, and indices are taken to be modulo $n^{2} m^{2}$. It is easy to check directly from this formula that the action of $M_{P^{\prime}}$ is of order r.

To find the eigenvalues, we want to solve $M_{P^{\prime}}\left(v_{1}, \ldots, v_{n^{2} m^{2}}\right)=\lambda\left(v_{1}, \ldots, v_{n^{2} m^{2}}\right)$, so by (1), we must have

$$
\begin{aligned}
v_{j n m+k m+i} & =\lambda^{-1} v_{(j+m) n m+k m+\widetilde{i+1}}=\lambda^{-2} v_{(j+2 m) n m+k m+\widetilde{i+2}} \\
& =\lambda^{-r} v_{(j+r m) n m+k m+\widetilde{++r}}=\lambda^{-r} v_{j n m+k m+i}=\lambda^{-r} v_{k} .
\end{aligned}
$$

Thus the eigenvalues of $M_{P^{\prime}}$ are the r-th roots of unity, so the field generated by the eigenvalues of M_{P} (which are $n m$ times these) is $\mathbb{Q}\left(\zeta_{r}\right)$.

Dihedral groups. Let $G=D_{n}$ be the dihedral group of order $2 n$. It corresponds to the genus 0 given by an n-gon with n black vertices (over 0) and a white vertex in the middle of each edge. (The dual is a pumpkin with n semi-meridians joining the north pole to the south pole.)
Proposition 2. $K_{D_{n}}=\mathbb{Q}\left(\left\{\zeta_{n}^{i}+\zeta_{n}^{-i} \mid 0 \leq i \leq n-1\right\}\right)$.
Proof. The elements of the dihedral group are given by $g_{i}=a^{i-1}, 1 \leq i \leq n$, and $g_{n+i}=a^{i-1} b$. Parker's element is given by

$$
P=\sum_{i=0}^{n-1}\left(\left(a, a^{i} b\right)+\left(a^{-1}, a^{i} b\right)\right) \in \mathbb{Q}\left[D_{n} \times D_{n}\right] .
$$

Case 1: n odd. In order to write down a matrix action M_{P} of P on $\mathbb{Q}\left[D_{n} \times D_{n}\right]$, we choose a numbering for the elements of $D_{n} \times D_{n}$ by setting

$$
\begin{cases}e_{k}=e_{n(i-1)+j}=\left(g_{i}, g_{j}\right) & \text { for } 1 \leq i \leq 2 n, 1 \leq j \leq n, \text { so } 1 \leq k \leq 2 n^{2} \\ e_{k}=e_{2 n^{2}+n(i-1)+j}=\left(g_{i}, g_{j}\right) & \text { for } 1 \leq i \leq 2 n, n+1 \leq j \leq 2 n, \text { so } 2 n^{2}+1 \leq k \leq 4 n^{2}\end{cases}
$$

Then the action of P on the basis $e_{1}, \ldots, e_{4 n^{2}}$ by right (or left) multiplication is given by a nice symmetric matrix given as follows:

$$
M_{P}=\left(\begin{array}{cccc}
0 & 0 & T & 0 \tag{2}\\
0 & 0 & 0 & T \\
T & 0 & 0 & 0 \\
0 & T & 0 & 0
\end{array}\right)
$$

where T is the $n^{2} \times n^{2}$ matrix given by

$$
T=\left(\begin{array}{ccccccccc}
0 & 1_{n} & 0 & 0 & 0 & \cdots & 0 & 0 & 1_{n} \\
1_{n} & 0 & 1_{n} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1_{n} & 0 & 1_{n} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1_{n} & 0 & 1_{n} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 1_{n} & 0 & 1_{n} \\
1_{n} & 0 & 0 & 0 & 0 & \cdots & 0 & 1_{n} & 0
\end{array}\right),
$$

where 1_{n} denotes the $n \times n$ block consisting only of 1 's.
Now, set $\underline{v}=\left(v_{1}, \ldots, v_{4 n^{2}}\right)$ and

$$
\underline{v}_{i}=\left(v_{(i-1) n^{2}+1}, v_{(i-1) n^{2}+2}, \ldots, v_{i n^{2}}\right) \text { for } i=1,2,3,4
$$

Then using (2), we see that $M_{P} \cdot \underline{v}=\lambda v$ is equivalent to

$$
T \underline{v}_{3}=\lambda \underline{v}_{1}, T \underline{v}_{4}=\lambda \underline{v}_{2}, T \underline{v}_{1}=\lambda \underline{v}_{3}, T \underline{v}_{2}=\lambda \underline{v}_{4} .
$$

Putting the third and first equalities together yields

$$
T^{2} \underline{v}_{1}=\lambda T \underline{v}_{3}=\lambda^{2} \underline{v}_{1}
$$

so the eigenvalues λ of M_{P} are equal to the square roots of those of T^{2}.
To compute the eigenvalues of T^{2} we first square T, giving the matrix

$$
T^{2}=\left(\begin{array}{ccccccccc}
2_{n} & 0 & 1_{n} & 0 & 0 & \cdots & 0 & 1_{n} & 0 \\
0 & 2_{n} & 0 & 1_{n} & 0 & \cdots & 0 & 0 & 1_{n} \\
1_{n} & 0 & 2_{n} & 0 & 1_{n} & \cdots & 0 & 0 & 0 \\
0 & 1_{n} & 0 & 2_{n} & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 2_{n} & 0 & 1_{n} \\
1_{n} & 0 & 0 & 0 & 0 & \cdots & 0 & 2_{n} & 0 \\
0 & 1_{n} & 0 & 0 & 0 & \cdots & 1_{n} & 0 & 2_{n}
\end{array}\right),
$$

where 2_{n} denotes the $n \times n$ block consisting only of 2 's. Let S be the $n \times n$ matrix given by replacing the blocks 1_{n} in T by 1 and 2_{n} by 2 (and the 0 blocks by 0), so

$$
S=\left(\begin{array}{ccccccccc}
2 & 0 & 1 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & 0 & \cdots & 0 & 0 & 1 \\
1 & 0 & 2 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 2 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 0 & \cdots & 1 & 0 & 2
\end{array}\right) .
$$

Then the eigenvalues of S are the eigenvalues of T^{2} divided by n, so it is enough to compute the eigenvalues of S. This matrix is given by cyclically permuting the entries in the first line, as is the matrix $S-x I d$ whose determinant will yield the eigenvalues. The determinant of such a matrix is given by a classical formula; it turns out to be

$$
\prod_{i=1}^{n}\left(2-x+\zeta^{2 i}+\zeta^{-2 i}\right)=\prod_{i=1}^{n}\left(\left(\zeta^{i}+\zeta^{-i}\right)^{2}-x\right)
$$

Thus, the eigenvalues of T^{2} are $\left\{\left(\zeta^{i}+\zeta^{-i}\right)^{2} / n \mid 1 \leq i \leq n-1\right\}$ and those of M_{P} are the square roots $\left\{\left(\zeta^{i}+\zeta^{-i}\right) / \sqrt{n} \mid 0 \leq i \leq n-1\right\}$. Noticing that for $i=0$, the eigenvalue is $2 / \sqrt{n}$, which shows that $\sqrt{n} \in K_{D_{n}}$, so that also $\zeta^{i}+\zeta^{-i} \in K_{D_{n}}$ for $0 \leq i \leq n-1$. But $\mathbb{Q}(\sqrt{n})$ is the discriminant field of $x^{n-1}+\cdots+x+1$, and since it is real, it lies inside the maximal real subfield of $\mathbb{Q}\left(\zeta_{n}\right)$ which is generated by the $\zeta^{i}+\zeta^{-i}$. Thus $K_{D_{n}}$ is itself generated by the $\zeta^{i}+\zeta^{-i}, 0 \leq i \leq n-1$. This concludes the proof.

