Some notes on Parker’s conjecture

Definition. For any group G with two generators a, b, let Parker’s element P € G x G
be defined by

P=Y (9 "ag, g "bg).
geG

Let Mp denote the matrix giving the action of P on the vector space Q[G x G] by left
multiplication, and let K denote the number field generated by the eigenvalues of Mp.

Parker’s Conjecture: K¢ is the moduli field, as a G-cover, of the dessin d’enfant deter-
mined by the data of G and its two generators a and b.

Let us prove this conjecture for all abelian groups C,, x C,,, and dihedral groups D,,.

Abelian groups on at most two generators. Let a be a generator of C,, and b a
generator of (), and consider the abelian group G = C),, x C,, equipped with these two
generators. It corresponds to a dessin on a surface of genus (nm —mn—m—ged(n, m)+2)/2
with m n-petaled flowers over 0, n m-petaled flowers over 1, and ged(n, m) faces. In the
case where m = 1, the dessin is the n-petaled hedgehog with moduli field Q(¢,).

Proposition 1. K¢, «c,, = Q((,) where r = lem(n, m).
Proof. Parker’s element is given by P = nm((a, 1), (1, b)) Set P/ = ((a, 1), (1, b)) Let us
number the basis e; of Q[G x G, i.e. the elements of G x G, as

e, = ((ai,bj),(ak,bl)), 1<i,j<n, 1<kl<m, 1<r<n’m?

with r = m2n(i — 1) + m?(j — 1) + m(k — 1) + I. The matrix Mp: corresponding to the
action of P’ by left multiplication is given as an nm x nm matrix of nm x nm blocks

o0 --- 0 T 0 --- 0

o o --- 0 0 T --- 0

o o --- 0 O 0 --- T
Mp: = T 0o --- 0 0 0 --- 0]

o T --- 0 0 0 --- 0

o o ---T 0 0 --- 0

where T' is the nm X nm matrix given by

0 0 0 1
1 0 0 0
T7T=1]10 1 0 O
0 0 1 0



and the T in the first column above is in the position of the (m+ 1)-st block in the column
of nm blocks. The matrix Mp is just nmMp:. The element P’ is of order r = lem(n, m)
in G x G, and the matrix Mp/ is also of order r as P’ does not act trivially on any element
of G x G. The action of Mp/ on the vector (vq,...,U,2,2) is given explicitly, writing
E=jnm+km+iwith0<j<nm-—-1,0<k<n-—1and1<i<m,by

MP’(vk) = MP’(vjnm—l—k:m—l—i) = v(j—l—m)nm—f—km—f—?—l\—_l/ (1)

where i + 1 is the representative of ¢ + 1 between 0 and m, and indices are taken to be
modulo n?m?. It is easy to check directly from this formula that the action of Mp: is of
order r.

To find the eigenvalues, we want to solve Mp:(v1,...,V2m2) = A(V1,. .., Vp2m2), SO
by (1), we must have

Ujnm-+km+i = A v(j—f—m)nm—l—k:m—l—i—i—l =A v(j+2m)nm+k:m+i+2
— \T — = \"Ty. =\
=A v(j+7’m)nm+km+i+r A Ujnm+km+i A Uk

Thus the eigenvalues of Mp, are the r-th roots of unity, so the field generated by the
eigenvalues of Mp (which are nm times these) is Q((). O

Dihedral groups. Let G = D,, be the dihedral group of order 2n. It corresponds to the
genus 0 given by an n-gon with n black vertices (over 0) and a white vertex in the middle
of each edge. (The dual is a pumpkin with n semi-meridians joining the north pole to the
south pole.)

Proposition 2. Kp, = Q({¢, + ¢, |0<i<n-—1}).

Proof. The elements of the dihedral group are given by ¢; = @~ %, 1 < i < n, and
Gnti = a'~1b. Parker’s element is given by

n—1

P = Z((a,aib) + (a™',a'b)) € Q[Dy, x Dy).

=0

Case 1: n odd. In order to write down a matrix action Mp of P on Q[D,, x D,], we choose
a numbering for the elements of D,, x D,, by setting

ek = en(i—1)+j = (94, 95) for 1<i<2n,1<j<n,sol<k<2n?
ek = €an24n(i—1)+j = (9i,95) for 1 <i<2n,n+1<j5<2n,so0 2n? +1 < k < 4n?.

Then the action of P on the basis eq, ..., e4,2 by right (or left) multiplication is given by
a nice symmetric matrix given as follows:

Mp =

oNo o
No oo
oo oM
oo No



where T is the n? x n? matrix given by

0 1, 0 0 O o 0 1,
1, 1, 0 O 0 0 O
o 1, 0 1, O 0 0 O
T7T—10 1n 1, 0 0 0],
0 0 0o 0 O ., 0 1,
1, 0 0 0 O 0 1, O
where 1,, denotes the n x n block consisting only of 1’s.
Now, set v = (v1,...,U4,2) and
v, = (U(i_l)n2+1,v(i_1)n2+2,. . '7vin2) for 7 = 1,2,3,4.

Then using (2), we see that Mp - v = Av is equivalent to
Tvs = vy, Tvy = Avg, Tv; = vy, Tvy = Avy.
Putting the third and first equalities together yields
T?v, = ANTvy = Nvy,

so the eigenvalues \ of Mp are equal to the square roots of those of T2.
To compute the eigenvalues of T2 we first square 7', giving the matrix

2, 0 1, 0 O o 1, O

2, 1, 0 --- 0 0 1,

1, o0 2, 0 1, --- 0 O O

2 1, 2n - 00 0
o o o o0 o - 2, 0 1,

1, 0 o o O - 0 2, 0

o 1, o o o --- 1, 0 2,

where 2,, denotes the n x n block consisting only of 2’s. Let S be the n X n matrix given
by replacing the blocks 1,, in T by 1 and 2,, by 2 (and the 0 blocks by 0), so

2 0100 010
02010 00 1
1020 1 00 0
01020 00 0

s=|. . 0 7. R
00000 0
000 0 2
01000 10 2



Then the eigenvalues of S are the eigenvalues of T2 divided by n, so it is enough to
compute the eigenvalues of S. This matrix is given by cyclically permuting the entries in
the first line, as is the matrix S — xId whose determinant will yield the eigenvalues. The
determinant of such a matrix is given by a classical formula; it turns out to be

n n

[[e-a+¢+ ) =1 + ¢ —a).

Thus, the eigenvalues of T2 are {(¢* +¢7%)?/n |1 <i < n— 1} and those of Mp are the
square roots {(¢* + (%) /y/n | 0 < i < n — 1}. Noticing that for i = 0, the eigenvalue is
2/y/n, which shows that v/n € Kp_, so that also ¢* + (7% € Kp, for 0 <i <n —1. But
Q(y/n) is the discriminant field of 2! + .-+ x + 1, and since it is real, it lies inside
the maximal real subfield of Q(¢,,) which is generated by the ¢* + (=% Thus Kp, is itself
generated by the ¢* + (7% 0 <i <n — 1. This concludes the proof. O



