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ABSTRACT

We define the notion of irreducibility of a p-group and show how any p-group G can
be reduced to an irreducible group H. We show that G is realizable as the Galois group
of a regular extension of Q(T') if H is. Finally, we give some sufficient conditions on the
number of generators of a p-group and the structure of its Frattini subgroup for it to be
reducible to the trivial group.

§1. Reduction of p-groups

Let p be a fixed prime, and let G be a p-group of order p™. We recall several equivalent
definitions of the Frattini subgroup ®(G) of G:

(i) ®(G) is the intersection of all the maximal subgroups of G,

(ii) ®(G) is the subgroup of G generated by all p-th powers of elements in G together
with the commutator subgroup of G,



(iii) ®(G) is the set of non-generators of G, i.e. ®(G) consists of elements z € G
having the following property: if H is a subgroup of G such that G is generated by x and
H, then G = H.

The Frattini subgroup is a normal subgroup of G. Suppose |®(G)| = p™. By definition
(ii), G/®(G) is an elementary abelian p-group of rank n — m. We define g =n —m: g is
the cardinal of any minimal set of generators for G.

Definition: A p-group G is irreducible if all of its abelian normal subgroups lie inside

3(G).

We define the notion of “reducibility” in the opposite way: G is reducible if it has a
(not necessarily proper) abelian normal subgroup A not lying in ®(G).

The basic idea of this article is to study the number of generators and the structure
of the Frattini subgroup of a p-group in order to obtain information about its reducibility
and in particular, the possibility of reducing it down to the trivial group. We are basically
concerned with considering p-groups as semi-direct and partial semi-direct products with
abelian kernel. In some cases we may use the notation G = Ax H even when H (resp. A)
is the trivial group: then G = A (resp. H).

We recall that a group G is a partial semi-direct product of A and Hy if G = AH,
where A is a normal subgroup of G and H; is a proper subgroup (cf. [G]). Such a group
is always a quotient of the usual semi-direct product Ax H; where the action of H; on A
is the one given by conjugation in GG. For any semi-direct product Ax H, we can define
exactly which quotients give partial semi-direct products AH;: they can be constructed
as follows. For each element h € Hiy, let v, be the corresponding automorphism of A.
Let M be a subgroup of H; and suppose that M’ is a subgroup of A which is isomorphic
to M: let ¢ : M — M’ be the isomorphism and for m € M C K write m' = ¢(m) €
M' C A. Suppose in addition that for each m € M, ,, is the automorphism of A given
by conjugation by m', and for each h € Hy, 1,5 is the automorphism of A given by
conjugation by h='m’h. Let D be the subgroup of Ax H; given by {m'm~! | m € M}.
Then D is a normal subgroup of Ax H; and (Ax Hy)/D is a partial semi-direct product
AH, such that AN Hy ~ M.

We note that a partial semi-direct product AH; is actually a semi-direct product
Ax Hi if and only if AN H; = 1, and that a quotient of Ax H; which is a partial semi-

direct product AH; is particular in that it contains subgroups isomorphic to A and Hj,
for by the definition of D we have DN A=1and DN H; = 1.

Definition: Let H be an irreducible p-group. The class Cy is the smallest set of p-groups
(for a fixed prime p) defined by the following rules:



(i) Hisin Cy

(ii) Cy is closed under partial semi-direct products of the form AH; where A is an

abelian group and H; is in Cy.

Lemma 1: (i) Every element G of a class Cy contains H as a subgroup.
(ii) H is the unique irreducible member of Cpy.

Proof: (i) This is obvious for an element of Cy is formed by a finite sequence of partial
semi-direct products with abelian kernel, beginning with H, and every step thus contains
H as a subgroup.

(ii) Suppose G is an irreducible group belonging to Cy. Then G is formed by a
finite sequence of partial semi-direct products starting with H. We may suppose that
such a sequence has no trivial steps, i.e. partial semi-direct products G = AK such that
A C ®(G),ie. G = AK = K. In particular any group G in Cy except for H can be written
as a non-trivial semi-direct product AH; for some H; in Cy. But if G is irreducible, then
since A is an abelian normal subgroup of G, we must have A C ®(G), so G = AH, = H;
and the semi-direct product is trivial. This is a contradiction unless G = H.

Definition: A reduction procedure for a p-group G = Hjy is a sequence of non-trivial
abelian subgroups Ai,..., Ax and a sequence of subgroups H; O --- D Hj such that Hyg
is irreducible and for 1 < ¢ < k, A; is normal in H;_; and H;_; is a partial semi-direct
product A; H;.

Definition: An irreducible group which can be reached by a reduction procedure on a
p-group G is called a reduced group for G.

It is a consequence of Lemma 1 that a p-group G can never belong to a class Cy where
|H| > |G|, so G belongs at most to a finite number of classes Cy. By the definition of a
reduction procedure, G belongs to the class Cy if and only if H is a reduced group for G:
a reduction procedure is just the inverse of the process used to build up groups in the class

Cu-

We now give a condition on the possibility of a p-group G having the trivial group as
reduced group.

Lemma 2: If G has an irreducible quotient K, and G belongs to the class Cy, then H has
a quotient isomorphic to K.

Proof: If G is itself irreducible, then it is clear. Suppose that G is reducible and A4, ..., Ax
and Hiy,...,H form a reduction procedure for G. Then G is a quotient of A;x Hjy,
so A;x H; has an irreducible quotient isomorphic to K, say K ~ (A;xH;)/N. But



A;/(A; N N) is an abelian normal subgroup of K, so it is contained in ®(K), so in fact
K ~ H{/(HiNN), so K is a quotient of H;. But H; is a quotient of Ayx Ha, so by the
same reasoning, K is a quotient of Hs, and in fact of H; for every ¢. In particular K is a
quotient of H, = H.

Corollary: If G has an irreducible quotient then G does not belong to the class Cy.

Remark 3: All abelian p-groups have trivial reduced groups. Also, all 2-groups of order
< 32 have trivial reduced groups: this can be proved by direct calculation. There are
exactly 10 irreducible groups of order 64, all having abelian Frattini subgroups of order
16. In general, all p-groups of order less than or equal to p* have trivial reduced groups,
but there exist irreducible groups of order p° for all p # 2 (cf. [D]).

Examples of irreducible groups

(1) For p = 2, we give three irreducible 2-groups of orders 64 and 128 all having
abelian Frattini subgroups (of orders 16 or 32). Let G = Hx Cg where H ~ Dy x C5. Let
H be generated by elements a, b and ¢ with a? = b2 = ¢2 = 1, (ab)? = -1, (a,b) = —1,
(a,c) =1, (b,c) = 1. Let the Cg factor be generated by an element d with d® = 1, which
acts on H via the relations (d,a) = abe, (d,b) = —ab and (d,c¢) = 1. Then |G| = 128 and
G is irreducible. The Frattini subgroup of G is abelian of order 32 (in fact, a minimal set
of generators for G has only 2 elements).

Let G; be the quotient of G by the subgroup {1,cd*}. Then |G;| = 64 and G, is
irreducible, with abelian Frattini subgroup of order 16. Another irreducible group G5 of
order 64 is obtained by taking the quotient of G' by the subgroup {1, —cd?}.

(2) We give an example of an irreducible group of order p° for p # 2, due to Ralf
Dentzer (cf. [D]). Let G be generated by a, b, ¢ and d such that a?’ = bP = ¢# = dP = 1,
(a,b) = d, (¢,a™t) = aPbd, (¢,b™!) = aP and (a,d) = (b,d) = (c¢,d) = 1. Then |G| = p°
and G is irreducible.

(3) (Universal p-groups). For any p-group G, we define the descending central p-
sequence for G by G D G; D G2 D ---, where each G;11 = GY(G,G;) (here (G, G;)
denotes the set of commutators of elements of G with elements of G;, and Gog = G). Note
that G; = ®(G). Clearly if G is finite then the sequence is finite: in this case we say m is
the length of G if m is the smallest integer such that G,, = 1.

For n > 1, let F,, be the free group on n generators and let F,, D Fj, 1 D Fj, 2 D --- be
its descending central p-sequence. Define the universal group of length m on n generators
by F(m,n) = F,/F, . This group is a finite p-group of length m on n generators and
has the property that every p-group on n generators of length m is a quotient of it.

It is known (cf. [D]) that F(2,n) belongs to C; for all n > 1, so these groups are



always reducible. Consider the group F(3,2) for p = 2. It is an irreducible 2-group of
order 1024, with abelian Frattini subgroup of order 256. This shows in particular that
every 2-group on 2 generators of length at most 3 (such as the groups in example (1) ) has
an abelian Frattini subgroup.

§2. On p-groups with small Frattini subgroups

We begin by giving a criterion for reducibility of a p-group.

Lemma 4: Let |G| = p", and let m be the unique integer such that (m? —m)/2 < n <
(m? 4+ m)/2. Then there exists a normal abelian subgroup A in G such that |A| > p™. In
particular, if G is irreducible, then |®(G)| > p™.

Proof: This is equivalent to the following theorem (Huppert [H, ITI, Satz 7.3]): if |G| = p",
then any maximal abelian subgroup A of G has order p® with 2n < a(a + 1).

Lemma 5: If |®(G)| = p™ and |G| > p(™ +™)/2 then G is reducible.

Proof: By Lemma 4, there exists an abelian normal subgroup A in G of order at least

p™ Tl since 2n > m? + m = m(m + 1).

Lemma 6: If G is irreducible with |®(G)| = p™, and p(™m ~—m™)/2 < |G| < p(m*+m)/2 then
®(G) is abelian.

Proof: By Lemma 4, G contains an abelian normal subgroup A of order at least p™. If G
is irreducible, then A is in ®(G) so it is equal to ®(G).

A consequence of Lemmas 4 to 6 is that an irreducible p-group cannot have order
greater than p(m2+m)/ 2 if p™ is the order of its Frattini. We saw in Lemma 1 that every
group G in a class Cy contains H as a subgroup, and therefore, since G is a p-group, we
must have ®(H) C ®(G). In particular, if a p-group G has a Frattini subgroup of order
P
Lemma.

, we have a bound on the order of its reduced groups. We state this in the following

Lemma 7: Let G be a p-group and let p™ be the order of its Frattini subgroup. Then a
reduced group H of G must satisfy |H| < pm*+m)/2

From now on we introduce the following notation to distinguish the cases p = 2 and
p#*2:sete=0ifp=2ande=1if p#2.

Theorem 8: Let G,, ., be a the set of p-groups of order p™ whose Frattini subgroups are



of order p™ (so 0 < m <n). Then
(i) If n <5 — ¢, then all groups in G, n are in C;.
(1)) If 0 <m <3 —¢€ orn—1<m <n, then again, all groups in G, m are in C;.
(71i) If m = 4 — € and G € Gy, ., has a non-abelian Frattini subgroup, then G is in Cy.

(iv) If 4 — e < m < n— 2 then there exist groups in Gy, ,, which are not in Cy.

Proof: (i) was mentioned in Remark 3 (cf. [D]).

(ii) Obviously if m = n then G = 1, and if m = 0 then G is elementary abelian. If
m = n — 1 then G has only one generator so it is cyclic. Let 1 < m < 3 — € and let H be
a reduced group for G. If m = 1 or m = 2 then by Lemma 4, |H| < p® so by Remark 3,
H=1and Gisin Cy. If p=2 and m = 3 then |H| < 2. By Remark 3, if H # 1 then H
has order 64 and an abelian Frattini subgroup of order 16. But H C G so ®(H) C ®(G),
and |®(G)| = 23, so this is impossible and we must have H = 1.

(iii) Suppose m = 4 — € and let H be a reduced group for G. Then |H| < (m? +m)/2
and ®(H) C ®(G). If |®(H)| < p*> ¢ then H = 1 and G is in C;. If |®(H)| = p*~¢ then
®(H) = ®(G). But then ®(H) is abelian by Lemma 6, which contradicts the assumption
on ®(G).

(iv) Whenever n > 6 — € we construct a p-group G of order p™ with exactly n — 4+ €
generators not belonging to C;. By Remark 3, when p # 2 there exist irreducible groups H
of order p® whose Frattini subgroups must have order exactly p?, for the Frattini cannot
be smaller by Lemma, 5, and if it were of order p* then G would have only one generator
and would be cyclic. Also by Remark 3, there exist irreducible groups H of order 2% whose
Frattini subgroups are of order 16. We take G to be a direct product A x H where H is
irreducible of order p® (resp. 2°) and A is elementary abelian of order p"~> (resp. 2"7°).
Then G has n — 3 generators if p # 2 and n — 4 if p = 2. But G/A ~ H so by the corollary
to Lemma 2, G cannot be in C;.

We remark that the condition |®(G)| < p3~¢ implies in particular that G can contain

elements of order at most p*—¢.

§3. p-groups as Galois groups over Q(T)

A regular extension of Q(T') is an extension of Q(7') containing no algebraic extension
of @ larger than @ itself. We say that a finite group G has the property Galp if it is
realizable as the Galois group of a regular extension of Q(T').



The following theorem (see [M, Kap. IV, §3, Satz 2|) gives a condition for a semi-direct
product with abelian kernel to have the property Galr.

Theorem 9: Let G = Ax H; be a semi-direct product with abelian kernel. Then G is
realizable as the Galois group of a regular extension of Q(T) if and only if Hy is.

We obtain the following result on p-groups:

Theorem 10: A p-group G has the property Galr if a reduced group H of G does. In
particular, if G is in C1 then G has the property Galp.

Proof: If G has a reduction procedure leading to H then there is a finite sequence of partial
semi-direct products H; 1 = A;H; with A; abelian, H = H; and G = Hj, for some k. But
if H; has the property Galr, then every partial semi-direct product with abelian kernel
A;H; does, for A;H; is a quotient of A;x H; which has Galp by Theorem 9, and if a group
has Galp then so do all of its quotients.

The following theorem is a corollary to Theorems 8 and 10 (recall that e = 0 if p = 2
and e = 1 if p # 2).

Theorem 11: Let G be a p-group of order p™ and let g be the number of its generators,
so |®(G)| =p"~9. Then G has the property Galr under either of the following conditions:

(i)g=1o0orn—3+e<g<n,
(ii) g =n — 4+ € and ®(Q) is not abelian.
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