ARI, GARI, ZIG and ZAG

Ecalle’s theory of multiple zeta values

The goal of this book is to understand Ecalle’s proofs of some of the
major results concerning the algebra F'Z of formal (or symbolic) multiple
zeta values and the associated Lie coalgebra nfz, which is the quotient
of FZ modulo products. These results concern the freedom of the dual
Lie algebra nfz", a canonical system of generators for n fz, the existence
of a canonical rational Drinfeld associator, the relations between 0s and
the associator relations (”gonal” relations: bigon, triangle, pentagon),
period polynomials associated to modular forms, and finally, precise
freeness/non-freeness results on algebras of formal Eulerian multiple zeta
values and generalized values with roots of unity).

Contents

Chapter 1: Real and formal multiple zeta values 3
Chapter 2: The double shuffle Lie algebra and ARI 11
Chapter 3: First double shuffle theorems recast in terms of moulds 26

Chapter 1

Real and formal multiple zeta values

In this first chapter, we introduce some of the basic objects of study in the classical
theory; the algebras of real and formal multiple zeta values, the real and formal Drinfel’d
associators, the double shuffle Lie algebra, and the weight grading and depth filtrations.

1.1. Multiple zeta values and their regularizations

For every sequence k = (ki,...,k,.) of strictly positive integers with k; > 2, let
C(k1,...,k) be the multiple zeta value defined by

(ks k)=) % (1.1.1)

ni>>n.>0 1 e

For every word in Q(z, y), we define a multiple zeta value ((w) as follows. If w starts with
and ends with y, we write w = 2¥1 71y ... 2% ~1y with k; > 2, and set (w) = ((k1, ..., k).
For general w, we write w = y"vx® and set

ZZ 1) (m(sh(y®, y"“va®~", 2%))), (1.1.2)

a=0 b=0

where 7 is the projection of a polynomial onto the convergent words, i.e. those starting
with = and ending with y, and (is considered to be additive. This way of extending the
real zeta values of convergent words (called convergent zeta values) to all words is called
the shuffie reqularization, because of the following property that characterizes it.

Theorem 1.1. For all words u, v € Q(x,y), the reqularized ¢ values defined in (1.1.2)
satisfy the shuffle! relations

C(sh(u, v)) = ((u)((v) (1.1.3)
in the alphabet X = {z,y}.

Multiple zeta values possess a second interesting multiplicative property. For all con-
vergent words u, v, considered to be written in the variables y; = 2°~ 'y, the convergent zeta

! The shuffle product of two words v and v in an alphabet X is defined recursively
by sh(u,1) = sh(l,u) = v and sh(Xu,Yv) = X sh(u,Yv) 4+ Y sh(Xu,v) for any letters
X, YeXx.

values satisfy the stuffle? relations ¢(st(u,v)) = ((u)((v) in the alphabet Y = {y;|i > 0},
considered to be additive via the rule y; + y; = y;4;. This result follows easily from the
expression of ((kq,...,k,) as a power series. But there is a second regularization of the
zeta values, called the stuffle reqularization, extending the stuffle relation to all words in
the y;. It is defined as follows.

Definition. The Drinfel’d associator ® is given by

=1+ Y ((ww. (1.1.4)

weQ(z,y)

Let m, denote the projection of power series onto their words ending in y, rewritten in the
Yi. Set

@, = eop((3 T i) (@), (1.15)

n>1

and for every word v in the y;, define (*(v) to be the coefficient (®.|v) of the word v in
®,. Since the exponential “correction” factor is a power series in 1, it follows that for any
convergent word v (i.e. any word in the y; not starting with y;), we have (*(v) = ((v).
Inversely, the stuffle-regularized values (*(1, ..., 1) come entirely from the correction factor
and are all polynomials in the single zeta values ((n); we see for instance that

CI) =) =0, ¢(1,1) = —5¢@), C(L,1,1) = 360)

1 1 1
“(1,1,1,1) = —=¢(4) + =¢(2)* = =¢(2,2
given the stuffle identity ¢(2)? = 2¢(2,2) + ((4). Thus, we can write the correction factor

exp(z % C(yn y1> ZC (1.1.6)

n>1 n>1 M

and for w = yiv with v a word in the y; not starting with y;, the stuffle regularized
multizeta values are given by the formula

¢(w) = (@ufv) = ZC D)@y} 7v). (L.1.7)

]

The values *(v) are called the stuffle reqularization of the convergent multizeta values,
because of the following theorem.

2 Let Y be an additive alphabet, i.e. an alphabet equipped with a rule so that for
every pair of letters X, Y €)V, X + Y is also a letter in). The stuffle product in the
additive alphabet) is defined recursively by st(u,1) = st(1,u) = u and st(Xu,Yv) =
X st(u,YV)+Y st(Xu,v) + (X +Y) st(u,v) for all letters X,Y € V.

4

Theorem 1.2. For all words u, v in the variables y;, the values *(v) satisfy the stuffle
relations

C*(st(u,v)) = (" (u)C*(v). (1.1.8)

Definition. Let Z denote the QQ-algebra generated by the convergent multizeta values
under the multiplication law (1.1.3). By (1.1.2) and (1.1.7), Z contains all the shuffle and
stuffle regularized multizeta values. For every word w € Q(x,y) of length n containing d
y’s, the corresponding multiple zeta value ((w) is said to be of weight n and depth r. Let
Z, denote the Q-vector space generated by the convergent multiple zeta values of weight
n. We have Zy = Q, 21 = (0), Z2 = (¢(2)).

The algebra Z has a rich structure of which the shuffle and stuffle families of rela-
tions (known as the double shuffle relations) are only one aspect. There are many other
known algebraic relations between elements of Z, and also, of course, difficult problems of
transcendence and irrationality. There are few results known on this aspect: irrationality
of ¢(3), and the fact that an infinite number of the {(n) for odd n are transcendent. But
the main transcendence conjectures, namely that all multiple zeta values are transcendent,
seems still out of reach.

The transcendence conjecture can be stated as a structural conjecture on Z as follows.

Main transcendence conjecture. The weight provides a grading of the Q-algebra Z; in
other words, there are no linear relations between multizeta values of different weights.

Indeed, if this is the case, then every multizeta value is transcendent, since otherwise,
if some (¢ of weight n were algebraic, there would be a minimal polynomial P(z) such that
P(¢) = 0. Each term of the polynomial would be a (%, which when expanded out as a sum
by the shuffle multiplication rule would yield a non-zero linear combination of multizetas of
weight in, and the sum of all these terms of different weights would be zero, contradicting
the main conjecture.

Because the conjectures concerning transcendence seem unprovable for the time being,
and yet the combinatorial /algebraic structure of the multizeta algebra is still a rich subject
of study — and indeed the double shuffle relations have been conjectured to generate all
algebraic relations between multizeta values — it is useful to define a formal multiple zeta
algebra of symbols satisfying the double shuffle relations, but which are taken automatically
to be transcendent. This algebra, defined in the next section, is the main object of study
in the theory of multiple zeta values.

1.2. Formal multiple zeta values

For every word w in = and y, let Z(w) denote a formal symbol associated to w, and

let Q[Z(w)] be the commutative Q-algebra generated as a vector space by these symbols,
equipped with the multiplication law

Z(uw)Z(v) = Z(sh(u,v)). (1.2.1)

5

Let SH be the quotient of Q[Z(w)] by the linear relations analogous to (1.1.2)

ZZ 1) HZ (n(sh(y®,y" vz, ")) (1.2.2)

a=0b=0

for every non-convergent word w. As in theorem 1.1, this definition ensures that the
multiplication law (1.2.1) passes to the quotient SH. We write Z(w) for the image of
Z(w) in SH.
In analogy with (1.1.5), we define Z*(1,...,1) to be the coefficient of y? in the formal
——

n
power series with coefficients in SH

ewp(Z #Z(yn)yﬂ,

n>1

so they are polynomials in the Z (y;); note that all polynomials in the A (w) can be expressed
as linear combinations of convergent multizetas by using the multiplication rule (1.2.1) and
then (1.2.2). In analogy with (1.1.7), we set

Z Z* D)(@ly; 7o) => Z°(1,.... 1) Z(y"), (1.2.3)

.7 J

for every word w = yiv where v is a word in the y; not starting with y;; thus these
values can also be expressed as linear combinations of convergent Z(w). Therefore, SH is
generated as a vector space by the Z(w) for convergent w.

Let FZ, the formal multizeta algebra, be the vector space quotient of SH by the
relations

Z* (st(u,v)) = Z*(u) Z* (v),

which although they appear algebraic, can be written as above as linear relations between
the convergent Z(w). The multiplication (1.2.1) passes to FZ, making it into a Q-algebra.

We write Z(w) for the image of Z(w) in FZ.

By definition, we have a surjection FZ — Z. But the space F Z is easier to study than
Z because the real multizeta values satisfy unknown numbers of other relations, including,
as explained in 1.1, the fact that it is not even known whether they are transcendent, or
whether there are any linear relations between real multizeta values of different weights.
It is tempting to conjecture that FZ ~ Z, but pending any kind of knowledge about the
transcendence properties of real multizeta values, we adopt the strategy of replacing the
real value algebra by the formal multizeta algebra FZ as the main object of study in the
combinatorial /algebraic theory of multizetas.

By definition, FZ is a graded algebra, with FZy = Q, FZ; = 0 and FZ, a one-
dimensional space generated by Z(2) = Z(xy) (as for real multizetas, we use the notation

6

Z(ki,..., k) = Z(xF1~1y...axk=1y)). Let FZ denote the quotient of FZ by the ideal
generated by Z(2).

The principal result we will need in the present chapter is that FZ is a Hopf algebra,
with a coproduct defined by Goncharov. Thus, the quotient nfz of FZ modulo the ideal
generated by FZy, FZ9 and products fZ2>O, called the new formal zeta space, is not just
a vector space but actually a Lie coalgebra, with a cobracket inherited from Goncharov’s
coproduct.

The dual of nfz is thus a Lie algebra, known as the double shuffle Lie algebra 0s; in
fact, the proof that FZ is based on a direct proof given by Racinet [R] that ds is a Lie
algebra. The following section is devoted to a closer study of this Lie algebra, which is one
of the main points of focus of the entire theory, thanks to the simplicity of its definition
and the concrete nature of its elements, which make it into a valuable and attractive “way
in” to the theory, accessible to explicit computation.

1.3. The double shuffle Lie algebra ds.

Definition. The Lie algebra 0s is the dual of the Lie coalgebra n f z of new formal multizeta
values. It is the set of polynomials f € Q(x,y) having the two following properties:

(1) The coefficients of f satisfy the shuffle relations

Y. (flw) =0,

weEsh(u,v)

where u,v are words in z,y and sh(u,v) is the set of words obtained by shuffling them.
This condition is equivalent to the assertion that f € Lie[x,y].

(2) Let f. = my(f) + feorr, Where m,(f) is the projection of f onto just the words ending
in y, and

_1\n—1
fcorr = Z %('ﬂxn—ly)yn‘
n>1

(When f is homogeneous of degree n, which we usually assume, then fco is just the
monomial %(ﬂx"ily)y”.) The coefficients of f, satisfy the stuffle relations:

Y. (flw)=o,
west(u,v)

where now wu, v and w are words ending in y, considered as rewritten in the variables
y; = 2"y, and st(u,v) is the stuffle of two such words.

Definition. Defined as above, 0s is a vector space. However, Racinet [R] proved that ds
is actually a Lie algebra under the Poisson bracket defined as follows. We first define a
derivation Dy of the Lie algebra Lie[z,y| associated to every f € Lie[x, y], by setting

Dy(z) =0, Ds(y) =y, fl

7

and extending as a derivation.
We then define the Poisson bracket by

{f:9} = [f:9] + Dy(g) = Dy(f)

This definition corresponds naturally to the Lie bracket on the space of derivations of
Lie[z, y]; it is easy to check that

[DfaDg] =DyoDg—DgoDy= D{f,g}'

The double shuffle Lie algebra is equipped with an increasing depth filtration
051 C0s? C -

where f € 9s lies in 95 if the smallest number of y’s appearing in any monomial of f
is greater than or equal to d. The depth filtration is not a grading because there are
known linear combinations of elements of depth d which are themselves in depth > d. This
filtration is dual to the decreasing filtration on Z given by letting the depth of ((k1, ..., k)
be equal to r. It is a filtration rather than a grading since there can be linear relations
mixing depths. For example, in weight 3, the shuffle relations are

(Z(x)Z(xx) = 3Z(zzT)
Z(x)Z(xy) = 2Z(xxy) + Z(zyx)
Z(x)Z(yx) = Z(zvyzx) + 2Z (yzx)
Z(x)Z(yy) = Z(xyy) + Z(yzy) + Z(yyz)
Z(y)Z(zvx) = Z(yzx) + Z(zyz) + Z(xxy)
Z(y)Z(vy) = Z(yxy) + 2Z(xyy)
Z(y)Z(yx) = 2Z(yyz) + Z(yxy)

 Z(y)Z(yy) = 3Z(yyy),

so in particular Z(1,2) = Z(y,z,y) = —2Z(zyy) = —2Z(2,1) since Z(x) = Z(y) = 0. The
stuffle relations are

Z Mz 2)=2"1,2)+Z*(2,1) + Z2*(3) = Z(1,2) + Z* (1) Z(2) + Z(2,1) + Z(3) =
Z(1,2)+Z(2,1)+ Z(3)=0
and
7*(1)Z*(1,1) = 32*(1,1,1) 4+ Z*(2,1) + Z2*(1,2) = Z(3) + Z(2,1) + Z(1,2) = 0,
so the two stuffle relations are equivalent, and using the identity Z(1,2) = —2Z(2,1)

coming from shuffle, we obtain Z(2,1) = Z(3). This relation, already known to Euler, is
the first relation which mixes depths.

1.4. Properties of the double shuffle Lie algebra

There are several conjectures about the structure of the double shuffle Lie algebra 0s,
and a certain number of results have already been proven. Recall that the depth filtration
is increasing, 0s' C 09s? C ---, and that it is not a grading since there can be linear
combinations of depth d elements which are of depth greater than d. We will see examples
of this in 3.3 below. The associated graded is gros = @dzlbsd/bsd“. This is a doubly-
graded vector space since it inherits the weight grading, so it is convenient to break it up by
weight and study the finite-dimensional weight-graded pieces (grds)? = 052 /0s¢*1. The
results on 0s and gros that we survey here, to approach them again later using Ecalle’s
theory, are the following.

(1) 0s is a Lie algebra.
(2) We have dim 2s% /0s2+! = 0 if n # d mod 2.

(3) For n > 3, we have

dim s} /0s2 =1 if n is odd
-2

dim0s2 /053 = [n 5] if n is even
—-3)? -1

dimos? /o5t > [(n 4; | if nis odd.

(4) For a homogeneous polynomial f € ds,, let d be the depth of f, i.e. the minimal
number of y’s occurring in any monomial of f, and let f¢ denote the depth d part of
f. Then f has the cyclic permutation invariance property, i.e. for every depth d word
"0y -yt

(f ‘ :CTnyrly e yxrd) — (f ’ xrdyxroy e yxrdfl).

(5) Every element f € 0s,, satisfies an analogous but more complicated property of cyclic
invariance for the words in any depth: writing f = f,z+ f,y, this property is best expressed
by the statement

RX(fa? + fy) = <_1)n(fﬂc + fy);

where Rx denotes the “backwards writing” automorphism of Q(z,y) that takes any word

in x and y to its mirror image written from right to left.
COMMENT on the higher cyclic property

Remarks. The first statement implies that there exists a double shuffle element f; of
homogeneous weight n and depth 1 for each odd n > 3. For the second case, we actually
have more precise knowledge of the situation. If we choose depth 1 elements f3, f5,...
as allowed by the first statement, then it is known that ds? is generated by the [”T_‘l]
Poisson brackets { f;, fn—i}. Furthermore, the exact relations between these generators in

the quotient 0s2 /0s3 are known (period polynomial relations). For the third statement,

9

the inequality is claimed by IKZ (but not proved there). They mention in a footnote that
Goncharov has proved the actual equality in this case. This dimension corresponds to
the more precise conjecture that 9s3 /0s? is generated by all brackets {fi, {f;, fx}}) with
i+ j + k = n, modulo the only relations {f;, R} where R denotes one of the explicitly
known period polynomial relations in depth 2.

Further results on 0s concern its relation to other Lie algebras. The main structural
conjecture on 0s is the following.

Conjecture 1. Let F be the free weight-graded Lie algebra F = Q|ss, S5, ...] generated by
one element in each odd weight > 3. Then 0s is isomorphic to F.

This conjecture is related to the possibility of choosing depth 1 elements f3, f5,... in
0s as in (1) above. Each such choice gives a map F — 0s via s, — f, and one conjectures
that all such maps are isomorphisms. In the direction of conjecture 1, we do have the
following fundamental inequality, whose proof is due to Goncharov.

(3) It is known that dimUF,, = d,, where d,, is the sequence defined recursively by dy = 1,
di =0,d, =1and d; = d;_o + d;_3. Goncharov has proved using the theory of mixed
Tate motives that dimiU/0s < d,, for all n.

Remark. Goncharov’s proof yields as a corollary that although a canonical choice of
generators fs, f5,... is not known, there is a canonical image of 7 — 0s. Ecalle, on the
other hand, gives two ways of choosing systems f3, f5,... with good properties (kwa and
kya). Neither of his systems appears canonical, and neither has the Bernoulli properties,
but it is an interesting direction. Ecalle appears to have a third way of obtaining canonical
generators f;, independent of kwa and kya, which is the construction of loma. More
strongly, Ecalle claims to have proved conjecture 1.

Conjecture 1 can be made more precise (see 3.3), namely one can equip F with a
certain increasing depth filtration, the special depth filtration F* C F? C --- which is
conjectured to correspond to that of 0s, and to yield the Broadhurst-Kreimer dimensions.

Refined conjecture 1. Let f3, f5,... be any choice of depth 1 elements in 0s. Then the
Lie algebra map s,, — f,, defines a Lie algebra isomorphism F — 0s such that F¢ = 0sd
for eachn >3, d>1.

Proving statements analogous to (1) and (2) for F then means that (1) and (2) for ds
actually provide evidence for the refined version of conjecture 1. And indeed, we do have
such statements, with equality in the case of depth 3 mod depth 4.

(4) For n # d mod 2, we have
dim Fe/FE =0,

10

and for n > 3, we have

dim 7} /F2 =1 if n is odd
dim F2/F2 = [ng2] if n is even
2
—3)2-1
dim F3/F4 = [%} if n is odd.

The next set of known results on double shuffle concern its relationship with the Lie
algebras grt and kv (add definitions).

Conjecture 2. 0s ~ grt.
Conjecture 3. 0s ~ kv.
Partial results in the direction of these two conjectures are as follows.

(5) grt < 0s (Furusho);
(5

)
(7) Elements of ds act on Lie[x,y] as special automorphisms (in progress, [LS] following
Ecalle);

Double shuffle implies relation (I) of grt (and maybe also relation (II)), Ecalle claim;

(8) A property of double shuffle elements related to kv, namely the generalization of Thara’s
theorem to TR, cf. [CS].

To conclude this brief survey of known results on 0s, we add two symmetry properties
of the elements of ds, which are useful in some of the proofs of the statements above.

(9) If f is a double shuffle element of depth d and f; denotes the lowest depth part of f,
then f; is invariant under the (d 4 1)-cycle acting by cyclically permuting the power of =
in the monomials z%y ...yx% of f;. It seems that this is the same (proof?) as Ecalle’s
“push-invariance of al/al”, which is easy to prove. Ecalle generalizes this property to a
symmetry property of double shuffle elements in all depth (“pushu-invariance”).

(10) Ecalle proves the useful “cyclic property”: let f be a polynomial in the y; of homoge-
neous weight n satisfying stuffle, let w = y;, ...y;, be a word, and let ¢*(w) fori =1,...,r
be the r words obtained by applying the powers of the r-cycle permutation to the y; in w.
Then

T

S (flo (w)) = (1) (flyn).

=1

11

Chapter 2

The Lie algebra ARI

2.1. Moulds and bimoulds

Ecalle defines moulds on an arbitrary additive alphabet X, i.e. on a semigroup gen-
erated by the letters in a given alphabet X. In this book we will restrict ourselves to the
case of moulds known as “bimoulds”. These moulds are functions of two infinite sets of
variables: w1, uo,... and v1,v2,..., which are considered to generate a ring within which
all rational expressions in the variables make sense (and in whose completion, even power
series in the variables make sense).

A bimould M is then a collection of functions

V1 V2 . Vp
for each r > 0. These functions are arbitrary, but later, in the context of the study of

multizeta values, we will restrict our attention to rational functions, polynomials, and
constants.

Moulds on the same alphabet can be added, multiplied and, if N? = 0, composed.
Writing w; = (Z) (or considering the variables w; as belonging to an arbitrary alphabet),
we have

(M + N)(w1,...,w) = M(ws,...,w.) + N(wi,...,w)
mu(M, N)(wi,...,w,) = Z M(wy, ..., wi)N(wiy1,...,w,)

0<i<r (2.1.1)
(MoN)(wi,...,w) =Y M([W![|,- [W[)N(w')--- N(w*).
i
Here, ||(w1, ..., w,)|| denotes the single-letter word wy + - - - +w,., which is (Ziii;‘:)

in the bimould case.

Remark. Moulds are generalizations of power series. If a mould M takes constant values
on each word, then it can be identified with the power series

M = Z M(wq, ..., w.)wy - w,.

(w17~"aw7‘)

12

Exercise. Check that in the power series case, the rules for addition, multiplication and
composition are just the usual ones.

Examples. (1) The first examples are the Log and Exp moulds given by Exp(()) =
Log(0) =0,

1

Log(wy,...,w,) = %
Exp(w.,...,w,) = 7.

(2) The identity mould for multiplication 1 is given by 1(()) = 1 and all other values are
0. The identity mould Id for composition is given by

Id(wl,...,wr):{(l) g;i?andaur>l

Exercise. Show that Exp is the mould corresponding to the power series e! —t and Log
to log(1 4 t). Show that as expected, Exp o Log = 1d.

2.2. The Lie algebra ARI

Let us define ARI as the full set of moulds on the fixed alphabet X satisfying A(()) =
In this book, as before, we restrict ourselves to the bimould situation with the alphabet
made up of the double set of variables u; and v;, identifying w; with ()

The vector space ARI is obviously a Lie algebra under the Lie bracket limu defined
by limu(A, B) = mu(A, B) —mu(B, A). But Ecalle introduces an alternative bracket, the
ari bracket, on ARI, making the same space into a different Lie algebra. In chapter 3, we
will explore the precise analogy between what Ecalle does and the two types of Lie bracket
on the free Lie algebra Lie|x, y|.

Flexions. For every possible way of cutting the word w into three (possibly empty)

subwords w — abc with
(u‘f,...,uz) ’b:<ulj,...,u€’) (u‘j,...,ufn>’

a al’ b b c
VYyeee s Vg (U RNNNG) Vfy..., 05,

set

[c=c ifb=0
al=a ifb=10
bj]=b ifc=10
lb=Db ifa=10,
otherwise , ,
(.. & C C
[C:(u1+ ;;ul+u1 1;3 :}Lgn ifb 0
b ' b ? b\

- U,l UQ i Ul .
M‘(%—ﬁz&wf ﬁ—ﬁ) e
a}:(“i ug : u?—kull’—l; +u§7) b0

v} v§ vy
b b b

. ul U2 AR ul .

\w‘<ﬁ—% o op ﬁ—%) a0

To every bimould B, associate a derivation! arit(B) of ARI (for the limu bracket)
defined by

(arit(B) - A)(w) = Y A(a[e)B(b]) =) A(alc)B(|b). (2.2.1)

w=abc w=abc

b,c#0 a,b#0

Define a “pre-Lie” operation on ARI by

preari(A, B)(w) = (arit(B)-A+mu(A, B))(w) = Y A(a[c)B(b])— Y _ A(alc)B(|b),

w=abc w=abc

b0 a,b#0

(2.2.2)
Then the ARI bracket is defined by the formula

ari(A, B) = preari(A, B) — preari(B, A),

so it is given explicitly by the formula

ari(A,B) = Y (A(afc)B(b)) - B(ae)A(b))) — 3 (Aale)B(|b) - B(alc)A(b)).

w=abc w=abc
b#0 a,b#0
(2.2.3)
Notice that we then have the “Poisson bracket” type identity
ari(A, B) = arit(B) - A — arit(A) - B + limu(A, B) (2.2.4)

(cf. ARI/GARI et la décomposition des multizétas en irréductibles, p. 28 (75) and p. 29
(84)).

2.3. Symmetries alternal and alternil

For the study of multizeta values, Ecalle introduces two fundamental symmetries that
bimoulds in ARI can have: alternal and alternil. The terms

The first one is based on the well-known definition of the shuffle product of two words
w’ and w” in an alphabet X, given by the recursive formula sh(w, 1) = sh(1,w) = w and
sh(zu,yv) = x sh(u,yv) + y sh(xu,v) for any letters z,y and words u,v in the alphabet
X. Here we use the notation in which the shuffle or the stuffle of two words is written as
a formal sum of words, for example on the alphabet X = {a,b, ¢, d} we write

sh((ab), (cd)) = abed 4 acbd + acdb + cabd + cadb + cdab,

and on the alphabet X = {z,y}, we write

sh((z,y), (z,y)) = dvzyy + 2xYy2Y.

1 The proof of this fact is given in the appendix.

14

Note that to verify whether a mould satisfies shuffle, i.e. satisfies the full set of shuffle
relations, it is only necessary to check the relations

Sh((/LUla..-;ws),(w5+1,...,wT)) 1§S§|:gi|,

since all other shuffle relations can be obtained from these by substitution of variables.

Definition. A mould given by its coefficients M (w1, ..., w,) (which can be a bimould if
each w; = (")) is alternal if
M (sh(w',w")) =0,

for all pairs of non-trivial words w’, w"’.

Example. Let M € ARI be the mould given by

Then

M (“1 “2) +M(“2 “1> — 0,
U1 V2 V2 U1
so M is alternal.

The second symmetry, alternil, is related to the stuffle product of words in an ad-
ditive alphabet X. The stuffle product is given recursively by st(w,1) = st(1,w) = w,
st(yiu, y;v) = yi st(u, y;v) +y; st(yiu, v) +yit; st(u,v). Some examples for different alpha-
bets (in the first one, we write a + b for the sum of two letters, while in the third we write
Yi+; for the sum of y; and y;; these are merely differences of notation for the sum):

st(a,b) = (a,b) + (b,a) + (a +b)
st((a,b), (c)) = abc + acb + cab + (a + b,¢) + (a,b + ¢)
st((a,b), (b)) = 2(a,b,b) + (b,a,b) + (a + b,b) + (a, 2b) (2.3.1)
st((y1), (y2,¥3)) = (Y1, Y2,93) + (y2,¥1,43) + (y2,¥3,91) + (s, y3) + (y2,v4)
st((2,1),(2)) = 2(2,2,1) + (2,1,2) + (4,1) + (2,3).

Note that as above, in order for a mould to satisfy the full set of stuffle relations, it is only
necessary to check the relations

St((wla"'7ws)7(ws+17-"7w7‘))7 1<s §|:ri|7

15

since all other stuffle relations can be obtained from these by substitution.
The alternil symmetry is defined only for bimoulds*. The alternility relations are de-

fined from the stuffle relations by replacing every term containing a contraction M (Z:ig;
with the following sum of two terms:
M(i U >+ M(Ui+ Uy) (2.3.2)
U’L—U] ...71)7:7... Uj_vl ...7'Uj7...

Thus for example, the alternility condition in depth 2 is given by

O:M(U1 U2)_|_M<u2 ul>+ 1 M(u1+u2)+ 1 M(U1+U2),
V1 Vg Vo U1 V1 — Vg U1 Vo — V1 V2

(2.3.3)
and one of the two depth 3 conditions is given by
OZM(ul U2 u3>+M(U2 Uy U3)+M(U2 us U1>
U1 V2 V3 V2 (%1 V3 V2 (OR] U1
n 1 M(m—i—uz ug)+ 1 M(U1+U2 U3)
V1 — Vg U1 U3 Vo — VU1 V2 U3
1
+ M(“2 W+W)+ M(“2 “+%) (2.3.4)
U1 — Vs V2 U1 VU3 — U1 V2 U3

(compare these with the first and fourth equations of (2.3.1)). Note that in fact, the second
equation defining the alternility condition in depth 3 is given by taking the product

V1 V2 U3
but because these products are commutative (product of functions in w;, v;),

Exercise. Write the alternility conditions for » = 4. There are two conditions, one coming
from st((w1), (w2, w3, ws)) and the other from st((w1,ws), (w3, wy)).

Remark. (1) If M is a constant (i.e. constant-valued) mould, then the alternil conditions
reduce to the shuffle together with the collection of equalities

(2) If M is a polynomial-valued mould, then the left-hand sides of the alternil condi-
tions are polynomials. To see this, it suffices to note that setting v; = v; in the term

Ui_vj V; Uj—Ui Uj

* See ARI/GARI la dimorphie..., p. 417-418.

16

it is clearly equal to zero.

2.4. Special subspaces of ARI

There are many interesting subspaces of ARI. In this section, we briefly look at three
of the first ones that are relevant in the theory of multizeta values: the two most important
ones for that theory, ARl and ARI,;,;, are studied in the following sections.

e ARI®*™ the subspace of polynomial-valued bimoulds in variables u;, v;;

o ARI“~v" (resp. ARI"~"%"), the subspace of bimoulds whose values are functions only
in the variables u; (v;).

e ARI,;, the subspace of alternal bimoulds.
Proposition 2.4.1. ARI®" and ARI“~"" are Lie algebras under the ari bracket.

This statement follows immediately from the fact that the ari bracket preserves poly-
nomial expressions and expressions in the u; only.

For our study of multizeta values in the context of mould calculus, it is useful to intro-
duce the notion of homogeneous weight for polynomial-valued moulds that are functions
of the u; only.

Definition. For each n > 1, a polynomial-in-u;-valued bimould M is said to be homoge-

neous in weight n if there exists an integer n > 1 such that M Zl “r) is a homo-
1 e r
geneous polynomial in uq,...,u, of degree n — r. In particular, such a mould is 0-valued

for 7 > n. The homogeneous weight puts a grading on the Lie algebra ARI™tu—var,
Proposition 2.4.2. ARI,; is a Lie algebra under the ari bracket.

Proof. We saw in (2.2.4) that

ari(A, B) = arit(B) - A — arit(A) - B + limu(A, B),

where arit(B) and arit(A) denote derivations of ARI viewed as a Lie algebra under limu.
Let us show that if A and B are alternal, then mu(A, B) is alternal. Since alternality is
additive, we may assume that A is concentrated in depth i and B in depth n — i; for every

17

fixed pair of non-trivial words (u,v) of lengths r and s with n = r + s, we have

> mu(A,B)(w)= > A(wi,...,w)B(wii1,. .., wn)

wesh(u,v) wesh(u,v)

=3 A(sh((ur,- . u5), (01, -, 0i))) B(sh((wjs1, - - -, un), (Vimjsn, - -, 05)))
§=0

= i A(sh((ul, coe ,Uj), (Ul, NN ,Ui_j)>)B(Sh((Uj+1, “oe ,ur), (Ui—j+1; “ee ,US)))

- A(vl, . ,vi)B(sh((ul, ey U)y (Vig1, - ,vs)))
—|—A(u1, .. .,ui)B(sh((qu, ceUy), (1, - ,vs))).

Now, because both A and B are alternal, every term in this expression will be equal to
zero unless ¢ = r and n — ¢ = s. In this case, the above yields

Z mu(A, B) = A(Ul, e ,UT)B(sh((ul, cosUp)y (Vpggy e ,vs)))

weEsh(u,v)
+ A(ul, e ,uT)B(vl, e ,vs)

| A(ug, ..o up)B(vr, ..., 08) r#S
L A(ug, ey un)B(ug, .y vs) + A(vr, . vs)B(ug, ey uy) T =8,

In both cases, we obviously have }_, ., limu(A, B) = 0, so we have limu(4, B) €
ARI,;. Tt remains to show that if A, B € ARI,;, then arit(B)- A is alternal, which is done
in the appendix. &

2.5. The Lie algebra ARI;/q

Let push, neg, anti, swap and mantar be the operators on moulds defined by

push(M) ul uz e UT . M _ul —_ . e e — u’l’ ul DY u’f’—l
U1 V2 e Uy —Ur V1 — Up 0 Up—1 — Up
Uy U e U —U —U —U
vy U2 o Up —v1r —v2 - U

anti(M) Lo "Y=m (" "1 !
U1 V2 (%3 Ur Ur-1 U1

swap(M) Up U2 - Up) M (%3 VUr—1 — Up tcr U2 — U3 V1 — U2
v vz cce Up up+ Uy ur e F U o u U
u u .. u _ u o e u

mantar(M) ["+ 2 "=t T L.

’Ul fU2 .. /Ur ’UT .. ’Ul

Definition. ARI,;/q is the vector subspaces of bimoulds A € ARI such that A is alternal
and swap(A) is also alternal.

18

Lemma 2.5.1. We have neg o push = anti o swap o anti o swap.

We omit the proof of this lemma, which is obtained simply by direct composition of
the variable changes (or multiplication of matrices, if the operators in depth r are written
as 2r x 2r matrices).

Lemma 2.5.2. If A € ARI,;, then
anti(A)(wy,...,w,) = (=) A(wy, ..., w,),

i other words, A is mantar-invariant.
Proof. We first show that the sum of shuffle relations

sh((1),(2,...,7)) —sh((2,1),(3,...,7)) + sh((3,2,1), (4,...,7)) + -+~

+(=1)"tsh((r—1,...,2,1),(r)) = (L,...,r) + (=1)"" " (r,..., 1).

Indeed, using the recursive formula for shuffle, we can write the above sum with two terms
for each shuffle, as

(1,...,r)+2-sh((1),(3,...,7))

(1), (
(1),(3,...,7)) —3-sh((2,1),(4,...,7))
(2,1),(4,...,7)) +4-sh((3,2,1),(5,...,7))

+ (=) r=1)-sh((r—2,...,1),(r) + (=1)" " H(r,r —1,...,1)
=(1,...,r)+ (=) (r,...,1).
Using this, we conclude that if A satisfies the shuffle relations, then
Alwiy o owe) + (1) A(wy, o wr),
which is the desired result. &

Lemma 2.5.3. ARl is (neg o push)-invariant.

Proof. Using lemmas 2.5.1 and 2.5.2, we have

neg o push(A)(wi, ..., w,) = anti o swap o anti o swap(A) (w1, ..., w,)
= (=1)""tanti o swap o swap(A)(wy, ..., w,)
= (=) tanti(A) (w1, ..., w,)
= A(wl, ce ,U)r),
which proves the result. &

19

Definition. Let ARI,;,q denote the subspace of ARI,;/q of moulds A such that A (ul)

Chl
is an even function, i.e. A (_ul) =A (u1)

—U1 (%1
Proposition 2.5.4. ARI,j/4 is neg-invariant and push-invariant.

Proof. Let A € ARI, /.- By additivity, we may assume that A is concentrated in a fixed
depth d, meaning that A(ws,...,w,) =0 for all r # d. Since A = negopush(A) by lemma
2.5.3, we have neg(A) = push(A), so we only need to show that neg(A) = A, in other
words that A(wy,...,wy) is an even function. For d = 1, this comes from the assumption
on A. If d = 2s is even, then since neg is of order 2 and commutes with push and push is
of order d + 1 = 2s + 1, we have

A = (neg o push)**TH(A) = neg®* T (A) = neg(A).

If d =2s+ 1 is odd, we can write A as a sum of an even and an odd part

1 1
A= §(A(w17 SRR ,UJd) + A(_wh R _wd)) + §(A(w17 SR 7wd) - A(_wla) _wd))7
so we may assume that A(wy,...,wy) is odd, i.e. neg(A) = —A. Then, since A is alternal,
using the shuffle sh((w1, ..., was)(wast1)), we have
2s
ZA(wl, e ,wi,w28+1, w,-+1, e ,wgs) = 0
i=0

Making the variable change wg <+ was41 gives

2s
E A<w17 cee sy Wi, WO, Wid1y - - 7w25) = 0,
=0

which we write out as

2s
ZA U ... U; Uy Uj41 ... U2g —0 (2 5 1)
- V1 oo Uy Vg Vi41 ce. Uog ' o
1=0
Now consider the shuffle relation sh((wj)(wa, ..., wsst+1)), which gives
2s+1
Z A(w27'~'7wi7w17wi—|—17"~7w28+1) = 0. (252)
i=1
Set ug = —ujg — -+ - — ugs41. Since neg o push acts like the identity on A, we can apply it

to each term of (2.5.2) to obtain

2s
_A Ug (%) Ce U; Ul Ui+1 ce U2s
i—1 V2s4+1 V2 —VU2s41 --- VUi —V2s41 VUl — V2541 VUitl — V2541 ... V25 — V2s41

20

_A Uo U2 e U2s U2s+1 —0.
—U1 V2 —UV1 ... VU2 —VU1 U2s41 — V1
We apply negopush again to the final term of this sum in order to get the uss4+1 and veg41
to disappear, obtaining

2s
_A Ug u9 ce U; (75} Ui+1 <. U2s
P —V2s4+1 V2 — V2541 ... Uj —VU2s41 V1 — V2541 Vi1l — V2541 ... V25 = VU2s41
Uy Uu (15) e U2s—1 (5]
+A 0 s s = 0.
U1 —V2s+1 —U2s41 V2 — V2541 ... V25-2 — V251 VU2s—1 — V2s

Making the variable changes ug <> u; and vy — vg — vy, v; — v; — v1 for 2 < i < 2s,
V2s4+1 > —v1 in this identity yields

ZS_A<U1 (15 e U U Ui41 u23>+A<u0 Ui Ug oo U25-—1 UQS):O.
P U1 V2 e Y Vo Vi4+1 ... Va2g Vo V1 V2 o V2g—1 V2g

(2.5.3)
Finally, adding (2.5.1) and (2.5.3) yields

24 Up U1 ... U2g —0
U1 V2 ... Vg ’
so A = 0. This concludes the proof that if A € ARI,;/q;, then A(wy, ..., wq) is an even

function for all d > 1; thus if we assume in addition that A is even for d = 1, then
neg(A) = A, and by lemma 2.5.3, we also have push(A) = A. &

In the appendix, we prove the following important identity, valid whenever A, B €
ARIP*" ie. are both push-invariant bimoulds:

swap(ari(A, B)) = ari(swap(A), swap(B)), (2.5.4)

This identity immediately yields the following result.
Proposition 2.5.5. ARl /. is a Lie algebra under the ari bracket.

Proof. Let A, B € ARl,;/q and set C = ari(A, B). The mould C is alternal by proposition
2.4.2; and by (2.5.4), we have swap(C) = swap(ari(A,B)) = ari(swap(A),swap(B)),
which is also alternal by proposition 2.4.2. It remains only to check that C' is even in

depth 1. But in fact, C (“1) = 0, as the depth 1 part of an ari-bracket is always zero,
which follows directly from ‘the definition (cf. (2.2.3)). &

21

2.6. The space AR,/

Definition. Let ARI,;/; denote the subspace of ARI consisting of bimoulds A which are
alternal, and such that there exists a bimould Z € ARI such that

Z<u1 ur):{mre(c allv; =0

v e Up 0 some v; # 0,

for which A + Z is alternil. The subspace ARI,;/y C ARIy /5 are the bimoulds which are
even functions in depth 1.

Note the difference between this notation and the notation ARI,; 4, for which both
the mould and its swap are alternal. Ecalle points out that using the strict definition for
ARIy /5y would lead to very small subspaces; for example restricting the strict definition
to ARI“V%" would yield only zero.

Let us consider the definition of ARI,;/; in the case of homogeneous polynomial-
valued moulds of weight n. Here, the following statement holds.

Lemma 2.6.1. Let A be a homogeneous alternal bimould of weight n in the variables u;,
and suppose that swap(A) is alternil in depths 1 < d < n—1. Then swap(A) is not alternil

in depth n, but if the value 0 in depth n is replaced by # (i.e. if this constant mould

concentrated in depth n is added to A), the resulting mould is alternil in all depths.

Proof. This is identical to the standard result on correction of double shuffle polynomials
(cf. ref). In fact, if A is alternal, then A = 0 in depth n, so swap(A) = 0 in depth n. The
mould swap(A) does not satisfy the depth n alternility conditions, but there is a unique
constant that can be put in depth n which will make it do so. &

Example. Let us use the homogeneous mould of degree 3 given by:

ur\ _ 2 Uy U2\ _
ma =uj, ma = —uj + us.
U1 U1 U2

This mould is clearly alternal, and setting mi = swap(ma), we have

[U7 92 . U U2 o
mi =0y, Mmi = v — 2v9.
U1 V1 V2

The alternility relation for depth 2 are given by

fur u fus u 1 S ul t+u 1 M ur+u
mi 1 2 + mi 2 1 + mi 1 2 + mi 1 2 7
V1 V2 V2 U1 V1 — U V1 Vo — U1 V2

i.e.

(v1 —2v2) + (v2 — 2v1) + (v1 +v2) = 0.

22

But the alternility relation for depth 3 is given by
m’L(UI uz U3>+mZ<U2 U1 U3)+mZ<UQ us Ul)
1 Vo Us V2 U1 (O8] Vo V3 U1

1 fur+us u 1 fur+uy u
n mi [2 U3 mi 3
V1 — V2 U1 U3 Vo — V1 V2 U3

1 up Uz +u 1 Uy Uz +u
. . 1 2
+ mi ! 2) + mi 3 ,
V2 — V3 U1 V2 V3 — VU2 VU1 V3

i.e.

(U1 — 21)3) — (UQ — 21)3) 4 (’Ul — 2U2) — (Ul — 27}3)
V1 — V2 V2 — V3

04+0+0+ —1-2=-1,

which is not zero. To make mz: into a truly alternil mould, we need to set
1
mi (Y112 M) =
vy V2 U3 3

This lemma shows that for homogeneous polynomial moulds of weight n, we can use
the following definition.

Definition. A polynomial-valued bimould A of homogeneous weight n lies in AR,y if
it satisfies the alternility conditions in depths 0 < r < n.

The proof that ARI,;/, is also a sub Lie algebra of ARI for the ari bracket is difficult
and lies at the heart of Ecalle’s theory. We explore this part of the theory in chapter 4.
Before that, however, we will establish the connections between the standard theory of
formal multiple zeta values and ARI.

23

Appendix to Chapter 2

For every mould B € ARI, we define associated actions amit(B) and anit(B) on ARI
as follows:

amit(B) - A= Z A(a[c)B(b)),

w=abc

b,c#0

anit(B)- A= Y Aalc)B(|b),

a,b£0
For every pair of moulds B,C € ARI, we set
azit(B,C) - A = amit(B) - A+ anit(C) - A;
then arit arises as the special case of axit given by taking C' = —B, so
arit(B) - A = azit(B,—B) - A = amit(B) - A — anit(B) - A.

We will use these notions in the proofs of results from the text, but in fact we will prove
more: we will show that amit, anit, axit and arit are all derivations with respect to the
usual mould multiplication mu, that axit thus gives rise to a Lie bracket on pairs of moulds

a:m'((A, B),(C, D)) =

<axit(A, B)-C—azit(C, D)- A+limu(A,C), axit(A, B)- D —axit(C, D)- B+limu(B, D)),

and we will prove general identities between swap, amit, anit, axit, arit, ari and axi.

From §4.2.2: Proof that arit(A) is a derivation with respect to mu.

We proceed by proving that amit(A) and anit(A) are derivations and then deduce
the result for arit(A).
For amit, we need to prove the identity

amit(A) - mu(B, C) = mu(amit(A) - B, C) + mu(B,amit(A) - C).

Assuming that all moulds are in ARI and therefore 0-valued on the emptyset, we can

24

remove b # () from the definition of amit; we have

amit(A) -mu(B,C) = Y mu(B,C)(a[c)A(b])

w=abc

c#D

= 3 Y B(d)C(d2)Ab))

w= aql)ac d:ds= a(c

=2 2. B + 2,) Blae)Cle)A(b))

w= abc ajas=a w=abc cico=[c
c#0D 017£@
= Y B(a)C + > Blafe1)C(e2)A(b))
w=ajagbc w=abcjco
c#(cq1#0
= D Bla)) Cla[c)A(d))+ Y > Blafe)A(b])C(ca)
w=a1d d=asgbc w=dcg d=abc;
d#0 c#0 d#0 c1#0D
= > Blay)(amit(A) - C)(d) + Y (amit(A)- B)(d)C(cy).
e e’

Noting that for A, B,C € ARI we always have (amit(A) - B)(0) = (amit(A) - C)(0) = 0,
we can drop the requirement d # () under the sum, and therefore obtain exactly

mu (B, amit(A) - C) + mu(amit(A) - B,C).

Exercise. Show similarly that anit is a derivation.

We deduce immediately that arit(B) - A = amit(B) - A — anit(B) - A is a derivation
with respect to mu. We have the explicit expression

arit(A)-B= Y _ B(a[c)A(b])— > B(alc)A(|b).

w=abc w=abc

c#Q a#0

From §4.2.4: Proof that if A, B € ARI,;, then arit(B)- A € ARI,.

Using (A2), we compute

>, (arit(4) B)w)= 3 > Blale)A(b))~ Y Blale)A(|b)

wesh(x,y) weEsh(x,y) WC:;;’C Wa:;(;c
- ¥ S BaleAb)- Y S Blalo)A(lb)
X = X1X2X3 a € sh(x1,y1) X = X1X2X3 a € sh(x1,y1)
Y =y1y2y3 b € sh(x2,y2) Yy =y1y2y3 b € sh(xa,y2)
x3ys # 0 ¢ € sh(xs,y3) x1y1 #0 ¢ € sh(xs,y3)

25

- ¥ 3 B(ale)Ab]) - > > B(a]c)A([b)

X = X1X2X3 a € sh(x1,y1) X = X1X2X3 a € sh(x1,y1)
Yy =Yy1y2ys b=xz orys Yy =Yy1y2ys b =xg orys
x3y3 # 0 c € sh(xs,ys) x1y1 #0 ¢ € sh(xs,y3)
x2y2| =1 x2y2| =1
= > > B(a[c)A(b]) — > > B(a]c)A(|b)
X = X1X2X3 a € sh(xy,y1) X = X1X2X3 a € sh(x1,y1)
Yy =Yy1¥y2 b =x, Yy =Yy1y2 b =x,
x3y2 0 c € sh(xs,y2) x1y1 #0 ¢ € sh(xs,y2)
x2| =1 %2 =1
+ Y > B(a[c)A(b]) - > > B(alc)A(|b)
X =x1X2 a € sh(xy,y1) X =x1X2 a € sh(xy,y1)
Y = Y1y2Y¥3 b=y, Y = Y1¥2Y3 b=y>
x3y3 #0 c € sh(xa,y3) x1y1 # 0 ¢ € sh(xa,y3)
y2| =1 ly2| =1

From §4.2.5: Swap, push and the ari bracket

Here we prove the identity (2.5.4) given by
swap (am’(A, B)) =ari (swap(A), swap(B))

when A and B are both push-invariant moulds. In fact, we introduce some general objects
and prove some more general identities concerning the relation between swap and amit,
anit, axit and arit on the way.

Precisely, we prove the desired identity by uncovering the commutation relations be-
tween swap and the derivations amit and anit: these are given by the following two
identities:
swap (amz’t(swap(B)) -swap(A)) = amit(B)-A+mu(A, B)—swap (mu(swap(A), swap(B))),

(46)
swap (amt(swap(B)) : swap(A)) = anit(push(B)) - A. (A7)

Using these identities, we can recover a more general version of the desired result (2.5.4).
Recall that

preari(A, B) = arit(B) - A+ mu(A,B) and ari(A, B) = preari(A, B) — preari(B, A).
(A10)

Thus in particular, we have
ari(A, B) = arit(B) - A — arit(A) - B+ limu(A, B)

All
= axit(B,—B) - A — azit(A,—A) - B + limu(A, B). (A11)

26

The identities (A6) and (A7) immediately yield

swap (m‘it(swap(B)) : swap(A))
= swap (anit(swap(B)) : swap(A)) — swap (amit(swap(B)) . swap(A))
=anit(B) - A+ mu(A, B) — swap(mu(swap(A), swap(B))) — amit(push(B)) - A

= azit(B, —push(B)) - A+ mu(A, B) — swamu(A, B),
(A12)

swap (prearz’ (swap(A), swap(B))> = swap<arit(swap(B)) : A> + swamu(A, B)

(A13)
= axzit(B, —push(B)) - A + mu(A, B),

and finally from (A11) and (A13), we see that if A and B are push-invariant, then

swap (ari (swap(A), swap(B)))
= axzit(B, —push(B)) - A + mu(A, B) — axit(A, —push(A)) - B — mu(B, A)
= azit(B, —push(B)) - A — axit(A, —push(A)) - B + limu(A, B)
= a.m'((A, —push(A)), (B, —push(B)))L (left-hand part of azi pair)

= azit(B,—B) - A — axit(A, —A) - B+ limu(A,B) (since A, B push-invariant)
= arit(B) - A — arit(A) - B + limu(A, B)
= ari(A, B),
(A14)
which proves the desired equality (2.5.4).

It remains to prove the key identities (A6) and (AT).
To do this, we need the following explicit expressions for the flexions occurring in the
definitions of the derivations, and the effect of swap:

a(cz<’UJ1 uk) <uk+1+"'+uk+l+1 ur)’

LR 2 Vk+i+41 o Up
b| = Uk+1 Uk+1
Vk+1 — Vk+i+1 - Ukl — Uk+i+1
alc = Uy v Ug—1 Uk T+ Uk Uk4i+1 - Uy
U1 v Vg1 Uk Vk+i41 - Ur
b = Uk+1 e Uk+1
Vg+1 — Vg - Vg4l — Vg

27

Setting SC = swap(C) for any mould C, we have

Sc(a"c) _ SC 1 k k+1 kE+I1+1 k+1+2 r
v - Uk Vk+1+1 Vk+l+2 - Up
—C U Vp—1 — Up o Uk4l4+1 — VUk4i42 Vg — Vk+i+1 Vg—1 — Vg
U+ U U F U UL F U4l UL+ UE U U
u PR u
SC(b]) = SC Rl Forl
Vk+1 — V141 *°° Ukl — Vk4i+1
- C Vi1 — Vk+14+1 Vk+1—1 — Ukl o Ukl — Uk42
Uk1 + o+ Ukl U1 + o+ Uggp—1 Uk+1
Sc(a“c) _ SC 1 k—1 k k+1 k+I1+1 r
v - Uk—1 Vk Vk+14+1 - Up
- U Vp—1 — Up o Ukl — Vk4i42 Vg — Vk4i+1 Vg—1 — Vg
u1+...+ur u1+”.+u7”71 u1+...+uk+l+1 u1++uk+l /U/1+"‘+Uk-71
u PR u
SC(|b) = SC Rl kot
Vk+1 — Vg Ukl — Vg
- C Vk+1 — Vk Vk+1—1 — Vk+41 crt o V41 — VUk42
Ug41 + -+ Uk Ugpr + o+ Ukpr-1 o Uk+1

Applying the swap

Uy U2 - Uy s Ur Ur—1 — Up R % i O
vy V2 e+ Up up+ Uy U Uy uq ’

¢ U1 — Uy

Ui H2 Vp—i41 — Ur—i42, ifi>1
UL+ U Ve

Ui+ AUy =V F U i<
Vi Ut U

Vi — Vig1 b2 Up—i41

Vi =V = Up—jyo + Ui iF 1<
(U = Uj > —Up—jpo — - —Up—jp1 iE 4>

i.e.

to these four terms yields

up U2 Up—g—| Up—f—i+1 + T Up—ky1 Up—fy2 Uy
C
U1 V2 e Up—f—1 Ur—k+4+1 Vr—k+2 et Uy
C Upr—fk—1+1 Upr—k—1+42 T Ur—F
Ur—k—14+1 — Ur—k+1 Ur—k—142 —Ur—fk *°° Ur—k — Upr—k41

28

of w2 Up—fk—1 Up—k—14+1"""+ Up—fy1 Up—f42 - Uy
V1 V2 Vr—k—1 Ur—k—I1+1 Vr—k+42 e Uy
C —Up—fk—1+2 — " T Ur—k+1 Up——142 Up
Upr—k—I1+1 — Ur—k+1 Ur—k—1+2 — Ur—k+1 Ur—k — Ur—k+1

Setting m = r — k — [, they can be written as

C Ur U2 Um Um+1 + -+ Upr—k+1
U1 U2 Um Ur—k+1
O Um+1 Um+2

Um+1 — Ur—k+1 Um42 — Ur—k

o™ w2 U Um41 "+ Up—ft1

V1 V2 Um Um+1

C —Um+2 — — Up—k+1 Um+2

Um+1 — Upr—k+1 Um+2 — Up—k+1

Now putting r — k = m + [gives

C up Uz Uy, Um41 + -+ Uit
V1 VU2 Um Um+1+1
C um—|—1 um—|—2
Um+1 — Um+i+1 Um+2 — Um4i+1
C Uy U2 Um Um41-°- + Um+1+1
U1 V2 Um, Um+1
C —Um+42 = — Um+1+1 Um+2
Um+1 — Um+I+1 Um+2 — Um+1+1

Using all these, we can now prove (A6) and (AT).
Proof of (A6). We have

Up—Ek+2 o Uy
VUr—k+2 - Up

Upr—k
Upr—k — Ur—k+1

uT*k“”Q o .. u'l”
Ur—k+2 - Ur

Upr—
Vr—k — Ur—k41

Um+i42 0 Up

Um+1
Um+1 — Um+1+1

Um+i+2 - Ur

Um+1
Um+1l — Um+I1+1

swap(amit(swap(B)) ~swap(A)> = swap(Z SA(afC)SB(bJ)>

w=abc

r—1 r—I

= swap [Z Z

=1 m=1

Ur—1 — Up

A o
U+ -+ U UL+ Up—1

29

Uk+1+1 — Uk+1+2
Uy + o Ugpi41

b,c#0

Vg — Vk+i+1 Vg—1 — Vg

up 4t up

Uy + -+ Uk—1

B (Vi+1 — Vk+1+4+1 Vk+1—1 — Vk+1

Tt Vg4l — Ug42 }
Uk41 T+ Ukl U1 T+ U1 - Uk+1
r—1 r—I
:ZZA UL U2 Uy Umeal T T Ui+l Umti42 0 Up
U1 V2 crr Um Um+1+1 Um+1+42 e Uy
=1 m=1
B Um+1 Um+2 T Um-+1
Um~+1 — Um—+i+1 Um+2 — Um—+i+1 : Um~+1 — Um+i+1
r—1r—I
_ZZA(Ul Uy -+ Uk Ukl T+ Uk+i+1 Uk+i+2 - Ur)
U v ... /l] U U DEREY v
= 1 U2 k k4141 k4142 r
.B Uk4-1 Uk4-2 T Uk 41
Vk+1 — Vk+i4+1 Vk+2 — Vk4i+1 V41 — Vk+i+1
r—1r—Ii—1
-y A(m Up et UE Upgd b b Ugpipl Ukglgz uT)
v U ... U /l) U DY U
= = 1 V2 k k4141 k4142 r
B Uk+1 Uk+2 T Uk+1
Vk+1 — Vk+i+1 Vk+2 — Vk+i+1 Vk+1 — Vk+i1+1
r—1
_ZA (A uy (5] U
=1 Vi+1 Viy2 -+ Ur V1 = U1 V22— - U — U1
r—1
u u DY u _ u _ u _ PR u
+ 2 :A 1 2 r—I . B r—I+1 r—I1+2 T
—1 V1 U2 o Up— VUr—i4+1 Upr—i4+2 = Ur
=amit(B) - A — swap(mu(swap(A), swap(B))) + mu(A, B).
Proof of (A7). We have
swap(anit(swap(B)) 'swap(A)) = swap(g SA(a]c)SB(Lb))
w=abc
a,b#0
r—1r—I
= swap[E E
I=1 k=1
Uy Vpr—1 — Up ot Ukl — Vki42 Vg — Vk+i4+1 Vg—1 — Vg
Uy + ot U UL+ U U+ F Ui+ UL+ F UR4 ULt T U1
B Vg1 — Uk Vk41—1 — Ukl Tt Uk41 — Vg2 }
Uk41 + o+ Uyl Ukq1 T+ U1 - Uk+1

30

push(B)

I=1k=1

r—1r—I[—1

u u PR
22 Al

’Ul /U2 e Um

Um+2

Um+1 — Um Um+2 — Um

Uy U2
V1 V2

u
-push(B) k+_1 i
Vg41 — Vi Vp42 — Vg

Ug—1 Uk + Ukt
VE—1 VE

Uk+-2

= anit(push(B)) - A.

31

Um+1
Um+l — Um

Uk+l4+1 * Ur

Uk +1
Vk41 — Uk

U1+ Umnt+l+1l Umti+2 Uy
Um+1 Um+1+2 (S
— T Umti41 Um+42 Um+1
— Um+i+41 Um+2 — Um+i41 Um+1 — Um+i+1
U Umt1 -+ Untl+l Umt142 Uy
Um+1 Um+1+2 Uy
Um+2 Um+3 Um+1+1
Um+2 — Um+1 Um+3 — Um+1 Um+i4+1 — Um+1
Um—1 Um -+ Um+l Um4i4+1 - Up
Um—1 Um Um~+1+1 e Uy

Chapter 3

From multiple zeta values to ARI

In this chapter, we give a map from the double shuffle Lie algebra 0s introduced in
chapter 1 to the Lie algebra ARI, and prove that it is a map of Lie algebras. In fact, the
map can be defined on a larger space, F, containing 0s (cf. §4.3.1). We identify the image
of 0s in ARI, as well as the image of the associated graded for the depth filtration, then
use the results of chapter 2 to show how Ecalle’s methods can be used to prove one of the
basic theorems on 0s.

3.1. The ring F

Consider the ring of polynomials Q(z,y) in non-commutative variables z,y. Let 0,
denote the differential operator with respect to z. Set C; = ad(x)"~(y), i > 1, so C; = y,
02 = [.Cl?,y], C3 = [.’L‘, [.',E,y”, SRR

Lemma 3.1.1. (Lazard elimination) The set of polynomials f € Q{x,y) such that
0:(f) = 0 is a subring which is equal to the subring of polynomials f that can be writ-
ten as polynomials in the C;. The C; are free generators of this ring, so if f can be written
as such a polynomial, then it can be written so in a unique way.

Let 7, be the projector onto polynomials ending in y (i.e. m, forgets all the monomials
ending in x). The usefulness of the ring F is that m, has a section on F. Indeed, for any
polynomial g ending in y, define sec(g) by

(1) i
sec(g) = Y 0 (g)a"
i>0
Lemma 3.1.2. (Racinet) (1) secom, =id on F.
(2) m, osec =id on Q(x,y)y.

Write F,, for the vector space of homogeneous polynomials in F of degree n.

3.2. Associating bimoulds to elements f € F,,

Let f € F,,. We need the following definitions.

Definitions. Write f(z,y) = >.""_, f"(z,y) where r denotes the depth r part of f (i.e.
the part of f consisting of monomials containing exactly r y’s).
Let 7y (f) denote the projection of f onto the monomials ending in y as above, and let
fy denote m,(f) rewritten in the variables y; = '~ 1y, i > 1, and similarly [, the depth r
part, i.e. m,(f") written in the y;. Similarly, let my (f) denote the projection of f onto the
monomials starting with y. Let retx : Q(z,y) — Q(z,y) denote the “backwards writing”
map
rety (x%y - - yx®tyx®) = 2 yxtty - yz®o. (3.2.1)

32

Note that Lie[z,y] C F. If f € F,, is actually a Lie element, we have

retx (f) = (=1)""f. (3.2.2)
Finally, let f7 denote the polynomial retx (7y (f)) written in the variables y;.

Recall from lemma 3.1.1 that F is exactly the set of polynomials that can be written
as polynomials in the C;, and such a writing is unique. Let fo denote f written in this
way.

Define three maps from monomials in non-commutative variables =,y (resp. y1, 2, - ..
resp. C1,C5,...) to monomials in commutative variables zg, 21, ... (resp. vy, v, ... resp.
Ui, uz,...) as follows:

_ _ _ 1 _
L s x0Ty gt Ty gl peomh L e
1 —
1o i Cyy oo Cyp = uft gl (3.2.3)
i a;—1 a,r-—1
LY *Yay - Ya, = UL 0T

Then we define three moulds (a mould and two bimoulds) associated to f € F,, as
follows:

vimo(zo, 21, -+, 2r) = tx (f7)
ma(" T) = (1 e (f)
0,...,0 7 cie (3.2.4)
0,0
ml(vl’ . 7%) = (fy).
All other values of these (bi)moulds are 0.
Note that by (2.2), if f € Lie[z,y|, we have
my(f) = (=1)" " Tretx (my (f)),
so f, = (=)™~ 1fr. Thus, if f € Lie[z, y], the mould mi can also be defined by
0,...,0
(T) = (=D (). 2.
mil) = (1 () (3.25)

When we turn our attention to the double shuffle algebra ds, we will be in this case.

Since the maps tx, tc and ty are obviously invertible, we recover f from vimo, fc
from ma and fy from mi. But of course, we easily recover f from fo by expanding out
the C;, and we also recover f from fy by setting f = sec(fy), as we have assumed that
f € F,. Thus, f € F,, fo, fy, vimo, ma and mi are all different encodings of the same
information.

Example. Let n = 3 and
f= [z, [z, 9]l + [z, 9], y] = 2%y — 2zyx + ya* + 2y* — 2yzy + y 2.

33

Then 7, (f) = 2%y — 2yzy + xy?, fy = ys — 2y1y2 + y2y1 and fo = C3 — C1C2 + C2CY, and
we have

vimo(zp) = ma® = mzi(@o =0)

vimo(zo, zl) =22 — 22021 + 23 ma('y) = ui mz(qj(l))oz vy

vimo(zo, 21, 22) = 29 — 221 + 22 | ma("ye?) = —w +uz) mi(, ",) = —2v2 + vy
Uimo(zo, 215 22, Z3) 07 ma'<U1dj62,bUB - 0’ m’&(U1,71102’70’U3) =0

3.3. Ecalle’s presentation of these moulds

Ecalle introduces these moulds a little differently, but the definitions are equivalent.
He first associates to f € [F,, the mould vimo by the formula:

vImo(20, 21, -« 2p) =

> (flatoya®y. . adr—tyzd)zfo .28 if0<r<n

(dgy---s dy)
d;>0, dy+di+--+dp=n—r

0 if r > n,

and then recovers ma and mz: from vimo by the formulae

ULyeooyUp

ma(0 0) = vimo(0,uy, uq +ug,...,us + -+ +uy)
. 0,...,0 _
mi() = vimo(0, vy, Vp_1,...,01). (3.3.1)
Viyeoo, Up

Cf. the Appendix for a complete proof that this definition is equivalent to the one in
(3.2.4).

To express the fact that f € F,, directly in terms of moulds, Ecalle has the following
condition.

Lemma 2.3. (Ecalle, PALL) If f € Q,(x,y) and vimo is defined as in (2.4), then f € F,,
if and only if

vimo(zg, - . ., zr) = vimo(0, 21 — 20,22 — 20, - - -, Zr — 20)-

3.4. The swap

Ecalle’s presentation underlines the symmetry between ma and mi, and makes it
trivial to prove that they are exchanged by an order 2 operation on bimoulds that Ecalle
calls the swap. The swap is defined by

ULy ooy Up Uy, Vp_1 — Up, ey U1 — V2
M =M 4.1
Swap()</U1;-.-7/Ur> (U1+"‘+U'p, U1+"'+U7n_1, R a4l) (3)

34

The swap is easily seen to be of order 2. It is immediate from applying the swap to (3.3.1)
that
mi = swap(ma).

To understand the swap in terms of polynomials, one can express it as follows (which is
what Racinet was intending in Appendix A, only the definition of swap and the statement
and proof of his prop. 3.3 are all slightly wrong).

Lemma 2.4. Let f € F,, and let fy, fo, ty and 1o be as in (2.3). For 0 < r <n, define
the map of polynomial rings Sy : Qluy, ..., u.| = Qvy,...,v,| by

Sr(ur) =vr, Sp(ui) = Vr—ig1 — Vr_ijpo for 2 <d <o

Then
Sr<(—1)r+nbc(f6)) =y (fy)-

In other words, identifying S, with the swap applied to variables u;, (—1)" "o (fE) with
mag(ui,...,uy) and o(fy) with mig(ve,...,v,), this is swap(may) = miy.

Remark. The linear map S, and its inverse S 1 are given by the matrix

o o o -~ 0 0 1 11 --- 1 1
o o o -~ 0 1 -1 r 1 - 1
e FER A N B RN
0 1 -1 0 0 O 1 1r -~ 0 0
1 -1 0 0 0 0 r 0o - 0 O

These matrices appear in IKZ and are directly related to Zagier’s notation f, f#.

3.5. From ds to ARI,;/;

Definition. The space ARI;/; consists in moulds ma such that ma is alternal and
mi = swap(ma) is alternil up to a constant (cf. 2.6).

According to Ecalle, the passage from F to ARI defined in 2.2 maps 9s to ARIy; .
More precisely, Ecalle’s properties translate the double shuffle properties on polynomials,
but also generalize them to all bimoulds.

Lemma 3.5.1. Let f € F,,. Then
(1) f satisfies shuffle if and only if ma is alternal;
(2) fy satisfies stuffle in depth 1 < r < n if and only if mi is alternil.

Corollary. Let f € F,,. Then
f satisfies double shuffle = ma/mi is alternal/alternil.

35

In other words, the association f +— ma maps ds to ARl ;.

Proof. In the special case where f satisfies shuffle, we have fy = (=1)""'f,, so under
the shuffle assumption, (2) can be expressed as saying that mi is alternil if and only if f,
satisfies stuffle in depths 1 < r < n. But it is known ([CS]) that if this is the case, then

Je = [y + CVT 1) (f|gc" Ly)yy satisfies stuffle in depths 1 < r < n, so under shuffle, mi is
alternil if and only f, satisfies stuffle, i.e. f satisfies double shuffle. &

Cf. the Appendix for the proof of lemma 4.1 (sort of).

Example. We take the same example as in 2.2.2, and check that ma/mi is al/il. Recall
that ma('o) = u%, mal 00”) = —u1 + ug. To show that ma is alternal, we have only to
check that

ug,uq

mal 00”) 4 mal"80") = 0,
which follows from (—u; + u2) + (—ug +ug) = 0.

To show that mz is alternil, we have only to check the stuffle relation for depth r = 2,
ie. st((wy), (wz)) = (wy,ws) + (we,wr) + (w1, ws). The corresponding alternility relation
iS 0 0

mitorvs) 4 mileaton) 4 P(v — ’Ug)ml(vl) + P(vg — vl)mz(w) =0,

(0 (

which follows since miv) = v} and mi viwz) = v1 — 209, and

2 2
i U
+

(Ul — 21)2) + (1)2 - 21}1) + = (—’Ul - UQ) + (’Ul + 1)2) =0.

V1 — V2 V2 — U1

3.6. The Poisson bracket and the ARI bracket

In this section we prove the relation between the Poisson bracket on 9s and the ARI
bracket defined in (1.3). The main result of this section is the equality (2.4.9) relating the
two brackets precisely.

Recall the definitions (1.2) and (1.3) from 2.1:

(Sp(A = Y Afalc)B(b))— Y _ A(alc)B(|b) (3.6.1)

w=abc w=abc

and
[A, Blars = ari(A, B) = Sp(A) — Sa(B),
ari(A,B) = Y (A(afc)B(b)) - B(ae)A(b))) — Y (A(ale)B(|b)~ B(alc)A(b)).

(3.6.2)

36

We start by setting

Dp(A) = arit(B)- A= Sp(A = > A(a[e)B(b])— Y A(alc)B(|b), (3.6.3)

b,c7$(2) a,b#(Z)

where AB = mu(A, B) denotes the product of two moulds by the multiplication rule
(2.1.1), so as to obtain the following expressions for the ARI bracket [A, Bl,.; = ari(A, B):

ari(A, B) = Sp(A) — Sa(B)
=arit(B)- A+ AB —arit(A) - B— BA
= AB — BA+arit(B) - A—arit(A) - B
= limu(A, B) + arit(B) - A — arit(A) - B

where mu(A, B) = AB and limu(A, B) = AB — BA (cf. ARI/GARI et la décomposition
des multizétas en irréductibles, p. 28 (75) and p. 29 (84)).

The notation D4 (B) = arit(A) - B given by Ecalle can be considered as an action of
the mould A on the mould B analogous to Df(g). The use of the two notations D4 (B) =
arit(A) - B underlines this similarity while moving towards the systematic use of Ecalle’s
notation (similarly, we will be replacing AB by mu(A, B) and [A, Blari by ari(A, B)). We
will explain the analogy precisely below (see (3.6.6)), showing in particular that the action
of Ds = arit(A) is a derivation (proposition 3.6.2).

We first need a useful lemma. Observe that if f € F,, then 0,([z, f]) = 0, so by
lemma 3.1.1, [z, f] € F,,+1. By lemma 3.1.1, we can consider both f and [z, f] as being
polynomials in the C;.

Lemma 3.6.1. (Racinet) Let f € F,,. Then for 0 <r <n, we have

tollz, f1]) = (un + -+ ur)ec (). (3.6.4)

Proof. Note first that a — [z, a] is a derivation, i.e. [x,ab] = [z, a]b+ alz,b]. Thus, writing
fr=>acaCq, -+ Cq,, we have

[z, f7] = an[x, Coy - Co,] = ZCaiCal o Coy 1 [2,Co,]Cqs,, -+ Cl,
a i=l

a

— Z i ca Cay+ Cay 1Cay41C0a;,, -+ Ca,.

a =1

So the left-hand side of (3.6.4) is equal to

Zan Gl gL (3.6.5)

a 1=1

37

But since 1o (f7) = Y, ca uft w71 (3.6.5) is equal to to(f") multiplied by (u; +
-+ + u,), proving (3.6.4). &

Proposition 3.6.2. (Racinet) For any mould A, the operator arit(A) = Da on moulds
defined by arit(A) - B = D(B) = Sa(B) — BA is a derivation of ARI.

Proof. Straightforward. Cf. Appendix for complete details.

Proposition 4.3. Let f € F,, be of homogeneous depth r and g € F,, of homogeneous
depth s. Let Dy be the derivation of F defined by D¢(x) =0, Ds(y) = [y, fl. Then

1c(D4(9))) = Dy () (10(9)) = (~1)™ "+ 471D, (). (3.6.6)

Proof. We have D¢, = Dy + D4, so we may assume that f = Cg, --- C,, is a monomial
in the C;. Furthermore, a derivation of FF is defined by its action on the generators C;, so
we may take g = C, = ad(z)?~(y). Let Fy = [y, f], and for i > 1, let F; = ad(x)*([y, f]).
In particular, we have

Dy(g) = [w, [z, [z, [y, fI] -] = ad(2)* " ([y,]) = Fo-1.

Then by lemma 5.1, since all the F; are in depth r» + 1, we have
to(Fy) = (ug + ...+ upg1)te(Fi—q) for i >0,
SO .
Lc(Fi) = (u1 + ...+ ur+1)ch(F0),
so the left-hand side of (5.4) is equal to

te(Dy(g)) = to(Fp-1)
= (ur + ...+ upp1)" e[y, f])
=(u1+---+ur+1b 1Lc(01 i Cy, = Oy Oy CY)

; (3.6.7)
= (ur + -+ uppr) 7 (ug uglll—ufl Loyart),
(

Now consider the right-hand side of (3.6.6). By (3.2.4), we have

UTye ooy Up

D) = (FD () = ()

mag(

where n =a; +---+ a,, and

U1 _ _
mag()= (=" "y

Since Da(B) = Sa(B) — BA, (3.6.1) yields

(Da(B))(w) = > B(ac)A(b)— Y B(a"c)A(b)— > B(a)A(b). (3.6.8)

w=abc w=abc w=ab
a0

38

Since ma, has value zero on any word of length greater than 1, this formula simplifies
when A = may, B = may to

(Dmaf(mag))<) mag(u)maf(u2a"'7ur+1)
+mag(ur + -+ upp1)mag(ug, -, uy)
—mag(ur + -+ + Urgp1)mag(uz, ..., Urt1)
—mag(u1)mag(ug, ..., Urs1)
= m@g(ul ++ Ur+1)<maf(u1, C L Up) — maf(u2, . ~,Ur+1)>

= ()P) (T).

This proves (3.6.6) since g = Cp, so m =b and s = 1. O

Corollary. Let f €), be of homogeneous depth r and g € F,, of homogeneous depth s.
Let Dy be the derivation of F defined by Dy(x) =0, D¢(y) = [y, f]. Then

we({f,9}) = (=1)"7T"F ari(may, may). (2.4.9)

Proof. By (3.6.6), we have

we{f,9}) = we(fg—9f) + c(Dys(9))) — te(Dy(f))

— (_1)n+r+m+s [

maygg — Magy — D, (mag) + Dina, (maf)]
while by definition, we have

ari(mayg,may) = Sma,(mays) — Sma, (May)

= Dina, (may) + mu(mag, mag) — Dma,(mag) — mu(mag, may).

It remains only to note that for f and g monomials in the C;, we have ma s, = mu(mays, may).
Since mu is distributive, this extends to sums of monomials f and g as in the statement.{

3.7. Parity property of the depth filtration on ds

We now show how to use the basic results on ARI obtained in chapter 2 to give an
Ecalle-style proof of the following result.

Theorem 3.7.1. Considering 0s as a weight-graded vector space equipped with the depth
filtration, we have
dimds? /054 =0 if n#d mod 2. (3.7.1)

39

Although this result is fairly familiar “folklore”, the only written proof appears to
be the proof of an equivalent but differently formulated result which appears in [IKZ].
However, there is some work involved in translating the authors’ formulation of their
theorem back to the language of ds. In fact, [IKZ| define spaces DSh,.(s) of polynomials
in commutative variables, which can be shown to be isomorphic to the graded filtered
quotients Ds£+s/bs£ii, and they prove that DSh,.(s) = 0 if s is odd. Their proof uses
some astute tricks with permutations. Instead, the proof given here, which does not seem
to appear anywhere in Ecalle’s papers but is constructed by putting together basic facts
from the ARI universe, is a perfect example of the real simplicity and magic of Ecalle’s
methods.

Theorem 3.7.2. Let A € ARI®/4 pe q homogeneous polynomial mould of weight n,
concentrated in depth d. If n £ d mod 2, then A = 0.

Proof. Let A be as in the statement; then by proposition 2.5.4, A is neg-invariant. But by
the homogeneity,

neg(a) () = mapea (),

vl DY /l}d /l)l DY ’l}d

which gives the result. &

Ecalle-style proof of theorem 3.7.1. Let f € 0s,, let d be the depth of f (the minimal
number d such that some monomial of f contains d 3’s), let f¢ be the part of f of depth
d, and let maya the associated bimould via (3.2.4). Then may is alternal since f? is a Lie
element. Furthermore, (f%)y satisfies shuffle in the y; since the stuffle relations consist of
the shuffle relations plus terms of lower depth, but f¢ contains no terms of depth lower
than d, so (f%)y is also alternal, which means that mayge € ARIy/q. If d > 1, then
may € ARIy/q; thus by theorem 3.7.2, if n # d mod 2, masa = 0, so f¢ = 0; in other
words there exist no elements of weight n and depth d of 0s if n # d mod 2.

In the case d = 1, another argument is needed, because the existence of the mould
A <Zi > = u?*l, for instance, shows that a bialternal mould concentrated in depth 1 even
when n is even. HOLE

40

Appendix to chapter 3

Proof that Ecalle’s ma/mi in (3.3.1) are equivalent to the ones defined in (3.2.4).

By (3.2.4), we have mz’(v?’:::’g) = ty(fy). Since mi is additive on moulds, we may

assume that f is a monomial, f = 2%~ 1y ... yz% ! Then

Wy(f):{f ifa():l

0 otherwise.

So

retx (my (f)) = atrly- a1 Tly ifag =1

0 otherwise.
and .
fY:{yar.”yal lfaozl
0 otherwise.
Thus
a,—1 a;— : —
mi(Owu,o)zLy(fY):{% vl ifag =1

Vi, .oy Up 0 otherwise.

Now using Ecalle’s definition, we have
Vimo(2o, ..., 2p) = 2007 T8 par T
SO 0 0
... a _1 . e . aT_l 1 P—
mi() = vimo(0,v,,...,v1) = {Url U1 if a __1
Vi, ey Uy 0 otherwise.

The case of ma seems a bit more complicated. We can assume that f is a monomial
Cy, -+ Cy, in the C;. We will prove it by induction on 7 (though there might be a better
way). For the base case, r = 1, we have n = a; and

a1—1
f _ Cal — Z (_1)1021_1xa1—1—1yxz,
=0
a]_—].
vimo(zg,21) = Z (—1)16'&1_1281*1%21,
=0

U1

vimo(0,uy) = (1) 181 = (=1)" 8 T = ma(0

)

using Ecalle’s definition, and comparing with the (3.2.4), we have

Ui

o) = (D e(Ca) = (=) g

ma(

which is the same.

41

Now make the induction hypothesis that the two definitions of ma coincide up to
depth r — 1, and let f = Cy, -+ C,,_,C,,. Using the definition of (3.2.4), we find that

ULy ooy Up

) = FD () = (e

mag(-

Let us write g = Cy, - -+ Cy,_,. Then using the definition from (3.2.4), we have

Or)'

ULyeo oy Up

0,...,0

ULy oy Up_1 u

ma() =may (N ymac,

By the induction hypothesis, we have
{macar = vimog, (0,u,) = (—1)er—lyar—1

mag(ul’d;:jf‘fgfl) = vimog(0,u1,...,u1 + -+ Up_1).

So to prove that Ecalle’s definition coincides with (3.2.4), we just have to show that

vimoy(0,ut, ..., ur + -+ +u,) = vimog(0,us, ..., us + -+ + up_1)vimoc,, (0,u,)
ar—1,_ - ar—1
=(-1) vimog(0,uy, ..., ug + -+ up_1)us
Write
g= E cax®™ Ly oyptr1Tl
a=(ag,...,ar_1)
Then
. ap—1 _a;—1 ar—1—1
vimog (20, ..., 2r—1) = g Cazy® 2Tz,
a:(a07~~-7a'r'71)
and
. a;—1 as—1 ar_1—1
vimog(0,ur, ..., u1+ - Fupr_1) = g cat]'” (urtu2)® e (ug e AUy
a=(1,a1,...,ar-1)
Then

vimog(0,uy, ..., u1 + - -+ + up_1)vimoc, (0,u,)

= (—=1)e~1 Z catt$ (g 4 ug)® 7 (ug e) T T (A1)

a=(1,a1,...,ar-1)

But also
a,r—1
f=9Ca, = Z Z (—1)jcgr_1cax“°_1y N e PV
a=(ag,...,ar—1) J=0
SO
a,—1 .
vimog (2o, ..., %) = Z Z(—l)jCZFlcazgo_lzfl_l---z::]l_eraT_jzﬁ,

a:(a0a-~~7ar71)]:O

42

SO

ar—1

, I Yarl a1—1 __as—1 ar_1—24+a,—j 4
vimoys(0,21,...,2,) = g g (=1)C; _jcaz'” 277 ez T2,
a=(1,a1,...,ar) j=0

so finally
vimoys(0,uy,...,u1 + -+ u,) =

ar—1

S N (10 eau T unbun) T ()P (g)
a=(1,a1,...,a,) 7=0

= ji: Cau?l_l(ul-+-u2)a2_1...(u1.+....+_ur_1)ar—1—1.

a:(l,al,...,ar_l)

ar—1
(D (O (A) T (g 4 ur)j)

J=0

— (_1)ar—1 Z Cau(lllfl(ul +u2)02—1 ,..(ul +..._‘_ur_1>ar71—1 'U?T_l

a:(l,al,...,a,«_l)

since the factor between large parenthesis is just the binomial expansion of

((U1—F...+—urfl)——(u1-+..,_F1MJ)aT—1 ::(—Jjarilugrfl.

But this is equal to (A1), which concludes the proof.

43

Proof of Lemma 3.1. (1) Let f € F,,. We show that f satisfies shuffle if and only if
ma is alternal. Assume that f € F,, satisfies shuffle, set vimo(zo, 21, ...,2,) = tx(f") for

r >0 and ma(“y g") = vimo(0,u1,...,u1 + - +u,). We have to prove that
S Uw=oe Y maw=o
wesh(w’,w'’) uesh(u’,u’’)

where w, w' and w” are words in the non-commutative variables x and y, and u, u’ and
u” are words in the commutative (but ordered) variables uy, ug, For ma to be alternal,
it is enough to consider all pairs

(u',u”) = ((u1, ..., us), (Uss1,. .- ur)) (A2)

for 1 < s <r — 1. Indeed if the shuffle relations for these variables are satisfied, then any
other variables can be substituted for these and the relation will still hold (cf. IKZ). The
notation used in IKZ is convenient here: let SHy C S, be the set of permutations o € S,
such that o(1) < ...o(s) and o(s + 1) < ...o(r); then using (A2), the shuffle relations,
i.e. the condition of being alternal, can be written

> malug-1(1y, - Ue1(y) =0, 1< s<[r/2]. (A3)
ocE€SH,
We know that u y
Tyeves
LCI (ma< 0 07’>) 6’7
i.e. writing
ma(u(l)a '737”) . Z Ca U(fl 1 "U,?T_l
’ ’ a=(ay,..., ar)
a1+---+ar=n

we have

Applying ¢ to (A3) for 1 < s < [r/2] then yields

0= LC(Z ma(uo.fl(l), ce ,'U,Ufl(,r.))>

ocESH,

- Y Y bl)

occSH; a=(ay,..., ar)

= Z Z a Cagpyy* Cagg

occ€SH; a=(aq,..., ar)

= Z fC(Ca(l), SR Co‘('r“))'

O'GSHS

44

In other words, we have shown that
ma alternal & fo satisfies shuffle,
so we just have to prove that
f satisfies shuffle for x,y < fo satisfies shuffle for the C;.

But this follows from the fact that f satisfies shuffle if and only if f is a Lie element, and
for any weight n > 1, the weight n part of the Lie algebra Lie[z, y] is generated by C,, and
weight n Lie brackets of the lower C;. Therefore f is necessarily a Lie element in the C;,
which proves (1) of lemma 3.1.

(2) “Proof by example”. In fact, the coefficients of the left-hand sides of the alternility
relations are exactly the coefficients of the stuffle relations. We do it on an example that
is sufficiently big to see exactly what happens.

Assume n > 5, so we can work in depth 4. Recall that fy is the polynomial
retx (my (f)) written in the variables y;. Write

n

=D _1y=> > Cala " Va,
r=0 =

r=0 a=(ay,..., ar)

a1+---+tar=n
so by (3.2.4), for 0 < r < n we have
0,...,0 _
mz())) _ c ’Ual 1 vor 1
v v av] T
L T a=(ay,..., ar)
ay+---+ar=n

We first assume that mi is alternil. As explained above for the shuffle, it is enough to
assume that msi satisfies all of the stuffle relations

st((wi, ..., ws), (Wst1,--.,wy)) 2<r<n, 1<s<][r/2],

where w; = (v%), since all others can be obtained from these by substitutions.

We want to show that if mi satisfies the relation st((ws,...,ws), (Wst1,-..,wy)),
then fy satisfies all stuffle relations of the form st((a,...,as), (ast1,-..,a,)) for integers
a; such that a; +... 4+ a, = n.

Let us take r = 4 and the stuffle relation st((wy,ws), (w3, wy)) as an example. For mi
to satisfy this stuffle relation means that

., U, U2, U3, Ug L UL, U3, U2, Ug L UL, U3, Ug, U2
ma mi

mi
V1,02, V3, V4 U1, V3, V2, U4 V1, V3, V4, U2
. U3, UL, U2, Ug ., U3, UL, Ug, U2 ., U3, Uq, U, U2
+mi() + mi()+ mi
V3, V1, V2, U4 V3, V1, V4, U2 V3, V4, V1, V2

45

1 ., U1, U2 + U3z, Ug 1 U1, Uz + U3z, Ug

+—mu + —mu
V2 — U3 V1,V2, V4 V3 — V2 V1,03, V4
|
1 UL+ U3, U, Ug 1 LUy + Uz, Uz, Uy
—m + —ma
U1 — U3 V1, V2, V4 U3 — V1 U3, V2, U4
]- L U1 +U3,U4,UQ]- L U +U3,U4,U2
—I——mz(+ —mu
V1 — U3 V1, V4, V2 V3 — U1 V3, V4, V2
1 UL, U, U2 + Ug 1 UL, U, U2+ Ug
+—mu)—|— —m
V2 — U4 U1, V3, V2 Vg — V2 V1, V3, V4
1 U3, UL, U2 + Ug 1 U3, UL, U2 + Ug
+—ml()))+ —mZ))
V2 — U4 VU3, V1, U2 Vg4 — V2 U3, V1, U4
1 L U3, UL+ Ug, U 1 L U3, UL+ Ug, U
+—mu + —mu
V1 — Vg U3, V1, V2 Vg — U1 V3, V4, V2
1 LU+ ug, Ug + Uy 1 LU+ ug, Ug + Uy
mi(+ mi
(Ul - Us)(vz - U4) U1, V2 (Ul - US)(U4 - Uz) U1, V4
1 _U1+U3,U2+U4 1 _U1+U3,UQ+U4
)+ mi() =0.
(U3 - 01)(112 - U4) U3, U2 (Us - U1)(U4 - U2) V3, V4

Note that we have written in all the u; here to make sure the alternil condition is correct,
but in fact all the u; = 0 in our situation.
This is then equivalent to

a1—1,a2—1, a3—1, as—1 a1—1,a2—1, a3—1, as—1 a1—1, a2—1, a3—1, as—1
E ca(vl1 L O O s T 2 S VS) SO e S P

(a1,a2,a3,04)

a1—1 as—1 az—1_ ag—1 a1—1 as—1 az—1 as—1 a1—1_ as—1_ az—1 as—1
Fug TP T e T T o T o T o T st T ot TR R T gt)

3 1 b
1—1 ba—1_ bsz—1 bi1—1, ba—1_ bs—1
(b17b27b3)
1 b
1—1, ba—1_ b3—1 bi—1, ba—1, b3—1
U1 — U3
1 b
1—1_ba—1_ bg—1 bi1—1 bs—1_ bs—1
V1 — U3
1
bi—1 by—1 bs—1 bi—1 by—1 bs—1
V2 — V4
1 _ _ _ _ _ _
('Ubl 1Ub2 1'Ub3 1_Ub1 1vb2 1Ub3 1)
3 1 2 3 1 4
V2 — U4

46

1
bi—1 ba—1 bs—1 bi—1 ba—1 bs—1

V1 — Vg

1 co—1 1 ea—1 1 ca—1 1 co—1
DT — o T T — gt T ugt T ug?) =0.

1
" Z ‘e (Ul - 03)(112 - U4) (Ul V2

(c1,¢2)

We write it as

1—1 a2—1 CL3—1 a4—1 a1—1 CLQ—]. a3—1 CL4—1 a1—1 CL2—1 a3—1 a4—1
Uy tUp U3t Ut Ty tup vt vyt Uy

a
E Ca (Ul (% Vg

(a1,a2,a3,a4)
1—1 a2—1 asz—1_ as—1 a1—1 as—1 az—1 as—1 a1—1_ as—1 az—1 as—1
L) e MY R e VS

a
+v5 vy Uy
-1 bo—1 b1—1 b1—1
_ 1,0 —v _ 1,0 —v
§ b /Ull)l 1,023 1(2 3)+UI272 1/023 1(1 3)
V2 — U3 U1 — U3
(b1,b2,b3)
bi—1 b1—1 bs—1 bs—1
bo—1 b3—1,V1 Us bi—1 by—1,V2 — Uy
Hv,2 v T ()+t T (A——)
U1 — U3 V2 — U4
bs—1 bs—1 ba—1 bo—1
_ 1,0 v _ 1,0 v
+U§l 1Ul1)2 1(2 4)+v§1 1,033 1(1 4)
V2 — V4 V1 — V4
c1—1 c1—1 co—1 co—1
v v v -
1 3 2 4 _
Y | () ()|
1 — U3 V2 — U4
(c1,c2)

This is actually a polynomial expression which can be written as

1—1 a2—1 a3—1 a4—1 a1—1 CL3—1 a2—1 a4—1 a1—1 a4—1 a2—1 a3—1
Uy +v7 vyt vt vy +v;T vyt TvgT vy

a
E ca (Vi 05T g

(a1,a2,a3,a4)
as—1 az—1 a1—1 as—1 as—1 as—1 a1—1 az—1 az—1 as—1 a1—1 as—1
+viT vyt vzt Ty + 017 vyt vy vy + 017 vyt vy vy)

bo—2 by—2
g cp g v?l_lvgz_z_zvévi?’_l—kg 0?1_2_%32_11)%@23_1
(b1,b2,b3) =0 =0

bi—2 by —2

e S gy
i=0 i=0
b3 —2 by—2

b1—1vi

T B Tt
1=0 1=0

01—2C2—2
o enoi
+ E CcE E vt T T 2T T ke | = 0.
=0 ;=0

(c1,¢2)

47

Now choose any four integers a,b,c,d > 1 with a + b+ ¢+ d = n. They are not all equal
to 1 since by definition, the depth 4 conditions are not used in weight n = 4, so we are
assuming that n > 5.

We want to show that the coefficient of the monomial V = v 'v) oS vt in the
polynomial (A4), being equal to 0, implies exactly the stuffle relation st((a, b)(c, d)) on the
coefficients of fy. It is enough to simply calculate the contribution to this coefficient from
each term from (A4). We obtain:

Ca,b,c,d + Ca,c,b,d + Ca,c,d,b + Ce,a,b,d + Cc,a,d,b + Ce,d,a,b

+ca,b+c,d + Ca+c,b,d + Ca+c,d,b + Ca,c,b+d + Cc,a,b+d + Cc,a+d,b
‘I'Ca—l—c,b—i—d = 0.

This essentially illustrates the general case. I will eventually write it down in general with
proper notation, but I really think this calculation makes it clearer than that would.

48

Chapter 4
Commutation of swap with the ari operators

§4.1. The fundamental identities - ARI situation

Recall the definitions

amit(B) - A = Z A(afc)B(b]),

b,c#0

anit(B)- A= Y Aa]c)B(|b),

azit(B,C) - A = amit(B) - A+ anit(C) - A
arit(B) - A = azit(B,—B) - A = amit(B) - A — anit(B) - A.

In this chapter we investigate the behavior of these operators with respect to the
swap. The identities (4.1.1)-(4.1.2) and (4.1.7)-(4.1.9) are the main results of the section
concerning operators on the Lie algebra ARI. The following section §4.2 will turn to similar
identities in the GARI situation above all Ecalle’s first fundamental identity, given in
Theorem 4.2.1.

64.1.1. The first two identities

In this section we prove the two identities:

swap (amit (swap(B)) -swap(A)) = amit(B)-A+mu(A, B)—swap (mu (swap(A), swap(B))) ,

(4.1.1)
swap (anit(swap(B)) : swap(A)) = anit(push(B)) - A. (4.1.2)
We have the following explicit expressions for the flexions occurring in the definition of
azxit:
a’VC:</U/1 uk) (uk-i-].—'_.“—'_uk}-f—l-i-l UT)’
Ul PR Uk: Uk+l+1 ... vr
b| = Uk+1 Uk+1
Vg1 — Vk+i+1 - Ukl — Vk+i+1
alc = (u1 Tt Uk—1 uk+"'+uk+l) (Uk—l—l—H ur)
v o Vk—1 Vg Vg4i4+1 - Up
b= Uk+1 o Uk+1 .
Vk41 — UV "+ Vg4l — Vg

49

Setting SC = swap(C) for any mould C, we have

U e u u _|_ e _|_ U u e U
SC(aI'C) — SC 1 k k+1 k+l+1 k+l+2 T
v o Vg Vk41+1 V4142 - Up
_ Ur VUr—1 — Up ot Uk4i41 — Uk414-2 Vg — Vk+i4+1 V-1 — Vg
Uy + -+ U U+ F U1 o UL F Ul UL F U U UR—
u DY u
SC(bJ) — SC k+1 k+1
Vg+1 — Vki+1 - Ukl — VkHi+1
- C V41 — Vk+i+1 Vg4+1—-1 — Vg4I o Ukl — Vg42
Uk41 + o+ Ul Ukqr + o0+ Uppi—1 - Uk+1
U e UL _ u + e + u u e U
Sc(a‘lc) — SO 1 k’ 1 k k‘+l k+l+1 T
v ot Vg1 Vg V441 - Ur
_ U Vp—1 — Up o Ukl — VkHi42 Vg — Vk+i+1 Vg—1 — Vg
up+ oAU ULt U UL Ukl UL Uk U UR—1
u DY u
SC(Lb) — SC k+1 k+1
V41 — Vg -+ Vg4l — Uk
_ Vi1 — Uk Vk+1—1 — Ukl ot Ukl — Uk+42
=C
Ug41 + -+ Uk Ugpr + 0+ Ukp-1 o Uk+1
Applying the swap
Uy U2 - Uy s Ur Ur—1 — Up R % i O
vy U2 e+ Up up+ Uy U Uy Uy ’

i.e.
¢ U1 — Uy

Ui V> Vp—j+1 — Upr—i42, if 7> Crul + -+ + U > Vp—j41
Ui+ U =V o t U1 <
V> U+ -+ Up—ig1
Ui — Vi1 F7 Up—i41
Vi —Vj = Up—jyo+ -+ Up—jt1 lf’l,<_]
\ Vi —VUj = —Up—j42 — " — Up—j41 1f’L>]

to these four terms yields

oW Uz oo Ur—k—l Ur—k—l41 o T Ur—k41 Ur—k+2 0 Up
V1 (%) Ut Vr—k—1 Ur—k+41 Ur—f+2 e Uy
C Upr—k—1+1 Upr—k—14+2 o Up—k
Ur—k—14+1 — VUr—k+1 VUr—k—142 —Ur—fk *°° Ur—k — Upr—k41
oY Y2 Ur—k—l Ur—k—lg1c s FUr—fk+1 Up—f+2 - Up
U1 V2 e Vr—k—1 Ur—k—I+1 Vyr—k+2 et (U3

50

C —Up—f—142 — T Ur—k+1 Upr—k—142 T Ur—k
VUr—k—1+1 — Ur—k+1 VUp—k—14+2 —Ur—k+1 ° Ur—k —Ur—k+1

Setting m = r — k — [, they can be written as

C Uy U2 o Um Um+1 +---+ Upr—k+1 Up—k+2 o Up
vp V2 - Um Ur—k+1 Ur—k+2 *°° Ur
C Um+1 Um+2 T Upr—k
Um+1 = Ur—k+1 Um+42 = Ur—k °° Ur—k — Upr—k41
o™ Y2 ottt Umo Umylcc + Ur—k+1 Ur—kt2 - Up
(%1 V2 e Um, Um+1 Uy —k+2 e Uy
C —Um+2 — 7 T Ur—k+1 Um+-2 o Ur—k
Um+1 — Ur—k+1 Um+42 —Ur—k+1 ° VUr—k —VUr—k+41

Now putting r — k = m + [gives

C Uy Uz Um Umpl T Umnpirl Umid2 0 Up
V1 V2 0 Um Um+1+1 Um+1+2 s Uy
C Um+1 Um+2 e Um+1
Um+1 — Um+i4+1 Um42 — Umti4+1 " Um4l — Umti41
C ul U2 P um um+1+um+l+1 um+l+2 ur
v V2 o Uy Um+1 Um+i+2 ° Ur
C —Um+2 — = Um+1+1 Um+-2 T Um+1
Um+1 — Um—+i1+1 Um+2 — Um+i+1 ot Um+l — Um+i+1

We can now prove (4.1.1) and (4.1.2).

Proof of (4.1.1). We have

swap(amit(swap(B)) ~swap(A)> = swap(Z SA(a(C)SB(bJD

w=abc
b,c#0

r—1 r—I

= swap[E E
=1 m=1
A Uy Vr—1 — Up ot Ukl — Vki42 Vg — Vk4i+1 Vg—1 — Vg
U+ U Ut U1 UL U1 U F s UE U F s UE—
Vk+1 — Vk+1+1 Vk+1—1 — Vk+l Tt Uk41 — Uk42 }
Uk41 + o Uyl Ukq1 + o0+ U1 - Uk+1

51

ZZA(M Uy 0 Um Um41 T+ Umti+1 Umglr2 - Ur)

U1 V2 Um, Um+1+1 Um+1+42 e Uy
=1 m=1
.B Um+1 Um+2 e Um+1
Um+1 = Um+l+1 Um+2 — Um+i+1 Um+l — Um+i+1
r—1r—I
:ZZA(M Up et UE Uppd b b Ugpipl Ukgipz ur>
v /l} ... v /l) v PR /l}
i 1 U2 k k+I+1 k+1+2 r
B Uk+1 Uk+-2 T Uk+1
Vg4+1 — Vk+i14+1 Vk42 — VkHi4+1 V41 — Vk4+i+1
r—1r—Ii—1
:ZZA(Ul Up et UE Upgd b b Ugpipl Ukglgz uT)
v U PR U /l) U DY U
= = 1 U2 k k+1+1 k+1+2 r
B Uk+1 Uk+2 e Uk+1
Vk+1 — Vk+i+1 Vk+2 — Vk+i+1 ° Ukl — Uk+i+1
r—1
_ZA U+ -+ U1 U2 o Up B U1 U9 U
=1 Vi+1 Vi42 -+ Up V1 = Vi1 V2 —V - U — V41
r—1
u u .. u _ u _ u _ PRI u
—FE:A 1 2 r—I . B r—Ii+1 r—Ii+2 r
=1 U1 V2 et Vr—1 Vr—1+1 Vr—142 e Uy
=amit(B) - A — swap(mu(swap(A), swap(B))) + mu(A, B).
Proof of (4.1.2). We have
swap(anit(swap(B)) -swap(A)> = swap(E SA(a]c)SB(Lb))
w=abc
a,b#0
r—1r—I
= swap[E E
=1 k=1
Uy Vpr—1 — Up ot Ukl — Vk4i42 Vg — Vk+i4+1 V-1 — Vg
Uy + ot U UL+ U Up + - F Ui+ UL+ F U4 UL+ T Ug—1
B Vg1 — Vg Vk+1—1 — Vk+l Tt Uk41 — Uk42 }
Uk+1 + 0 Ukl Uk41 + o+ Uppi—1 - Uk+1
r—1r—I[—1
:ZZA Up U2t Um Uml T Umepibl Umtl42 0 Up
V1 V2 ot Unm Um+1 Um+i+2 - Ur
=1 m=0

52

B (—Um+2 = T Umt i+l Um+2 T Um+1)

Um+1 — Um+1+1 Um+2 — Um+i+1 *° Um4l — Um+i+1
r—1r—I—1
:Z Z A Y U2 oo Um Um41 -+ Umti+1 Um4i42 - Up
V1 V2 N % Um+1 Um+1+2 e Uy
=1 m=0
u u .. u
p'U/Sh(B) m+2 m—+3 m—+Il+1
Um+2 — Um4+1 Um4+3 — Um+1 - Um4i4+1 — Um41
r—1 r—I
:ZZA U U2 v Um—1 Um ot Umgl Umei+l o Up
U1 (%) o Um—1 Um, Um+1+1 e Uy
=1 m=1
u /ul ... u
pUSh(B) m—+1 m—+2 m—+1
Um+1 — Um Um+2 — Um 0 Um+4l — Um
r—1 r—I
:Z A(m U+ Ukg—1 Uk -+ Ukl Ukfl+1 - Ur)
v v cee Vg v v cee W
=1 k1 1 2 k—1 k k+I1+1 r
u u P u
Vk+1 — Vg Vg2 — Vg - Vg4l — Uk

= anit(push(B)) - A.

§4.1.2. Other linear identities
The identities (4.1.1) and (4.1.2) show that

swap(amit(swap(B)) -swap(A)> = Z A(alc)B(b])

a,b#0

w=abc w=ab w=bc
b,c#0

= amit(B) - A+ mu(A, B) — swamu(A, B),

proving (4.1.1), and

swap(anit(swap(B)) -swap(A)) = Z A(alc)B(|b)

a,b#£0

= anit(push(B)) - A,

proving (4.1.2).
Since we have

arit(B,C) - A = anit(B) - A+ amit(C) - A,
arit(B) - A = axit(B,—B) - A = anit(B) - A — amit(B) - A,

53

preari(A, B) = arit(B) - A+ mu(A, B) (4.1.5)

and
ari(A, B) = preari(A, B) — preari(B, A), (4.1.6)

the identities (4.1.1) and (4.1.2) immediately yield

swap (am’t(swap(B)) : swap(A)> = swap(amit(swap(B)) : swap(A)) — swap <am’t (swap(B)) - swa
=amit(B) - A+ mu(A, B) — swap(mu(swap(/l), swap(B))) — anit(push(B)) - A

= axzit(B, —push(B)) - A + mu(A, B) — swamu(A, B)
(4.1.7)
Swap<preari (swap(A), swap(B))) = swap (arit(swap(B)) -A) + swamu(A, B)
= azit(B, —push(B)) - A + mu(A, B)
= amit(B) - A+ anit(—push(B)) - A+ mu(A, B)
= arit(B) - A+ anit(B — push(B)) - A+ mu(A, B)

= preari(A, B) + anit(B — push(B)) - A,
(4.1.8)
and finally from (4.1.6) and (4.1.8),

swap <am’ (swap(A), swap(B))) = axit(B, —push(B)) - A+ mu(A, B) — azit (A, —push(A)) B —m

= axi ((A, —push(A)), (B, —push(B)))L.
(4.1.9)
We also have

preawi(A, B) = awit(B)- A+mu(A, B) = amit(B)- A+anit(anti-neg(B)) - A+mu(A, B),
and
swap <preawi (swap(A), swap(B))) = swap (amit(swap(B)) : swap(A)>

+ swap <am’t (anti : neg(swap(B))) : swap(A)> + swap (mu(
=amit(B) - A+ anit(push - swap - anti - neg - swap(B)) A+
= amit(B) - A + anit(anti(B)) - A + mu(A, B)
= dwat(B) - A+ mu(A, B)
= preiwa(A, B),

with the definition
iwat(B) - A = axit(B,anti(B)) - A.

64.2. The fundamental identity — GARI situation

o4

The goal of this section is to prove the identity in Theorem 4.2.1. We need some work
before we get there.

§4.2.1. A preliminary identity

r(e) - O, = iwat(T6) - O, + mu(Oy, T6) + mulanti - Ts,0,), (4.2.1)
which is identity (11.97) of ”Flexions”, and use it to prove the fundamental separation
identity

1 1

mu(anti(pal),pal) (Ug, ..., up) = e E——

(4.2.2)
The main point in the proof of (4.2.1) is the explicit computation of

iwat(T6) - Oy (u1, ..., u,).
Ecalle suggests first computing the individual terms

iwat(ro,) - O(us, . . ., u,)

with r > p, 76, = swap(re,),

rop(Ut, ..., Up) =

~1
To=>) 16y, (4.2.3)

and)
Ou(us, ... u) = (—1)’"—150@1, Uy

When you do this computation by computer, you appear to find the general expression:

Qp(u,. .. uy)

iwat(ré,) - O Ulyenns = 424
((%))< ' po) (ur + -+ +up)us - Uppq(Uuipg + -+ + Upig) ()
where
p P
Qp(ut,. .. u) Z Z T—D+ 7 — Ul pts. (4.2.5)
i=1 j=1
Accepting this momentarily, let’s prove (4.2.1). First, we find that
.. 1 (Ut een, Uy
(iwat(rép)-O.) (us, . .., up) = (—1)"7PF Qs) .
(r=p) (w1 + - Fup)ur - up(Up—pgr + -+ uy)
(4.2.6)

55

Now we add up these terms as in (4.2.3) to get

B} 1 B}
iwat(To) - Ox(ug, ..., up) = — Z iwat(répy) - Ox(ug, ..., uy)

(p+1)'
_Z (Q' (uy,...,u)
et (p+1) (uy + -+ up)us -y (Up_py1 + -+ uy)
5 lii i T_erj_Z) Uilr—p+j
p=1i=1j=1 N —p) (w4 Fup)ur - up(Up—pyr + - - -

HOLE: Finish up this elementary proof.

Assuming (4.2.1), we will now prove (4.2.2). The first thing to notice is that in depth
r, only terms of O, of depth up to r — 1 occur, because T6(0) = 0. So we will use (4.2.1)
to prove (4.2.2) by induction.

We can’t use r = 0 for the base case, because ()0, () = 0 whereas gepar(pil)(§)) = 1.
So we’ll use r =1 for the base case. Here we have

r(0)0x(u1) = O, (uy) = 1

U1
and since iwat(T6) - O, (u1) = 0, we only need to check that

mau(Oy, T6)(uy) + mu(anti - T6,0,) = O, (0)T6(ur) + anti - To(uy) O (0) = —i.

31

We can do r = 2 just for fun:

r(o)(j* (uy,u2) = —

U1U27

and .
iwat(T6) - Oy (u1,uz) = 5——

2uquso

(O, T6) (wr, u2) = § gt oy

1 2ur+u
mu(anti - Té,0x) (u1, uz) = em

so the right-hand side of (4.2.1) in depth 2 is indeed also equal to e

Now we assume that gepar(pil) = r(8)O, up through depth r — 1. Then by (4.2.1) in
depth 7, using the facts

e jwat(T0) is a derivation for mu
e the identity anti - mu(anti - A, anti - B) = mu(B, A) and
e anti - iwat(T6) - anti = iwat(7T6), and finally

r(e)pal = preiwa(pal, T5), we have

56

7O, (uy, ... uy) = (iwat(T3) - O,) + mu(O,, T6) + mu(anti - T, O*)) (Ugy...yur)

= (iwat(T(')') -gepar(pil)) + mu(gepar(pil), Tc')') + mu(antz’ -T6, gepar(pil))) (uq, .

= (iwat(TO’) - mu(anti ~pal,pal)) + mu(anti - pal, pal, T6) + mu(anti - To,anti - p

= [mu(iwat(T6) - anti - pal, pal) + mu(anti - pal,iwat(T6) - pal)
+ mu(anti - pal, pal, T'6) + mu(anti - T, anti -pal,pal)) (uy, ..., u,.)

= (anti -mu(anti - pal, anti - iwat(To6) - anti - pal) + mu (anti - pal, preiwa(pal,, Té):
+ anti - mu(anti - pal, pal, Té)) (uy,...,u.)

= (anti -mu(anti - pal, iwat(To) - pal) + mu (cmti - pal, preiwa(pal, Tb))
+ anti - mu(anti - pal, pal, Té)) (Ug, ..., u.)

= (anti S mu (anti - pal, preiwa(pal, Té)) + mu(anti - pal, preiwa(pal, T(')'))) (ug, ...

= (anti - mu(anti - pal,r(e)pal) + mu(anti - pal, r(o)pal)) (Ug,...,up)

57

™ T
= Z(r —d)antipal(uy, ..., u;)pal(Wiy1, ..., ur) + Z(r —d)antipal (Up, ..., Up—ir1)pal(Up—g, . .. U7

i=0 i=0
r—1 r—1
= Z(r —d)antipal(uy, ..., u;)pal(Wiy1, ..., u.) + Z(r —d)antipal(Up, . .., Up—ip1)paAl(Up—g, . .., U7
— i=0
r—1 r—1
= Z(r —d)antipal(uy, ..., u;)pal(wiy1, ..., u.) + Z(r —i)pal(Up_iy1, ..., ur)antipal(uy, ... up—;
i=0 1=0
r—1 r—1
= Z(r —d)antipal(uy, ..., uw;)pal(Wiy1, ..., uy) + Z(r — j)antipal(u, . .., ur—j)pal(Ur—iy1,. .., U
i=0 §=0
r—1 T
= Z(r —d)antipal(uy, ..., u;)pal(Wiy1, ..., u.) + Z iantipal(uy, ..., u;)pal(Wiy1,...,up) (i=r
i=0 i=1
r—1
=rpal(uy,...,u.) + Zrantipal(ul, oo w)pal(wigt, - .., uy) + rantipal(uq, . .. uy)
i=1

=7rmu (antz’ -pal,pal)

= r gepar(pil).

This concludes the proof of (4.2.2).
§4.2.2. Proof of the fundamental identity

Here we prove the first main result of this chapter, Ecalle’s fundamental identity for
GARI.

Theorem 4.2.1. We have

gira(A, B) = ganit,.sn(p) - gari(A,ras - B). (4.2.7)

The proof will use the basic swap identity:
gira(A, B) := swap(gari(swap - A, swap - B)) = ga:m'((A, h(A)), (B, h(B))) (4.2.8)
with h = push - swap - invmu - swap.
Let us first give a little explanation based on automorphisms of the group A consisting

of elements in the power series ring ring Q((z,y)) having constant term 1. Such a power
series f gives rise to a polynomial-valued mould ma(f).

58

For f,g,9' € A, we define endomorphisms X4 ,), Ry and Ny of A as follows: each
one sends x — x, and
X(g,9nW) = gy9’
Ry(y) = fyf~
Ny(y) =yf,

ie. Ry = X p-1y and Ny = X(15). In this restricted situation, these are to be
viewed as the restrictions of the automorphisms gazit(ma(g), ma(g')), garit(ma(f)) and

ganit(ma(f)).
We have
XQ’ © Xf = XX(g,g/)(f)’

so f = invgazi(g) if X4 4)(f)g = 1. The proof is based on the identity
X(gg)© By = Nyy. (4.2.9)

where ¢! = X, 01 (f), l.e. f = invgawi(y q)(g9). The identity (4.2.9) is easy to prove,
since both automorphisms fix x, so we only need to compare their images on y. The RHS
yields Ny q(y) = yg’'g. The LHS yields

Xg.) R () = X(g.9n (fyf™)
- X(g,g’)(f)gyg/X(g,g/)(f_l)
=99 X (g0 (f)
=y9'9.

Thus (4.2.9) is easily proved. Its generalization is given as follows.

Lemma 4.2.2. We have

gaxita B - 9aritinygazia p(A) = ganitpa. (4.2.10)

Proof. We have
9aritinvgazia 5(A) = 90T invgazia, g (A),invmu-invgazia, g (A)>
and the composition of two gaxits is given by
gazita g - gaxitc p = gaTityazit s 5(C) A,B gawit a5 (D)> (4.2.11)
so we can multiply the terms on the LHS of (4.2.10) to obtain
9aTt gagit 4 g (invgazia, p(A))A,B gawit s, (invmu-invgazia 5 (A))- (4.2.12)

But we have
gazita p(invgazia p(A)) = invmu A, (4.2.13)

59

since by definition of the gaxi-multiplication, we have
mu(gazita g(invgazia p(A)), A) = gaxi(invgaxia p(A),A) = 1.
Thus we can substitute (4.2.13) into (4.2.12) to obtain
94Tty B gazit o g (invmu-invgazia, g (A))- (4.2.14)

Similarly, by (4.2.13) and because gazit is an automorphism for mu, we find that
gazxit o B (invmu-im}gaa@iA,B(A)) = {nvmu (gam'tA,B (im)gam’A,B(A)D = invmu-invmu-A = A,

and replacing this into (4.2.14) yields the desired result gaziti pa, which is equal to
ganitpg 4. This concludes the proof of Lemma 4.2.2. &

We now prove two useful identities.

Lemma 4.2.3. We have

gazity p(invgazia g - A) = invmu - A
garitc(invgari - C') = invmu - C (4.2.15)
gazith (invgaxi® - C) = invmu - C.

Proof. Writing garitc = gazxitc, invmu.c and gaxit% = gaxitc p(cy shows that the first
equality implies the second and third, so we only need to prove the first one. To prove the
first one, we simply note that

1= gami(mvgaxiA’B cAJA) = mu(gamtA,B (invgamiA,B . A),A),

which proves the result. &

Lemma 4.2.4. We have
ganit,qsp.c(ras-C) = C. (4.2.16)
Proof. Recall that rash - B = mu(h(B), B) and
ras - B = invgari - swap - invgari - swap - B = invgari - invgaxiy - B. (4.2.17)
Let us apply (4.2.10) with A = C and B = h(C), so that

9axito n(cy - Yaritinvgazic oy (C) = 9ANtrash-C- (4.2.18)

60

The LHS of (4.2.16) is the RHS of (4.2.18) applied to ras - C, so to compute it, we will
study the LHS of (4.2.18) applied to ras - C. We obtain

gam't}é . garitmvgamg(c) (invgam’ -invgariy, - C’)
= gaxitlh - invmu - invgaxil(C) by(1.5.8)
= invmu - gazitl - invgazilk(C)
= invmu - invmu - C' by (4.2.15)
=C.

This completes the proof. &

We can now prove Theorem 4.2.1. We start by using (4.2.8) to write
gira(A, B) = gaxi"(A, B),

where
h = push - swap - invmu - swap

and

gaxi"(A, B) := gawi((A, h(A)), (B, h(B)))
With this, the desired (4.2.7) becomes
gaxin(A, B) = ganityqsp.p - gari(A,ras - B). (4.2.19)
By (4.2.10), we have
gaxita p -garitimgamA,B(A) = ganitpa.
Replacing the couple (A, B) by (B, h(B)), this gives
gaxit% -gam’tm,}gami%(m = ganit, qsh.B,
which we rewrite as
(4.2.20)

gam’t% = ganityqsh.B - garit

invgari-invgaxi® (B)"

We will prove (4.2.7) by applying each side of this identity to A, then taking mu with B.
The LHS of (4.2.20) yields

mu(gamit%(/l), B) = gazi"(A, B).
Recalling that
ras - B = tnvgari - swap - tnvgart - swap - B = invgari - invgawi% - B,

61

the RHS yields

mu(ganit,qsn.p - ga’ritinvgari-invgami%(B)(A)7 B) = mu(ganit,qsp.p - garityqs.5(A), B)
= mu (gam’tmsh.B - garityqs.p(A), ganit,qsn.g(ras -
= ganit, qsh.B - mu(gam'tms.B(A), ras - B))

= ganit,qsh.B - gari (A, ras - B))
This completes the proof of Theorem 4.2.1. &

Corollary 4.2.5. We have
swap - fragari(swap - A, swap - B) = ganit.rqsn. B - fragari(A, B), (4.2.21)

where crash - B = rash - swap - invgari - swap - B.

Proof. By (4.2.7), we have
swap - gari(swap - A, swap - C) = ganit,qsph.c - gari(A,ras - C).
Let B = invgart - ras - C' = swap - invgari - swap - C, so this translates to
swap - gari(swap - A, swap - swap - invgari - swap - B)ganiterqsh- - gari(A, invgari - B),
which is exactly (4.2.21). &

§4.3. Investigation of the identities crash(pal) = pac and crash(pil) = pic

First let’s prove

Lemma 4.3.1. We have

crash(pal) := mu(push - swap - invmu - invpil, swap - invpil) = pac. (4.3.1)

Proof. Since pil is symmetral, we have
mu(pari - anti(pil), pil)) = 1, (4.3.2)
and it’s easy to see by the homogeneous degrees of pil that
anti - neg(pil) = pari - anti(pil), (4.3.3)

so we find that
anti - neg(pil) = invmu(pil). (4.3.4)

62

Now, because of (4.3.1), we find that pil € GARI N GAWI (see p. 44), and thus the gari
and gawt? inverses are the same, so it makes sense to write invpil € GARI NGAW . This
means that for pil and invpil we have

{push - swap - invmu - swap - swap(pil) = anti - swap(pil) (4.3.5)

push - swap - invmu - swap - swap(invpil) = anti - swap(invpil).
Thus the LHS of (4.3.1) is equal to
crash(pal) = mu (cmti - swap(invpil), swap(mvpil)),
which is nothing other than gepar(invpil), so we can use §4.1.3 for f(z) = —log(1 — x)

which shows that
gepar(invpil) = pic,

proving (4.3.1). ¢

Lemma 4.3.2. We have

ganit (pic) <inopil = swap - invpal. (4.3.6)

Proof. From (4.2.21) applied to A =1, B = pal, we have
swap - invgari - swap - pal = swap - invpil = ganiterqsh-pai (invpal). (4.3.7)
Using (4.3.7), from (4.3.1) we also know that
ganity,. - invpal = swap - invpil.

We need to use the elementary result

invgani(pac) = pari - anti - paj, (4.3.8)
where
1) 1
paj(ui,...,u,) =)
Y (un(ur Fug)(ur Fug Fug) e (ur 4+ uy)
This gives
nopal = ganitpari-anti-paj © SWap - invpil,

SO

swap - tnvpal = swap - ganityari.anti-paj - SWapP - tnvpil.

It remains only to prove that the following two automorphisms of GARI are equal:
ganity;c = swap - ganitpari.anti-paj * SWAP. (4.3.9)

63

Now, every mould C' in the v; such that C(vy,...,v,) is actually a rational function B
of the variables vo —v1,. .., v, —v; satisfies the identity C' = ganitp(Y'), by the calculation

ganitg(Y)(v1,...,v,) = Y Y(b°dotsh®)B([c') - B(|c?)
blcedotsbscs
= Z Y (v1)B(va — v1,...,0, — 1) (4.3.10)
bl=(v1),c'=(va,...,v,)
= B(vy —v1,...,0, — V1)
=C(v1,...,0p).

Let us write swap(Y) =Y a little abusively, since although the values in depths 0 and
1 are still 1, swap(Y") is considered a mould in the u;, we compute the right-hand side of
(1.6.9) explicitly as

(1!

Up(Up—1 + up) - (ug + - up)

ganwpari-antipaj ' Y(uh cee 7u7’) -

(with ganitperi-antipaj - Y (0) = 1, ganitperi-anti-paj - Y (u1) = 1). Swapping this, we obtain

1
c ganitpari-antivai * Y (U1, oo uy) =
swap - ganilypari-anti-paj (ul U) (1)2 _ Ul)('US _ Ul) . (Ur _ Ul)
Letting
1
Cvy,...,v.) = ,
(v ") (v2 —v1)(v3 —v1) -+ (vp — 1)

we see by (1.6.10) that C' = ganitp(Y) where

1

B(vy,...,v.) = ———,
(v) v.dotsv,

(4.3.11)
i.e. B = pic. %

We still can’t prove that crash(pil) = pic, but the following result should be sufficient.
Proposition 4.3.3. We have

swap - fragari(swap - A, pal) = ganity. - fragari(A, pil). (4.3.12)

Proof. Applying the fundamental identity (1.5.1) to A = swap- M and B = pal and using
Lemma 4.3.1 yields

swap - fragari(M, swap - pal) = ganitcrash-pal - fragari(swap - M, pal)
= ganitpq. - fragari(swap - M, pal).

64

Thus by (4.3.8) we have

9anitinygani-pac - Swap - fragari(M, pil) = ganitpari.anti-paj - SWap - fragari(M, pil)

= fragari(swap - M, pal).
Applying swap to both sides and (4.3.9), we have

swap - ganitpari-anti-paj - SWap - fragari(M, pil) = ganity. - fragari(M, pil)

= swap - fragari(swap - M, pal),
which proves the desired (4.3.12). O

Proposition 4.3.4. For every push-invariant mould M, we have

swap - adari(pal) - M = ganity;. - adari(pil) - swap - M. (4.3.13)

Proof. We use the defining identity
adari(A) - B = fragari(preari(A, B), A) (4.3.14)
and equation (1.8) given by
swap (preari(swap - A, swap - B)) = awit(B, —push(B)) - A + mu(A, B). (4.3.15)
Using this for A = pal and B = M, we find in particular that

preari(pil, swap - M) = swap(azit(M, —push(M)) - pal + mu(pal, M))
= swap(arit(M) - pal + mu(pal, M)) because M is push-inv

= swap - preari(pal, M).
(4.3.16)
Using (1.4.14) for A = pal, B = M, we have

swap - adari(pal) - M = swap - fragari (preari(pal, M),pal)
= swap - fragari (swap(swap - preari(pal, M)),pal)
= ganity;c - fragari(swap - preari(pal, M), pil) by (1.4.12)
= ganity;. - fragari(preari(pil, swap - M), pil) by (1.4.16)
= ganity. - adari(pil) - swap - M,

proving (4.3.13). %

65

