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Our aim in this brief survey is to try and give an intuition about abelian
varieties to model theorists, working mainly over the complex field. We then
try to motivate the Lang Conjecture, showing especially how it generalises
Mordell’s conjecture.
Finally we present an analogue over function fields, ending with the statement
of the result proved by E.Hrushovski [13], which is proved at the end of this
volume in [4].
For basic definitions of varieties, algebraic groups, completeness, morphisms
see for example [32] or, for a model theoretic presentation [26] in this volume.

1 Abelian varieties

Definition 1.1 An abelian variety is a complete algebraic group.

Remark: by convention, we include connectedness in the definition of an
abelian variety, similarly, when we talk of a variety, we mean an irreducible
variety. An abelian subvariety of A is a closed connected subgroup of A.

Over the complex numbers, one can give an apparently totally different
definition. Recall that a lattice in Cg is a discrete subgroup of maximal rank,
hence isomorphic to Z2g.

Definition 1.2 A complex torus is a quotient Cg/L, where L is a lattice in
Cg.
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A complex abelian variety is a complex torus Cg/L, equipped with a non
degenerate Riemann form, that is a hermitian positive definite form H :
Cg × Cg → C such that ImH : L × L → Z.

It is of course quite a deep theorem that the two definitions agree (when the
ground field is C).

Example (dimA = 1)
Consider a smooth cubic projective curve given by the equation ZY 2 =
X3 + aXZ2 + bZ3 where 4A3 + 27B2 6= 0. We take as origin the point “at
infinity” [0, 1, 0] and define the group law by the tangent and chord process
described in the figure below. Of course the drawing represents the curve in
affine coordinates x = X/Z, y = Y/Z.

This is an abelian variety of dimension 1, an elliptic curve. We will see more
examples shortly.

Lemma 1.3 A complex abelian variety is commutative.

Proof : In this proof, and only in this proof, we write multiplicatively the
group law on A, an abelian variety. Consider the map from A to A defined
by φa(x) = axa−1; let dφa be the differential at the origin, hence dφa is a
linear endomorphism of the tangent space V of A at the origin. We get thus
a holomorphic map from A to End(V ) ∼= Cg2

which maps a to dφa. By the
maximum principle or Liouville’s theorem, the map is constant and its value
is IdV . It follows that φa = IdA and hence A is commutative. •

For an algebraic proof, one replaces compactness by completeness.
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Lemma 1.4 A complex abelian variety is a torus

Proof : One actually shows that a compact complex Lie group is a com-
plex torus. We saw in the previous lemma that it is commutative, hence
the exponential expA : V → A is a surjective homomorphism. Its kernel L
is then a discrete subgroup and, since A is compact, L has to be of rank 2g. •

It can also be shown that all abelian varieties are projective varieties, that
is admit an embedding A → Pn as a closed subvariety.

Let us now review some classical properties of abelian varieties. We give
the easy proofs over C and just state the results over an arbitrary alge-
braically closed field k. The extension of the results over an algebraically
closed field of characteristic zero is usually straightforward. The extension
of the results over an algebraically closed field of characteristic p usually re-
quires entirely different techniques stemming from algebraic geometry.

Let K be an arbitrary algebraically closed field and A an abelian variety
over K.

1. A is a divisible group: let [n] denote multiplication by n, then the map
[n] : A → A is surjective.

Indeed we have a commutative diagram

Cg n→ Cg

↓ ↓
Cg/L

n→ Cg/L

This remains true over any algebraically closed field K. The proof is
essentially the “same” if char(K) does not divide n and present extra
difficulties if char(K) divides n (see [25])

2. Torsion points are dense and are algebraic over the field of definition
of A.
Over C one gets

Atorsion = QL/L ∼= (Q/Z)2g ⊂ (R/Z)2g ∼= A(C)

in fact more precisely Ker[n] = 1
n
L/L ∼= (Z/nZ)2g.
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The situation over an algebraically closed field K is as follows:

Ker[ℓn] ∼=
{

(Z/ℓnZ)2g, if char(K) 6= ℓ
(Z/ℓnZ)r, if char(K) = ℓ (with 0 ≤ r ≤ g)

If A is defined over k, then so is the morphism [n] and its kernel, hence
the points of Ker[n] are defined over the algebraic closure of K. If n is
prime to p = char(K), then the points of Ker[n] are defined over the
separable closure of K.

Corollary: (strong rigidity) If A is defined over a field K, then all
closed subgroups of A are defined over the separable closure of K.

Indeed if G ⊂ A is such a closed subgroup, then G ∩ Atorsion is dense
in G and composed of points defined over the algebraic closure of K;
if char(K) = p we take only the torsion of order prime to p to stay in
the separable closure.

3. (Poincaré’s reducibility theorem) If B is an abelian subvariety of an
abelian variety A, there exists another abelian subvariety C such that
A = B + C and B ∩C is finite (in other words the map from B ×C to
A defined by (b, c) 7→ b + c is an isogeny).

Proof : Let A = V/L (with L a lattice in V ∼= Cg) be an abelian
variety. It possesses a non degenerate Riemann form, say H . Let W
be the complex tangent space of B at 0, then B = W/L ∩ W . Let
W ′ be the orthogonal complement of W with respect to H , then one
shows that C = W ′/L ∩ W ′ is a complex torus and that H induces a
non degenerate Riemann form on it. Since V = W ⊕ W ′, the abelian
subvariety C does what is required. •
Remarks: a) This property is false (in general) for complex tori; on the
other hand it remains valid for all abelian varieties defined over a field
of any characteristic.

b) One can deduce from Poincaré’s reducibility theorem that quotients
of A and abelian subvarieties of A are the same up to isogeny. Indeed, if
f : A → B is onto, then the connected component of the kernel of f has

4



a “complementary” abelian subvariety C such that the induced map
f : C → B is an isogeny. For the converse, if B is an abelian subvariety,
C a “complementary” abelian subvariety then A/C is isogenous to B.

4. The endomorphism ring End(A) is isomorphic to some Zr with r ≤ 4g2

(as a group).

Proof : Any endomorphism α : A = Cg/L → A = Cg/L induces a
linear map α̃ : Cg → Cg such that α̃(L) ⊂ L hence we get an injection
End(A) →֒ EndZ(L) ∼= Mat(2g × 2g,Z). •
This property remains true in any characteristic. From this last prop-
erty or from the strong rigidity property, one easily deduces:

Corollary: an abelian variety cannot possess an algebraic family of
abelian subvarieties.

Remark: This is somewhat trivial but quite necessary for the plausi-
bility of Lang’s conjecture.

Example: an abelian variety A is called simple if its only abelian sub-
varieties are {0} or itself; in this case End(A) ⊗ Q is a division ring.

The fundamental example of an abelian variety : the jacobian of a
curve.

Historically the theory comes from integral calculus, a typical example
being attempts to compute integrals like:

∫
dx√

x3 + 1
,
∫

dx√
x5 + 1

Since all algebraic curves are birationally equivalent to a smooth projective
curve, we will restrict to the latter.

Definition of the genus of a curve: the complex points of a smooth pro-
jective curve X form a compact Riemann surface X(C), hence one of the
following shape
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Riemann Sphere a torus C/L two handles
g=0 g = 1 g = 2

The genus can also be defined purely algebraically as the number of line-
arly independant regular differential 1-forms. Selecting a point P0 ∈ X(C)
and ω1, . . . , ωg such differential forms we may define

P 7→
(
∫ P

P0

ω1, . . . ,
∫ P

P0

ωg

)

this is actually ill-defined because the integral will depend on the chosen path

but if we mod out by the periods – integrals of the ωi’s along closed paths –
we get a well-defined holomorphic map

j : X(C) → Cg/periods =: J(C)

The torus J is called the jacobian of X and denoted J(X). A beautiful
theorem of Riemann – Riemann’s periods relations (see [2] or [3]) guarantees
that J is an abelian variety, in particular the periods generate a lattice. From
our point of view the main results concerning the jacobian are:

• If g ≥ 1 then j : X →֒ J is an embedding; it is an isomorphism if and
only if g = 1 (in fact dim(J) = g).

• (Abel-Jacobi) We may extend the map j by linearity to divisors (i.e.
formal sums of points of X). For a rational (meromorphic) function
f on X, define its divisor by div(f) ={Zeroes of f} - { Poles of f}
(see [32] for a precise definition of multiplicities). The degree of a
divisor D =

∑

i niPi is defined as deg(D) :=
∑

i ni. The divisors of
functions form a subgroup P (X) of the group of divisors of degree zero
Div0(X). The Abel-Jacobi theorem may be summarised by saying that
the following canonical sequence is exact:

0 → P (X) → Div0(X) → J → 0
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• One can also construct interesting subvarieties inside jacobians by set-
ting:

Wr(X) := j(X) + . . . + j(X)
︸ ︷︷ ︸

⊂ J

r times

It is not hard to show that dim(Wr) = min(r, g).

All this can be done algebraically by Weil’s theory. In fact it is not too hard
to see from what we have said that, if the jacobian exists, it is birational to
the g-th symmetric product of C. The classical theorem of Riemann-Roch
provides a birational group law on this symmetric product. Weil invented the
theorem quoted in [26] in order to get a purely algebraic construction of the
jacobian. In particular his construction is valid over a field of characteristic
p (see [31]).

Remark : this construction may be generalised to an arbitrary smooth
projective variety V by selecting ω1, . . . , ωg a basis of holomorphic 1-forms
and setting:

j : V (C) → Cg/periods =: Alb(V )

P 7→
(∫ P

P0
ω1, . . . ,

∫ P
P0

ωg

)

One still gets an abelian variety called the Albanese variety of V . Never-
theless, the construction is not as useful as jacobians because j is almost
never an embedding; for example, for a smooth surface V in P3 we have
Alb(V ) = 0.

Anticipating, we may note that Lang’s conjecture says something only
for varieties which admit regular differential 1-forms.

We focus in this paper on abelian varieties but it is interesting to study
general (commutative) algebraic groups. We will only mention Chevalley’s
theorem and the definition of semi-abelian varieties.

Definition 1.5 An affine algebraic group is an affine variety (i.e. closed in
an affine space) with an algebraic group law.

Examples:

• GL(n) is an affine algebraic group: instead of {x ∈ Mat(n×n) | det(x) 6=
0}, think of it as {(x, t) ∈ Mat(n × n) × A1 | tdet(x) − 1 = 0}
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• Over an algebraically closed field, the only affine algebraic groups of
dimension one are: the additive group Ga with underlying variety the
affine line A1 and group law the addition; the multiplicative group Gm

with underlying variety the affine line minus a point A1\{0} and group
law the multiplication.

• Any closed subgroup of GL(n) is an affine algebraic group. In fact it
can be shown that any affine algebraic group is isomorphic to such a
closed subgroup of GL(n).

It is easy to see that the compositum of two affine subgroups of an al-
gebraic group G is again affine, hence there is a unique maximal connected
affine subgroup.

Theorem 1.6 (Chevalley) Let G be a connected algebraic group, let L be the
maximal connected affine subgroup of G, then G/L is an abelian variety.

Remark: L is also the smallest closed subgroup of G such that G/L is an
abelian variety.

Definition 1.7 Over an algebraically closed field, a semi-abelian variety is
a commutative algebraic group which is an extension of an abelian variety by
a multiplicative group (Gm)r.

One can formulate (and prove . . . see papers by Faltings and Vojta) Lang’s
conjecture for the wider class of semi-abelian variety. Many properties of
abelian varieties are shared by semi-abelian varieties. For example, if G is a
semi-abelian variety defined over an algebraically closed field K:

• Torsion point are dense in G

• All closed subgroups are defined over K

• If G is an extension of A with dimension a by (Gm)r then Ker[n]G ∼=
(Z/nZ)2a+r as long as char(K) does not divide n.
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2 Lang’s conjecture

The conjecture of Lang stems from Mordell’s conjecture (1922) and a question
raised by Manin and Mumford in the seventies. Mordell’s conjecture is a
problem about diophantine equations. Given a polynomial P ∈ Q[x, y], one
wants to study the set

{(x, y) ∈ Q2 | P (x, y) = 0}

For this we associate the smooth projective curve X birational to the affine
curve defined by P (x, y) = 0.

• 1st case : The curve X is of genus 0. Then either X(Q) = ∅ (e.g.
P (x, y) = x2+y2+1) or all but finitely many solutions are parametrised
by rational fractions x(t), y(t) (e.g. all the solutions of x2 + y2 − 1 = 0
are parametrised by (x, y) = ( 2t

t2+1
, t2−1

t2+1
) except (0, 1)).

• 2nd case : The genus of X is one. Then either X(Q) = ∅ or, taking
one of the rational points as origin, X is an elliptic curve (an abelian
variety of dimension 1) and hence we have a group law on the set X(Q).

Theorem 2.1 (Mordell-Weil) X(Q) is a finitely generated group. Much
more generally, if K is a field finitely generated over Q (for example a
number field) and A is an abelian variety defined over K then A(K) is
a finitely generated group.

• 3rd case : The genus of X is ≥ 2. Then Faltings proved the Mordell
conjecture : X(Q) is finite.

We can reformulate the Mordell conjecture as follows : embed X →֒ A =
jacobian of X, then X(Q) = X ∩ A(Q), so we are reduced to proving:
Let Γ be a finitely generated subgroup of A = J(X) then Γ ∩ X is finite

or slightly more generally:
Let X be a curve in an abelian variety A and Γ be a finitely generated sub-

group of A then Γ∩X is finite, except if X is a translate of an elliptic curve.

Granting the Mordell-Weil theorem, this last statement is actually easily seen
to be equivalent to Mordell’s conjecture.
The Manin-Mumford question is the following : consider again X →֒ A =
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J(X) then is it true that X ∩ Atorsion is finite? Analogously one can slightly
generalise this to:
Let X be a curve in an abelian variety A, then X ∩ Atorsion is finite, except

if X is a translate of an elliptic curve.

Remark. The motivations were apparently quite different. Manin had proven
with Drinfeld that cusps generate a torsion subgroup of the jacobian of a
modular curve. Mumford was studying moduli spaces of curves.

It is easy to put together the two conjectures by introducing the concept
of a group of finite rank.

Definition 2.2 Γ is a group of finite rank r if Γ ⊗Q ∼= Qr

Or, if you prefer, there is a finitely generated subgroup Γ0 of rank r, such
that for all γ ∈ Γ, there is an integer m ≥ 1 such that mγ ∈ Γ0.
Note : When working in characteristic p, one requires a bit more, namely
that Γ ⊗ Z(p)

∼= Zr
(p) or, if you prefer, there is a finitely generated subgroup

Γ0 of rank r, such that for all γ ∈ Γ, there is an integer m ≥ 1, coprime with
p, such that mγ ∈ Γ0.

Lang’s conjecture for curves Let X be a complex curve in an abelian

variety A and Γ be a subgroup of finite rank in A then Γ∩X is finite, except

if X is a translate of an elliptic curve.

It is natural to ask what happens for higher dimensional varieties.

Lang’s conjecture (“absolute form”, characteristic zero) Let X
be a complex subvariety of a complex abelian variety A and Γ be a subgroup

of finite rank in A then there exist γ1, . . . , γm ∈ Γ and B1, . . . , Bm abelian

subvarieties such that γi + Bi ⊂ X and such that

Γ ∩ X(C) = ∪m
i=1γi + (Bi(C) ∩ Γ)

Remarks

• The most immediate analog over k = Fp is false since all points in
A(Fp) are torsion points. Nevertheless, there is a relative form of Lang’s
conjecture, which we will state in the next section.
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• This is really a diophantine conjecture. Indeed if K = Q(x1, . . . , xn)
is a field finitely generated over Q (e.g. a number field), if X is a
subvariety of an abelian variety A all defined over K then the Mordell-
Weil theorem tells us that Γ = A(K) is finitely generated, hence the
conjecture describes the K-rational points of X.

• The conjecture is easily equivalent to the following statement: if the

set X ∩ Γ is Zariski dense in X then X is a translate of an abelian

subvariety by a point in Γ (proof : by induction on the dimension of
X).

• One may perform a number of reduction in order to prove the conjec-
ture. For example if we define the stabilizer of X as the (not necessarily
connected) algebraic subgroup StabX = {a ∈ A | a + X ⊂ X} then we
may assume that StabX is finite or even {0}. Notice that under the
hypothesis that StabX is finite, the conclusion must be that X ∩ Γ is
not dense in X.

Proof : Call H = StabX and consider the abelian variety A′ := A/H
with the canonical projection π : A → A′ and image X ′ := π(X). One
checks easily that StabX′ = {0}. Hence, if X is not a translate of an
abelian subvariety, X ′ is not reduced to a point. If we already know
that X ′ ∩ π(Γ) is not Zariski dense in X ′, we immediately obtain that
X ∩ Γ is not Zariski dense in X, since π(X ∩ Γ) ⊂ X ′ ∩ π(Γ). •

• Though the formulation is given over the field of complex numbers,
one may assume that A, X and Γ0 are defined over a field finitely
generated over Q (here Γ0 is a finitely generated subgroup such that
for each γ ∈ Γ, there is an n ≥ 1 such that nγ ∈ Γ0). By specialisation
arguments, one may reduce the conjecture to the case where everything
is defined over Q.

To illustrate the richness of the content of Lang’s conjecture, let us get
back to the case of a curve X defined over (say) a number field K and
embedded in its jacobian A = J(X) and consider the subvarieties Wr =
X + . . . + X introduced earlier. The Lang conjecture asserts that Wr(K) is
finite unless Wr contains a translate of a non zero abelian subvariety. On the
other hand there is an obvious morphism from the r-th symmetric product of
the curve X with itself onto Wr. The Abel-Jacobi theorem tells us that this
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is an isomorphism except when X admits a morphism of degree ≤ r to P1.
Since points defined over K on the symmetric product correspond essentially
to algebraic points on X with Galois orbit (over K) of cardinal ≤ r we get
the following result (see [11], [12] for details):

Proposition 2.3 Let X be a curve defined over a number field K and let
r be an integer. Assume that there is no morphism π : X → P1 of degree
≤ r and also that Wr does not contain a translate of a non zero abelian
subvariety. Then the union of the set of rational points X(L) for all number
fields L containing K with [L : K] ≤ r is finite.

One may formulate obvious generalisations to finitely generated fields. The
condition “ no morphism π : X → P1 of degree ≤ r” is clearly necessary since
otherwise the set π−1(P1(K)) is clearly infinite. One would like a geometric
description “in terms of the curve” of the condition “Wr does not contain
a translate of a non zero abelian subvariety”, but that does not seem to be
known in general.

Let us digress a bit to explain how the Lang conjecture (for subvarieties
of abelian varieties) fits into some general conjecture about classification of
algebraic varieties and diophantine properties.

Let V be a smooth projective variety of dimension n, we have already
considered regular differential 1-forms, but we may also introduce r-forms
(say for 1 ≤ r ≤ n) and also powers of r-forms. We refer for example to
Shafarevic’s book [32] and mention only the abstract definitions: considering
the sheaf Ωr of differential r-forms, a regular differential r-form of weight m
is a global section of Ω⊗m

r = Ωr ⊗ . . .⊗Ωr . The most interesting case (for our
purposes) is the case of n-forms (recall n = dim(V )) because in this case the
sheaves Ω⊗m

n are invertible and give rises to linear systems. The sheaves Ω⊗m
n

are called the pluri-canonical sheaves and the dimension gm of the space of
global sections are called the pluri-genera of the variety V . More concretely
select a basis ω1, . . . , ωgm

of global sections of Ω⊗m
n , then the map

Φm : V · · · → Pgm−1

x → (ω1(x), . . . , ωgm
(x))

is a rational map and a morphism outside the set of common zeroes of the
ωi. Observe that the “value” of ωi at x is meaningless but the quotient ωi/ωj

is a function on V . So we have a collection of rational maps called quite
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naturally the pluri-canonical maps. This is used to define an invariant which
is fundamental in the classification of algebraic varieties:

Definition 2.4 Let V be a smooth projective variety, the Kodaira dimension
of V is κ(V ) = −1 if all gm(V ) = 0 and κ(V ) = max{dim(Φm(V )} otherwise.
Clearly −1 ≤ κ(V ) ≤ dimV .

Examples: For a curve V it is easy (or at least classical) to see that
κ(V ) = −1 if the genus is zero (V ∼= P1), κ(V ) = 0 if the genus is 1 and
κ(V ) = 1 if the genus is at least 2. An abelian variety A has κ(A) = 0. A
smooth hypersurface V of degree d in Pn has κ(V ) = −1 if d ≤ n and κ(V ) =
0 if d = n + 1 and κ(V ) = n − 1 = dim(V ) if d ≥ n + 2. For a subvariety V
of an abelian variety A, it is known that κ(V ) = dim(V ) − dim(StabV ).

Definition 2.5 A variety is of general type if κ(V ) = dim(V ).

Thus a subvariety of an abelian variety is of general type if and only if
its stabiliser is finite; a smooth hypersurface of degree d in Pn is of general
type if and only if d ≥ n + 2.

Conjecture (Bombieri-Lang) Let V be a variety of general type defined

over a number field K then the set of rational points V (K) is not Zariski

dense.

Remark: 1) Bombieri asked this question for surfaces of general type and
Lang (independantly) made the general conjecture in a more precise form:
he conjectures that there is a fixed “geometric” closed subset Z such that,
if U = V \ Z then for all number fields K ′ containing K, the set U(K ′) is
finite.
2) For V a subvariety of an abelian variety, this broad conjecture is true
and equivalent to the conjecture discussed in this paper. It is essentially
the only case known. In particular, the conjecture is unknown even in the
following “simple” example: let V be the quintic surface defined in P3 by
the equation X5

0 + X5
1 + X5

2 + X5
3 = 0. Rational points are presumably not

dense and concentrated on a finite number of curves like the lines Xi +Xj =
Xm + Xℓ = 0. This is unknown, even in the function field case.
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3 Diophantine equations over function fields,

“relative” case of Lang’s conjecture

The main purpose of diophantine geometry is to describe sets X(Q) of ra-
tional points of a variety. It is natural to look for generalisations, first to
number fields then to fields finitely generated over Q. The next step would
be fields K finitely generated over Fp. For example, some of the main results
for X a curve are still true: if X is an elliptic curve, the group X(K) is still
finitely generated and if X has genus g ≥ 2 then X(K) is still finite.

Another motivation can be explained in a somewhat trivial case: if X
is a curve defined over Q before trying to prove that X(Q) is finite, one
should perhaps check that X(Q(T ))\X(Q) is finite. The deepest motivation
however comes from the famous analogy between number fields and function
fields studied by many mathematicians (let us quote arbitrarily Kronecker,
Artin, Hasse, Weil, Néron, Grothendieck, Parshin, Arakelov,. . . ). Let us give
a formal definition:

Definition 3.1 Let K0 be an algebraically closed field, a function field K
over K0 (of transcendance degree 1) is the field of rational functions of a
variety (of dimension 1) defined over K0.

This is actually the same as a finitely generated field over K0 (of transcen-
dance degree 1).
Now the natural question to ask is not “is X(K) finite? ” but “is X(K) \
X(K0) finite? ”. Let us give an example dear to number theorists.

Proposition 3.2 Let X be the Fermat curve defined in the projective plane
by Xn + Y n = Zn where n ≥ 3. Let U be the affine open subset of X defined
by XY Z 6= 0 then X(C(T )) \ X(C) is empty.

Proof :(see Mason, diophantine equations over function fields, London
Math. Soc. L. N. 96, Cambridge U.P., 1984) One proves actually a more
general statement which easily implies Fermat. If A, B, C are non constant
coprime polynomials with A+B = C and if r, s, t are the number of distinct
roots of A, B, C then

max(deg(A), deg(B), deg(C)) ≤ r + s + t − 1
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Indeed if X, Y, Z are coprime polynomials satisfying Xn + Y n = Zn, set
A = Xn, B = Y n and C = Zn. Applying the previous inequality and the
observation that deg(A) ≥ nr, deg(B) ≥ ns and deg(C) ≥ nt, we obtain
n max(r, s, t) ≤ r + s + t − 1 ≤ 3 max(r, s, t) − 1, hence n ≤ 2.

In order to prove the inequality, one introduces the polynomial

∆ := det
(

A A′

B B′

)

= det
(

A A′

C C ′

)

= det
(

C C ′

B B′

)

.

This polynomial is non zero and has degree less than deg(A) + deg(B) − 1
(mutatis mutandis). If A = a0

∏r
i=1(T − ai)

ℓi, B = b0
∏s

i=1(T − bi)
mi and

C = c0
∏t

i=1(T − ci)
ni then

∏r
i=1(T −ai)

ℓi−1∏s
i=1(T − bi)

mi−1∏t
i=1(T − ci)

ni−1

divides ∆. Computing degrees gives the result. •
Since the proof uses derivations, it cannot be adapted to Q!

We can look in this context for the analog of Mordell and Lang’s conjec-
ture. For example the following was shown in 1963 by Manin ([22]):

Theorem 3.3 (Mordell’s conjecture over function fields) Let X be a curve
of genus ≥ 2 defined over K a function field over K0. Then X(K) is finite
unless X is isotrivial (which means that there is a curve X0 defined over K0

and isomorphic to X over some finite extension K ′ of K).

A simpler but slightly incorrect statement is “X(K) is finite unless X is
defined over K0”. Manin proved this for K0 = C (and hence for characteristic
zero) and the corresponding characteristic p statement was proven later by
Samuel.

The theorem proved by Hrushovski (Lang’s conjecture for function fields)
bears the same relation to the Lang conjecture as this last statement to the
classical Mordell conjecture. Before stating it we review the analog of the
Mordell-Weil theorem. We will need the notion of K/K0-trace and K/K0-
image of an abelian variety defined over K (see Lang’s book [17] on abelian
varieties for details).

Proposition 3.4 1) Let A be an abelian variety defined over K. There is an
abelian variety A0 defined over K0 and a homomorphism (with finite kernel)
τ : A0 → A such that for all B abelian variety defined over K0 with a map
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τ ′ : B → A we have a factorisation τ ′ = τ ◦ f via a morphism f : B → A0.
Thus A0 is the “biggest abelian subvariety of A defined over K0”, it is called
the K/K0-trace of A.
2) Let A be an abelian variety defined over K. There is an abelian varie-
ty A1 defined over K0 and a surjective homomorphism π : A → A1 such
that for all B abelian variety defined over K0 with a map π′ : A → B we
have a factorisation π′ = f ◦ π via a morphism f : A1 → B. Thus A1 is
the “biggest quotient of A defined over K0”, it is called the K/K0-image of A.

For our purposes it will clarify things to know that A0 is zero if and only A1

is zero (actually much more is true : A0 and A1 are “duals” hence have the
same dimension). For a proof of the next theorem see [15].

Theorem 3.5 (Relative Mordell-Weil theorem, Lang-Néron) Let A be an
abelian variety defined over K and let τ : A0 → A be its K/K0-trace, then
the group A(K)/τ(A0(K0)) is finitely generated.

Remark: If the K/K0-trace (or image) is zero then A(K) is finitely gener-
ated.
The translation of Lang’s conjecture is easier to state when the stabiliser of
the subvariety is finite (we saw that this is the crucial case). For a model
theoretic translation see [27].

Lang’s conjecture over function fields Let K be a function field over

K0 an algebraically closed field, let X be a subvariety of an abelian variety

A both defined over K. Assume that StabX is finite. Let Γ be a subgroup of

A of finite rank, defined over the algebraic closure of K, then either X ∩ Γ
is not Zariski dense in X or there is a bijective morphism X → X0 onto a

variety X0 defined over K0.

Remark: If the K/K0-trace of A is zero, then no such X0 (distinct from
a point) can exist because its Albanese variety would produce a non zero
K/K0-image for A. Hence in this case, the usual Lang conjecture is true.
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4 Commented bibliography

Abelian and Jacobian varieties are treated in many books. For complex
abelian varieties we especially quote as the easiest Swinnerton Dyer’s book
[33] and Rosen’s paper in [7], the book of Lange and Birkenhake [2] being
the most complete reference; it also includes Jacobians. The survey of Bost
[3] contains also a lot of interesting material. The algebraic theory of abelian
varieties is treated in Mumford’s book [25] and Milne’s first paper in [7].
Milne’s second paper in [7] develops the algebraic theory of Jacobians; an
exposition quite close to Weil’s original treatment can be found in Serre’s
book [31]. The books of Serge Lang provide also interesting different points
of view [15], [16], [17].

One can find a quite thorough discussion of Lang’s conjecture by Lang
himself in [15], in his survey for the russian encyclopedia [20] as well as in
his original papers [18], [19]. The Mordell conjecture was stated in Mordell’s
paper [24] in 1922 and first proven over function fields by Manin [22] in 1963
and over number fields by Faltings [8] in 1983. The paper of Faltings [9]
1991, contains a proof that X(k) is finite when k is a number field, X is a
subvariety of an abelian variety and X does not contain a translate of a (non
zero) abelian subvariety; his subsequent paper [10] deals with the case of a
subvariety of an abelian variety. The methods rely heavily on ideas intro-
duced by Vojta [34] who gave a completely new proof of Mordell’s conjecture
over number fields. This implies Lang’s conjecture for finitely generated sub-
groups. The reduction of the general conjecture to this case had already been
worked out in Hindry [11]. The Manin-Mumford conjecture was first proven
by Raynaud [28], [29], [30] and extended to general commutative algebraic
groups by Hindry [11]. Extensions to semi-abelian varieties of Lang’s conjec-
ture have been worked out by Vojta [35] for a finitely generated subgroup,
and by McQuillan [23] for the reduction from “finite rank” to “finitely gen-
erated” group. The case of subvarieties of a multiplicative group Gr

m was
proven before in full generality by Laurent [21].

All these works deal with characteristic zero. As mentionned before, the
statements over number fields implies the general statement in characteristic
zero. Nevertheless specific proofs for function fields are of great interest.
Buium (see [5], [6]) has given such a proof under the mild assumption that
X is smooth. Abramovic and Voloch [1] proved the characteristic p case
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under extra assumptions. It should therefore be noticed that the proof of the
characteristic p case was unknown, in full generality, before Hrushovski[13]!
Also note that Hrushovski in fact proves it for semi-abelian varieties. It is
also possible to deduce the relative statement in characteristic zero from the
corresponding statement in characteristic p (see [14] and the remarks in [20]).
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