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Introduction

Quantum K-theory is a version of Gromov–Witten theory introduced by Y.P.
Lee [Lee22], in which the usual intersection numbers are replaced by Euler
characteristic of K0-classes on the moduli space of stable maps.

The Grothendieck–Riemann–Roch theorem

χ (X,F ) =

∫
X

ch(F )td(TX) (1)

naturally connects quantum K-theory and quantum cohomology. Since the
moduli space of stable maps is a stack, this formula must be generalized as
in Kawasaki [Kaw79], or Toën [Toe98]. The integral now takes place over the
inertia stack of X, rather than X itself. As a consequence, the computations
in quantum K-theory are highly non-trivial: the moduli space of stable maps is
already difficult to handle, and its inertia stack is worse.

Over the last decade, a parallel theory known as the Landau–Ginzburg model
was built, in which the relevant spaces are much more tractable. This the-
ory was built by Fan–Jarvis–Ruan [FJR12], and Polishchuk–Vaintrob [PV14]
in K-theory, and depends on a homogeneous singularity W . The Landau–
Ginzburg/Calabi–Yau correspondence relates the Gromov–Witten invariants of
a projective hypersurface defined by a polynomial W , to the LG model of the
singularity defined by W in the affine space, and has been shown to hold in
many instances ([CR10], [CIR14], [PLS14],[Cla13], A FINIR).

In this paper, we fully compute the genus-0 quantum K-theory of the sin-
gularity

∑r
i=1X

r, with symmetry group µr. This computation is inspired by
[GT11], with some changes which are interesting to survey.

For the stack of stable maps M(X), the inertia stack possesses a distin-
guished component isomorphic to M(X) classifying points of M(X) alongside
with the identity morphism

IM(X) = M(X) ⊔ other components.

Therefore, the formula (1) should be interpreted as one of the contributions of
IM(X) to the GRR formula. This contributions is usually called the “fake Euler
characteristics”, or the “fake invariant” [GT11]. Computing the fake invariants
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is a crucial step in the general computation of the “true” K-theoretic invariants.
This definition of the fake invariants must be adapted to our setting.

In the case of the LG model, the relevant moduli stack is the space of r-spin
curves Mr

g,n, that is, curves with an rth root L of the log-canonical bundle.

In genus 0, this stack is simply M0,n, modified by iterated applications of the
so-called rth root construction (see 3.1 below), which associates to a scheme X
(or a stack) the universal stack where a given line bundle L admits an rth root,
compatible with a section s of L (see [BC10] ET AUTRE).

This construction applies in two ways. If the section s vanishes globally, it
transforms the initial scheme into a µr-gerbe over X. If the section vanishes
along a Cartier divisor D, the construction yields a stack X[D/r] over X, with
an open substack isomorphic to X \D.

This description of the moduli space of r-spin curves also provides a simple
description of its inertia stack (prop. 3.5). As a result, we see that the moduli
stack Mr

0,n is simply a µr-gerbe over M0,n[
∑
DD/r] where the divisors are

all boundary divisors. Thus, the inertia stack is the disjoint union of r main
components, isomorphic to Mr

0,n, and boundary components

IMr

0,n =
⊔
ξ∈µr

Xξ ⊔ lower dimension strata. (2)

The K-theoretic FJRW invariants are defined as the Euler characteristics of
the K0 class (

Λ−1(R
1π∗L∨)

)⊗r⊗
ev∗iEi, (3)

where

1) π : C → Mr

0,n is the universal curve,

2) L is the universal rth root,

3) evi are evaluation maps to IBµr defined on some gerbe over Mr

0,n (see
1.2),

4) Ei are K-classes in K0(IBµr).

We define the ξ-fake theories as the contribution of the main component Xξ to
the GRR formula, which yields

⟨γ1, . . . , γn⟩fake,ξ = r ch
(
Λ−ξR

1π∗L∨)r∏
i

ev∗i (γi)td(T ) ∩
[
Mr

0,n

]
, (4)

where γi are cohomology classes in H∗(IBµr).
Notice that these theories coincide (up to the Todd class) with the Cohomo-

logical Field theories (CohFTs) constructed by Polishchuk and Vaintrob [PV14].
Each of these fake theories is a twisted theory, in the sense that it is ob-

tained by capping the trivial CohFT with an obstruction class of the form
exp (

∑
sk chk(Rπ∗L)). Such theories have been studied by Chiodo–Zvonkine in
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[CZ07], where it is shown that their Lagrangian cone is obtained from the trivial
cone by applying an explicit symplectomorphism.

Finally, we reconstruct the true K-theoretic invariants from the fake invari-
ants. The only non-trivial automorphisms of a genus-0 stable twisted curve
are ghost automorphisms ([ACV01], Section 7), which only exist on reducible
curves. These automorphisms fix the coarse curve, but rescale the spin structure
L (see 3.12), just as the generic automorphisms of Mr

0,n do. Thus, the contribu-
tion of the lower-dimensional strata are recovered by assembling different ξ-fake
invariants on different components of the curve. The adelic characterization of
Givental–Tonita is ideally suited to express this result.

Theorem 0.1. The J-function of the K-theoretic FJRW invariants satisfies the
properties

(1) J(t) has no poles outside of 0,∞ and the r-th roots of unity,

(2) the localization of feξ at 1 lies in the fake cone Lξ,fake,

(3) f − f ∈ K+.

Conversely, these 3 conditions yield a recursive algorithm allowing to compute
all the correlators of the J-function in terms of the fake invariants.

Interestingly, we obtain r2 I-functions, one for each fake theory. r(r − 1) of
them assemble in an I-function for the FJRW invariants (thm 3.24). We hope
that these functions could shed new light on the 52 difference equation satisfied
by the permutation-equivariant I-function of the quintic threefold (Givental
[Giv]). More precicsely, we expect that the I-functions of the permutation-
equivariant FJRW theory coincide with the solutions found in [Wen22].

Notations and conventions

All schemes and stacks are of finite type over C.
A sheaf on a Deligne–Mumford stack X , is a sheaf on the small étale site of

X . Note that all stacks considered in this paper have the resolution property,
which allows us to consider classes of coherent sheaves in the K0 ring.

Notations

• µr : the group of r-th roots of unity,

• BG : for a finite group G, BG = [Spec(C)/G],

• Ĝ : the group of characters of a group G,

• Mg,n : the stack of stable curves of genus g with n marked points,

• Mg,n(r) : the stack of twisted stable curves of genus g with n marked
gerbes,
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• Mr

g,a : for a multi-index a = (a1, . . . , an), the stack of rth roots of the
line bundle ωlog(−

∑
aixi),

• IX : when X is a stack, IX is the inertia stack of X ,

• ΛtE : for a vector bundle E on X, ΛtE =
∑
k≥0 t

kΛkE ∈ K0(X)[t],

• TX ,N : Tangent sheaf and normal sheaf of a regular embedding,

• ch, td : Chern character and Todd class.

1 Quantum K-theory

In this section, we give a review of quantum K-theory as defined in [Lee22], and
define the analog invariants for the FJRW theory.

1.1 Quantum K-theory

Let X be a smooth projective variety, and Xg,n,d be the moduli space of stable
maps intoX with genus g, degree d, and nmarked points. This space is equipped
with the so-called ”fundamental structure sheaf” Ovir (see [BF97], [Lee22]),
which is related to the virtual fundamental class by the formula ch(Ovir)td(T vir) =
[X]vir.

Let Li be the line bundle σ
∗
i ωC/Xg,n,d

, where σi : Xg,n,d → Cg,n,d is the section
corresponding to the i-th marked point. Then, given a sequence E1, . . . , En of
elements of K0(X), we define the quantum K-invariants by〈

E1L
k1
1 , . . . , EnL

kn
n

〉X
g,n,d

= χ
(
Xg,n,d,Ovir

⊗
ev∗i (Ei)L

ki
i

)
. (5)

The genus-0 quantum K-theory invariants are organized in a generating func-
tion called the J-function. In [GT11], the Grothendieck–Rimemann–Roch the-
orem was used to compute this generating function in terms of the quantum
cohomology of X.

1.2 K-theoretic FJRW invariants

Definition 1.1. Let r be a positive integer, and n ≥ 3. Mr

g,n is the mod-
uli space of balanced twisted curves (with orbifold structure at the marked
points), equipped with an r-th root of ωlog. Explicitly, objects over S are triples
(C, (Σi)i≤n,L, ϕ) where (C, (Σi)i≤n) is a balanced twisted curve over S [AV00],
L is a line bundle over C and ϕ : L⊗r → ωlog is an isomorphism.

The universal curve π : Crg,n → Mr

g,n is equipped with the universal rth root

Lg,n (or L if the context is clear). Let Σi ⊂ Crg,n denote the i-th marked gerbe.
The restriction L|Σi

defines a character of µri , which we denote ai ∈ Z/riZ.
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When r is prime, the band of a marked gerbe is either trivial, or µr. In
that case, the moduli space Mr

g,n is a disjoint union over multi-indexes a =
(a1, . . . , an) with ai ∈ Z/rZ

Mr

g,n =
⊔
a

Mr

g,a, (6)

where Mr

g,a denotes the substack of Mr

g,n made of the curves such that the

character induced by L at Σi is given by ai. The universal curve over Mr

g,a is

denoted Crg,a, and the universal root is Lg,a.

Alternatively, the stack Mr

g,a may be defined as the moduli space of curves,
with an r-th root of ωlog(−

∑
aixi), without orbifold structure at the marked

points ([Chi07]). We will use both definitions as convenient.
From now on, we assume that r is prime.

Definition 1.2. The restriction of the universal root L to the marked gerbe Σi
is an r-th root of OΣi , which defines the i-th evaluation map

evi : Σi → I (Bµr) . (7)

Let M̃r
0,n be the stack of r-spin curves with a section of each marked gerbe

Σi. There is a natural isomorphism

M̃r
0,n = Σ1 ×Mr

0,n
Σ2 × · · · ×Mr

0,n
Σn. (8)

The universal curve π : C̃r0,n → M̃r
0,n has sections σi, and we define Li = σ∗

i ωπ.

There is a canonical projection p : M̃r
0,n → Mr

0,n. The evaluation maps extend
to

evi : M̃r
0,n → I (Bµr) .

Definition 1.3. A multi-index a is called concave, if for any closed point of
Mr

0,a, the corresponding curve satisfies H0(C,L) = 0. In that case, Grauert’s
theorem implies that R1π∗L is a vector bundle.

Proposition 1.4 ([CR10]). Let b1, . . . , bn ∈ N be integers such that bi > 0 for
i > 1, and let L be the universal r-th root of ωlog(−

∑
bixi). Then for any

genus-0 curve C, we have H0(C,L) = 0.

The ring K0 (I(Bµr)) is isomorphic to a direct sum of copies of K0 (Bµr)
with basis ϕa:

K0(I(Bµr))C =

r−1⊕
a=0

C[µ̂r]ϕa. (9)

We decompose this ring according to the band of the marked gerbe.

V1 = C[µ̂r]ϕa

Vr =

r−1⊕
a=1

C[µ̂r]ϕa
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Definition 1.5. The state space of the FJRW invariants is the vector space
V = K0(I(Bµr)). It is equipped with the orbifold pairing, which is defined on
characters η1, η2 by

(η1ϕi; η2ϕj) =

{
χ (Bµr; η1η2) if i+ j = 0 mod r,

0 otherwise.
(10)

Remark 1.6. The restriction of the scalar product to the subspace V spanned
by {ϕi}i ̸=0 is non-degenerated.

Following [PV14] and [Gué21], we now define the genus-0 K-FJRW invariants
in the concave case.

Definition 1.7. The fundamental class Λ0,n ∈ K0(Mr

0,n) is defined on each

component of Mr

0,n by

Λ0,a =

{
Λ−1

((
R1π∗La(−E)

)∨)⊗r
if ai ̸= 0 ∀i

0 otherwise.
(11)

Let E1, . . . , En be vector bundles on IBµr, and k1 . . . , kn ∈ Z be integers. The
K-FJRW invariants are〈

E1Lk11 , . . . , EnLknn
〉K
0,n

= χ
(
M̃r

0,n; p
∗Λ0,n

⊗
ev∗iEiL

ki
i

)
(12)

= χ

(
Mr

0,n; Λ0,n

⊗
i

(πi)∗

(
ev∗iEi ⊗N−ki

i

))
, (13)

where Ni denotes the normal line bundle to the i-th gerbe, and πi : Σi → Mr

0,n

is the projection (there is a slight abuse of notation in using the same symbol
evi to denote different applications).

Define K+ : = V1[q, q
−1]⊕Vr[q1/r, q−1/r]. We extend the correlator notation

to elements of K+ by linearity.
The genus-0 potential is the formal function of t ∈ K+ given by

F0(t) =
∑
n≥3

1

n!
⟨t, . . . , t⟩0,n (14)

Remark 1.8. One can further decompose the expression (13) by〈
η1ϕa1L

k1
1 , . . . , ηnϕanLknn

〉K
0,n

= χ

(
Mr

0,a; Λ0,a

⊗
i

πi∗

(
ev∗i ηi ⊗N−ki

i

))
.

(15)
This invariant vanishes unless ηaii (ξ) = ξki , ∀ξ ∈ µr,∀i.
Proposition 1.9. The K-theoretic FJRW invariants satisfy the dilaton equa-
tion.

⟨(Lr1 − 1)ϕ1[1], t, . . . , t⟩K0,n+1 = (n− 2) ⟨t, . . . , t⟩K0,n . (16)

The dilaton equation implies that F is quadratic with respect to the shifted origin
q − 1.
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Proof. Let us fix a multi-index a = (a1, . . . , an) and let a′ = (1, a1, . . . , an).
There is a diagram

Cr0,a′ Cr0,a

Mr

0,a′ Mr

0,a
p

π′ π

ρ

(17)

Such that ρ∗La = La′ , and Rπ′
∗La′ = p∗Rπ∗La. The result then follows from

the classical dilaton equation [Lee22].

2 Twisted cohomological field theories

In this section, we define the fake theories, which will be the building blocks for
the K-theoretic invariants. The name “fake” is used in analogy with [GT11],
and consists in some cohomological field theories twisted by the Todd class of
the tangent space of Mr

0,n.

Definition 2.1. Let a = (a1, . . . , an) be a multi-index, and let E be the divisor
E =

∑
ai=0 Σi of the universal curve. For any multiplicative transformation

A : K0 → H∗ (or to the Chow ring), we define the collection of classes

Ag,a = r1−gA(Rπ∗Lg,a(−E)) ∈ H∗(Mr

g,a,Q). (18)

Let q : Mr

0,a → M0,n be the forgetful map. If A(O) = 1, then the classes

Ωg,a = q∗Ag,a (19)

form a CohFT over the state space V , with unit ϕ1.
If A(O) ̸= 1, then we make the following modification to the scalar product

on V ,
(ϕa, ϕ0) := δa,0A(O)−1 (20)

and the result is again a CohFT.

Following [Giv03], we associate to the genus-0 CohFT A0,n an overruled
Lagrangian cone as follows. Let H = V ⊗CJz, z−1]. This is a symplectic vector
space with symplectic form

Ω(f(z), g(z)) = Resz=0 [(f(−z); g(z))dz] . (21)

This space has a natural polarization

H+ = V ⊗ CJzK H− = V ⊗ z−1C[z−1].

This polarization identifies H with T ∗H+. The genus-0 invariants are assembled
in the genus-0 potential, which is a formal function on H+.

F0(t(z)) =
∑
n

1

n!
⟨t(ψ), . . . , t(ψ)⟩A0,n (22)
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Definition 2.2. The Lagrangian cone of LA the CohFT A0,n is the graph of
dF0 inside H shifted by −z. Explicitly, this is the image of the big J-function.

J(t,−z) = −zϕ1 + t(z) +
∑
n,a

ϕa

n!

〈
ϕa

−z − ψ
, t(ψ), . . . , t(ψ)

〉A

0,n+1

. (23)

We now recall recall how to compute the cone of the CohFT A0,n.

Theorem 2.3 (Chiodo - Zvonkine [CZ07, thm. 1.2.2]). Let (wn)n∈N be formal

variables, and Aw the multiplicative class given by Aw(E) = exp
(∑

i≥0 wi chi(E)
)
.

Let Ω be a genus-0 CohFT with unit. We consider the deformation Ωw =
ΩAw,0,n, which induces a family of cones Lw. Then we have

Lw = exp
(∑

wiLi

)
L0 (24)

with

Li =
zi

(i+ 1)!
diag

[
Bi+1 (1) , Bi+1

(
1

r

)
, . . . , Bi+1

(
r − 1

r

)]
(25)

Lemma 2.4. For A(E) = ch (Λ−λ(−E∨))
r
, the coefficients are given by

wi = r
∑
m>0

(−m)i
λm

m
. (26)

Definition 2.5. The untwisted cone Lun is the overruled cone inside H of the
CohFT obtained by choosing A = 1.

Corollary 2.6. Let wi be defined as in lemma 2.4.
The cone LH,λ of the CohFT associated to the class A(E) = ch(Λ−λE

∨)r is

LH,λ = exp(
∑

wiLi)Lun

for wi as above.

2.1 The fake theories

In view of applying the Grothendieck–Riemann–Roch theorem, one needs to
modify the correlators to include the Todd class of the tangent space. The class

of the tangent space in K0
(
Mr

0,n

)
is

T = π∗

(
ω⊗2(

∑
xi)
)∨

− π∗(OZ)
∨, (27)

where Z is the substack of singular points in Cr0,n. These two terms are treated
separately.

It was shown in [Ton14], that the first term induces a change in the dilaton
shift (ie a translation of the potential), and that the second term induces a
change of polarization of the ambient space.
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Recall that if r is prime, Mr

0,n has two kinds of nodes. If the multiplicity
of La at a node η is trivial, then η has trivial relative automorphism group.
If the multiplicity is non trivial, then the relative automorphism group of η is
isomorphic to µr. Thus the singular locus Z ⊂ Mr

0,a has a decomposition

Z = Z1 ⊔ Zr, (28)

where Zi is the substack of nodes whose relative automorphism group has order
i.

Definition 2.7. Let B, C1, Cr be invertible multiplicative classes. Define

B0,n = B
(
π∗

(
ω−1
log − 1

))
C0,n = C1 (π∗OZ1) Cr (π∗OZr )

The twisted invariants are defined by〈
ϕa1ψ

k1 , . . . , ϕanψ
kn
〉A,B,C
0,n

=

∫
Mr

0,a

A0,aB0,nC0,n
∏

ψkii , (29)

The twisted potential is the formal function

FABC(t) =
∑
n

1

n!
⟨t(ψ), . . . , t(ψ)⟩ABC

0,n (30)

Theorem 2.8 (Tonita, [Ton14]). The B-type twist translates the potential.

Fg,A,B,C(t) = Fg
A,C
(
t+ z − zB(L−1

z )
)

(31)

When B = td−1, as in our example, the translation is responsible for the change
in dilaton shift, which becomes 1− ez, instead of −z.

We now describe the effect of twisting by the class C on the Lagrangian cone.
As follows from the dilaton equation, the potentials of CohFTs are quadratic

with respect to the shifted origin z. Thus the twisted potential is quadratic with
respect to the new origin zB(L−1

z ), and the twisted J function should have the
form J tw(t,−z) = −zB(L−1

z ) + t + dtF0,tw. In order to define such a graph in
H, we need to choose a polarization. The content of the next theorem is that
there exists a polarization adapted to our needs.

Let HA be the polarized symplectic space associated with the Cohft Ag,n.
We introduce a new polarized symplectic space HA,C . As symplectic spaces
we have HA,C = HA, and HA,C

+ = HA
+ . Darboux coordinates on HA,C are

constructed as follows. Let L be a line bundle with c1(L) = z. Define

z

ui(z)
= Ci(−L∨) (32)

Then, one expands the following function

1

ui(−x− y)
=
∑
k≥0

(ui(x))
kvi,k(y).
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Darboux coordinates on C are given by

f =
∑
k≥0
α̸=0

qαk (f)ur(z)
kϕα +

∑
l≥0
β ̸=0

pβl (f)vr,l(z)ϕ
β

+
∑
k≥0

q0ku0(z)
kϕ0 +

∑
l≥0

p0l (f)v0,l(z)ϕ
0.

Theorem 2.9 (Tonita [Ton14]). Let LA be the cone of the Cohft Ag,n in HA,
and let LA,C be the cone of the twisted CohFT in HA,C. Then LA = LA,C.

In the remaining part of this paper, we fix

A(E) = ch (Λλ(−E∨))
r ∈ H∗JλK

B(E) = td (−E)

Cr(L) = td
(
−L−1/r

)
C0(L) = td (−L∨)

Thus, a Darboux basis of K is given by
{
ϕa(q

1/r − 1)k, 1rϕ
a qk/r

(1−q1/r)k+1

}
a̸=0

and{
ϕ0(q − 1)k, ϕ0 qk

(1−q)k+1

}
. Notice that B0,nC0,n = td (T ).

Definition 2.10. Let V be the C-vector space with basis ϕ0, . . . , ϕr−1. V is the
direct sum V = V0⊕Vr, where V0 is generated by ϕ0, and Vr by {ϕ1, . . . , ϕr−1}.

Let Kfake,λ be the free CJλK module of Laurent series in (q − 1)

Kfake,λ = V ⊗ CJ(1− q), (1− q)−1]⊗ CJλK. (33)

We endow Kfake,λ with the polarization prescribed by 2.9, that is,

Kfake,λ
+ = Vr ⊗ CJλKJq1/r − 1K ⊕ V1 ⊗ CJλKJq − 1K

Kfake,λ
− = Span

({
ϕa

qk/r

(1− q1/r)k+1
|a ̸= 0, k ∈ N

}
∪
{
ϕ0

qk

(1− q)k+1
|k ∈ N

})
We define the fake correlators by

⟨τj1(ea1), . . . , τjn(ean)⟩
fake
0,n =

∫
Mr

0,a

∏
i

ch(Li)
jiA0,n(a)B0,nC0,n

=

∫
Mr

0,a

∏
i

ch(Li)
jiA0,n(a)td

(
TMr

0,a

)
;

where Li denotes the i-th cotangent line bundle to the coarse curve. We
extend the corelators as n linear forms over Kfake

+ , and define the genus-0 fake
potential, by

F fake,λ(t(q)) =
∑
n

1

n!
⟨t(L), . . . , t(L)⟩fake0,n .
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The fake J function is the graph of the (shifted) differential of the fake
potential.

J fake,λ(t) = 1− q + t+
∑
a ̸=0

1

r

ϕa

n!

〈
ϕa

1− q1/rL1/r
, t(L), . . . , t(L)

〉fake,λ

0,n+1

+
ϕ0

n!

〈
ϕ0

1− qL
, t(L), . . . , t(L)

〉fake,λ

0,n+1

Proposition 2.11. Let Lfake,λ be the range of the big fake J-function in Kfake,
and LA ⊂ H be the cone of the CohFT A. Then

Lfake = ch−1(LA) (34)

We summarize the situation in the following diagram.

Lfake,λ LA

Kfake,λ HAch

Since the Chern character map is an isomorphism, we will abuse notations
and write q = ez.

Evaluation In the next section we need to evaluate the classA(F ) = ch (Λλ(−F∨))
at specific values of λ ∈ C. If λ = −1, then the result is well defined only if −F is
the isomorphism class of a vector bundle. It is shown in [CR10] that R1π∗L(−E)
is indeed a vector bundle. The evaluation of a correlator at λ = −ξ ∈ C will be
denoted

ev−ξ ⟨ϕa1 , . . . , ϕan⟩
fake,λ

= ⟨ϕa1 , . . . , ϕan⟩
fake,ξ

. (35)

3 The J-function

In this section we define a J-function for the FJRW-invariants, which has val-
ues in K0(IBµr), and we apply the Grothendieck–Riemann–Roch theorem to
express this function in terms of the fake invariants. For notational reasons,
we restrict to the case where r is prime. Thus, the marked gerbes are either
isomorphic to Mr

0,a, or µr-gerbes.

Recall that K0(IBµr)⊗ C =
⊕r−1

a=0 C[µ̂r]ϕa ≃ V ⊗C C[µ̂r].

Definition 3.1. Let K1,Kr be the spaces

K1 = V1 ⊗ C[µ̂r]⊗ C(q)

Kr = Vr ⊗ C[µ̂r]⊗ C(q1/r).

The loop space of the FJRW theory is

K = K1 ⊕Kr. (36)
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The scalar product on V ⊗ C[µ̂r] is

(Eϕa;Fϕb) = χ(Bµr;E ⊗ F )δa+b,r, (37)

and the symplectic form Ω is

Ω(f(q)ϕ0, g(q)ϕ0) = [Resq=0 +Resq=∞]

(
(f(q); g(q−1))

dq

q

)
,

Ω(f(q1/r)ϕa, g(q
1/r)ϕb) =

[
Resq1/r=0 +Resq1/r=∞

](
(f(q1/r)ϕa; g(q

−1/r)ϕb)
dq1/r

q1/r

)
.

The polarization is given by

(Ki)+ = Vi[q
1/i, q−1/i]⊗ C[µ̂r] for i = 1, r

K− = {f ∈ K such that f(0) ̸= ∞ and f(∞) = 0}

There is a morphism of localization at q1/r = 1

K → Kfake = V1 ⊗ CJq−1, (q − 1)−1]⊕ Vr ⊗ CJq1/r − 1, (q1/r − 1)−1].

Definition 3.2. The J-function is the formal function K+ → K given by

J(t(q)) = 1− q + t+
∑
n

1

n!
(ev1)∗

π∗
1

(
Λ0,n+1

⊗n+1
i=2 t(Li)

)
1− q1/rL1

 . (38)

Remark 3.3. The Grothendieck ring K0(Bµr) is the representation ring of µr,
which is isomorphic to C[µ̂r]. This ring has two natural C-bases. The first is
given by the characters [χ] ∈ C[µ̂r], and the second is the basis of idempotents
eξ = 1

r

∑
χ∈µ̂r

χ−1(ξ)[χ]. For E =
∑
χ λχ[χ], we have that E =

∑
ξ∈µr

E ⊗ eξ
and E ⊗ eξ =

∑
χ λχχ(ξ)eξ.

On the other hand, let p : IBµr → Bµr be the projection from the in-
ertia stack. The cohomology of IBµr is H∗(IBµr) =

⊕
ξ∈µr

C.vξ. Then

ch(ρ(p∗E)) =
∑
ξ∈µr

∑
χ χ(ξ)vξ. Thus the coefficients of ch(ρ(p∗E)) coincide

with the coefficients of E in the basis eξ, and are given by the Riemann-Roch
theorem [Toe98].

3.1 Mr

0,a and its inertia stack

We describe the inertia stack of Mr

0,n, and how the stabilizers act on the uni-
versal root.

We fix a multi-index a = (a1, . . . , an), and let Mr

0,a be the stack of rth
roots of ωlog(−

∑
i aixi). An object of this stack over a scheme S is a family

of twisted curves C → S equipped with a line bundle L, and an isomorphism
L⊗r → ωlog(−

∑
i aixi), such that each node is balanced. Moreover, for any

geometric point x of C, the representation Aut(x) → C∗ induced by Lx must

12



be faithful. These conditions determine the order of the automorphism group
of every point of C.

Indeed, a boundary divisor D of M0,n is given by a partition {1, . . . , n} =
A ⊔ B. The universal curve over D is the union of two components CA ∪ CB ,
and the restriction of L to CA has degree dA = 1

r (−2 + 1 −
∑
i∈A ai) ∈ Z[ 1r ].

Thus the order of the automorphism group of the node is ρD = # ⟨rdA⟩, where
⟨rdA⟩ ⊂ Zr is the subgroup of Zr generated by rdA.

Let M0,n(r, a) be the stack of twisted n-pointed stable curves of genus 0

such that each node defining a divisor D has order ρD. There is a map Mr

0,a →
M0,n(r, a), which is a µr-gerbe.

Definition 3.4. Let a be a multi-index, and let ρ be the function on boundary
divisors defined above. An inertial stable graph is a pair (Γ, ν), where

• Γ is a stable graph with n legs,

• ν : E(Γ) → µ∞ is a function with values in the roots of unity, such that
for all e ∈ E(Γ), we have ν(e) ∈ µρ(e) \ {1},

where ρ : E(Γ) → N+ is the function on edges of Γ induced by ρ.
The set of isomorphism classes of inertial stable graphs relatively to a is Ga.

One associates an inertial stable graph to each connected component of
IM(r, a) as follows. A closed point of such a component is given by (C, g),
where g is an automorphism of C. The only automorphisms of a twisted, genus-
0 stable curve are the ghost automorphisms (see [ACV01, Section 7]). Thus a
generic curve of a connected component of IM(r, a) has a dual graph Γ such
that ρ(e) ̸= 1 for all edges e ∈ E(Γ). We orient the edges of Γ in the direction
going away from the first marked point x1. The orientation of Γ yields an
isomorphism Aut(C) ≃

∏
e∈E(Γ) µρ(e). Explicitly, given a node p ∈ C, ζ ∈ µρ(e)

corresponds to the ghost automorphism (z−, z+) 7→ (ζz−, z+)
With this isomorphism fixed, one defines ν such that the isomorphism of C

induced by g is (ν(e))e∈E(Γ).

Proposition 3.5. The correspondence described above induces a bijection be-
tween Ga, and the set of connected components of IM(r, a).

The component corresponding to Γ is denoted IM(r, a)Γ.

Proof. The moduli space M0,n(r, a) is obtained from M0,n by performing the
rD-th root construction at each boundary divisor D ([BC10]). Writing M for
M0,n, we have

M0,n(r, a) = M[D1/rD1
]×M M[D2/rD2

]×M · · · (39)

whereDi are the boundary divisors. The inertia stack ofM0,n[D/r] is IM0,n[D/r] =
M0,n

⊔
ξ∈µrD

\1 Dξ, where Dξ is a stack whose coarse space is isomorphic to D.

Finally, M0,n is a scheme, so the inertia stack of M0,n(r, a) is the fiber product
over M0,n of all the IM0,n[D/rD].
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Let p : Mr

a → M(r, a) be the forgetful map, and Ip : IMr

a → IM(r, a) be
the induced map.

Definition 3.6. Define

IMr

Γ : = (Ip)−1
(
IM(r, a)Γ

)
. (40)

We get a decomposition of IMr

a into open and closed substacks

IMr

a =
⊔

Γ∈Ga

IMr

Γ. (41)

The map p is a gerbe banded by µr, and for any closed point (C,L) of Mr
,

it induces an exact sequence

1 → µr → Aut((C,L)) → Aut(C) → 1. (42)

Recall that an automorphism of the object (C,L) is the data of an auto-
morphism g of C, and an isomorphism α : g∗L → L compatible with the r-th
root structure. Since the restriction of g to the component containing x1 is
the identity map, α acts on L|x1

by multiplication by some r-th root of unity
ξ(g, α) ∈ µr. The map (g, α) 7→ ξ(g, α) splits the exact sequence 42.

We now decompose the inertia stack according to this splitting.

Definition 3.7. For ξ ∈ µr, and Γ ∈ Ga, let IM
r,ξ

Γ be the open and closed

substack of IMr

0,n made of the curves (C,L, g, α) ∈ IMr

Γ such that ξ(g, α) = ξ.
Then we have

IMr

0,n =
⊔

Γ∈Ga

ξ∈µr

IMr,ξ

Γ . (43)

Let us denote the first marked gerbe by Σ = Σ1, and let Σa be the first

maked gerbe of Mr

0,a. If a1 ̸= 0, the morphism, π : Σ → Mr

0,n is a gerbe
banded by µr, so for any closed point x of Σ we obtain an exact sequence

1 → µr → Aut(x) → Aut(π(x)) → 1. (44)

This sequence splits canonically, yielding an isomorphism Aut(x) ≃ µr×Aut(π(x)).
Thus IΣ admits a first decomposition IΣ =

⊔
ξ1∈µr

IΣξ1 .

Let Iπ1 : IΣ → IMr

0,n be the morphism induced by π1.

Definition 3.8. The inertia stack of Σa has a decomposition

IΣa =
⊔

Γ∈Ga

⊔
ξ,ξ1∈µr

IΣξ,ξ1Γ , (45)

where IΣξ,ξ1 = IΣξ1 ×IΣ (Iπ1)
−1
(
IMr,ξ

Γ

)
.
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Let us also define

IΣξ,ξ1a :=
⊔

Γ∈Ga

IΣξ,ξ1Γ

IΣξ,ξ10,n :=
⊔
a

IΣξ,ξ1a

Lemma 3.9. Let x be a C-point of IΣξ,ξ10,a , and let Iev1 : IΣ → IBµr be the
morphism induced by ev1 : Σa → Bµr. Recall that Iµr ≃

⊔
ξ∈µr

(Bµr)ξ.

Then Iev1(x) ∈ (Bµr)ξξa1
1
.

Proof. The morphism Σ → Bµr is given by the restriction of L to Σ1, which
is an r-th root of OΣ1

. This functor induces a morphism between the generic
automorphism groups, which is given by

µr × µr → µr

(ξ, ξ1) 7→ ξξa11 .

Ideed this corresponds to the action of µr × µr on L|Σ.

We now describe the action of the automorphism groups of Mr
on R1π∗L

with the concavity assumption. We fix a connected component IMr,ξ

Γ ⊂ IMr,ξ
.

Then R1π∗L decomposes as a direct sum
⊕

v∈V (Γ)Ev. Let v0 be the compo-

nent containing x1. By hypothesis, the automorphism (g, α) acts on Ev0 by
multiplication by ξ.

Lemma 3.10. There exists a unique function f : V (Γ) → µr such that

• if v1 and v2 are two vertices connected by an edge e oriented from v1 to v2,
then ν(e)multp+ (L)f(v1) = f(v2), where multp+(L) ∈ Zρ(e) is the character
of L at the node on the component given by v2,

• f(v0) = ξ.

Recall that if M is a Deligne–Mumford stack, and E is a vector bundle
on IM, then E is locally decomposed as E =

⊕k−1
l=0 E

l, where k is the order
of the isotropy subgroup generated by g. Then one defines the morphism ρ :
K0(IM)C → K0(IM)C by ρ(E) =

∑
l e

2iπl
k El (see [Toe98]).

Proposition 3.11. Let a be a multi-index, and let Γ ∈ Ga be an inertial stable

graph. Let f be the function defined by lemma 3.10. Then, over IMr,ξ

Γ , one has

ρ
(
R1π∗L

)
=

∑
v∈V (Γ)

f(v)Ev. (46)

Proof. For simplicity, let us assume that C = C1 ∪ C2 is a curve with one node
p, and x1 ∈ C1. Let g be an automorphism of C. Note that g|Ci

≃ idCi
. Let
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α : g∗L → L be an isomorphism such that αC1 is the multiplication by some
root of unity ξ.

The local picture of g at p is given by (z1, z2) 7→ (ζz1, z2) (or any equivalent
morphism). By [Chi07, prop. 2.5.3], we have

g∗L ≃ L⊗ TL, (47)

where TL is the line bundle whose sections over U are pairs of functions (f1, f2) ∈
OC1

(U)⊕ CC2
(U) such that ζmultp2 (L)f1(p) = f2(p). Thus the morphism α|C2

is

the multiplication by ξζmultp2 (L).

Corollary 3.12. With the same setting as in the previous proposition, one has

ρ
(
Λ−1(R

1π∗L)∨
)
=

∏
v∈V (Γ)

Λ−f(v)−1(E∨
v ). (48)

Proposition 3.13. In the same setting as above, suppose ai is prime to r, and

let T = πi∗

(
ev∗i [j/ai]⊗N−j

i

)
. Let v(i) be the vertex of Γ supporting the ith

marked point. Then over IMr,ξ

Γ we have

ρ(T ) = f(v(i))j/ai (49)

3.2 The J-function

We now apply the Grothendieck–Riemann–Roch theorem to compute the J-
function of the K-theoretic invariants.

Proposition 3.14. The J-function is the (shifted) differential of the genus-0
potential. Thus, its image is a Lagrangian cone in K.

Proof. For h, t ∈ K+, the differential of F at t is dtF(h) =
∑

1
n! ⟨h, t, . . . , t⟩n+1.

Let us suppose that t ∈ Vr[q
1/r, q−1/r] ⊗ C[µ̂r]. Notice that (ϕaeξ;ϕr−aeξ′) =

1
r δξ,ξ′ , thus the dual of ϕaeξ is rϕaeξ. Then we have

dtF =
∑
n,a̸=0

∑
ξ∈µr

rϕaeξ
n!

〈
ϕaeξ

(1− q1/r)L1
, t(L), . . . , t(L)

〉
0,n+1

. (50)

On the other hand, for any class F ∈ K0(Σ), we have

(ev1)∗(F ) =
∑
a,ξ

rχ (IBµr; (ev1)∗(F )⊗ ϕaeξ)ϕaeξ

=
∑
a,ξ

rχ (Σ;F ⊗ (ev1)
∗ (ϕaeξ))ϕaeξ

Taking F to be Λ⊗
⊗
t(Li) yields the result.
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We define a linear action of µr on Kr by

ζ · (qj/rϕaeξ) = ζjqj/rϕaeξζa over Kr,+
ζ · (qj/rϕaeξ) = ζjqj/rϕaeξζa over Kr,−

This action is related to the action of the relative automorphism group of Σ
on IΣ.

Proposition 3.15. The action of µr on Kr is symplectic.

Lemma 3.16. Let [d] be the character ξ 7→ ξd. The invariant subspace of Kr,+
is generated by the elements qj/rϕa[j/a] for a ̸= 0.

Proof. One computes that

ζ ·
(
qj/rϕa[d]

)
= qj/rϕa

∑
ξ∈µr

ζjξdeξζa

= qj/rϕaζ
j−ad

∑
ξ∈µr

(ξζa)deξζa

= qj/rϕaζ
j−ad[d]

Thus µr acts diagonally on Kr,+ with respect to the basis ϕaq
j/r[d], and the

subspace of invariants has basis {qj/rϕa[j/a]} for a ̸= 0.

Let t be an element of Kr,+, and denote t = 1
r

∑
ζ∈µr

ζ · t(q1/r). The map
t 7→ t is a projection onto the subspace of invariant elements. Then by remark
1.8, we have that ⟨t, . . . , t⟩0,n = ⟨t, . . . , t⟩0,n and

J(t) = 1− q + t+
∑ 1

n!
ev1∗

(
Λ0,n+1

1− q1/rL1

n+1⊗
i=2

t(Li)

)
(51)

Proposition 3.17. Suppose that t = t ∈ K+. Then J(t) is a µr-invariant point
of K.

Proof. We only need to check that the K− part of J(t) is invariant. Recall that

J−(t) =
∑

a,n,ξ0,ξ1

rϕaeξ0
n!

∫
IΣ

ξ0ξ
−a
1 ,ξ1

0,n+1

ch(ρΛ0,n+1)

ch(1− ξ−1
1 qL1)

⊗
ch (ρt(Li)) ,

where we consider ai as locally constant functions on Mr

0,n.

The stacks IΣ
ξ0ξ

−a
1 ,ξ1

0,n+1 and IΣ
ξ0ξ

−a
1 ,ζξ1

0,n+1 are naturally isomorphic, since Σ is

a µr-gerbe over Mr

0,n. Moreover, if t is µr-invariant, then proposition 3.13
implies that this isomorphism does not change the trace on t(Li). Thus,

ζ−1 · J−(t) =
∑

a,n,ξ0,ξ1

rϕaeξ0ζ−a

n!

∫
IΣ

ξ0ξ
−a
1 ,ξ1

0,n+1

ch(ρΛ0,n+1)

ch(1− (ζξ1)−1qL1)

∏
ch (ρt(Li))

=
∑

a,n,ξ0,ξ1

rϕaeξ0ζ−a

n!

∫
IΣ

ξ0ξ
−a
1 ,ξ1ζ

0,n+1

ch(ρΛ0,n+1)

ch (1− qρL1)

∏
ch (ρt(Li)

= J−(t)
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Proposition 3.18. Suppose that t = t ∈ K+. Then the localization at 1 of J(t)
is a point of the fake cone

J(t)(1) ∈ Lfake (52)

Proof. The argument follows the adelic characterization of [GT11]. It consists
in applying the Grothendieck–Riemann–Roch theorem for stacks (or GRR for
short), and relating the different integrals with the fake theories introduced in
section 2.

Let us decompose J(t) =
∑
ξ0
Jξ0eξ0 . We fix ξ0 ∈ µr, and show that the

function Jξ0 lies on the fake cone Lξ0,fake. According to the GRR formula
[Toe98], the component Jξ0 is given by

1−q+t+
∑

ξ1∈µr,a ̸=0

rϕa

n!

∫
IΣξ0ξ

−a
1 ,ξ1

ch (ρ (Λ0,n

⊗
t(Li))(

1− ξ−1
1 q1/reψ1/r

)
ch (ρΛ−1N∨)

td(T ). (53)

Let us denote t̃ the terms of the sum with ξ1 ̸= 1. Explicitly, t̃ is the sum of the

contributions of IΣξ0ξ
−a
1 ,ξ1 for ξ1 ̸= 1. Notice that t̃ ∈ Kξ,fake+ , thus we want to

show that Jξ0(t)(1) = Jξ,fake(t+ t̃).

Let (C, g) be a geometric point of IΣξ0,1. For such a curve, the head of
C is the maximal connected subcurve containing Σ1 (the first marked gerbe),
and such that the restriction of g to the head is the identity. The head has
marked gerbes which are either nodes of C with non-trivial action of the ghost
automorphism, or marked gerbes of C. In the first case, the connected compo-
nent attached to the node is called an arm. An arm comes with a distinguished
marked gerbe, called its horn.

The moduli space of heads is the union of all the first marked gerbes of the
moduli space of spin curves,

Mhead,ξ0
n =

⊔
n≥3

⊔
b1,...,bn ̸=0

Σb, (54)

while the moduli space of arms is

Marm,ξ0
=
⊔
n≥3

⊔
c1 ̸=0,ξ1 ̸=1

Mr

0,c. (55)

Let us fix a = (a1, . . . , an), and let Γ ∈ Ga be an inertial graph. Let m
be the number of legs of the vertex carrying the first marked point in Γ. The
decomposition of curves into head and arms induces a morphism

IΣξ0,1Γ → Mhead,ξ0 ×
(
Marm,ξ0

)m
. (56)

This morphism allows us to express the content of the GRR formula as a product
of integrals over the moduli spaces of heads and arms, except for the normal
bundle at nodes joining the head to an arm. Such a node of C contributes to
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the conormal bundle N∨ by L+ ⊗ L−. Thus the contribution of IΣξ0,1 to the
J-function is exactly

∑
m,n

1

r

ϕa

m!n!

〈
ϕa

1− q1/rL1/r
, t(L1/r), . . . , t(L1/r), t̃(L1/r), . . . , t̃(L1/r)

〉ξ0,fake

=
∑ 1

r

ϕa

n!

〈
ϕa

1− q1/rL1/r
, t(L1/r) + t̃(L1/r), . . . , t(L1/r) + t̃(L1/r)

〉ξ0,fake
0,n+1

Theorem 3.19. For all t ∈ K+, we have that,

(1) J(t) has no poles outside of 0,∞ and the fifth roots of unity,

(2) the localization of feξ at 1 lies in the fake cone Lξ,fake,

(3) f − f ∈ K+.

Conversely, the J function is uniquely determined by these 3 conditions, and
can be recursively computed from the correlators of the fake theories.

Proof. It is clear that the J-function satisfies the three conditions above. Con-
versely, let us show that these conditions determine the J-function. We will
construct all the correlators of J−, and t̃ (the arm contribution) by recur-
sion on the number of marked points. Let us first remark, that if we write
J− =

∑
Ja,ξ0− ϕaeξ0 then the first condition implies that the partial fraction de-

composition of J− has the form Ja,ξ0− =
∑
ξ1∈µr

Ja,ξ0,ξ1− , where Ja,ξ0,ξ1− is the
part with pole at ξ1. Then, the third condition implies that for all ζ ∈ µr we
have

Ja,ξ0,ξ1− (ζ−1q1/r) = Ja,ξ0ζ
−a,ξ1ζ

− (q1/r) (57)

We define t̃ to be
t̃ =

∑
a̸=0,ξ0∈µr,ξ1 ̸=1

∑
Ja,ξ0− ϕaeξ0 (58)

The previous equation shows that t̃ is determined by the functions Ja,ξ0,1− .
By definition, J− has no terms of degree 0 and 1 in t, and the terms of degree

2 coincide with the fake invariants.
Suppose now that all correlators involving at most nmarked points have been

computed, and let us compute the correlators with n + 1 marked points. The

correlator
〈

ϕa

1−q1/rL1/r , t, . . . , t
〉
0,n+1

is made of integrals over IΣ0,n+1. Because

of condition (3), we need only compute the contribution of IΣξ,10,n+1, where the
stability imposes that the arms have at most n marked points. By the recursion
hypothesis, the arm contribution t̃ has been computed up to degree n− 1 in t,
which corresponds to n marked points.

Corollary 3.20. Let W be a vector space, and I be a formal function from W
to K such that I(0) = 1− q. If
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• I(t) has poles only at 0,∞ and the fifth roots of 1,

• Ieξ is a function on Lξ,fake,

• I is µr-invariant,

then I lies on L.

3.3 A function on the Lagrangian cone

3.4 I-functions for the fake theories

We now find a particular one-dimensional subvariety on Lλ,fake.
We recall the following computation from [CCIT09] and [CR10]. Given a

sequence of scalars wd, we define the following formal function :

Gy(x, z) =
∑
m,l≥0

wl+m−1
Bm(y)xl

m!l!
zm−1 (59)

It satisfies the equations

Gy(x, z) = G0(x,+yz, z)

G0(x+ z, z) = G0(x, z) + s(x)

Let ∇ be a vector field on V .

Proposition 3.21. Let J̃ be any formal function from V to H. Suppose that
J̃(t,−z) lives on the untwisted cone. Then, for any sequence (wi) and for any
y ∈ C, the function

J̃w,y(t,−z) = exp(−Gy(z∇, z))J̃(t,−z) (60)

also lives on the untwisted cone.

Recall that the small J-function of a point is J(τ) = (1 − q) exp
(

τ
1−q

)
.

We extend the notation ϕn to all n ∈ N by ϕn = ϕn mod r, and define an
“untwisted” I-function by

Iun(τ) = (1− q)
∑
n≥0

τn

(1− q)n
ϕn+1 (61)

Lemma 3.22. The function Iun lies on the untwisted cone Lun ⊂ Kfake.

Proof. This is a consequence of 2.9.

Thus we can apply 3.21 to Iun with the vector field ∇ = τ
r ∂τ .
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Corollary 3.23. The following function lies on the cone Lfake,λ.

Iλ(τ) = (1− q)
∑
n≥0

∏
0≤m<⌊n/r⌋

(
1 + λq

1
r+{n

r }+m
)r
τn

(1− q)n
ϕn+1 (62)

Evaluating at λ = −ξ, we obtain the function

Iξ(τ) = (1− q)
∑
n≥0

∏
0≤m<⌊n

r ⌋

(
1− ξq

1
r+{n

r }+m
)r τn

(1− q)n
ϕn+1 (63)

Proof. See [CCIT09] and [CR10].

Theorem 3.24. Let Ĩξ be the projection of Iξ on Vr parallel to V1. The function

I =
⊕
ξ∈µr

Ĩξeξ (64)

has values in L.

Proof. We apply 3.20.
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